用户名: 密码: 验证码:
催化裂化汽油光催化氧化脱硫研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球范围环境意识的日益增强,世界各国对燃料油品中的硫含量提出了更严格的要求。光催化氧化以其具有成本低、反应条件温和、脱硫效果好等优点成为较有潜力的深度脱硫方法。目前国内外在以H_2O_2为氧化剂脱硫方面开展的研究工作较多,而以氧气为氧化剂脱硫的研究鲜见报道。本文利用氧气为氧化剂,考察了在加入吸附剂、光催化剂以及光敏剂等条件下催化裂化汽油的脱硫情况,研究了氧化脱硫机理,建立了动力学方程。
     将噻吩溶于正辛烷配成模型汽油,以水为萃取剂,以空气中氧气为氧化剂,在紫外光照射下噻吩可以发生氧化脱硫,其氧化产物有砜、草酸、CO_2、SO4_2-等。加入具有适当孔径的高比表面积材料分子筛作为氧气吸附剂可以使脱硫率由58.9%提高到9_2.3%。
     通过溶胶-凝胶法合成纳米TiO_2,并将其作为光催化剂应用于油品脱硫中。采用微分法拟合确定纳米TiO_2光催化氧化噻吩为表观一级动力学反应,初始浓度为800μL·L-1的模型汽油的脱硫率可以达到96.0% ,动力学方程为ln(C0/Ct)=0.6405t+0.3441。
     以三氟乙酸和硝酸锌为掺杂剂制备了F、Zn共掺杂的TiO_2,确定了适宜的掺杂量为n(F)/n(TiO_2)=_2%,n(Zn)/n(TiO_2)=3%,探讨了掺杂后比表面积、粒径及光催化活性的变化。XPS、EDS、XRD、BET、FT-IR等测试表明,F、Zn已经掺杂进去。利用F/Zn/TiO_2为光催化剂时噻吩脱硫率可以提高到99.2%,半衰期由1.08h缩短到0.95h。
     为了提高油相中光催化剂的分散量,利用非离子表面活性剂在乙醇溶剂中对TiO_2进行表面亲油改性。TEM表明改性后样品分散性较好。亲油性TiO_2光催化氧化催化裂化汽油可使其硫含量由550μg·g-1降低到10μg·g-1以下。
     为提高光量子效率,在反应体系中加入核黄素作为光敏剂,发现核黄素光敏氧化噻吩为单重态氧机理。核黄素与TiO_2具有协同效应,光催化氧化噻吩脱硫率可以提高到99.1%。
Along with more attention being paid to environment protection worldwide, most countries have made laws or regulations to restrict the sulfur content in fuel oil with a more rigorous standard. Photochemical oxidation is a new technology to degrade sulfur-containing compounds in oil, and has received much attention as a new technology for deep desulfurization of light oil in recent years because of its advantage such as low cost, mild reaction condition and high desulphurization effect. In previous, people have mostly researched desulfurization of fuel oil phtooxidized by H_2O_2. In the paper, photocatalytic oxidation desulfurization of fluid catalytic cracking (FCC) gasoline and thiophene as its model sulfur-containing compound phtooxidized by O_2 was investigated, mechanisms of photooxidation of thiophene by O_2 were speculated, and kinetics equations were also established.
     Thiophene was dissolved in n-octane to form model gasoline and mixed vigorously with water. The combined solution was UV irradiated by a high-pressure mercury lamp. During photoirradiation, air was introduced by a gas pump to dissolve O_2 as oxidant. By this method, Thiophene dissolved in n-octane was photodecomposed and removed into the water phase at ambient temperature and atmosphere pressure. Thiophene was photooxidized to sulfone and ethanedioic acid、SO4_2- and CO_2. Desulfurization yield was improved by adding zeolite with high specific surface area and suitable pore size as sorbent for O_2 from 58.9% to 9_2.3%.
     Nano-TiO_2 was prepared by sol-gel method and used as photocatalyst in desulfurization of FCC gasoline. The results showed that the photooxidation kinetics of thiophene with TiO_2 as photocatalyst was the first-order by differential method. Desulfurization yield of model gasoline which initial sulfur content was 800μL·L-1 reached 96.0% and the kinetic equation was ln(C0/Ct)=0.6405t+0.3441.
     Nano-F-/Zn_2+/TiO_2 particles were prepared via the sol-gel reaction of Ti(i-OC4H9)4 in an aqueous solution of CF3COOH and Zn(NO3)_2 and the appropriate doping content were n(F)/n(TiO_2)=_2%, n(Zn)/n(TiO_2)=3%. Specific surface area, crystal size and photocatalytic activities of F-/Zn2+/TiO_2 were investigated. The powders were characterized by energy dispersion X-ray spectrum (EDS), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and brunauer–emmett–teller (BET). The results showed that F- and Zn2+ were doped into TiO_2. Desulfurization yield of thiophene was improved from 96.0% to 99.2% using F-/Zn2+/TiO_2 as photocatalyst and half-time was shortened from 1.08h to 0.95h.
     To disperse TiO_2 in the oil phase, nano-TiO_2 was modified by Span60 and Span40 which were non ionic surfactant in ethanol. The result obtained by FT-IR and transmission electron microscopy (TEM) showed that there were Span60 or Span40 on the surface of TiO_2 nanoparticles and the degree of aggregation of nano-particles has been improved effectively. And sulfur content of FCC gasoline was decreased from 550μg·g-1 to 10μg·g-1.
     Riboflavin was added into the reaction system to improve light quantum efficiency as a kind of photosensitizer. And the photooxidation of thiophene sensitized by riboflavin was conducted by singlet state oxygen. It was founded that riboflavin and nano-TiO_2 showed combined catalytic effects and desulfurization yield of thiophene reached 99.1%.
引文
[1] Nocca J L, Cosyns J, Debuisschert Q, et al. The domino interaction of refinery processes for gasoline quality attainment, Texas, NPRRA Annual Meeting, Texas, 2000, AM-00-61
    [2] 中华人民共和国国家技术监督局,GB-17930-1999,车用无铅汽油,中华人民共和国国家标准,北京:中国标准出版社,1999-12-28
    [3] Matsuzawa S, Tanaka J, Sato S, et al, Photocatalytic Oxidation of Dibenzothiophenes in MeCN Using TiO2: Effect of Hydrogen Peroxide and Ultrasound Irradiation, Journal of Photochemistry and Photobiology A: Chemistry, 2002, 149(1-3): 183~189
    [4] 赵地顺,刘翠微,马四国,FCC 汽油模型化合物光催化氧化脱硫的研究,高等学校化学学报,2006,27(4):692~696
    [5] 唐晓东,崔盈贤,于志鹏,等,直馏柴油选择催化氧化脱硫催化剂的制备与评价,石油化工,2005,34(10):15~19
    [6] 陈兰菊,郭绍辉,赵地顺,车用燃料油氧化脱硫技术进展,燃料化学学报,2005,33(2):247~251
    [7] 王云芳,尹风利,史德清,等,车用燃料油吸附法深度脱硫技术进展,石油化工,2006,35(1):94~99
    [8] Luo M F, Xing J M, Gou Z X, et al. Desulfurization of Dibenzothiophene by Lyophilized Cells of Pseudomonas Delafieldii R-8 in the Presence of Dodecane, Biochemical Engineering Journal, 2003,13(1): l~6
    [9] Bobinger S, Andersson J T, Degradation of the Petroleum Components Monomethlybenzothiophenes on Exposure to Light, Chemosphere, 1998, 36(12): 2569~2579
    [10] Shiraishi Y, Hirai T, Komasawa I, A Novel Demetalation Process for Vanadyl- and Nickelporphyrins from Petroleum Residue by Photochemical Reaction and Liquid-Liquid Extraction, Industrial & Engineering Chemistry Research, 2000, 39(5): 1345~1355
    [11] Bobinger S, Andersson J T, Degradation of the Petroleum Components Monomethlybenzothiophenes on Exposure to Light, Chemosphere, 1998, 36(12): 2569~2579
    [12] Halbert T R, Brignac G B, Greeleyey J P, et al,Technology Options for Meeting Low Sulfur Targets, Texas, NPRRA Annual Meeting, 2000, AM-00-11
    [13] Martine N P, Salazar J A, Tejada J, et al, Meeting Gasoline Pool Sulfur and Octane Targets With Isal(R) Process, Texas, NPRRA Annual Meeting, 2000, AM-00-52
    [14] 赵乐平,周勇,段为宇,等,汽油选择性加氢脱硫技术的开发和工业应用,工业催化,2004,12(1):16~19
    [15] 赵乐平,胡永康,庞宏,等,FCC 汽油加氢脱硫/降烯烃新技术的开发,工业催化,2004,12(4):24~26
    [16] Song C S, An Overview of New Approaches to Deep Desulfurization for Ultra-Clean Gasoline, Diesel Fuel and Jet Fuel, CatalysisToday, 2003, 86(1-4): 211~263
    [17] Babich I V, Moulijn J A, Science and Technology of Novel Process for Deep Desulfurization of Oil Refinery Streams:a Review, Fuel, 2003, 82(6): 607~631
    [18] Robert L, Process for Desulfurizing Gasoline and Hydrocarb on Feedstocks[P], US:5730860,1998-03-24
    [19] Gyanesh P, Desulfurization with Zinc Titanate Sorbents[P], US:6338794, 2002
    [20] Gyanesh P, Desulfurization and Novel Sorbents for Same[P], US: 6346190, 2002-02-12
    [21] Donald R, Sorbent Compositions[P], US: 6350422, 2002-02-26
    [22] Khare, Gyanesh P. Desulfurization Process and Novel Bimetallic Sorbents Systems for Same[P], US: 6274533, 2001-08-14
    [23] 李灿,田福平,蒋宗轩,等,深度脱除硫化物的分子筛吸附剂及制法和应用[P],CN02160814.8,2004-07-14
    [24] 秦如意,张晓静,刘金龙,FCC 汽油吸附脱硫工艺的研究,石油炼制与化工,2003,34(3):24~28
    [25] Shiraishi Y, Naito T, Hirai T, Vanadosilicate Molecular Sieve as a Catalyst for Oxidative Desulfurization of Light Oil, Industrial & Engineering Chemistry Research, 2003, 42 (24): 6034~6039
    [26] Yazu K, Furuya T, Miki K, et al, Tungstophosphoric Acid-Catalyzed Oxidative Desulfurization of Light Oil with Hydrogen Peroxide in A Light Oil/Acetic Acid Biphasic System, Chemistry Letters, 2003, 32(10): 920~921
    [27] Otsuki S, Nonaka T ,Takashima N ,et al, Oxidative Desulfurization of Light Gas Oil and Vacuum Gas Oil by Oxidation and Solvent Extraction ,Energy Fuels, 2000, 14(6): 1232~1239
    [28] Murata S, Murata K, Kidena K, et al, A Novel Oxidative Desulfurization System for Diesel Fuels with Molecular Oxygen in the Presence of Cobalt Catalysts and Aldehydes, Energy Fuels, 2004,18(1): 116~121
    [29] Filippis P D, Scarsella M, Oxidative Desulfurization: Oxidation Reactivity of Sulfur Compounds in Different Organic Matrixes, Energy Fuels, 2003, 17(6): 1452~1455
    [30] Mei H, Mei B W, Yen T F, A New Method for Obtaining Ultra-Low Sulfur Diesel Fuel via Ultrasound Assisted Oxidative Desulfurization, Fuel, 2003, 82(4): 405~414
    [31] 赵地顺,马四国,刘翠微,等,相转移催化应用于催化裂化汽油氧化脱硫的研究,高等学校化学学报,2006,27(1):144~146
    [32] 刘万楹,雷正兰,吕伟,等,有机硫化物的等离子体液相氧化脱硫,应用化学,1997,(5):83~85
    [33] Liu W Y, Lei Z L, Wang J K, Kinetics and Mechanism of Plasma Oxidative Desulfurization in Liquid Phase, Energy Fuels, 2001, 15(1): 38~43
    [34] 杨金荣,侯影飞,孔瑛,等,柴油臭氧氧化脱硫研究,石油大学学报(自然科学版),2002,26(4):86~91
    [35] Sampanthar J T, Xiao H, Dou J, et al, A Novel Oxidative Desulfurization Process to Remove Refractory Sulfur Compounds from Diesel Fuel, Applied Catalysis B: Environmental, 2006, 63(1): 85~93
    [36] 程时富,刘月明,高金宝,等,Ti-MWW 催化氧化脱除轻油中苯并噻吩和二苯并噻吩,催化学报,2006,27(7):547~549
    [37] Shiraishi Y, Hirai T, Komasawa I, A Deep Desulfurization Process for Light Oil by Photochemical Reaction in an Organic Two-Phase Liquid-Liquid Extraction System, Industrial & Engineering Chemistry Research, 1998, 37(1): 203~211
    [38] Takayuki H, Yasuhiro S, Isao K, Desulfurization Process for Light Oil by Photochemical Reaction and Liquid-Liquid Extraction: Removal of Benzothiophenes and Alkyl Sulfides,Journal of Chemical Engineering of Japan, 1997 ,30 (1): 173~175
    [39] Robert M, Garrett, Ingrid J, et al, Photooxidation of Crude Oils, Environmental Science & Technology, 1998, 32(23): 3719~3723
    [40] Shiraishi Y, Hirai T, Komasawa I, Photochemical Desulfurization of Light Oils Using Oil/Hydrogen Peroxide Aqueous Solution Extraction System: Application for High Sulfur Content Straight-Run Light Gas Oil And Aromatic Rich Light Cycle Oil, Journal of Chemical Engineering of Japan, 1999, 32(1): 158~161
    [41] Hirai T, Shiraishi Y, Ogawa K, et al, Effect of Photosensitizer and Hydrogen Peroxide on Desulfurization of Light Oil by Photochemical Reaction and Liquid-Liquid Extraction, Industrial & Engineering Chemistry Research, 1997, 36(3): 530~533
    [42] Omura K, Matsuura T, The Hydroxylation of Phenols by the Photodecomposition of Hydrogen Peroxide in Acetonitrile,Tetrahedron Letters, 1970, 26(1): 255~265
    [43] Shiraishi Y, Taki Y, Hirai T, et al, Visible Light-Induced Desulfurization Technique For Light Oil, Chemical Communication, 1998, (23): 2601~2602
    [44] Murov S L, Carmichael I, Hug G L, Handbook of Photochemistry[M], New York: Marcel Dekker, 1993
    [45] Davidson R S, Pratt J E, The Titanium Dioxide Sensitized Photo-Oxidation of Sulfides, Tetrahedron Letters, 1983, 24(52): 5903~5906
    [46] Kuznetsova E V, Savinov E N, Vorontsov A V, et al, Heterogeneous Oxidation of Ethanol Over Cu(OH)2/α-Fe2O3 Under Visible Light, Reaction Kinetics and Catalysis Letters, 2003, 78(2): 341~348
    [47] 王红娟,李忠,半导体多相光催化氧化技术,现代化工,2002,22(2):56~60
    [48] 韩世同,习海玲,史瑞雪,等,半导体光催化研究进展与展望,化学物理学报,2003,16(5):339~349
    [49] 杨合,薛向欣,赵娜,等,半导体多相光催化研究进展及应用技术,材料与冶金学报,2003,2(1):16~20
    [50] Abdel-Wahab A M A , Gaber A A M, TiO2-Photocatalytic Oxidation of Selected Heterocyclic Sulfur Compounds, Journal of Photochemistry and Photobiology A: Chemistry, 1998, 114 (3): 213~218
    [51] Shiraishi Y, Hirai T, Komasawa I, TiO2-Mediated Photocatalytic Desulfurization Process of Light Oils Using An Organic Two-Phase System, Journal of Chemical Engineering of Japan, 2002, 35(5): 489~492
    [52] Shiraishi, Y, Taki, Y, Hirai, T, et al, Visible Light-Induced Desulfurization Process for Light Oils by Photochemical Electron-Transfer Oxidation in An Organic Two-Phase Extraction System, Industrial & Engineering Chemistry Research, 1999, 38(12): 3310~3318
    [53] Canela M C, Alberici R M, Sofia R C R., et al, Destruction of Malodorous Compounds Using Heterogeneous Photocatalysis, Environmental Science & Technology, 1999, 33(16): 2788~2792
    [54] Robertson J, Bandosz T J, Photooxidation of Dibenzothiophene on TiO2/Hectorite Thin Films Layered Catalyst,Journal of Colloid and Interface Science, 2006, 299(1): 125~135
    [55] Kim H Y, Kim T S, Kim B H, Degradation of Organic Sulfur Compounds and the Reduction of Dibenzothiophene to Biphenyl and Hydrogen Sulfide by Desulfovibrio Desulfuricans M6, Biotechnology Letters, 1990, 12(10): 761~764
    [56] Setti L, Farinelli P, Martino S D, et al, Developments in Destructive and Non-Destructive Pathways for Selective Desulfurizations in Oil Biorefining Processes, Applied Microbiology and Biotechnology, 1999, 52(1): 111~117
    [57] Grayk A, Pogrebinsky O S, Mrachko G T, et al, Molecular Mechanisms of Biocatalytic Desulfurization of Fossil Fuel, Nature Biotechnology, 1996, 14(13): 1705~1709
    [58] Grayk A, Squires C H, Monticello D J, DszD utilization in desulfurization of DBT by rhodococcus sp. IGTS8[P], US:5846813, 1996
    [59] Mcfarland B L, Biocatalytic Sulfur Removal from Fuel Applicability for Producing Low Sulfur Gasoline, Critical Reviews in Microbiology, 1998, 24(2): 99~147
    [60] Garcia C L, Lercher J A, Adsorption and Surface Reactions of Thiophene on ZSM-5 Zeolites, Journal of Physical Chemistry, 1992, 96(6): 2669~2675
    [61] 山红红,李春义,赵博艺,等,FCC 汽油中硫分布和催化脱硫研究,石油大学学报(自然科学版),2001,25(6):78~80
    [62] 夏道宏,苏贻勋,汽油中硫醇的分离及结构、组成分析(1)-高效富集汽油中硫醇的分离方法,炼油设计,1995,25(1):46~49
    [63] 王军民,房少华,廖启玲,等,催化裂化汽油溶剂萃取脱硫工艺的研究,炼油设计,2000,30(10):32~34
    [64] 王军民,溶剂萃取脱除 FCC 汽油中的硫化物,炼油设计,2000,30(6):32
    [65] Fujishima A, Honda K, Electrochemical Photolysis of Water at a Semi-Conductor Electrode, Nature, 1972, 238(5358): 37~38
    [66] Keshmiri M, MohseniM, Troczynski T, Development of Novel TiO2 Sol–gel-derived Composite and its Photocatalytic Activities for Trichloroethylene Oxidation, Applied Catalysis B: Environmental, 2004, 53(4): 209~219
    [67] 沈伟韧,赵文宽,贺飞,等,TiO2 光催化反应及其在废水处理中的应用,化学进展,1998,10(4):349~361
    [68] Wang K H, Tsai H H, Hsieh Y H, A Study of Photocatalytic Degradation of Trichloroethylene in Vapor Phase on TiO2 Photocatalyst, Chemosphere, 1998, 36(13): 2763~773
    [69] 胡安正,唐超群,纳米 TiO2 光催化材料及其应用于环境保护的研究进展,功能材料,2001,32(6):586~594
    [70] Okamoto K J,Yamamoto Y,Tanaka H, et al, Heterogeneous Photocatalytic Decomposition of Phenol over TiO2 Powder, Bulletin of The Chemical Society of Japan, 1985, 58(7): 2015~2022
    [71] Carraway E R, Hoffman A J, Hoffmann M R, et al, Photocatalytic Oxidation of Organic Acids on Quantum-Sized Semiconductor Colloids, Environmental Science & Technology, 1994, 28(5): 786~793
    [72] Richard C, Regioselectivity of Oxidation by Positive Holes (h+) in Photocatalytic Aqueous Transformations, Journal of Photochemistry and Photobiology A: Chemistry, 1993, 72(7): 179~182
    [73] Gerischer H, Heller A, Photocatalytic Oxidation of Organic Molecules at TiO2 Particles by Sunlight in Aerated Water, Journal of the Electrochemical Society, 1992, 139(1): 113~118
    [74] 唐玉朝,胡春,王怡中,TiO2 光催化反应机理及动力学研究进展,化学进展,2002,14(3):192~199
    [75] Goslich R, Dillert R, Detlef B, Solar Water Treatment: Principles and Reactors, Water Science and Technology, 1997, 35(4): 137~148
    [76] Litter M I, Heterogeneous Photocatalysis: Transition Metal Ions in Photocatalytic Systems, Applied Catalysis B: Environmental, 1999, 23(2-3): 89~114
    [77] Minero C, Pelizzetti E, Malato S, et al, Large Solar Plant Photocatalytic Water Decontamination: Effect of Operational Parameters, Solar Energy, 1996, 56(5): 421~428
    [78] Turchi C S, Ollis D F, Photocatalytic Degradation of Organic Water Contaminants: Mechanisms Involving Hydroxyl Radical Attack,Journal of Catalysis, 1990, 122(5): 178~192
    [79] Sun L, Bolton J R, Determination of the Quantum Yield for the Photochemical Generation of Hydroxyl Radicals in TiO2 Suspensions, Journal of Physical Chemistry, 1996, 100(10): 4127~4134
    [80] Schwarz P F, Turro N J, Bossmann S H, et al, A New Method to Determine the Generation of Hydroxyl Radicals in Illuminated TiO2 Suspensions, Journal of Physical Chemistry B, 1997, 101(36): 7127~7134
    [81] Noda H, Dikawa K, Kamada H, ESR Spin-Trapping Study of Active Oxygen Radicals from Photoexcited Semiconductors in Aqueous H2O2 Solutions, Bulletin of the Chemical Society of Japan, 1993, 66(2): 455~458
    [82] Mao Y, Schoneich C, Asmus K D, Identification of Organic Acids and Other Intermediates in Oxidative Degradation of Chlorinated Ethanes on Titania Surfaces En Route to Mineralization: A Combined Photocatalytic and Radiation Chemical Study, Journal of Physical Chemistry, 1991, 95(24): 10080~10089
    [83] Sun Y, Pignatello J J, Evidence for a Surface Dual Hole-Radical Mechanism in the Titanium Dioxide Photocatalytic Oxidation of 2,4-D. , Environmental Science & Technology, 1995, 29(8): 2065~2072
    [84] Assabane A, Yahia A I, Tahiri H, et al, Photocatalytic Degradation of Polycarboxylic Benzoic Acids in Uv-irradiated Aqueous Suspensions of Titania.: Identification of Intermediates and Reaction Pathway of the Photomineralization of Trimellitic Acid (1,2,4-benzene tricarboxylic acid), Applied Catalysis B: Environmental, 2000, 24(2): 71~87
    [85] Carrway E R,Hoffman A J,Hoffmann M R, Photocatalytic Oxidation of Organic Acids on Quantum-Sized Semiconductor Colloids, Environmental Science & Technology, 1994, 28(5): 786~793
    [86] Ishibashi K-I, Fujishima A, Watanabe T, et al, Quantum Yields of Active Oxidative Species Formed on TiO2 Photocatalyst, Journal of Photochemistry and Photobiology A: Chemistry, 2000, 134(1-2): 139~142
    [87] Zhao J C, Wu T X, Wu K Q, et al, Photoassisted Degradation of Dye Pollutants. 3. Degradation of the Cationic Dye Rhodamine B in Aqueous Anionic Surfactant/TiO2 Dispersions under Visible Light Irradiation:Evidence for the Need of Substrate Adsorption on TiO2 Particles, Environmental Science & Technology, 1998, 32(16): 2394~2400
    [88] Wu T X, Lin T, Zhao J C, et al, TiO2-Assisted Photodegradation of Dyes. 9. Photooxidation of a Squarylium Cyanine Dye in Aqueous Dispersions under Visible Light Irradiation, Environmental Science & Technology, 1999, 33(9): 1379~1387
    [89] Liu G M, Wu T X, Zhao J C, et al, Photoassisted Degradation of Dye Pollutants. 8. Irreversible Degradation of Alizarin Red under Visible Light Radiation in Air-Equilibrated Aqueous TiO2 Dispersions, Environmental Science & Technology, 1999, 33(12): 2081~2087
    [90] Liu G M, Li X Z,Zhao J C, et al, Photooxidation Pathway of Sulforhodamine-B. Dependence on the Adsorption Mode on TiO2 Exposed to Visible Light Radiation, Environmental Science & Technology, 2000, 34(18): 3982~3990
    [91] Vinodgopal K,Wynkoop D E,Kamat P V, Environmental Photochemistry on Semiconductor Surfaces: Photosensitized Degradation of a Textile Azo Dye, Acid Orange 7, on TiO2 Particles Using Visible Light, Environmental Science & Technology, 1996, 30(5): 1660~1666
    [92] 范崇政,肖建平,丁延伟,纳米 TiO2 的制备与光催化反应研究进展,科学通报,2001,46(4):265~273
    [93] Pecchi G, Reyes P, Sanhueza P, et al, Photocatalytic Degradation of Pentachlorophenol on TiO2 Sol–Gel Catalysts, Chemosphere, 2001, 43(2): 141~146
    [94] 魏子栋,殷菲,谭君,等,TiO2 光催化氧化研究进展,化学通报,2001,(2):76~80
    [95] Salvador P, Gonzalez Garcia M L,Munoz F, Catalytic Role of Lattice Defects in the Photoassisted Oxidation of Water at (001) n-Titanium(IV) Oxide Rutile, Journal of Physical Chemistry, 1992, 96(25): 10349~10353
    [96] 高伟,吴凤清,罗臻,等,TiO2 晶型与光催化活性关系的研究,高等学校化学学报,2001,22(4):660~662
    [97] Bilmes S A, Mandelbaum P, Alvarez F,et al, Surface and Electronic Structure of Titanium Dioxide Photocatalysts, Journal of Physical Chemistry B, 2000, 104(42): 9851~9858
    [98] Yamashita H, Kamada N, He H, et al, Reduction of CO2 with H2O on TiO2(100) and TiO2(110) Single Crystals under UV-irradiation, Chemistry Letters,1994, 23(5): 855~858
    [99] Sanjines R, Tang H, Berger H, et al, Electronic Structure of Anatase TiO2 Oxide, Journal of Applied Physics, 1994, 75(6):2945~2951
    [100] Tomkiewicz M, Scaling Properties in Photocatalysis, Catalysis Today, 2000, 58(2-3):115~123
    [101] Herrmann, et al, Photocatalytic Degradation of Pesticide Pirimiphos-Methyl, Determination of the Reaction Pathway and Identification of Intermediates Products by Various Analytic Methods, Catalysis Today, 1999,54(3):353~367
    [102] Hu C, Wang Y Z, Tang H X, Preparation and Characterization of Surface Bond-Conjugated TiO2/SiO2 and Photocatalysis for Azo Dyes, Applied Catalysis B: Environmental,2001, 30(3-4): 277~285
    [103] Bahneman N, Detlef W, Current Challenges in Photocatalysis: Improved Photocatalysis and Appropriate Photoreactor Engineening, Research on Chemical Intermediates, 2000, 26(2):207~220
    [104] Schwarz P F, Turro N J, Bossmann S H, et al, A New Method To Determine The Generation Of Hydroxyl Radicals In Illuminated TiO2 Suspensions, Journal of Physical Chemistry B, 1997, 101(36):7127~7134
    [105] 黄剑峰,溶胶凝胶合成原理与技术,北京:化学工业出版社,2005
    [106] Mao L Q, Li Q L, Dang H X, et al, Synthesis of Nanocrystalline TiO2 with High Photoactivity and Large Specific Surface Area by Sol–Gel Method, Materials Research Bulletin, 2005, 40(2): 201~208
    [107] 于向阳,程继健,柱永娟,TiO2 光催化薄膜的制备法,玻璃与搪瓷, 2001, 29(1):37~41
    [108] 张伟伟,陈玉清,TiCl4 乙醇溶液溶胶-凝胶转变过程的研究,陶瓷学报,2004, 25(4):235~238
    [109] 程小苏,曾令可,黄浪欢,等,TiO2 光催化剂的制备过程与配方优化,华南理工大学学报(自然科学版),2003, 31(2):14~18
    [110] 卫芝贤,逯宝娣,王超,胶凝方式对制备纳米二氧化钛的影响,稀有金属, 2002,26(1):28~31
    [111] 宋长友,杨术明,处理方法对纳米 TiO2 晶型、粒度与表面结合态的影响,化工进展,2004,23(1):72~75
    [112] Stefchev P, Blaskov V, Machkov M, et al, Synthesis and Characterization of High Dispersed TiO2, International Journal of Inorganic Materials, 2001, 3 (6):531~536
    [113] Su C, Hong B Y, Tseng C M, Sol–Gel Preparation and Photocatalysis of Titanium Dioxide, Catalysis Today, 2004, 96 (3):119~126
    [114] 陈龙武,甘礼华,气凝胶,化学通报,1997,(8):21~27
    [115] 沈伟韧,贺飞,赵文宽,等,超临界干燥法制备 TiO2 气凝胶,催化学报,1999,20(3):365~367
    [116] Kolenko Y V , Garshev A V, Churagulov B R. Photocatalytic activity of sol–gel derived titania converted into nanocrystalline powders by supercritical drying, Journal of Photochemistry and Photobiology A: Chemistry, 2005 ,172 (1):19~26
    [117] 叶钊,张汉辉,纳米 TiO2 光催化剂防团聚的光谱研究,光谱学与光谱分析,2003,23(3):487~490
    [118] Iwasaki M, Hara M, Kawada H, et a1, Cobalt Ion-Doped TiO2 Photocatalyst Response to Visible Light, Journal of Colloid and Interface Science,2000, 224(1): 202~204
    [119] Yan X L, He J, Evans D G, et al, Preparation, Characterization and Photocatalytic Activity of Si-doped and Rare Earth-doped TiO2 from Mesoporous Precursors, Applied Catalysis B: Environmental, 2005,55 (4):243~252
    [120] Jing L Q, Sun X J, Xin B F, et al, The Preparation and Characterization of La Doped TiO2 Nanoparticles and Their Photocatalytic Activity, Journal of Solid State Chemistry, 2004, 177(10): 3375~3382
    [121] 李越湘,王添辉,彭绍琴,等,Eu3+、Si4+共掺杂 TiO2 光催化剂的协同效应,物理化学学报,2004,20(12):1434~1439
    [122] 李芳柏,李湘中,李新军,等,金离子掺杂对二氧化钛光催化性能的影响,化学学报,2001,59(7):1072~1077
    [123] Burda C, Lou Y B, Chen X B, et al, Enhanced Nitrogen Doping in TiO2 Nanoparticles, Nano Letters, 2003,3(8):1049~1051
    [124] Yu J C, Yu J G, Ho W K, et a1, Effects of F- Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders, Chemistry of Materials, 2002, 14(9): 3808~38l6
    [125] Ohno T, Mitsui T, Matsumura M, Photocatalytic Activity of S-doped TiO2 Photocatalyst under Visible Light, Chemistry of Materials, 2003, 32(4): 364~365
    [126] 石建稳,郑经堂,纳米 TiO2 光催化剂可见光化的研究进展,化工进展,2005,24(8):841~844
    [127] 李芳柏,古国榜,李新军,等,纳米复合 Sb2O3/TiO2 的光催化性能研究,无机化学学报,2001,17(1):37~42
    [128] Yang H M, Shi R R, Zhang K, et al, Synthesis of WO3/TiO2 Nanocomposites via Sol–Gel Method, Journal of Alloys and Compounds,2005,398(1-2): 200~202
    [129] Fujii H, Ohtaki M, Eguchi K ,et al, Photocatalytic Activities of CdS Crystallites Embedded in TiO2 Gel as a Stable Semiconducting Matrix, Journal of Materials Science Letters, 1997, 16(13):1086~1088
    [130] Martra G, Lewis Acid and Base Sites at the Surface of Microcrystalline TiO2 Anatase:Relationships Between Surface Morphology and Chemical Behaviour, Applied Catalysis A: general, 2000, 200(2): 275~283
    [131] 唐剑文,吴平霄,曾少雁,等,二氧化钛可见光光催化剂研究进展,现代化工,2005,25(2):25~28
    [132] 鲁文升,肖光参,李旦振,等,Pt/InVO4/TiO2 可见光催化剂的制备及性能研究,无机化学学报,2005,21(10):1495~1499
    [133] 辛柏福,井立强,任志宇,等,多价态共存的 Ag-TiO2 光催化剂的制备及光催化活性,化学学报,2004,62(12):1110~1114
    [134] 孙宇峰,黄行九,叶刚,等, Pt(IV)修饰的非晶态 TiO2 对 2,4-二氯苯氧基乙酸的可见光降解,化学物理学报,2004,17(1):65~69
    [135] 苏文悦,付贤智,魏可镁,光催化剂 SO42-/TiO2 和 TiO2 的光谱行为比较,光谱学与光谱分析,2000,20(5):655~657
    [136] 付贤智,丁正新,苏文悦,等,二氧化钛基固体超强酸的结构及其光催化氧化性能,催化学报,1999,20(3):321~324
    [137] 丁正新,王绪绪,付贤智,TiO2 基固体超强酸及其在光催化空气净化中的应用,化工进展,2003,22(12):1278~1283
    [138] Li H X, Li G S, Zhu J, et al, Preparation of An Active SO42?/TiO2 Photocatalyst for Phenoldegradation under Supercritical Conditions, Journal of Molecular Catalysis A: Chemical, 2005 ,226 (1):93~100
    [139] Zhong P, Kong L R, Lin Z F, et al, Photodegradation of Diesel Oil in Aqueous Solutions, Bulletin of Environmental Contamination and Toxicology, 2003, 70(6): 1128~1135
    [140] Shiraishi Y, Hirai T, Komasawa I, Identification of Desulfurization Products in the Photochemical Desulfurization Process for Benzothiophenes and Dibenzothiophenes from Light Oil using An Organic Two-Phase Extraction System, Industrial & Engineering Chemistry Research, 1999, 38(9): 3300~3309
    [141] Otsuki S, Nonaka T, Takashima N, et al, Oxidative Desulfurization of Light Gas Oil and Vacuum Gas Oil by Oxidation and Solvent Extraction, Energy Fuels, 2000, 14(6): 1232~1239
    [142] Song C S, Ma X L, New Design Approaches to Ultra-Clean Diesel Fuels by Deep Desulfurization and Deep Dearomatization, Applied Catalysis B: Environmental, 2003, (41): 207~238
    [143] 杨桂朋,高先池,戚佳琳,等,海水中二苯并噻吩的光化学氧化动力学研究,青岛海洋大学学报,1999,29(3):500~506
    [144] Jasar R V, Bhat S G T, Adsorption Buck Separations by Zeolite Molecular Sieves, Separation Science and Technology, 1988, 21(10-11):945~989
    [145] 章燕豪,吸附作用,上海:上海科学技术文献出版社,1989.82~85
    [146] 王桂茹,催化剂与催化作用,大连:大连理工大学出版社,2000.34~35
    [147] 韩维屏,催化化学导论,北京:科学出版社,2003.244
    [148] 闫武敏,曾勇平,居沈贵,负载 Ag+的 13X 分子筛对乙硫醇和噻吩的吸附性能,石油化工,2006,35(4):310~313
    [149] 田钟荃,沸石去除饮用水源中有机污染物的展望,中国给水排水,1999,15(4):31~32
    [150] Canela M C, Alberici R M, Sofia R C R, et al, Destruction of Malodorous Compounds using Heterogeneous Photocatalysis, Environmental Science & Technology, 1999, 33(16):2788~2792
    [151] 孔令艳,李钢,王祥生,等,TS-1/过氧化氢催化体系中有机硫化物的选择氧化,催化学报,2004,25(10):775~778
    [152] 李梦龙,化学数据速查手册,北京:化学工业出版社,2003.197,152
    [153] 邢其毅,徐瑞秋,周政,等,基础有机化学,北京:高等教育出版社, 1993. 530~531
    [154] Yamazaki S, Yamabe N, Nagano S, et al, Adsorption and photocatalytic degradation of 1,4-dioxane on TiO2, Journal of Photochemistry and Photobiology A: Chemistry, 2007, 185(2-3):150~155
    [155] Muszkat L, Feigelson L, Bir L,et al, Titanium Dioxide Photocatalyzed Oxidation of Proteins in Biocontaminated Waters, Journal of Photochemistry and Photobiology B: Biology, 2007, 60(1): 32~36
    [156] Tayade R J, Kulkarni R G., Jasra R V, Enhanced Photocatalytic Activity of TiO2-Coated NaY and HY Zeolites for the Degradation of Methylene Blue in Water, Industrial & Engineering Chemistry Research, 2007, 46(2):369~376
    [157] Nedolouko A, Kiwi J, TiO2 Speciation Precluding Mineralization of 4-tert-butylpyridine, Water Research, 2000, 34(13):3277~3284
    [158] 冯小刚,戎非,袁春伟,TiO2 光催化降解有机污染物的协同效应研究,环境污染治理技术与设备,2004,5(9):12~17
    [159] 李树棠,晶体射线衍射学基础,北京:冶金工业出版社,1999.171
    [160] 黄惠忠,纳米材料分析,北京:化学工业出版社,2003.244
    [161] Zhang Q H, Gao L, Guo J K, Effects of Calcination on the Photocatalytic Properties of Nanosized TiO2 Powders Prepared by TiCl4 Hydrolysis, Applied Catalysis B: Environmental, 2000,26(3):207~215
    [162] Spurr R A, Myers H, Quantitative Analysis of Anatase-Rutil Mixtures with An X-ray Diffractometer, Analytical Chemistry, 1957, 2(5): 760~768
    [163] 刘守新,刘鸿,光催化及光电催化基础与应用,北京:化学工业出版社,2006.125
    [164] 高濂,郑珊,张青红,纳米氧化钛光催化材料及应用,北京:化学工业出版社,2002.128
    [165] 崔玉民,影响纳米材料 TiO2 光催化活性的因素,稀有金属,2006,30(1): 107~113
    [166] Anpo M, Kawamura T, Kodama S, et al, Photocatalysis on Titanium-Aluminum Binary Metal Oxides: Enhancement of the Photocatalytic Activity of Titania Species, Journal of Physical Chemistry, 1988, 92(2): 438~440
    [167] Farin D, Kiwi J, Avnir D, Size Effects in Photoprocesses on Dispersed Catalysts, Journal of Physical Chemistry, 1989, 93(2):5851~5854
    [168] 胡英,物理化学(第四版),北京:高等教育出版社,1999.314
    [169] 刘彦平,杨志远.改性纳米 TiO2 降解水中微量次甲基蓝的动力学研究,应用化学,2006,23(9):1019~1022
    [170] Robert D, Parra S, Weber J V, et a1, Chemisorption of Phenols and Acids on TiO2 Surface, Applied Surface Science, 2000, 167(1-2): 51~58
    [171] 易筱筠,李新军,古国榜,等,有机染料在 TiO2 上的吸附及对光催化降解的影响,华南理工大学学报(自然科学版),2002,30(9):23~26
    [172] Reyes-Garcia E A, Sun Y, Reyes-Gil K, 15N Solid State NMR and EPR Characterization of N-Doped TiO2 Photocatalysts, Journal of Physical Chemistry C, 2007, 111(6): 2738~2748
    [173] Du J, Zhang J, Liu Z, et al, Controlled Synthesis of Ag/TiO2 Core-Shell Nanowires with Smooth and Bristled Surfaces via a One-Step Solution Route, Langmuir, 2006, 22(3): 1307~1312
    [174] Pan J H, Lee W I, Preparation of Highly Ordered Cubic Mesoporous WO3/TiO2 Films and Their Photocatalytic Properties, Chemistry of Materials, 2006, 18(3): 847~853
    [175] Luo X S, Zha C J, Luther-Davies B, Photosensitivity of Titania-doped Hybrid Polymer Prepared by an Anhydrous Sol–gel Process, Optical Materials, 2005, 27(8): 1461~1466
    [176] Janus M, Tryba B, Inagaki M, et al, New Preparation of a Carbon-TiO2 Photocatalyst by Carbonization of n-hexane Deposited on TiO2, Applied Catalysis B: Environmental, 2004, 52(1): 61~67
    [177] Mozia S, Tomaszewska M, Kosowska B, et al, Decomposition of Nonionic Surfactant on a Nitrogen-Doped Photocatalyst Under Visible-Light Irradiation , Applied Catalysis B: Environmental, 2005, 55(3): 195~200
    [178] Ao C H, Lee S C, Yu J Z, et al, Photodegradation of Formaldehyde by Photocatalyst TiO2: Effects on the Presences of NO, SO2 and VOCs, Applied Catalysis B: Environmental, 2004, 54(1): 41~50
    [179] 沈毅,任富建,刘红娟,掺杂 TiO2 的光催化性能研究,稀有金属材料与工程,2006,36(11):1841~1844
    [180] Yu J G, Yu J C, Cheng B, et al, The Effect of F--doping and Temperature on the Structural and Textural Evolution of Mesoporous TiO2 Powders, Journal of Solid State Chemistry, 2003, 174 (2): 372~380
    [181] 李立清,刘宗耀,唐新村,等,B/Fe2O3 共掺杂纳米 TiO2 可见光下的催化性能,中国有色金属学报,2006,16(12):2098~2103
    [182] 华南平,吴遵义,杜玉扣,等,Pt、N 共掺杂 TiO2 在可见光下对三氯乙酸的催化降解作用,物理化学学报,2005,21(10):1081~1085
    [183] 尹霞,向建南,翦立新,等,Fe3+-H 掺杂 TiO2 光催化剂的制备、表征与催化性能 ,应用化学,2005,22(6):634~637
    [184] 李红,赵高凌,刘琴华,等,硅掺杂和硅钒共掺杂对 TiO2 光催化性能的影响,硅酸盐学报,2005,33(6):784~788
    [185] Yu J C, Ho W K, Yu J G, et al. Effects of Trifluoroacetic Acid Modification on the Surface Microstructures and Photocatalytic Activity of Mesoporous TiO2 Thin Films, Langmuir, 2003, 19(9): 3889~3896
    [186] Kawamoto Y, Ogura K, Shojiya M, et al, Fls XPS of Fluoride Glasses and Related Fluoride Crystals, Journal of Fluorine Chemistry, 1999, 96(2):135~139
    [187] Lakshmi S, Renganathan R, Fujita S, Study on TiO2 Mediated Photocatalytic Degradation of Methyleneblue, Journal of Photochemistry and Photobiology A:Chemistry, 1995, 88(2-3): 163~167
    [188] 包南,孙剑,张锋,等,N 掺杂 TiO2 纳米晶:水热-热分解法制备及光催化活性,无机化学学报,2007,23(1):101~108
    [189] 中本一雄,无机复合物的喇曼及红外光谱,黄德如,汪仁庆译,北京:化学工业出版社出版,1986.499~503
    [190] 张玉娟,沈嘉年,TiO2 光催化薄膜的晶化处理,稀有金属材料与工程,2006,35(1):92~95
    [191] 黄冬根,廖世军,党志,氟掺杂锐钛矿型 TiO2 溶胶的制备、表征及催化性能,化学学报,2006,64(17):1805~1811
    [192] 黄冬根,廖世军,党志,锐钛矿型 F-TiO2 溶胶光催化剂的制备及表征,化工学报,2006,57(11):2778~2784
    [193] Torbjom L, Jun L, Anders H, et al, Photoelectrochemical Study of Sputtered Nitrogen-doped Titanium Dioxide Thin Films in Aqueous Electrolyte, Solar Energy Materials and Solar Cells, 2004, 84(1-4):145~157
    [194] Stiller S, Gers-Barlag H, Lergenmueller M, et al, Investigation of the Stability in Emulsions Stabilized with Different Surface Modified Titanium Dioxides, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 232(2-3): 261~267
    [195] Gao J C, Zou J, Tan X W, et al, Characteristics and Properties of Surface Coated Nano-TiO2 , Transactions of Nonferrous Metals Society of China, 2006,16(6): 1252~1258
    [196] 姚超,丁永红,林西平,等,纳米 TiO2 有机表面改性的研究,无机化学学报,2005,21(5):638~642
    [197] 李玲,表面活性剂与纳米技术,北京:化学工业出版社,2004.47
    [198] 聂福德,超细粉体在液相中的分散性研究,化工进展,1996,(4):24~28
    [199] Arellano M?, Manas-Zloczower I, FekeDonald L, Effect of Surfactant Treatment on the Formation of Bound Polymeron Titanium Diox idePowders, Powder Technology, 1995, 84(2):117~126
    [200] 宇海银,顾家山,关明云,等,纳米二氧化钛表面改性及表征,高分子材料科学与工程,2004,20(5):194~196
    [201] 今井淳一郎,微粒子二酸化チタニ粉末[P],日本公开特许公报,平 2-194063
    [202] 刘剑波,张复实,赵瑜,等,反相胶束膜模拟体系中氨基酸的光敏化氧化,中国科学(B 辑),1997,27(1):90~96
    [203] Zhao X H, Hu X K, Hwang H M, et al, Effects of Riboflavin on the Phototransformation of Benzo[a]pyrene, Chemosphere, 2006, 63 (7):1116~1123
    [204] 戴姆洛夫 E V,戴姆洛夫 S S,相转移催化作用,贺贤璋,胡振民译,北京:化学工业出版社,1988
    [205] 曹瑾,光化学概论,北京:高等教育出版社,1985.68
    [206] Dureja P,Casida J E,Ruzo L O, Dinitroanilines as Photostabilizers for Pyrethroids, Journal of Agricultural and Food Chemistry, 1984, 32(2):246~250
    [207] Khan A U, Activated Oxygen - Singlet Molecular-Oxygen and Superoxide Anion, Photochemistry and Photobiology, 1978, 28(4-5):615~627
    [208] 孙文芳,董世明,王夺元,等,单重态氧化学 VIII.类卟啉稀土配合物光敏化产生单重态氧的 ESR 研究,化学学报,1997,55(7):665~671
    [209] 陈新, 周炜, 沈本贤,催化裂化柴油萃取-光化学反应深度脱硫,华东理工大学学报(自然科学版),2005,31(6):722~726,734
    [210] 毕刚,田世忠,冯子刚,等,氯氰菊酯光敏降解中单线态氧机理研究,分析科学学报,2000,16(6):450~455
    [211] 吴世康,高分子光化学导论-基础和应用,北京:科学出版社,2003.72
    [212] Karmakar R,Samanta A, Phase-Transfer Catalyst-Induced Changes in the Absorption and Fluorescence Behavior of Some Electron Donor-Acceptor Molecules, Journal of The American Chemical Society, 2001, 123(16): 3809~3817
    [213] 赵地顺,任红威,马四国,等,催化裂化汽油的相转移催化氧化脱硫反应研究,化学学报,2006,64(20):2086~2090

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700