用户名: 密码: 验证码:
甲烷部分氧化制合成气镍基催化剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与CH_4水蒸气重整和CO_2重整过程相比,CH_4催化部分氧化制备合成气具有反应速度快、能耗低、设备投资小、产品中H2/CO摩尔比接近2/1(很适于合成甲醇、高碳醇等)等优点,是极具开发前景的CH_4化工转化利用的课题。
     本文以负载型Ni基催化剂为研究对象,采用BET、XRD、H2-TPR、TEM、EDS、IR、CH_4-TPSR、TGA、程序升温分解和活性评价等多种研究方法,系统地考察了助剂(MgO、CeO_2、CaO等)、催化剂颗粒度、Ni组分分布情况、焙烧条件等因素对Ni/γ-Al_2O_3催化剂体系的物化性质和催化CH_4部分氧化反应性能的影响。
     在Ni/γ-Al_2O_3催化剂中,NiO的分散度较差,并且易与γ-Al_2O_3载体反应生成难以还原的NiAl2O4尖晶石,因此Ni/γ-Al_2O_3催化剂的CH_4部分氧化活性较差。适量的MgO助剂有利于改善Ni/γ-Al_2O_3催化剂中NiO物种的分散性能,同时抑制了NiAl2O4尖晶石生成,从而提高了催化剂的催化反应性能。但是,过量的MgO助剂不利于NiO物种的分散。研究表明,适宜的MgO助剂含量为7wt.%。
     通过研究发现,采用CeO_2与CaO复合助剂能够进一步提高Ni/MgO(7wt.%)-γ-Al_2O_3催化剂的催化性能,这可能与CeO_2和CaO复合助剂之间形成固溶体,并且在二者间存在明显的协同效应有关。CeO_2-CaO固溶体与Ni物种间可能存在较强的相互作用,可以提高活性Ni物种的分散度、减小Ni晶粒尺寸、促进Ce4+至Ce3+转变、增强催化剂的储氧能力以及晶格氧的流动性,从而改善催化剂的CH_4部分氧化催化反应性能。采用CeO_2或CaO单独作为助剂时,虽然可以提高Ni/MgO(7wt.%)-γ-Al_2O_3催化剂中Ni物种的还原性能,但Ni/MgO(7wt.%) -γ-Al_2O_3催化剂的综合反应性能没有得到明显的改善。
     在上述小颗粒催化剂体系(内扩散的影响在很大程度上被消除)研究工作的基础上,对于毫米级球形Ni/γ-Al_2O_3催化剂在CH_4部分氧化过程中的催化作用进行了研究。结果表明,采用毫米级球形催化剂时,甲烷部分氧化反应受内扩散过程限制。蛋壳型Ni基催化剂因其活性组分Ni较集中分布在催化剂的表层区域,提高了催化剂的有效因子。因此,与均匀型Ni/γ-Al_2O_3催化剂相比,蛋壳型Ni/γ-Al_2O_3催化剂显示了良好的CH_4部分氧化催化反应性能,其中CH_4转化率和H2选择性明显提高。除了Ni组分分布情况外,催化剂的颗粒度、活性组分Ni含量、反应温度及气体空速等因素均对CH_4部分氧化反应进行有不同程度的影响。O_2比CH_4的分子量大,因而具有较大的内扩散阻力,使得O_2在催化剂孔内的扩散过程成为CH_4氧化过程的速率控制步骤;同时,还会导致CH_4/O_2摩尔比沿催化剂孔道轴向长度逐渐增加,促进了CH_4进行直接部分氧化过程,避免CH_4深度氧化反应的发生。
     MgO助剂对毫米级蛋壳型Ni/γ-Al_2O_3球形催化剂在甲烷部分氧化反应中的性能同样具有一定的改善作用。研究表明,蛋壳型Ni/MgO-γ-Al_2O_3催化剂的活性受Ni含量的影响较为显著,且在2wt.%含量处有一个明显的临界点。当Ni含量低于2wt.%时,在773~1073 K范围内CH_4部分氧化反应不能被引发,CH_4的转化率几乎为0;Ni含量达到2wt.%后,则催化剂显示很好的引发性能和催化POM反应活性,CH_4部分氧化反应在低于773 K的温度下即可被引发。随着Ni含量增加,催化剂的反应活性有所提高;当Ni含量达到12wt.%时,催化剂的POM活性已趋于稳定。
     CeO_2和CaO复合助剂明显改善了1wt.%Ni/MgO-γ-Al_2O_3催化剂的引发性能和催化反应性能,此与CeO_2和CaO复合助剂的表面氧和晶格氧的浓度及活性密切相关。CeO_2和CaO复合助剂也能够进一步提高毫米级蛋壳型10wt.%Ni/MgO-γ-Al_2O_3球形催化剂的催化POM反应性能,主要原因在于添加适量的CeO_2和CaO复合助剂后,能够削弱催化剂表面NiO物种的氧化能力,有利于CH_4直接部分氧化反应进行。然而,过量的助剂会导致CeAlO3生成和表面NiO物种的氧化能力增强,对CH_4部分氧化反应进行不利。研究表明,复合助剂CeO_2和CaO的含量以1wt.%为宜。
     对于Ni/CeO_2-CaO-MgO-γ-Al_2O_3催化剂,γ-Al_2O_3载体焙烧温度对于催化剂的性能有显著的影响。γ-Al_2O_3经过1273 K高温焙烧预处理一方面导致催化剂的比表面积严重下降和Ni晶粒烧结长大,另一方面使催化剂的平均孔径增加,从而有利于反应物分子在孔内的扩散,提高了催化剂的有效因子。对于毫米级颗粒催化剂而言,后者是主要影响因素,因此对γ-Al_2O_3载体进行1273 K高温焙烧预处理有利于提高催化剂的反应性能。研究发现,浸渍Ni组分后未经焙烧处理制备的催化剂还原后具有较小的Ni晶粒,因而具有较好的CH_4部分氧化反应性能,当反应温度为1073 K时,该催化剂(其γ-Al_2O_3载体经过高温焙烧预处理)的CH_4转化率、CO选择性和H2选择性可分别达到97.5%、94.3%和94.3%。在催化剂稳定性实验中,前20 h催化剂基本无失活现象,随后催化剂的活性稍有降低,当反应100 h时,CH_4转化率、CO选择性与H2选择性分别下降了3%、1.3%和1.2%。研究表明,引起催化剂失活的主要原因可能不是催化剂表面上的积碳,而很可能是生成了难于还原的NiO-MgO固溶体或/和NiAl_2O_4尖晶石物种;此外,反应过程中Al_2O_3发生物相变化及镍晶粒长大等因素也会导致催化剂的活性下降。
     本论文采用了两种不同的方法制备了蛋壳型镍基催化剂:一种是以丙酮作为浸渍溶剂直接制备蛋壳型镍基催化剂;另一种是采用含MgO物种修饰的γ-Al_2O_3载体,以水作浸渍溶剂制备蛋壳型镍基催化剂。两种制备方法分别利用不同原理降低了溶液在载体上的浸渍速率,从而实现对浸渍深度(即蛋壳层厚度)的有效控制。由于γ-Al_2O_3表面富含O-H基,有利于硝酸镍水溶液的浸渍,其浸渍速率较高(> 0.097 mm.s~(-1/2)),因而易于制得均匀型催化剂。而丙酮属于弱极性溶剂,它的硝酸镍溶液在γ-Al_2O_3载体上的浸渍速率很低(仅为0.0058 mm.s~(-1/2));当浸渍30 min时,浸渍深度约为0.20 mm,所制得的催化剂中Ni组分呈蛋壳型分布。采用Mg(NO_3)_2的水溶液先浸渍γ-Al_2O_3载体,然后在723 K下焙烧,可以得到适宜平均孔径与表面性能(表面O-H基较少)的复合载体。硝酸镍的水溶液在该复合载体上的浸渍速率远小于它在γ-Al_2O_3载体上的浸渍速率,故而同样可以制得蛋壳型镍基催化剂,并且通过调节浸渍时间、干燥温度及系统压力,可以调控蛋壳层的厚度。
Compared with methane reforming with steam or with carbon dioxide, the catalytic partial oxidation of methane (POM) to synthesis gas is a better approach for methane utilization, since it has many advantages such as higher space velocity, lower power energy consumption, smaller equipment investment and proper H2/CO molar ratio in the products about 2/1, which is favorable to the synthesis of methanol or other higher alcohols. Therefore, the POM becomes one of the most attractive and challenging research tasks in the field of chemical conversion of nature gas.
     In this work, the supported nickel-based catalyst was selected as the research object, and the effects of some promoters (including MgO, CeO_2 and CaO), catalyst particle size, nickel component distribution and calcination temperature on the physico-chemical properties and the POM reactivity of Ni/γ-Al_2O_3 catalyst were systematically investigated by means of BET, XRD, H2-TPR, TEM, EDS, IR, CH_4-TPSR, TGA, temperature-programmed decomposition and catalytic activity evaluation.
     Ni/γ-Al_2O_3 catalyst had some shortcomings, such as the poor dispersity of nickel species and easy formation of NiAl2O4 spinel, all of which were not beneficial to its POM reactivity. Using the proper amount of MgO promoter, the homogeneity of nickel species in Ni/γ-Al_2O_3 catalyst could be improved and the formation of NiAl2O4 spinel was inhibited, and thus the performance of Ni/γ-Al_2O_3 catalyst modified MgO for POM were enhanced. However, the excessive MgO promoter might be unfavorable to the dispersity of nickel species. The suitable content of MgO promoter in Ni/γ-Al_2O_3 catalyst was about 7wt.%.
     When CeO_2 and CaO were used as composite promoters to modify Ni/(7wt.%)MgO-γ-Al_2O_3 catalyst, they could form the solid solution, and their remarkable synergetic effect was detected. It was deduced that the formation of CeO_2-CaO solid solution could not only result in higher dispersity of active nickel species, easier conversion of Ce4+ to Ce3+ species, and smaller size of nickel crystallites, but also lead to the better oxygen adsorption ability, more oxygen-vacant sites and easier migration of lattice oxygen anions, all of which benefited the improvement of the catalytic POM performances. When Ni/MgO(7wt.%)-γ-Al_2O_3 catalyst was promoted with CeO_2 or CaO alone, no obvious improvement of the catalyst reactivity was observed.
     The inner diffusion was eliminated over the catalyst with small particle size to a large extent. For the aim of application, the spherical catalysts with ca. 1.5 mm diameter were applied and investigated for POM reaction process, where the intra-particle mass transport became the rate-limiting step. Compared with the homogeneous catalysts, the eggshell-typed catalysts had higher effectiveness factors because the active nickel component was distributed in the outer surface layer, and thus owned better catalytic POM performance, especially on the methane conversion and hydrogen selectivity. Besides nickel component distribution, catalyst particle size, nickel loadings, reaction temperature, and space velocity also affected the POM reactivity to some extent. Since oxygen molecule encountered higher diffusion resistance than methane molecule due to its twice higher molecular weight, the inner diffusion of oxygen became the rate determine step in POM process. The CH_4/O_2 molar ratio could be increased along the axial length of pores, which might promote the direct partial oxidation and prevent the deep oxidation of methane.
     MgO promoter could also improve the catalytic performance of eggshell-typed Ni/γ-Al_2O_3 catalyst with larger particle size (in millimeter grade) to some extent. As for eggshell-typed Ni/MgO-γ-Al_2O_3 catalysts, CH_4 conversion increased with the increase of nickel loadings. There existed an obvious turning point of nickel loading at 2wt.%. If Ni loadings were lower than 2wt.%, the catalysts exhibited rather poor catalytic performance at the temperature range between 773 K and 1073 K, and the methane conversion was nearly zero because POM could not be ignited. However, after Ni loading reached 2wt.%, the catalysts showed good ignition property and catalytic performance in POM reaction, and the reaction could be ignited at the temperature of about 773 K. With the increase of nickel loadings, the POM activity increased, and it changed very slightly at the nickel loading of higher than 12 wt.%.
     It was found that by means of CeO_2 and CaO composite promoters, the ignition and reactivity of 1wt.%Ni /MgO-γ-Al_2O_3 catalyst could be improved, which was closely related to the concentration and oxidizability of surface oxygen as well as lattice oxygen. Furthermore, suitable amount of CeO_2 and CaO composite promoters could also improve the catalytic POM reactivity of millimeter grade eggshell-typed 10wt.%Ni/ MgO-γ-Al_2O_3 spherical catalyst furtherly. The addition of CeO_2 and CaO composite promoters would weaken the oxidizability of surface NiO species, which favored the direct partial oxidation of methane and avoided some side reactions, such as CH_4 deep oxidation (complete combustion). However, excessive promoters caused the formation of CeAlO3, which was unfavorable to POM reaction. It was found the suitable content of CeO_2 and CaO composite promoters was about 1wt.%.
     The properties of Ni/CeO_2-CaO-MgO-γ-Al_2O_3 catalyst were greatly affected by the calcination conditions. Although the calcination ofγ-Al_2O_3 support at 1273 K would cause the serious decrease of specific surface area and the sintering of nickel crystallites, which might result in negative effect to the catalytic performance, however, it could also result in the increase of average pore radius, which was beneficial to the inner diffusion of CH_4 and O_2 molecules, thus the effectiveness factor of the catalysts was enhanced. For the catalysts with larger particle size, the latter effect was more important, so the catalytic performance was improved after the calcination ofγ-Al_2O_3 support at 1273 K. It was found that the catalyst impregnated with Ni(NO3)2 aqueous solution without calcination showed good catalytic reactivity. Based on theγ-Al_2O_3 supports calcined at 1273 K, the catalyst Ni/CeO_2-CaO-MgO-γ-Al_2O_3, which was prepared by the impregnation with Ni(NO3)2 aqueous solution but without calcination, showed the best catalytic POM performance. At the temperature of 1073 K, CH_4 conversion, CO selectivity and H2 selectivity could reach 97.5%, 94.3% and 94.3%, respectively. In the stability investigation, it showed no deactivation during first 20 h, thereafter, its reactivity decreased slightly. In comparison to the initial activity, the CH_4 conversion, CO selectivity and H2 selectivity after 100 h test decreased by 3%, 1.3% and 1.2%, respectively. The characterization results of the deactivated catalyst sample suggested that NiO-MgO solid solution and/or NiAl2O4 spinel formed during reaction process caused the catalyst deactivation to a great extent due to their reduction difficulty. Additionally, the phase transformation ofγ-Al_2O_3 and the aggregation of Ni species could also lead to the catalyst deactivation. Coke deposition might not be the main reason for the catalyst deactivation.
     In this work, two different methods were used to prepare the eggshell-typed nickel-based catalysts. In the first one,γ-Al_2O_3 was impregnated with acetone solution of nickel nitrate, which directly led to the nickel eggshell-typed catalysts; In the second one,γ-Al_2O_3 support was firstly modified with MgO promoter, and then impregnated with the water solution of nickel nitrate, and the eggshell catalyst was also prepared. These two approaches were based on different principles to lower the impregnation rate and thus to control the impregnation depth effectively, i.e. the thickness of eggshell layer. There were abundant O-H groups on the surface of γ-Al_2O_3 support, which was beneficial to the impregnation of aqueous solution, thus the impregnation rate of aqueous solution of nickel nitrate onγ-Al_2O_3 support was over 0.097 mm?s-1/2, so the prepared catalyst showed the homogeneous nickel distribution. Owing to the weak polarity of acetone, the impregnation rate of acetone solution of nickel nitrate onγ-Al_2O_3 was only about 0.0058 mm?s-1/2, and the impregnation depth was about 0.20 mm at the impregnation time of 30 minutes. When acetone was used as impregnation solvent, the formation of eggshell-typed distribution of nickel component was attributed to the slower impregnation rate. The composite support with proper average pore radius and less surface O-H groups could be obtained by impregnatingγ-Al_2O_3 with aqueous solution of magnesium nitrate and then calcining at 723 K. On this composite support, the impregnation rate of aqueous solution of nickel nitrate was much slower than that onγ-Al_2O_3 support, and so the eggshell-typed supported nickel-based catalyst could be prepared. By the adjustment of impregnation time, drying temperature and system pressure, the eggshell thickness could be controlled effectively.
引文
[1] 李文钊. 天然气催化转化新进展. 石油与天然气化工,1998,27(1):1~3
    [2] Keim W. Catalysis in Cl Chemistry. Bordrecht, Boston, Lancaster: Kluwer Academic Publishers, 1983.
    [3] Royer A S. Chemicals for Synthesis Gas. Boston: D. Reidel Publishing Company, 1983.
    [4] Prettre M, Bichner C, Perrin M. Catalytic oxidation of methane to carbon monoxide and hydrogen. Trans. Faraday Soc., 1946, 42: 335~340
    [5] 吴廷华,甲烷部分氧化制合成气反应研究:[博士论文],厦门;厦门大学,1999
    [6] 姜圣阶,合成氨工学第一卷(第二版),北京:石油化学工业出版社,1978.198
    [7] Hickman D A, Schmidt L D. Steps in CH4 oxidation on Pt and Rh surfaces: High-temperature reactor simulations. AIChE J., 1997, 39 (7): 1164~1177
    [8] Tsang S C, Claridge J B, Green M L H. Recent advances in the conversion of methane to synthesis gas. Catal. Today, 1995, 23: 3~15
    [9] Dissanayake D, Rosynek M O, Kharras K C C, et al. The oxidative dehydrogenation of isobutyric acid to methacrylic acid on ion exchange modified 12-heteropoly oxometalates. J. Catal., 1991, 132: 117~127
    [10] Choudhary V R, Rajput A M, Rane V H. Low-temperature catalytic selective partial oxidation of methane to carbon monoxide and hydrogen over nickel/ytterbium sesquioxide. J. Phys. Chem., 1992, 96(22): 8686~8688
    [11] Choudhary V R, Sansare S D, Maman A S. Low-temperature selective oxidation of methane to carbon monoxide and hydrogen over cobalt-MgO catalysts. Appl. Catal. A, 1992, 90 (1): L1~L5
    [12] Choudhary V R, Rajput A M, Prabhakar B. Nonequilibrium oxidative conversion of methane to CO and H2 with high selectivity and productivity over Ni/Al2O3 at low temperatures. J. Catal., 1993, 139(1): 326~328
    [13] Choudhary V R, Maman A S, Sansare S D. Selective Oxidation of Methane to CO and H2 over Ni/MgO at Low Temperatures. Agnew. Chem. Int. Ed. Engl., 1992, 31(9): 1189~1190
    [14] Chang Y F, Heineman H. Partial oxidation of methane to syngas over Co/MgO catalysts: Is it low temperature? Catal. Lett., 1993, 21: 215~224
    [15] Vermeiren W J M, Blomsma E, Jacobs P A. Catalytic and thermodynamic approach of the oxyreforming reaction of methane. Catal. Today, 1992, 13 (2-3): 427~436
    [16]Dissanayake D, Rosynek M P, Lunsford J H. Are the equilibrium concentrations of carbon monoxide and hydrogen exceeded during the oxidation of methane over a nickel/ytterbium oxide catalyst? J. Phys. Chem., 1993, 97(15): 3644~3646
    [17] Hickman D A, Schmidt L D. Synthesis gas formation by direct oxidation of methane over Pt monoliths. J. Catal, 1992, 138(2): 267~274
    [18] Tsipouriari V A, Zhang Z, Verykios X E. Catalytic Partial Oxidation of Methane to Synthesis Gas over Ni-Based Catalysts: I. Catalyst Performance Characteristics. J. Catal., 1998, 179(1): 283~291
    [19] Huszar K, Racz G, Szekely G. Investigation of the partial catalytic oxidation of methane. I.Conversion rates in a single-grain reactor. Acta Chim. Acad. Sci. Hung., 1971, 70: 287~299
    [20] Torniainen P M, Chu X, Schmidt L D. Comparison of monolith-supported metals for the direct oxidation of methane to syngas. J. Catal., 1994, 146, 1~10
    [21] Tavazzi I, Beretta A, Groppi G, et al. Development of a molecular kinetic scheme for methane partial oxidation over a Rh/α-Al2O3 catalyst. J. Catal., 2006, 241 (1): 1~13
    [22] Ashcroft A T, Cheetham A K, Foord J S. Partial oxidation of methane to synthesis gas using carbon dioxide. Nature, 1991, 352(6332): 225~226
    [23] Guerrero-Ruiz A, Ferreire-Aparicio P, Bachiller-Baeza M B, et al. Isotope tracing experiments in syngas production from methane on Ru/Al2O3 and Ru/SiO2. Catal. Today, 1998, 46(2): 99~105
    [24] 姜圣阶,合成氨工学第一卷(第二版),北京:石油化学工业出版社,1978.197~233
    [25] Lu Y, Xue J Z, Yu C C, et al. Mechanistic investigations on the partial oxidation of methane to synthesis gas over a nickel-on-alumina catalyst. Appl. Catal. A, 1998, 174: 121~128
    [26] Pavlova S, Sazonova N, Sadykov V, et al. Partial oxidation of methane to synthesis gas over corundum supported mixed oxides: One channel studies. Catal. Today, 2005, 105: 367~371
    [27] Schwiedernoch R, Tischer S, Correa C, et al. Experimental and numerical study on the transient behavior of partial oxidation of methane in a catalytic monolith. Chem. Eng. Sci., 2003, 58: 633~642
    [28] Weng W Z, Chen M S, Yan Q G, et al. Mechanistic study of partial oxidation of methane to synthesis gas over supported rhodium and ruthenium catalysts using in situ time-resolved FTIR spectroscopy. Catal. Today, 2000, 63(2-4): 3l7~326
    [29] Passos F B, Oliveira E R, Mattos L V, et al. Effect of the support on the mechanism of partial oxidation of methane on platinum catalysts. Catal. Lett., 2006, 110(1-2): 161~167
    [30] Wang H Y, Ruckenstein E. CH4/CD4 isotope effect and the mechanism of partial oxidation of methane to synthesis gas over Rh/γ-Al2O3 catalyst. J. Phys. Chem. B, 1999, 103, 11327~11331
    [31] Steghuis A G, Ommen J G V, Lercher J A. On the reaction mechanism for methane partial oxidation over yttria/zirconia. Catal. Today, 1998, 46 (2-3): 91~97
    [32] Yan Q G, Wu T H, Weng W Z, et al. Partial oxidation of methane to H2 and CO over Rh/SiO2 and Ru/SiO2 catalysts. J. Catal., 2004, 226 (2): 247~259
    [33] Grunwaldt J D, Baiker A. Axial variation of the oxidation state of Pt-Rh/Al2O3 during partial methane oxidation in a fixed-bed reactor: An in situ X-ray absorption spectroscopy study. Catal. Lett., 2005, 99(1-2): 5~12
    [34] Hickman D A, Schmidt L D. Production of syngas by direct catalytic Oxidation of methane. Science, 1993, 259: 343~346
    [35] Claridge J B, York A P E, Brungs A J, et al. New catalysts for the conversion of methane to synthesis sas: Molybdenum and Tungsten Carbide. J. Catal., 1998, 180(1): 85~100
    [36] Kunimori K, Umeda S, Nakamura J, et al. Partial oxidation of methane to synthesis gas over Rhodium vanadate, RhVO4: Redispersion of Rh metal during the reaction. Bull. Chem. Soc. Jpn., 1992, 65(9): 2562~2564
    [37] Bhattacharga A K, Breach J A, Chand S, et al. Selective oxidation of methane to carbon monoxide on supported palladium catalyst. Appl. Catal. A, 1992, 80(1): LI~L5
    [38] Ashcroft A T, Cheetham A K, Foord J S, et al. Selective oxidation of methane to synthesis gas using transition metal catalysts. Nature, 1990, 344: 319~329
    [39] Vernon P D F, Green M L H, Cheetham A K, et al. Partial oxidation of methane to synthesis gas. Catal. Lett., 1990, 6: 181~186
    [40] Takehira K, Hayakawa T, Harihara H, et al. Partial oxidation of methane to synthesis gas over (Ca, Sr)(Ti, Ni) oxides, Catal. Today, 1995, 24: 237~242
    [41] Hayakawa T, Anderson A G, Shimizu M, et al. Partial oxidation of methane to synthesis gas over some titanates based perovskite oxides. Catal. Lett., 1993, 22(4): 307~317
    [42] Guo C L, Zhang J L, Li W, et al. Partial oxidation of methane to syngas over BaTi1-xNixO3 catalysts. Catal. Today, 2004, 98: 583~587
    [43] Xiao T C, Wang H T, York A P E, et al. Effect of sulfur on the performance of molybdenum carbide catalysts for the partial oxidation of methane to synthesis gas. Catal. Lett., 2002, 83: 241~246
    [44] Zhu Q L, Zhang B, Zhao J, et al. The effect of secondary metal on Mo2C/Al2O3 catalyst for the partial oxidation of methane to syngas. J. Mol. Catal. A: Chem., 2004, 213: 199~205
    [45] 季亚英,固定床和流化床甲烷部分氧化制合成气的研究:[博士论文],大连;中国科学院大连化学物理研究所,2000
    [46] Zhang Y H, Xiong G X, Sheng S S, et al. Deactivation Studies over NiO/γ-Al2O3 Catalysts for Partial Oxidation of Methane to Syngas, Catal. Today, 2000, 63: 517~522
    [47] 李振花,张翔宇,马新宾. 甲烷部分氧化制合成气反应的研究. 化学反应工程与工艺,2002,18(1):36~41
    [48] 余林,袁书华,田久英,等. 甲烷部分氧化制合成气载体及助剂对 Ni 系催化剂活性的影响,催化学报,2001,22(4):383~386
    [49] Leroi P, Madani B, Pham-Huu C, et al. Ni/SiC: a stable and active catalyst for catalytic partial oxidation of methane. Catal. Today, 2004, 91-92: 53~58
    [50] Sun W Z, Jin G Q, Guo X Y. Partial oxidation of methane to syngas over Ni/SiC catalysts. Catal. Commun., 2005, 6: 135~139
    [51] Hayakawa T, Suzuki S, Nakamura J J, et al. CO2 reforming of CH4 over Ni/perovskite catalysts prepared by solid phase crystallization method. Appl. Catal. A, 1999, 183(2): 273~285
    [52] 申文杰. CN-20 型催化剂的工业应用. 天然气化工,2002,27(1):19~25
    [53] 王尚弟,孔俊全. 催化剂工程导论. 北京: 化学工业出版社,2001.49~53
    [54] 严前古,李基涛,吴廷华,等. 载体对甲烷部分氧化制合成气的影响,天然气化工,1999,24(3):4~8
    [55] 谢春英,龚茂初,章洁,等. 镍基镧钡改性氧化铝催化剂性能研究,天然气化工,2002,27(2):8~11
    [56] Choudhary V R, Mondal K C, Mamman A S. High-temperature stable and highly active/selective supported NiCoMgCeOx catalyst suitable for autothermal reforming of methane to syngas. J. Catal., 2005, 233: 36~40
    [57] 曹立新,陈燕馨. 载体对甲烷直接氧化制合成气的影响,第八届催化学术会议论文,厦门,1996: 656~657
    [58] Zhang Z L, Verykios X E. Carbon dioxide reforming of methane to synthesis gas over supported Ni catalysts. Catal. Today, 1994, 21(2-3): 589~595
    [59] Horiuchi T, Sakuma K, Fukui T, et a1. Suppression of carbon deposition in the CO2-reforming of CH4 by adding basic metal oxides to a Ni/Al2O3 catalyst. Appl. Catal. A, 1996, 144(1-2): 111~120
    [60] Wu T H, Yan Q G, Wan H L. Partial oxidation of methane to hydrogen and carbon monoxide over a Ni/TiO2 catalyst. J. Mol. Catal. A: Chem., 2005, 226(1): 41~48
    [61] Bodke A S, Bharadwaj S S, Schmidt L D. The effect of ceramic supports on partial oxidation of hydrocarbons over noble metal coated monoliths. J. Catal., 1998, 179(1): 138~149
    [62] Hohn K L, Schmidt L D. Partial oxidation of methane to syngas at high space velocities over Rh-coated spheres. Appl. Catal. A: Gen., 2001, 211 (1): 53~68
    [63] Maestri M, Beretta A, Groppi G, et al. Comparison among structured and packed-bed reactors for the catalytic partial oxidation of CH4 at short contact times. Catal. Today, 2005, 105(3-4): 709~717
    [64] 王亚权,张再义,陈建滨,等. 整体型催化剂甲烷自热氧化制合成气的研究. 化学工程师,1997,2:2~3
    [65] 褚衍来,李树本,林景治,等. 甲烷部分氧化制合成气II. 镍系催化剂的反应性能. 催化学报,1996,17(3):207~211
    [66] 曹立新,陈燕馨,李文钊. Ni/Al2O3 上添加 La2O3 对甲烷部分氧化制合成气的影响. 天然气化工,1996,21(1):22~25
    [67] 张兆斌,余长春,沈师孔. 甲烷部分氧化制合成气的 La2O3 助 Ni/MgAl2O4催化剂. 催化学报,2000,21(1):14~18
    [68] 刘盛林,熊国兴,缪清,等. 锂和镧的添加对 NiO/Al2O3 甲烷部分氧化积炭的影响. 天然气化工,1998,23(5):5~7
    [69] Yao H C, Yu Yao Y F. Ceria in automotive exhaust catalysts: I. Oxygen storage. J. Catal., 1984, 86(2): 254~265
    [70] 严前古,高利珍,远松月,等. Pt/Al2O3 和 Pt/CeO2/Al2O3 催化甲烷部分氧化制合成气反应. 高等学校化学学报,1998,19(8):1300~1303
    [71] 金荣超,陈燕馨,李文钊,等. 甲烷部分氧化 Ni 催化剂及助剂的研究. 物理化学学报,1998,14(8):737~741
    [72] 姬涛,董新法,林维明. CH4, CO2 和 O2 制合成气镍基催化剂的研究. 天然气化工,2000,25(6):23~26
    [73] 傅利勇,吕绍洁,邱发礼. 甲烷制合成气反应催化剂抗积碳性能的研究进展. 天然气化工,1999,24(6):48~53
    [74] Silva P P, Silva F A, Portela L S. Effect of Ce/Zr ratio on the performance of Pt/CeZrO2/Al2O3 catalysts for methane partial oxidation. Catal. Today, 2005, 107-108: 734~740
    [75] Santos A C S F, Damyanova S, Teixeira G N R, et al. The effect of ceria content on the performance of Pt/CeO2/Al2O3 catalysts in the partial oxidation of methane. Appl. Catal. A, 2005, 290 (2): 123~132
    [76] Hori C E, Permana H, Simon K Y, et al. Thermal stability of oxygen storage properties in a mixed CeO2-ZrO2 system. Appl. Catal. B, 1998, 16(2): 105~117
    [77] Xu S, Wang X L. Highly active and coking resistant Ni/CeO2-ZrO2 catalyst for partial oxidation of methane. Fuel, 2005, 84(4): 563~567
    [78] Eriksson S, Nilsson M, Boutonnet M, et al. Partial oxidation of methane over rhodium catalyst ower for power generation. Catal. Today, 2005, 100(4): 447~451
    [79] Mattos L V, Rodino E, Resasco D E, et al. Partial oxidation and CO2 reforming of methane on Pt/Al2O3, Pt/ZrO2, and Pt/Ce-ZrO2 catalysts. Fuel Processing Technology, 2003, 83 (2): 147~161
    [80] Nichio N N, Casella M L, Santori G F, et al. Stability promotion of Ni/γ-Al2O3 catalysts by tin added via surface organometallic chemistry on metals Application in methane reforming processes. Catal. Today, 2000, 62(2-3): 231~240
    [81] Miao Q, Xiong G, Sheng S, et al. Partial oxidation of methane to syngas over nickel-based catalysts modified by alkali metal oxide and rare earth metal oxide. Appl. Catal. A, 1997, 154(1): 17~27
    [82] Requies J, Cabrero M A, Barrio V L, et al. Nickel/alumina catalysts modified by basic oxides for the production of synthesis gas by methane partial oxidation. Catal. Today, 2006, 116: 304~312
    [83] Chen L, Lu Y, Hong Q, et al. Dautzenberg. Catalytic partial oxidation of methane to syngas over Ca-decorated-Al2O3-supported Ni and NiB catalysts. Appl. Catal. A, 2005, 292: 295~304
    [84] Miao Q, Xiong G X, Sheng S S, et al. Control of the directions of oxidative transformation of methane over nickel-based catalysts by acid-base properties. React. Kinet. Catal. Lett., 1997, 62 (2): 363~370
    [85] 张玉红,许荃,盛世善,等. 溶胶-凝胶法制备甲烷部分氧化制合成气用催化剂. 催化学报,1998,19(6):550~553
    [86] Bharadwaj S S, Schmist L D. Synthesis gas formation by catalytic oxidation of methane in fluidized bed reactors. J. Catal., 1994, 146: 11~21
    [87] 季亚英,李文钊,徐恒泳,等. 不同前驱物对 Ni 催化剂上甲烷部分氧化制合成气反应的影响,催化学报,2000,21(5):415~418
    [88] Hayakawa T, Harihara H, Anderson A G, et al. Sustainable Ni/Ca1?xSrxTiO3 catalyst prepared in situ for the partial oxidation of methane to synthesis gas. Appl. Catal. A, 1997, 149 (2): 391~410
    [89] Takehira K, Shishido T, Kondo M, et al. Partial oxidation of CH4 into synthesis gas on Ni/perovskite catalysts prepared by SPC method. Stud. Surf. Sci. Catal., 2000, 130: 3525~3530
    [90] Lee S J, Jun J H, Lee S H, et al. Partial oxidation of methane over nickel-added strontium phosphate. Appl. Catal. A, 2002, 230(1-2): 61~71
    [91] Jun J H, Lee S J, Lim T H, et al. Nickel-calcium phosphate/hydroxyapatite catalysts for partial oxidation of methane to syngas: characterization and activation. J. Catal., 2004, 221(1): 178~190
    [92] 李基涛,严前古,陈明旦,等 . 甲烷部分氧化制合成气 Ni/MgO 和Ni-MgO/MgO催化剂的研究. 分子催化,2000,14(3):232~234
    [93] 李建中,吕功煊. 以单分散硅溶胶为前体制备的Ni/SiO2催化剂上甲烷部分氧化制合成气.石油化工,2004,33(9):808~812
    [94] 吴廷华,严前古,李少斌,等. Rh/SiO2催化剂上甲烷部分氧化制合成气反应. 催化学报,2003,24(6):407~413
    [95] 张玉红,熊国兴,盛世善,等. NiO/γ-Al2O3 催化剂 NiO 与 γ-Al2O3 间的相互作用. 物理化学学报,1999,15(8):735~741
    [96] Xu S, Zhao R, Wang X L. Highly coking resistant and stable Ni/Al2O3 catalysts prepared by W/O microemulsion for partial oxidation of methane. Fuel Processing Technology, 2004, 86(2): 123~133
    [97] Shan W J, Fleys M, Lapicque F, et al. Syngas production from partial oxidation of methane over Ce1-xNixOy catalysts prepared by complexation-combustion method. Appl. Catal. A, 2006, 311: 24~33
    [98] Perkas N, Zhong Z, Chen L W, et al. Sonochemically prepared high dispersed Ru/TiO2 mesoporous catalyst for partial oxidation of methane to syngas. Catal. Lett., 2005, 103(1-2): 9~14
    [99] Weng W Z, Pei X Q, Li J M, et al. Effects of calcination temperatures on the catalytic performance of Rh/Al2O3 for methane partial oxidation to synthesis gas. Catal. Today, 2006, 117(1-3): 53~61
    [100] 毕先钧,洪品杰,戴树珊. 甲烷部分氧化制合成气的研究,分子催化,1998,12(5):342~348
    [101] 路勇,邓存,丁雪加,等. Ni/Al2O3 催化剂上甲烷部分氧化制合成气,催化学报,1996,17(1):28~33
    [102] 纪红兵,宋一兵,林维明. CH4,CO2 与 O2 催化剂氧化重整制合成气的研究:II.反应性能考察,天然气化工,1996,21(6):11~15
    [103] 于军胜,张量渠,于作龙. 甲烷催化部分氧化制取合成气的研究:Ⅰ .负载型 Ni/α-A12O3催化剂的研究,天然气化工,1996,21(4):5~8
    [104] 季亚英,陈燕馨,江义,等. 甲烷和富氧空气催化氧化制合成气. 天然气化工,1997,22(2):17~20
    [105] 毕先钧,王真,洪品杰,等. 自放热条件下甲烷部分氧化制合成气. 应用化学,1999,16(1):71~73
    [106] 毕先钧,谢小光,洪品杰,等. 微波辐照引发甲烷部分氧化制合成气. 催化学报,1999,20(1):70~72
    [107] Jing Q S, Zheng X M. Combined catalytic partial oxidation and CO2 reforming of methane over ZrO2-modified Ni/SiO2 catalysts using fluidized-bed reactor. Energy, 2006, 31: 2184~2192
    [108] Jing Q S, Lou H, Mo L Y, et al. Combination of CO2 reforming and partial oxidation of methane over Ni/BaO-SiO2 catalysts to produce low H2/CO ratio syngas using a fluidized bed reactor. J. Mol. Catal. A: Chem., 2004, 212(1-2): 211~217
    [109] Cellier C, Clef D L, Mateos-Pedrero C, et al. Influence of the co-feeding of CO, H2, CO2 or H2O in the partial oxidation of methane over Ni and Rh supported catalysts. Catal. Today, 2005, 106: 47~51
    [110] Souza M M V M, Schmal M. Methane conversion to synthesis gas by partial oxidation and CO2 reforming over supported platinum catalysts. Catal. Lett., 2003, 91(1-2): 11~17
    [111] Chang J S, Park S E, Chon H. Catalytic Activity and Coke Resistance in the Carbon Dioxide Reforming of Methane to Synthesis Gas over Zeolite-supported Ni Catalysts, Appl. Catal. A, 1996, 145(1-2): 111~124
    [112] Cheng Z X, Wu Q L, Li J L, et al., Effects of promoters and preparation procedures on reforming of methane with carbon dioxide over Ni/Al2O3 Catalyst, Catal. Today, 1996, 30(1-3): 147~155
    [113] 季亚英,李文钊,徐恒泳,等. 流化床反应器中 Ni/γ-Al2O3 催化剂上甲烷部分氧化制合成气. 催化学报,2000,21(6):603~606
    [114] 季亚英,李文钊,徐恒泳,等. 流化床甲烷部分氧化制合成气 Ni 催化剂及助剂 La 的作用,分子催化,2001,15(1):37~41
    [115] Ji Y Y, Li W Z , Xu H Y, et al. Catalytic partial oxidation of methane to synthesis gas over Ni/γ-Al2O3 catalyst in a fluidized-bed. Appl. Catal. A , 2001, 213(1) : 25~31
    [116] Mo L Y, Zheng X M, Jing Q S, et al. Combined carbon dioxide reforming and partial oxidation of methane to syngas over Ni-La2O3/SiO2 catalysts in a fluidized-bed reactor. Energy & Fuels, 2005, 19: 49~53
    [117] Tsai C Y, Dixon A G, Moser W R, et al. Dense perovskite membrane reactors for partial oxidation of methane to syngas. AIChE. J., 1997, 43: 2741~2750
    [118] 杨维慎,邵宗平,从铀,等. 具有高氧空穴浓度的混合导体透氧膜,中国专利,99113004.9,1999-06-11
    [119] Hu J, Xing T L, Jia Q C, et al. Methane partial oxidation to syngas in YBa2Cu3O7-x membrane reactor. Appl. Catal. A, 2006, 306: 29~33
    [120] Ikeguchi M, Mimura T, Sekine Y, et al. Reaction and oxygen permeation studies in Sm0.4Ba0.6Fe0.8Co0.2O3-δ membrane reactor for partial oxidation of methane to syngas. Appl. Catal. A, 2005, 290: 212~220
    [121] 王海辉,从铀,杨维慎. 在管状透氧膜反应器中进行甲烷部分氧化制合成气. 科学通报,2002,47(1):21~24
    [122] Galuszka J, Pandey R N, Ahmed S. Methane conversion to syngas in a palladium membrane reactor. Catal. Today, 1998, 46: 83~89
    [123] Basile A, Paturzo L, Laganà F. The partial oxidation of methane to syngas in a palladium membrane reactor: simulation and experimental studies. Catal. Today, 2001, 67: 65~75
    [124] Basile A, Paturzo L. An experimental study of multilayered composite palladium membrane reactors for partial oxidation of methane to syngas. Catal. Today, 2001, 67: 55~64
    [125] 吴廷华,袁王莹,万惠霖. 甲烷部分氧化制合成气负载型过渡金属催化剂性能的研究. 浙江师范大学学报(自然科学版),2004,27(2):147~151
    [126] 吴玉程,杨晔,李勇,等. 氧化铝胶体的添加对氧化铝γ→α相变的影响. 物理化学学报,2005,21(1):79~83
    [127] 郭清松,沈岳年,刘志双. 具有镁铝尖晶石表面覆盖层的Ni/γ-Al2O3催化剂. 石油化工,1989,18(9):606~609
    [128] 张蕊,李殿卿,张法智,等. MgO/γ-Al2O3烷氧基化催化剂制备及结构与性能研究. 精细化工,2003,20(2):74~77
    [129] 黄华,尹笃林,文建军,等. Ni含量对镍催化剂芳烃加氢抗硫性能的影响. 工业催化,2005,13(1):13~16
    [130] 钟顺和,杨占林,王爱菊. 在水蒸气存在下甲烷部分氧化制氢Ni-Cu/MgSiO催化剂的研究. 石油化工,2004,33(8):709~713
    [131] Morterra C, Ghoitti G, Boccuzzi F, et al. An infrared spectroscopic investigation of the surface properties of magnesium aluminate spinel. J. Catal., 1978, 51(3): 299~313
    [132] 刘希尧,王淑菊,郭俐聪. 氧化铝基表层镁铝尖昌石的研究 I.表层镁铝尖晶石的相结构、孔结构、表面酸性及负载钯的化学状态. 催化学报,1994,15(1):1~7
    [133] 魏昭彬,辛勤,Sham E L,等. TiO2在Al2O3表面上分散状态的AEM研究. 物理化学学报,1990,6(4):474~479
    [134] 王春明,赵璧英,谢有畅. 盐类和氧化物在载体上自发单层分散研究新进展. 催化学报,2003,24(6):475~482
    [135] 林承志. NiO/γ-Al2O3体系分散态研究. 沈阳师范学院学报(自然科学版),1999,2:28~31
    [136] 邓存,曾育才,梁均方. 催化剂制备研究中的分散阈值参数. 嘉应大学学报(自然科学),2001,19(6):36~39
    [137] 许珊,赵睿,王晓来. 微乳化法制备 Ni/γ-Al2O3 催化剂及其在甲烷部分氧化反应中的高温稳定性和抗积炭性能. 复旦大学学报(自然科学版),2003,42(3):343~346
    [138] 张玉芬,谢有畅,肖念华,等. 添加剂 MgO 和 La2O3 对甲烷化镍催化剂的影响. 石油化工,1985,14(3):141~148
    [139] 李基涛,张伟德,严前古,等. 载体MgO/Al2O3比对CH4/CO2重整Ni基催化剂性能的影响. 厦门大学学报(自然科学版),1999,38(3):569~572
    [140] 陈吉祥,邱业君,张继炎,等. La2O3和CeO2对CH4-CO2重整Ni/MgO催化剂结构和性能的影响. 物理化学学报,2004,20(1):76~80
    [141] 许峥,李玉敏,张继炎. 甲烷二氧化碳重整制合成气的镍基催化剂性能Ⅱ.碱性助剂的作用. 催化学报,1997,18(5):364~367
    [142] Guo J J, Lou H, Zhao H, et al. Dry reforming of methane over nickel catalysts supported on magnesium aluminate spinels. Appl. Catal. A, 2004, 273: 75~82
    [143] Rostrop-Nielsen J R. Catalysis: Science and Technology, vol.5. In: Anderson J R, Boudart M, eds. Catalytic steam reforming. Berlin: Springer, 1984. 1~120
    [144] Parmalliana A, Arena F, Frusteri F, et al. Temperature-programmed reduction study of NiO-MgO interactions in magnesia-supported Ni catalysts and NiO-MgO physical mixture. J. Chem. Soc., Faraday Trans., 1990, 86(14): 2663~2669
    [145] Pengpanich S, Meeyoo V, Rirksomboon T. Methane partial oxidation over Ni/CeO2-ZrO2 mixed oxide solid solution catalysts. Catal. Today, 2004, 93-95: 95~105
    [146] 葛欣,沈俭一. 逆水煤气变换耦合乙烷脱氢制备乙烯反应的研究. 高等学校化学学报,2001,22(12):2085~2090
    [147] 万惠霖,翁维正. 甲烷部分氧化制合成气反应机理的原位时间分辨IR光谱和Raman光谱表征. 复旦学报(自然科学版),2002,41(3):243~249
    [148] Rosynek M P. Catalytic properties of rare earth oxides. Catal. Rev.-Sci. Eng., 1977, 16(1): 111~154
    [149] Zhang Z L, Baerns M. Oxidative coupling of methane over CaO-CeO2 catalysts: Effect of oxygen-ion conductivity on C2 selectivity. J. Catal., 1992, 135: 317~320
    [150] 彭程,蒋凯,李五聚,等. Ce1-xCaxO2-x的溶胶-凝胶法的合成及其性质. 应用化学,2001,18(6):428~431
    [151] 谭炯,李晖,余林,等. CaO-La2O3-NiO/γ-A12O3催化剂上甲烷部分氧化制合成气研究. 西南民族学院学报(自然科学版),2000,26(3):296~299
    [152] Dias J A C, Assaf J M. Influence of calcium content in Ni/CaO/γ-Al2O3 catalysts for CO2-reforming of methane. Catal. Today, 2003, 85(1) : 59~68
    [153] Shi H B, Li Q, Dai X P, et al. Co-CeO2/SiO2 Fischer-Tropsch synthesis catalyst. Petroleum Science, 2005, 2(2): 107~111
    [154] Arai H, Kunisaki T, Shimizu Y, et al. Electrical properties of calcia-doped ceria with oxygen ion conduction. Solid State Ionics, 1986, 20: 241~248
    [155] Wang Y, Takahashi Y, Ohtsuka Y. Carbon dioxide as oxidant for the conversion of methane to ethane and ethylene using modified CeO2 catalysts. J. Catal., 1999, 186(1): 160~168
    [156] Peng C, Liu Y N, Zheng Y X. Nitrate-citrate combustion synthesis and properties of Ce1?xCaxO2?x solid solutions. Mater. Chem. Phys., 2003, 82(3): 509~514
    [157] Pavlova S N, Sazonova N N, Ivanova J A, et al. Partial oxidation of methane to synthesis gas over supported catalysts based on Pt-promoted mixed oxides. Catal. Today, 2004, 91-92: 299~303
    [158] 井强山,楼辉,莫流业,等. Ni/CaO-SiO2对流化床反应器中甲烷转化制合成气的催化性能. 化学通报,2004,8:599~605
    [159] 杨咏来, 李文钊, 徐恒泳. CeO2和Pd在Ni/γ-A12O3催化剂中的助剂作用. 物理化学学报,2002,18(4):321~325
    [160] Jiang P B, Shang Y C, Cheng T X, et al. Methane decomposition over Ni/α-A12O3 promoted by La2O3 and CeO2. Journal of Natural Gas Chemistry, 2003, 12: 183~188
    [161] Yang Y L,Li W Z,Xu H Y. Effects of cerium oxide on Ni/A12O3 catalysts for decomposition of CH4 and C2H4. J Rare Earths, 2003, 21(4): 427~429
    [162] 滕云,陈耀强,邓羽蓉,等. 助剂对甲烷部分氧化催化剂Ni/α-A12O3催化性能的影响. 化学研究与应用,2003,15(1):58~61
    [163] 沈师孔,李春义,余长春. Ni/A12O3 催化剂上甲烷部分氧化制合成气反应机理. 催化学报,1998,19(4):309~314
    [164] 严前古,高利珍,远松月,等. Pt/Al2O3和Pt/CeO2/Al2O3催化甲烷部分氧化制合成气反应. 高等学校化学学报,1998,19(8):1300~1303
    [165] Ostrowski T, Giroir-Fendler A, Mirodatos C, et al. Comparative study of the catalytic partial oxidation of methane to synthesis gas in fixed-bed and fluidized-bed membrane reactors: Part I: A modeling approach. Catal. Today, 1998, 40: 181~190
    [166] Bizzi M, Basini L, Saracco G, et al. Short contact time catalytic partial oxidation of methane: analysis of transport phenomena effects. Chem. Eng. J., 2002, 90(1-2): 97~106
    [167] Komiyama M. Design and Preparation of Impregnated Catalysts. Catal. Rev.-Sci. Eng., 1985, 27: 341~372
    [168] Becke E R, Wei J. Nonuniform distribution of catalysts on supports: II. First order reactions with poisoning. J. Catal., 1977, 46(3): 372~381
    [169] Gavriilidis A, Varma A. Optimal catalyst activity profiles in pellets: 9. Study of ethylene epoxidation. AIChE J., 1992, 38: 291~296
    [170] Takehira K, Kawabata T, Shishido T, et al. Mechanism of reconstitution of hydrotalcite leading to eggshell-type Ni loading on Mg-Al mixed oxide. J. Catal., 2005, 231: 92~104
    [171] Hu L X, Yang Y W, Luo S J, et al. Investigation on the kinetics of infiltration of liquid aluminium into an alumina fibrous perform. J. Mater. Process. Technol., 1999, 94: 227~230
    [172] Okada K, Tomita T, Kameshima Y, et al. Surface acidity and hydrophilicity of coprecipitated Al2O3-SiO2 xerogels prepared from aluminium nitrate nonahydrate and tetraethylorthosilicate. J. Coll. Inter. Sci., 1999, 219: 195~200
    [173] Iglesia E, Soled S L, Baumgartner J E, et al. Synthesis and catalytic properties of eggshell cobalt catalysts for the Fischer-Tropsch synthesis. J. Catal., 1995, 153: 108~122
    [174] Chu W L, Yang W S, Lin L W. Selective oxidation of methane to syngas over NiO/barium hexaaluminate. Catal. Lett., 2001, 74(3-4): 139~144
    [175] Yang S W, Kondo J N, Hayashi K, et al. Partial oxidation of methane to syngas over promoted C12A7. Appl. Catal. A, 2004, 277(1-2): 239~246
    [176] Liu Z W, Jun K W, Roh H S, et al. Pulse study on the partial oxidation of methane over Ni/θ-Al2O3 catalyst. J. Mol. Catal. A, 2002, 189(2): 283~293
    [177] Zhu J, Zhang D, King K D. Reforming of CH4 by partial oxidation: thermodynamic and kinetic analyses. Fuel, 2001, 80(7): 899~905
    [178] Fathi M, Hofstad K H, Sperle T, et al. Partial oxidation of methane to synthesis gas at very short contact times. Catal. Today, 1998, 42(3): 205~209
    [179] Lommerts B J, Graaf G H, Beenackers A A C M. Mathematical modeling of internal mass transport limitations in methanol synthesis. Chem. Eng. Sci., 2000, 55(23): 5589~5598
    [180] Carberry J J, Hutchings J. The influence of surface coverage on catalytic effectiveness and selectivity. The isothermal and nonisothermal cases. AIChE J., 1996, 12: 20~23
    [181] P. Kim, Y. Kim, H. Kim, et al. Synthesis and characterization of mesoporous alumina with nickel incorporated for use in the partial oxidation of methane into synthesis gas. Appl. Catal. A, 2004, 272(1-2): 157~166
    [182] 刘晓林,梁培辉,张伟清,等. 氨处理溶胶-凝胶SnO2 薄膜的光学性质. 光学学报,1999,19(4):524~527
    [183] 孙家跃,肖昂,杜海燕,等. 溶胶-发泡法制备超细氧化铝. 精细化工,2004,21(4):257~261
    [184] 吴瑾光. 近代傅里叶变换红外光谱技术及应用(上卷).北京:科学技术文献出版社,1994.640
    [185] 闫晋钢,赵杰,艾勇,等. 氧化铝生产中物料的红外光谱分析研究. 轻金属,2001,2:14~17
    [186] 闻辂,梁婉雪,章正刚,等. 矿物的红外光谱学,重庆:重庆大学出版社,1988.115
    [187] 王志文,廖义奎,陈积光,等. 真空干燥的一维理论研究. 广西民族学院学报(自然科学版),2004,10(1):92~97
    [188] Balint I, Miyazaki A, Aika K I. The relevance of Ru nanoparticles morphology and oxidation state to the partial oxidation of methane. J. Catal., 2003, 220: 74~83
    [189] Salasc S, Perrichon V, Primet M, et al. Magnetic study of the interaction of hydrogen with a Pt/CeO2-Al2O3 catalyst: influence of the presence of chlorine. Catal. Today, 1999, 50: 227~235
    [190] 叶青,徐柏庆. Ce1-xZrxO2 的氧化还原性能及其对 CO2 重整 CH4 反应的影响. 催化学报,2006,27(2):151~156
    [191] 蒋晓原,周仁贤,袁骏,等. CuO/CeO2 催化剂的催化氧化性能及其表征,中国稀土学报,2002,20(2):111~115
    [192] Jin R, Chen Y, Li W, et al. Mechanism for catalytic partial oxidation of methane to syngas over a Ni/Al2O3 catalyst. Appl. catal. A. Gen., 2000, 201(1): 71~80
    [193] Otsuka K, Wang Y, Sunada E, et al. Direct partial oxidation of methane to synthesis gas by cerium oxide. J. Catal., 1998, 175: 152~160
    [194] 季亚英,李文钊,徐恒泳,等. 用MS-TPSR技术研究甲烷部分氧化反应的引发过程. 物理化学学报,2001,17(3):201~205
    [195] Yong L U, Xue J Z, Yu C C, et al. Mechanistic investigations on the partial oxidation of methane to synthesis gas over a nickel-on-alumina catalyst. Appl. catal. A. Gen., 1998, 174(1-2): 121~128
    [196] Jin R, Chen Y, Li W, et al. Mechanism for catalytic partial oxidation of methane to syngas over a Ni/Al2O3 catalyst. Appl. catal. A. Gen., 2000, 201(1): 71~80
    [197] Zhou M H, Ferreira J M F, Fonseca A T. Influence of the silica matrix on the formation of a-alumina in a mullite-alumina composite from a diphasic precursor. J. Mater. Sci., 1988, 33: 1851~1856
    [198] Schaper H,Amesz D J,Doesburg E B M et al. The influence of high partial steam pressures on the sintering of lanthanum oxide doped gamma alumina. Appl. Catal. A,1984,9:129~132
    [199] 胡大为,杨清河,聂红,等. 活性氧化铝载体的扩孔及改性. 石油炼制与化工,2004,35(8):46~49
    [200] 徐友明,沈本贤,何金海,等. 大孔径石蜡加氢精制催化剂的制备. 石油化工,2005,34(5):422~424
    [201] Sato S, Takahashi R, Sodesawa T, et al. Mass-transfer limitation in mesopores of Ni-MgO catalyst in liquid-phase hydrogenation. J. Catal., 2000, 191: 261~270
    [202] Cheng D G, Zhu X L, Ben Y H, et al. Carbon dioxide reforming of methane over Ni/Al2O3 treated with glow discharge plasma. Catal. Today, 2006, 115: 205~210
    [203] 王玉和,刘红梅,徐柏庆. NiO-MgO固溶体的形成对Ni/MgO-AN催化CO2重整CH4反应活性和稳定性的影响. 催化学报,2005,26(12):1117~1121
    [204] Arena F, Frusteri F, Parmaliana A, et al. Effect of calcination on the structure of Ni/MgO catalyst: an X-ray diffraction study. J. Chem. Soc., Faraday Trans., 1996, 92 (3): 469~471

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700