用户名: 密码: 验证码:
电晕放电除尘脱硫脱氮试验及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脉冲放电低温等离子体技术的研究始于20世纪70年代末,是一种有效的烟气脱硫脱氮方法。迄今为止,各国的研究人员仍在不断探索,力求使该项技术趋于完善。
     本文利用所设计制造的除尘、脱硫脱氮的分立装置和除尘脱硫脱氮一体机进行了如下方面的试验研究:放电等离子体除尘脱硫的试验;网状转动极板除尘脱硫脱氮装置的设计和试验;低碳烃活化与电晕放电协同脱除NO的试验及热力学分析;催化剂与电晕放电协同脱硫脱氮的试验;金属氧化物脱硫反应的热力学计算及模型建立。通过试验和理论分析,获得如下研究结果。
     通过电晕放电脱硫的试验分析表明,脉冲电晕放电的脱硫效率高于负直流电晕放电脱硫,氨气和水蒸气从放电极喷出的烟气脱硫提高率高于氨气和水蒸气从烟气入口进入的状况。
     利用网状转动极板除尘脱硫脱氮一体机进行除尘脱硫脱氮的试验,结果表明,烟道中气流速度越大,除尘效率越低;当烟道里气流风速为2.1m/s时,转速越大,干法除尘效率越高,转速为12rpm时,除尘效率可达到99%;在转速为6rpm和通水的情况下,除尘效率可以达到99%以上。在通水或通氨的情况下,极板转动对脱硫脱氮没有影响;然而在发尘情况下,极板转动对脱硫效率影响,比固定极板提高5%。Cu-Cr-Al-Ni合金放电针在3.5%NaCl+4.5mol/L NH3溶液中腐蚀优先在Cu/Cr相交界处产生,在该条件磨损作用下Cu-Cr-Al-Ni合金中Cr相易从基体上剥离下来,外加载荷越大,Cr相剥离倾向越大。
     采用低碳烃与电晕放电协同脱除NO的实验结果与热力学分析计算一致,在298K下,甲烷、乙烷、乙烯、乙炔、丙烷和丙烯等低碳烃与NO反应的标准吉布斯函数变表明乙烷、乙炔、丙烷和丙烯的正向反应的趋势较大,其中丙烯的趋势最大。通过脉冲电晕放电与CuO/γAl2O3协同处理脱除烟气中SO2和NO的试验可知,脉冲电晕放电与CuO/γAl2O3协同处理脱除烟气中SO2和NO,脉冲电压达到40kV时,进口烟气温度为80℃,出口烟气温度为40℃,气体在烟道中的流速为1.3m/s,SO2的初始浓度为1400mg/m3,NO的初始浓度350 mg/m3,SO2的去除率达到85%以上,NO的去除率为30%;通过对催化剂的性能进行表征,发现催化剂与脉冲电晕协同处理后,在低温下也有较大的反应活性。
     运用化学热力学理论对常见金属氧化物脱硫剂(CuO,CaO,Fe2O3,MgO,CeO2)脱硫反应的吉布斯函数变(ΔG)和平衡时SO2的分压等进行计算。计算结果表明:金属氧化物脱硫剂的脱硫反应在常温下就有很大的正向进行趋势。由金属氧物脱硫剂有效反应温度范围内的脱硫反应SO2平衡分压可知:脱硫效率由高到低的顺序依次为:CeO2>CuO>MgO>CaO>Fe2O3。而且脱硫效率都有随温度升高而降低的趋势。
     本文还采用缩核模型和晶粒模型思想,对非催化的脱硫反应进行了宏观与微观联合建模。
The technology of low temperature plasma from pulse corona discharge came into being at the end of 1970s, which is one efficient method of fuel desulphurization and denitrification. Since then, researchers of many countries have been working on it for making it perfect.
     In this paper, it is reported that the experiments have been made on both sectional and integrated equipment for dust collection and desulphurization denitrification, such as, desulphurization and dedust test by discharge plasma, design of the device with original rotating net plate and test of collecting dust and desulphurization denitrification, thermodynamic analysis on nitric oxide removal by low carbon hydrocarbons and corona discharge; synergistic treatment of SO2 and NO in fuel by pulse corona discharge and catalyst; thermodynamic functions calculation of metal oxides reacting with SO2 and the desulphurization reaction model. The main achievements and results are as follows: Through the test result of corona discharge desulphurization, It is shown that desulphurization efficiency of positive pulse corona discharge is higher than negative DC corona discharge’s, desulphurization efficiency of ammonia and steam coming in reactor from discharge polar is higher than that from fuel entrance.
     Tests are carried out , which are collection dust, desulphurization and denitration by using electrical precipitator with the original rotating net plate, result is shown that the lower collecting dust efficiency is, the higher wind speed of fuel pipe is. When wind speed is 2.1m/s, the bigger rotation speed is, the bigger collecting dust efficiency of dry method is, as rotation speed is 12 rpm, collecting dust efficiency is 99%. When rotation speed is 6 rpm and aerating water, collecting dust efficiency is more than 99%. Under the condition of aerating water or ammonia, rotation plate does not influence desulphurization and denitration efficiency. However, on the condition of making dust into reactor, desulphurization efficiency of rotation plate is higher than 5% in comparison with fixed plate. The corrosion of Cu-Cr-Al-Ni alloy discharge pole occurs first in the interface between Cu and Cr in 3.5%NaCl+4.5mol/L NH3 solution, and the Cr phase of Cu-Cr-Al-Ni alloy is more easy to flake off with the weight amount of load increasing. The morphology character of corrosive wear of Cu-Cr-Al-Ni alloy in 3.5%NaCl+4.5mol/L NH3 solution is mainly in form of cutting, and with corrosion, and the synergistic effect between corrosion and abrasion results in the increase of corrosive wear mass loss of alloy.
     The result from the test on NO removal by pulse corona discharge with low carbon hydrocarbons is identical with that from the thermodynamic analysis of nitric oxide removal by low carbon hydrocarbons. As 298K,ΔGθof reactions, which are the reaction of methane, ethane, ethylene, ethine, propane and propene with NO, it is indicated that positive reaction tendency of ethane, ethine, propane and propene is very strong, and that of propene is the strongest.
     The experiments show that SO2 and NO in the smoke can be removed efficientlyby pulse corona discharge together with CuO/γ- Al2O3.When pPulse voltage is 40kV, inlet fuel temperature is 80℃,outlet fuel temperature is 40℃,fuel flow velocity is 1.3m/s,initial concentration of SO2 is 1400mg/m3, and initial concentration of NO is 350 mg/m3, SO2 removal efficiency is above 85%, and NO removal efficiency is 30%. The surface structure of the catalyst has been investigated by IR and XRD, it is found that catalyst has better activity at low temperature by synergistic action with pulse corona discharge.
     By calculatingΔG, Kp of desulferization agents (CuO,CaO,Fe2O3,MgO ,CeO2) for desulferization reactions and partial pressure of SO2 at equilibrium state by the theory of chemical thermodynamics.The results are indicated that the positive tendency of desulferization reactions are evidencely at room temperature. From the partial pressure of SO2 at equilibrium state and optimum temperature, it is shown that the sequence of the SO2 removal activity is CeO2> CuO >MgO >CaO>Fe2O3. It is the same as the results of calculation by the method of thermodynamics. The reaction of desulphurization is non-catalysis, and its mechanism can be described by the concept of the shrinking core model and the grain model.
引文
1国家环保总局.2000年中国环境公报, 2001
    2国家环保总局.2001年中国环境公报, 2002
    3国家环保总局.2002年中国环境公报, 2003
    4国家环保总局.2003年中国环境公报, 2004
    5国家环保总局.2004年中国环境公报, 2005
    6国家环保总局.2005年中国环境公报, 2006
    7国家环保总局.2006年中国环境公报, 2007
    8钟秦.燃煤烟气脱硫脱硝技术及工程实例.北京:化学工业出版社,2002:5
    9杨春平.中国燃煤锅炉烟气脱硫技术的发展前景.环境科学进展,1997,5(5):46-49
    10白明华,李秋荣.脱硫脱硝除尘一体化技术的研究进展.第三届全国环境化学学术大会论文集,厦门,2005,(Ⅲ):7-9
    11邰德荣.电子束烟气脱硫技术工业示范工程进展.环境科学进展,1999,7(2):125-134
    12赵毅,李守信.有害气体控制工程.北京:化学工业出版社,2001:186-191
    13郝吉明,王书肖,陆永琪.燃煤SO2污染控制技术手册.北京:化学工业出版社, 2001:134
    14吴祖良.等离子体气态污染物控制技术的研究进展.电站系统工程,2004,20 (2):1-4
    15毛本将.电子束辐照烟气脱硫脱硝工业化试验装置.环境保护,2000,(8):13-14
    16 S. Masuda, H. Nakao. Control of NOx by positive and negative pulsed corona discharges. Proc. IEEE/IAS Ann. Meeting, USA Denver: 1986, 1173-1182
    17 A. Mizuno, J. S. Clements , R. H. Davis. A Method for the Removal of Sulfur Dioxide from Exhaust Gas Utilizing Pulsed Streamer Corona for Electron Energization. IEEE Trans. Ind. Appl., 1986, IA-22 (3): 516-521
    18 R. Wang, B. Zhang, B. Sun, et al. Apparent Energy Yield of A High Efficiency Pulse Generator with Respect to SO2 and NOx Removal. Journal of Electrostatics, 1995,34(4): 355-366
    19 G. Dinelli, L.Civitano, and M. Rea. Industial Experiments on Pulse Simultaneous Removal of NOx and SOx From Flue Gas, IEEE Trans. Ind. Appl. 1990,26(3): 535-541
    20 G. Dinelli, L. Civitano, and M. Rea. Industrial Experimental on Pulse Corona Simultaneous Removal of NOx and SO2 From Flue Gas by Means of Impulse Streamer Corona, Trans.IEEE-IAS 1989,25(1): 62-69
    21 L.Civitano, G.Dinelli. Flue Gas Simultaneous De-NOx/De-SOx by Impulse Corona Energization, International Atomic Energy Agency, Report No.TECPC-428, 1987,55-84
    22 Y. S. Mok , I..S. Nam. Positive Pulsed Corona Discharge Process for Simultaneous Removal of SO2 and NOx From Iron-Orc Sintering Flue Gas. IEEE Tran.Plas.Sci. 1999,27(4):1188-1196
    23 S. Masuda , S. Hosokawa. Pulse Energiation System of Electrostatic for Retrofitting Application. Proc. IEEE/IAS Ann. Meeting, 1984, 1177-1184
    24 S. Masuda, M. Hirano, K. Akutsu. Enhancement of Electron Beam Denitrization Process by Means of Electric Field. Radiat. Phys. Chem, 1981,17:223-228
    25吴彦,朱益民,王荣毅.电晕法脱硫脱硝电源/反应器的研究.大连理工大学学报,1995,35(1): 31-34
    26 A. Chakrabarti, A. Mizuno, K. Shimizu, et al. Gas Cleaning with Semi-Wet Type Plasma Reactor. IEEE Trans. Ind. Appl., 1995,31(3):500-506
    27 K.Yan, E.M.Van, Veldhuizen, et al. Matching between Voltage Pulse Generator and Reactor for Producing Low Temperature Plasma by Positive Pulse Corona. The International Conference on Applied Electrostatics. 1993,Beijing: 83-95
    28 K.Yan, A.J.M.Pemen, P.A.H.J. Huijbrechts. Elements of Pulsed Corona Induced Non-Thermal Plasmas for Pollution Control and Sustainable Development. Journal of Electrostatics ,2001,51-52:218-224
    29 B. Srinivasan, S. Palanki, D. R. Grymonpre, et al. Optimization of a Continuous Pulsed Corona Reactor. Chemical Engineering Science, 2001,56(3):1035-1039.
    30 K.Onda, Y. Kasuga, K. Kato, et al. Electric Discharge Removal of SO2 and NOx from Combustion Flue Gas by Pulsed Corona Discharge. Energy Convers. Mgnet, 1997,38(10-13):1377-1387.
    31 O. Tokunaga and N. Suzuki. Radiation Chemical Reaction in NOx And SO2 Removals from Flue Gas. Radiat. Phys. Chem., 1984,24:145-165
    32 M. A. Mueller. R.A. Yetter , F. L. Dryer. Kinetic Modeling of The CO/H2O/O2/NO/SO2 System: Implications for High-Pressure Fall-Off in the SO2+O(+M)=SO3(+M) Reaction. Inc. Int J. Chem Kinet, 2000, 32:317-339
    33李瑞年,阎克平,蒲以康,等.低温等离子体烟气脱硫的反应机制.化工学报,1996, 47(4):481-486
    34 J. Li, W. M. Sun, B. Pashaie,et al. Streamer Discharge Simulation in Flue Gas. IEEE Transactionson plasma science 1995, 23(4): 672-678.
    35 F. Busi, M. D.Angelantonio, Q.G. Mulazzani, et al. Radiation Treatment of Combustion Gases: Formulation and Test of a Reaction Model. Radiat. Phys. Chem, 1985,25(1): 47-55
    36 F. Busi, M. D.Angelantonio , Q. G. Mullazzani. Radiation Induced NOx/SO2 Emission Control for Industrial and Power Plants Fuel Gas, Radiat. Phys. Chem, 1988, 31(1-3): 102-108
    37 Y. S. Mok , I.S. Nam. Modeling of Pulsed Corona Discharge Process for the Removal of Nitric Oxide and Sulfur Dioxide. Chemical Engineering Journal, 2002,85(1):87-97
    38 I. Orlandini , U. Riedel. Chemical Kinetics of NO Removal by Pulsed Corona Discharges. J. Phys. D: Appl. Phys, 2000, 33: 2467-2474
    39 Y. T. Kim , K. W. Whang. Two-Dimensional Numerical Simulation of Radical Generation in the Positive Corona Discharge, IEEE Transactions on plasma science, 2000, 28(1):261-267.
    40 R. H. Huie , P. Neta. Rate Constants for Some Oxidations of S(IV) by Radicals In Aqueous Solutions. Atmosph. Environ, 1987, 21(8): 1743-1747.
    41 H. R. Paur , S. Jordan. Aerosol Formation in Electron Beam Dry Scrubbing Process. Radiat. Phys. Chem,1988, 31(1-3): 9-13.
    42 S. Jordan. On the State of Art of Flue Gas Cleaning by Irradiation with Fast Electrons. Radiat. Phys. Chem, 1990, 35(1-3): 409-415.
    43 R. Li, K. Yan, J. Miao , et al. Heterogeneous Reactions in Non-Thermal Plasma Flue Gas Desulfurization. Chemical Engineering, 1998,53(8): 1529-1540
    44 M. Rea , K. Yan. Evaluation of Pulse Voltage Generators. IEEE Trans. Ind. Appl., 1995, 31(3): 507-512
    45 R. P. Dahiya, S. K. Mishra , A. Veefkind. Plasma Chemical Investigations for NOx and SO2 Removal from Flue Gases. IEEE Transactions on Plasma Science,1993, 21(3):346-348.
    46 I. Galkimberti. Impulse Corona Simulation for Flue Gas Treatment. Pure & Appl. Chem., 1988, 60(6): 663-674
    47 P. A. Vitello. Simulation of negative streamer dynamics in nitrogen. Phys. Review, 1994, 49(6):5574-5578
    48王文春,吴彦. NO、N2气体中电晕放电高能电子密度分布的光谱实验研究.环境科学学报,1998,18(1):51-55
    49 Shukai Tang, Wenchu Wang, Jiahong Liu, et al. Diagnosis of Positive ions from Near-CathodeRegion in a High-Voltage Pulsed Corona Discharge N2 Plasma. J. Vac. Sci. technol. A, 2000,18(5):2213-2216
    50 J. S. Chang,D.Brocilo,K.Urashima,et al. On-set of EHD turbulence for cylinder in cross flow under corona discharge.Journal of Electrostatics,2006,64(7-9):569-573
    51 T. Ohkubo, S. Kanazawa, Y. Nomoto, et al. NOx Removal by a Pipe with Nozzle-Plate Electrode Corona Discharge System. IEEE Trans. Industry Applications, 1994, 30:856-861.
    52 J. S. Chang, K. Urashima, Y. X. Tong, et al. Simultaneous Removal of NOx And SO2 from Coal Boiler Flue Gases by DC Corona Discharge Ammonia Radical Shower Systems: Pilot Plant Tests. Journal of Electrostatics,2003, 57(3-4):313-323.
    53 J.Y. Park, R. Li, G. F. Round , et al. Removal of SO2 from Combustion Flue Gases by Corona Radical Shower Systems. J. Adv. Oxid. Technol, 1999, 4(3): 1-7
    54 K. Yan, T. Yamamoto, S. Kanazawa, et al. Control of Flow Stabilized Positive Corona Discharge Modes and NO Removal Characteristics in Dry Air by CO2 Injections. Journal of Electrostatics,1999, 46(2-3):207-219
    55 K. Yan, D. Higashi, S. Kanazawa, et al. Streamer Corona Characteristics of a Corona Radical Shower System During NOx Removal Operation. In Proc. of First Asia-Pacific Int. Symp. On the Basic and Application of Plasma Technologies, Taiwan, 1997:129-132.
    56 Y. Wu, J. Li, N. Wang, et al. Study on Increasing the SO2 Removal Efficiency with the Radicals Produced by H2O in Pulse Discharge Plasma Process. Jpn. J. Appl. Phys,Part2, 2001,40(8A): 838-840.
    57 Y. Wu, J. Li, N. Wang,et al. Experimental Research about the Role Of Activating Water-Vapor in the DeSO2 Technology from Flue Gas with PPCP. Conf. Rec. IEEE/IAS, Rome, 2000, 704-708
    58孙明,吴彦,李杰,吴疆,等.低温等离子体烟气脱硫中OH自由基发生装置研究.大连理工大学学报,2004,44(1):26-30
    59 R. Ono , T. Oda. Measurement of Hydroxyl Radicals in Pulsed Corona Discharge. Journal of Electrostatics, 2002, 55(3-4):333-342.
    60 T.Oda,Y.Yamashita,K.Takezawa,et al. Oxygen Atom Behaviour in the Nonthermal Plasma. Thin Solid Films, 2006,506-507:669-673
    61 R. Ono , T. Oda. Measurement of Hydroxyl Radicals in an Atmospheric Pressure Discharge Plasma by Using Laser-Induced Fluorescence. IEEE Trans. Ind. Appl., 2000, 36(1): 82-86
    62 R. Ono , T. Oda. OH Radical Measurement in a Pulsed Arc Discharge Plasma Observed by a LIF Method. IEEE Trans. Industry Appl, 2001, 37(3): 709-714
    63刘天齐.三废处理工程技术手册(废气卷).北京:化学工业出版社,1999:241-261
    64 Dahiya R P, Mishra S K, Veefkind A, et al. Plasma Chemical Investigations for NOx and SO2 Removal from Flue Gases. TEEE Trans Plasma Sci, 1993,21(3):346-348
    65 J.S.Chang. Recently Development of Plasma Pollution Control Technology, A critical review, Science and Technology of Advanced Materials,2001,2:571-576
    66 J.S.Chang. Next Generation Integrated Electrostatic Gas Cleaning System [J].Journal of Electrostatics, 2003,57(3):273~291
    67 J.S.Chang, I.Maezono. The Effects of Electro Hydro Dynamic Flow on a Corona Torch[J].Journal of Electrostatics,1989,23:323-330 .
    68徐学基,诸定昌.气体放电物理.上海:复旦大学出版社,1996:243-261
    69许根慧,姜恩永,盛京,等.等离子体技术与应用.北京:化学工业出版社,2006:233-234
    70 O.Eichwald, M .Yousfi, A .Hennad,et al.Coupling of Chemical Kinetics Gas Dynamics and Charged Particle Kinetics Models for the Analysis of NO Reduction from Flue Gas [J]. Journal of Appl. Phys,1997,82(10):4781-4794.
    71 Z.W.Wang, J.Guo, H.C.Zeng, et al. Sulphur Dioxide(SO2) Electrotransfer in Electric Field Generated by Corona Discharge, Fuel processing Technology, 2007,88(5):471-475
    72 Y.Wu, N.H.Wang, Y.M.Zhu, et al. SO2 Removal from Indusrial Flue Gases Using Pulsed Corona Discharge.Journal of Electrostatics,1998,44(1-2):11-16.
    73李杰,吴彦,王宁会等.脉冲电晕放电烟气脱硫的影响因素.环境科学,2001,22(5):38-40.
    74 R.N.Li. Heterogeneous Reactions in Removal of SO2 by Corona Discharge. 10th Particulate Control Symp. & 5th Int. Conf. Electrostatic Precipitation Washington D.C.,1993,23(9):102-107
    75 J.S.Chang,S.Masuda. Mechanism of Pulse Corona Induced Plasma Chemical Process for Removal of NOx and SOx from Combustion Gases. Proc. IEEE/IAS Ann. Meeting, 1988, 1599-1635
    76 S. Masuda, Y. Wu, T. Urabe, et al. Pulse Corona Induced Plasma Chemical Process for - De NOx, De-SOx, and Mercury Vapor Control of Combustion Gas, Third Int. Conf. Electrostatic Precipitation, M. Rea. Ed., 1987,667-676
    77杨津基.气体放电.北京:科学出版社,1983:193-208
    78 L. Civitano, G. Dinelli, I. Gallimberti, et al. Free Radical Production by Corona Discharges in aDeNOx-DeSOx Reactor. Proc. IX Int. Conf. on Gas Discharges and Applications(Venice), 1988, 603-606
    79 S. Masuda , Y Wu. Removal of NOx by Corona Discharge Induced by Sharp Rising Nanosecond Pulse Voltage. Proc. Int. Conf. Electrostatics, Oxford,1987,249-254
    80 G. Dinelli , M. Rea. Pulse Power Electrostatic Technology for the Control of Flue Gas Emission, J. Of Electrostatics, 1990, 25(1):23-40
    81李秋荣,白明华,郑海武.三种脱硫剂的脱硫反应的热力学分析及机理研究.燕山大学学报,2007, 31(2):142-147
    82王丽萍,周敏,赵跃民,等.电除尘器对烧结灰除尘性能影响的试验研究.安全与环境学报,2004,4(1):49-51
    83黄西谋.除尘装置与运行管理.第二版.北京:冶金工业出版社,1999:94-113
    84 G.R.XIE.High potential electrostatic field [M].Shanghai:Shanghai Science and Technology Press, 1987:56
    85 X.D. XIANG,W.S.CHEN.,X.M.LIU,et al. Performance of electrostatic precipitator with long barbed nail corona electrode[J]. Environmental Science and Technology,1999,84(1):4-7
    86 H.S.Sigmond. Simple Approximate Treatment of Unipolar Space-Charge Dominated Coronas: The Warbury Law and the Saturation Current[J].J Appl Phys, 1982,53(2):891-898
    87 J.E. Jones. On the Drift of Gaseous Ions[J]. Journal of Electrostatics,1992,27(3):283-318
    88 G.W. Penney, E.H. Klingler. Contact Potentials and Adhesion of Dust[J]. Trans Amer Inst Elec Eng Part 1,1962,81(2):200-204
    89 Q.R.LI, M.H.BAI. Corrosive Wear Behavior of Copper-Base Alloy on Desulphurization for pulse corona discharge’s electrode in NaCl+NH3 Solution. Journal of Rare Earths; suppl. 2006.12:249-252
    90 Q.R.LI . Effect of Heat Treatment on Electrical Conductivity of Multi-Element Cu Alloy. Journal of Rare Earths,Vol.23.Suppl. 2005.12:437-440
    91梁淑华,范志康,胡锐.CuCr50触头材料优化热处理工艺研究.金属热处理学报,2000,21 (3):66-68.
    92李金平,罗守靖,纪松.爆炸烧结CuCr触头材料的性能.中国有色金属学报,2001,11(S1):98-101.
    93张瑞丰,沈宁福.快速凝固高强高导Cu-Cr合金的性能.中国有色金属学报,2001,11(S1):105-107
    94 G.Y.Fu, Y.Niu, W.T.Wu. Oxidation of two-phase Cu-Cr Alloys with Different Microstructures.Trans. Nonferrous Met.Soc.China,2001,11(3):333-335
    95 T.Xu,L.Chen, Y.Chen. Dechromisation of a Cu-Cr Alloy in Acid Solutions Containing Cl-[J]. Trans. Nonferrous Met. Soc. China, 2004,14(3):417-420.
    96谌岩.CuCr合金在HCl溶液中的腐蚀行为.稀有金属材料与工程,2005,34(suppl.2):182-185.
    97丁晖,余刚,袁广银.铬锰氮不锈钢在酸性介质中的腐蚀磨损试验.铸造,1997,(8):20-23.
    98谢春生,周健,任合.稀土铬锆铜合金强化工艺研究.金属热处理,2001,286(6)1: 2-14.
    99 J.Y.Park,G.H.Kim,J.D.Kim, etal. NOx Removal Using DC Corona Discharge With Magnetic Field, Comb.Sci.& Tech, 1998,65:133
    100 S. Masuda. Control of NOx by Positive and Negative Pulsed Corona Discharges. IEEE Trans Ind Appl,1990,26(2):374-83
    101 K.Yan, D .Higasi, S .Kanazawa, ea tl. NOx Removal from Air Streams by A Superimposed AC/DC Energized Flow Stabilized Streamer Corona. Trans IEEE Japan; 1998,118-A(9):998-1011
    102 Young Sun Mok,Dong Jun Koh, Dong NamShin, et al. Reduction of Nitrogen Oxides from Simulated Exhaust Gas by Using Plasma-Catalytic Process. Fuel processing Technology, 2004,86(3):303-317
    103 V.I. Parvulescu, P.Grange, B.Delmon. Catalytic Removal of NO. Catal.Today, 1998,46(4):233-316
    104 Moon Hyeon Kim,Ung-Cheon Hwang, In-Sik Nam, et al. The Characteristics of a Copper-Exchanged Natural Zeolite for NO Reduction by NH3 and C3H6. Catalysis Today, 1998,44(1-4):57-65
    105 G.Bagnasco,G.Busca,P.Galli.. Selective Reduction of NO with NH3 on a New Iron-Vanadyl Phosphate Catalyst. Applied catalysis B:Environmental, 2000,28(2):135-142
    106 LIU Qingya,LIUZhengyu,LIChengyue. Adsorption and Activation of NH3 during Selective Catalytic Reduction of NO by NH3. Chin J Catal, 2006, 27(7):636-646
    107 Van Veldhuizen, W.R.Rutgers, V.A.Bityurin. Energy efficiency of NO removal by pulsed corona discharge. Plasma Chem. Plasma Process, 1996,16: 227-247
    108 Miroslaw Dors, Jerzy Mizeraczyk. NOx Removal from A Flue Gas in A Corona Discharge-Catalyst Hybrid System, Catalysis Today, 2004,89(1-2):127-133
    109李俊华,郝吉明,傅立新,等.富氧条件下贵金属催化剂上丙烯选择性还原NO研究,高等学校化学学报,2003,24(11):2060-2064
    110 T.Yamamoto, L.Y.Chen. Plasma-Assisted Chemical Process for NOx Control[J]. IEEETrans.Ind.Appl, 2000, 36(3):3-4
    111周黎明,陈光文,王树东,等.丙烯选择催化还原NO的研究.化工学报,2003,54(2):199-203
    112卡尔L·约斯主编. Matheson气体数据手册.陶鹏万,黄建彬,朱大方译.原书第七版.北京:化学工业出版社,2003: 342,464,512,712,719
    113余刚,余奇,翟晓东,等.离子体脱硝与等离子体-催化联合脱硝的对比实验研究.中国动力工程学报,2005,25(2):284-288
    114浙江大学普通化学教研组编.普通化学.第四版.北京:高等教育出版社,1995:53
    115 K.Shimizu, T.Oda. DeNOx Process in Flue Gas Combined with Nonthermal Plasma and Catalyst[J].IEEE Trans.Ind.Appl, , 1999,35(6):11-12
    116 K.Shimizu, T .Hirano, T .Oda. Effect of Water Vapor and Hydrocarbons in Removing NOx by Using Nonthermal Plasma and Catalyst[J]. IEEE Trans.Ind.Appl, 2001,37(2):3-4
    117罗渝然编著.化学键能数据手册.北京:科学出版社,2005: 22-24
    118 J.Shibata, K.Shimizui, A.Satsuma, et al. Influence of Hydrocarbon Structure on Selective Catalytic Reduction of NO by Hydrocarbons over Cu-Al2O3[J]. Applied Catalysis B:Environmental, 2002,37(3):197-204
    119 Toshikazu Ohkubo, Seiji Kanazawa,Yukiharu Nomoto, et al. NOx Removal by A Pipe with Nozzle-Plate Electrode Corona Discharge System[J]. IEEE Transactions on Industry Applications, 1994,30(4):856-861
    120 S.Masuda, S.Hosokana, N.Tachibana, ea tl.Fundamental Behavior of Direct Coupled Sub Microsecond Pulse Energization in Electrostatic Precipitators.IEEE Trans. Ind.Appl,1987,23(1):120-126
    121 S.Masuda. Control of NOx by Positive and Negative Pulsed Corona Discharges. IEEE Trans Ind Appl., 1990,26(2):374-83
    122 T.Ohkaho. Nox Removal by A Pipe with Nozzle-Plate Electrode Corona Discharge System.IEEE Trans Ind Appl., 1994,30(4):856-60
    123 K.Yan, D .Higasi, S .Kanazawa, ea tl. Nox Removal from Air Streams by a Superimposed AC/DC Energized Flow Stabilized Streamer Corona. Trans IEEE Japan, 1998,118-A(9):998-1011
    124 J.S.Chements, A Mizuno, WC Finney. Combined removal of SO2, NOx and fly ash from simulated flue gas using pulsed streamer corona. IEEE Trans. Ind.Appl, 1989,25(1):62-69
    125 J.G.M.Brandin, L.A.H.Andersson, C.U.I. Odenbrand. Catalytic reduction of nitrogen oxide onmordenite. Some aspects of the mechanism.Catal.Today,1989,4(2): 187-203
    126 G .Centi, N .Passarini, S .Perathoner. Combined DeSOx/DeNOx reactions on a copper on alumina sorbent-catalyst.3.DeNOx behavior as a function of the surface coverage with sulfate species.Ind.Eng.Chem.Res.,1992,31(8):1963-1970
    127 B.R. Strohmeier, D.E. Leyden, R.S. Field. Surface spectroscopic characterization of Cu/Al2O3 catalysts. Journal of Catalysis,1985,94(2):514-530
    128吴彦.脉冲放电脱硫脱硝技术研究.静电,1996,11(1):2-4
    129高翔,管诗骈,骆仲泱,等.电晕氧化结合化学吸收脱除烟气中NOx的研究.动力工程,2003,5: 2721-2725
    130李谦,李劲.脉冲电晕烟气脱硫脱硝的化学动力学分析.环境科学学报,1998,18(3):11-17
    131 Atsushi Ogata,Hisahiro Einaga,Hajime Kabashima,ea tl. Effective combination of nonthermal plasma and catalysts for decomposition of benzene in air. Applied Catalysis B: Enviromental, 2003,46(1):87-95
    132 U.Roland , F.Holzer, F.D.Kopinke. Improved oxidation of air pollutants in a nonthermal plasma. Catalysis Today, 2002,73(3-4):315-323
    133晏乃强,吴祖成,施耀.电晕—催化技术治理甲苯废气的试验研究.环境科学,1999,20(1):11-14
    134 R.M.Friedman, J.J.Freeman, F.W.Lytle. Characterization of Cu/Al2O3 catalysts.J. Catal.,1978,5 (5):10-28
    135谢国勇,刘振宇,刘有智,等.用CuO/Al2O3催化剂同时脱除烟气中的SO2和NO.催化学报,2004,25(1):33-38
    136齐景丽,张文慧,徐春明,等.CuO脱硫剂脱除SO2的工艺条件研究.工业催化,2005,13(5):43-45
    137伍斌,童志权.NO分解催化剂的研究进展.工业催化,2005,13(7):52-55
    138 H R Paur,S Jordan. The Influence of SO2 and NH3 Concentrations on the Aerosol Formation in the Electron Beam Dry Scrubbing Process. Aerosol Science, 1989,20:7-11
    139白明华,李秋荣,贺君,等.脉冲电晕放电与CuO/γ-Al2O3协同处理烟气中SO2和NO的实验研究.安全与环境学报,2007,7(4):69-71
    140 K. Yan, T.Yamamoto, S. Kanazawa, et al. NO removal characteristics of a corona radical shower system under DC and AC/DC superimposed operations. in Conf. Record of IEEE IAS Annual Meeting.1998.
    141 Unlko Urashima,Jen-Shih Chang. Removal of volatile organic compounds from air streams andindustrial flue gases by non-thermal plasma technology. IEEE Transactions on Dielectrics and Electrical Insulation, 2000,7(5):602-614
    142 Toshiaki Yamamoto,Chapel Hill,N.C. Methods and apparatus for controlling toxic compounds using catalysis-assisted non-thermal plasma. United States Patent, 5609736,Mar.11,1997
    143杨黎明,姜雨泽,吴彦,等.飞灰对脉冲放电脱硫的影响.军械工程学院学报,2000,12(supp.):80-83
    144王银生.脉冲电晕等离子体脱硫脱氮与除尘技术.上海环境科学,2000,19(1):17-19
    145陈明智.利用飞灰脱硫技术综述.粉煤灰,2002,14(5):34-36
    146卢涌泉,邓振桦.实用红外光谱解析.北京:科学出版社,1989:237-245
    147马广大.大气污染控制工程.北京:中国环境科学出版社,2004:309-310
    148马新灵,王亚立,向军.CuO/γAl2O3干法烟气脱硫研究.华中科技大学学报(自然科学版),2002, 30(12):95-97
    149 Sang Mun Jeang,Sang Dong Kim.Enhancement ofSO2 Sorption Capacity of CuO/Al2O3 Sorbant by an Alkailsalt Promoter.Ind.Eng.Chem.Res,1997,36(12):5425-5431
    150山乐胜.应用氧化镁法烟气脱硫工艺的可行性分析.电力技术,2005,(1):53-54
    151张世超,李洪钟,赵连权.稀土氧化物与二氧化硫反应的热力学分析.稀土,1997(3):27-28
    152刘世斌.复合金属氧化物脱硫剂还原法再生过程.化工冶金,1997,18(4):322-326.
    153张世超,崔怡红,赵连权.二氧化铈硫化反应动力学.化工冶金,1997,18(2):123-128
    154王磊,马建新,谢敏明,等.稀土氧化物上SO2和NO的催化还原Ⅲ.用CO作还原剂的同步硫和脱氮.高等学校化学学报,2002,23(5):97-901
    155刘前鑫,倪晓奋,邱宽嵘.热重分析技术研究石灰石脱硫特性.环境科学,1995,16(2):27-30
    156路春美,许炳松.用于流化床燃烧脱硫的石灰石固硫反应模型.燃料化学学报,1997,25(4): 339-346
    157 Dam-Johanson K.,Hansen P.F.B.,ФStergaard K. High-Temperature Reaction Between Surlfur Dioxide and Limestone-ⅢA Grain-Micrograin Model and its Verification. Chem.Eng.Sci .,1991, 46(3):855-860
    158叶达伦,胡建华.实用无机物热力学数据手册.北京:冶金工业出版社,2002:132-1456
    159孙康.宏观反应动力学及其解析方法.北京:冶金工业出版社,1998:23-24
    160陈兵,张学学.单颗粒脱硫反应模型分析.工程热物理学报,2003,24(5): 852-854
    161 J.赛克利,JW.埃文斯,HY.索恩.气固反应.胡道和译.北京:中国建筑工业出版社,1986:25
    162 C.Brogren., H.T.Karsson Modeling The Absorption of SO2 in a Spray Scrubber Using thePenetration Theory.Chem.Eng.Sci., 1997,52(18):3085-3099
    163李绍芬.反应工程.第二版.北京:化学工业出版社,2000:167
    164 Q.R.Li, M.H.Bai, J.He. Study on model of CuO/γ-Al2O3 reacting with sulfur and nitrogen oxides. MaiMindong.Asia-PacificInternational Symposium on Air and Water Treatments by Green Oxidation/ Reduction Technologies-Catalyst, Plasma and Hybrid Systems, Dalian ,2006.ChangChun,JiLinUniversity Press,352-359(ISTP收录)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700