用户名: 密码: 验证码:
大流行流感裂解疫苗的研制及关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,高致病性人禽流感H5N1已在15个国家和地区发生,死亡率高,特别是印尼家族性感染被美国科学家证实为人传染人事例后,使得大流行流感防控形势异常严峻。WHO预言,下一次流感大流行不是有和无的问题,而是早和晚的问题。因此,做好大流行流感疫苗研发和关键技术平台的研究,已成为世界各国应对流感大流行采取的重大举措。
     疫苗免疫接种是控制高致病性人禽流感最有效而经济的手段之一,但面临着高致病性人禽流感病毒H5N1毒株变异、鸡胚生产疫苗原料来源受限、注射接种繁复等重大问题。因此WHO要求全球加快大流行流感疫苗研发和关键技术储备研究进程,为应对流感大流行做好充分的准备。
     目前,高致病性人禽流感病毒H5N1感染主要分布在亚洲,特别是印尼、越南和中国,对其分离的毒株进行血清学、致病性和基因结构等分析表明,高致病性人禽流感病毒H5N1具有高度变异的特性,就中国分离的毒株存在南北之分。因此,WHO要求各国开展大流行流感原型疫苗的研究。目前大流行流感疫苗的研究重点主要集中在灭活全病毒疫苗、裂解疫苗、减毒喷鼻疫苗、亚单位疫苗等。其中裂解疫苗具有不可多得的优势:与全病毒灭活疫苗仅可用于成年人的特点比较,可广泛用于各类人群,尤其是作为禽流感病毒的高危人群--老人和12岁以下的儿童;不存在减毒疫苗毒力恢复的缺点,更安全;较亚单位疫苗具有更强的免疫原性和制备简单等优势。目前,大流行流感裂解疫苗已成为世界著名疫苗企业和研究机构介入的重点,并取得了阶段性成果,为流感大流行作好了充分的准备。
     基于大流行流感裂解疫苗应对流感大流行具有不可多得的优势,我们在国内率先成功研发了大流行流感裂解疫苗,解决了我国“无”和应急的问题。同时围绕大流行流感疫苗关键技术平台:针对高致病性人禽流感病毒H5N1不断变异,需要运用RG技术来快速制备疫苗株的问题、鸡胚生产原料来源和质量的问题、注射免疫不能产生全面免疫应答和接种复杂的问题进行了研究,其研究进展如下:
     大流行流感裂解疫苗的研制:我们从美国CDC引进大流行流感疫苗株VNH5N1-PR8/CDC-RG(H5N1),该疫苗株是利用反向遗传学技术,将高致病性人禽流感病毒A/Viet Nam/1203/2004 (H5N1)的HA、NA基因定点突变后和PR8的6个内部基因进行重组,得到大流行流感疫苗减毒株。
     开展了大流行流感裂解疫苗种子批库的研究。通过SPF鸡胚传代建立了大容量符合疫苗生产的原始种子批、主种子批和工作种子批库。分别对大流行流感疫苗各种子批进行了血凝滴度的检测、病毒型别的检定、EID50、无菌实验、支原体检测、外原因子检测及动物实验,实验证实建立的原始种子批、主种子批和工作种子批库具有安全、有效和稳定,符合WHO规定大流行流感疫苗生产的要求。
     开展了大流行流感裂解疫苗原液生产的研究。通过健康鸡胚培养、收获、灭活、裂解大流行流感裂解疫苗病毒,制备疫苗生产裂解病毒抗原。实验表明病毒培养温度为33℃、培养时间为52h,病毒灭活采用1:4000的甲醛20~25℃灭活72h,病毒的纯化使用凝胶过滤Sepharose 4 Fast Flow,病毒裂解选择浓度为0.5%的Triton X-100,室温作用2.0 h,建立了疫苗生产的最佳生产工艺,制备了大流行流感裂解疫苗原液。
     开展了注射型大流行流感裂解疫苗成品和有效性的研究。选用铝盐佐剂,采用动物模型和抗原吸附率检测进行铝佐剂浓度的确定,确定的铝佐剂浓度为1.2mg/ml。选用3.75、7.5、15.0、30.0、45.0、60.0、75.0、90.0μg/0.5ml 8个疫苗剂量组,分别肌肉免疫小鼠和豚鼠,对疫苗免疫原性进行了初步研究。通过血凝抑制实验来筛选疫苗的有效剂量,结果表明加铝盐佐剂的7.5、15.0、30.0μg/0.5ml是最佳的疫苗剂量组。我们同时对小鼠和豚鼠免疫一针和两针时的免疫效果进行了统计分析,表明免疫两针效果明显优于一针。因此,确定的大流行流感疫苗临床试验为7.5、15.0、30.0μg/0.5ml成品剂量组,免疫两针,为临床研究提供了依据。
     开展了注射型大流行流感裂解疫苗安全性和稳定性的研究。通过动物过敏实验、异常毒性实验、急性毒性实验、热源质实验,结果表明大流行流感裂解疫苗无毒性,使用安全。将大流行流感裂解疫苗成品置2~8℃、室温(22~25℃)、37℃,通过解吸附单扩实验验证抗原含量,免疫Balb/c小鼠测定疫苗效力(中和抗体),通过pH仪检测pH值,外观的观察来鉴定疫苗稳定性,并通过疫苗加速实验,证明制备的大流行流感裂解疫苗可在2~8℃保存两年以上。
     开展了注射型大流行流感裂解疫苗Ⅰ期临床研究,通过双盲实验完成了疫苗安全性、有效性研究,实验证明制备的疫苗安全、有效。
     大流行流感疫苗关键技术的研究:围绕大流行流感疫苗研发中的疫苗毒株、培养介质和免疫途径的关键技术问题进行了研究,为应对流感大流行疫苗快速研发做好准备。
     一是针对高致病性人禽流感病毒H5N1高度变异的问题,开展了RG技术用于疫苗株的拯救。因为高致病性人禽流感病毒H5N1高度变异,需要不断更换疫苗株,而快速、及时对流行株获得大流行流感疫苗株将是有效控制流感爆发流行的首要环节之一。我们通过流感病毒8质粒拯救系统,在BSL-3培养A/Anhui/1/2005 (H5N1)病毒,提取病毒RNA,利用基因重配技术将该病毒的HA(定点突变)、NA构建到双向表达质粒pHW2000上,将构建好的2质粒和PR8 6质粒共转染COS-1细胞,获得重组的PR8/A/Anhui/1/2005疫苗株病毒。运用RT-PCR、血凝实验、电镜、间接免疫荧光实验检测拯救的重组疫苗株病毒。实验结果表明,拯救PR8/A/Anhui/1/2005疫苗株病毒基因序列正确,血凝滴度达到1:320以上;电镜下病毒形态正常,成丝状和囊状。CPE证实病毒毒力明显降低,符合大流行流感疫苗株的要求,在国内率先建立了反向遗传学拯救流感疫苗株的关键技术平台。
     二是针对大流行流感疫苗生产原料来源的问题,开展了Vero细胞替代鸡胚生产疫苗的研究。构建了pCDNA3.1-ST3GalⅢ表达载体,转染、G418加压筛选Vero细胞,获得稳定高效表达高致病性人禽流感病毒受体的Vero细胞株。运用改造好的Vero细胞株培养PR8/A/Anhui/1/2005疫苗株病毒,通过细胞病变和血凝实验结果证明,PR8/A/Anhui/1/2005疫苗株病毒感染Vero细胞病毒复制滴度提高,TCID50达到106.5-7,较普通的Vero细胞提高了100-150倍,初步建立了Vero细胞生产大流行流感疫苗的细胞系。我们将Eng53/v-aNS基因置换了8质粒系统的NS基因,重组病毒理论上可在Vero细胞上大量复制,但我们的实验结果却与预期值有差异,进一步实验仍在进行中。
     三是喷鼻型大流行流感疫苗的研究,喷鼻大流行流感疫苗具有快速、简便大规模接种、免疫保护谱广的特点。将大流行流感裂解疫苗分别使用不同的佐剂,采用不同的免疫途径,分别检测唾液、肺灌洗液中分泌型IgA,血液中的IgG、IgA,以及运用HI实验来确定喷鼻疫苗最佳剂型和最佳免疫途径。结果表明,蛋白体佐剂与VNH5N1-PR8/CDC-RG(H5N1)制备的喷鼻型大流行流感裂解疫苗具用良好的免疫原性和安全性,其分泌型IgA是各类佐剂中最高的,其中肺灌洗液中IgA滴度为1:640,HI实验结果也证明,运用蛋白体佐剂喷鼻免疫大流行流感裂解疫苗将是一个具有良好开发前景的举措,。
     结论:为加快适应和满足我国流感大流行疫苗研发和关键技术储备能力的需求。我们在应急上,已完成针对越南株大流行流感裂解原型疫苗的研究;围绕疫苗研发可持续发展战略上,针对高致病性人禽流感病毒H5N1株变异问题,建立了快速制备疫苗株的技术平台、针对疫苗生产原料来源和质量难以控制的特点,初步建立了Vero细胞替代鸡胚生产疫苗的技术平台、针对注射疫苗不能产生局部免疫和交叉免疫保护的特点,制备了喷鼻型大流行流感疫苗,可同时激发黏膜免疫和系统免疫,实现了对高致病性人禽流感病毒疫苗动态互补的研发创新体系,为流感大流行做好了充分的准备。
Recent outbreaks of highly pathogenic avian influenza(HPAI H5N1) in 15 countries and regions and associated human infections in Indonesia have led to a heightened level of awareness and preparation for a possible influenza pandemic.WHO has predicted that a new influenza pandemic might occur in the near future. Effective vaccines against H5N1 virus are, therefore, urgently needed.
     Vaccination is considered one of the most-effective preventive measures for the control of influenza pandemics.However,Vrius variation,egg-based production and intramuscular vaccination with needles are barriers for production of vaccine.With the recommendation of WHO,we need find the effective strategies for developing vaccine against influenza pandemic.
     Currently,HPVI type A virus(H5N1) mainly scatter in Asia,especially in Indonesia,Vietnam and China.The wild type virus isolated from human and various animals display the high variation by serology,pathogenicity and gene structural analysis. The viruses isolated in China belong to two clades.So we need to develop the prototype vaccine,now,include the inactive whole virion vaccine,the split vaccine,the live attenuated vaccine and the subunit vaccine.Among of the total,the split vaccine has the rare and good quality.It can be used in different old person,including the old and the children below 12 year old.it is more safe than live attenuated vaccine and can induced more strong immne response than subunit vaccine. Now,influenza split vaccines have been prepared and are undergoing clinical evaluation in several countries.
     In China,we have develop the influenza split vaccine for the first time,to solve the problem of meeting an emergency and nought.We also develop the new strategies for vaccine,include reverse genetics for generation vaccine strain,Vero cell instead of eggs to production and alternative routes of administration.
     R&D of Pandemic Influenza Split Vaccine
     We purchased the virus vaccine strain-VNH5N1-PR8/CDC-RG(H5N1)which was recombinated from A/Viet Nam/1203/2004 (HA,NA) and PR8 from CDC in American.
     We have successfully established the seed lots for the vaccine strain including the master seed lot and the working seed lot.The HA titer, identity, EID50, Sterility test, mycoplasma and extraneous agents detection were carried out seperately,and prove that the virus seed lots are safe and stabile, accordant with the regulations of WHO.
     Fellow the establishment of seed lots,we have selected the best condition for virus culture,harvest,inactivation,split and purification.The tempreature and time for the virus culture is 33℃for 52h.To use 1:4000 formaldehyde to inactive virus for 72h, and select the Sepharose 4 Fast Flow to purify the virus and 0.5% Triton X-100 to split virus about 2h.At last,we prepared the stock solution of vaccine.
     One approach for increasing the number of available split vaccine doses without a compensatory increase in egg production is to enhance the immunogenicity of the antigen; addition of an effective, safe adjuvant could result in a more immunogenic vaccines and also enable injection of a smaller quantity of antigen to elicit an effective immune response,so we select 1.2mg/ml AL as adjuvant and 3.75,7.5,15.0,30.0,45.0,60.0, 75.0,90.0μg/0.5ml dose form to intramuscular vaccinate the mice and guinea pigs one dose and two dose.The HI test showed that 7.5,15.0,30.0μg/0.5ml dose form will be selected into the clinical trial,and immunizd two dose.
     The safety and stability of the pandemic vaccine are also important. Allergy test,single dose toxicity test,abnormal toxicity test,acute-term toxicity test were carried out seperately to test the safety of vaccine.We placed the vaccine in different conditon, 2~8℃,22~25℃,37℃to detect the HI titer,HA content,pH value and appearance to determine the vaccine stability.Our split vaccin can kept in 2~8℃for two years by the vaccine accelerate test.
     The vaccine prepared with this virus was assessed in a double-blind Phase I clinical trial, the results of which showed that, although antibody responses indicative of immune protection were achieved by administration of the vaccine with AL adjuvant.
     R&D of Key Technology for Pandemic influenza vaccine
     The technology for pandemic influenza vaccine include generation the virus vaccine strain,selection of cultural medium and alternative routes of administration.
     RG(reverse genetics): New vaccines that exploit reverse genetics technology are being developed,and the knowledge that the pathogenicity of avian influenza viruses is primarily determined by HA variation.The virus vaccine strain can be rescued by this technique in time when the influenza pandemic break out.There is no vaccine strain reference laboratory in China,we want to establish it using the 8 plasmids system. Briefly, in our system (pHW2000), six plasmids that encode exact copies of the six individual RNA segments of the PR8, together with two plasmids that express the two viral proteins (HA,NA) of A/Anhui/1/2005 (H5N1), are introduced into cultured COS-1cells, resulting in the generation of new vaccine strain.RT-PCR,HA test,electron microscope,IFA were carried out to detect the recombinant virus.The result showed that the gene sequence,HA titer(1:320),virus morphous and virulence accordant with the virus vaccine strain.
     Cell-culture-based vaccine:Given that chicken embryonated eggs, which are currently used for inactivated-vaccine production, would be in a short supply during a pandemic, the development of Vero cell-culture-based H5 vaccines is an attractive alternative approach. Modification of the Vero cell that that can be easily infected by influenza virus or modification of vaccine strain that grow well in cell cultures are two useful strategies.We constructed pCDNA3.1-ST3GalⅢexpressing vector,transfected Vero cell,got the new Vero cell line which can express the 2-3 type receptor efficiently.The vaccine strain, PR8/A/Anhui/1/2005 can replicated in modified Vero cell,the TCID50 is 106.5-7,is higher than usual Vero cell.We exchanged NS gene of PR8 into NS gene of Eng53/v-a to get the modified virus,but we did not obtain the reasonable result.
     Alternative routes of administration: We investigated the aerosolized vaccine for influenza pandemic which can reduced the antigen quantity and be used widely. Split vaccines combined with adjuvants-such as AL as well as outer membrane proteins of Neisseria meningitidis, referred to as proteosomes have been delivered directly to the nasal mucosa in animal models.We detected the secreting type IgA in saliva and lung lavage,and we also detedted the antibody in serum.The IgA titer in lung lavage is 1:640.All the results displayed the the aerosolized vaccine with protosome is the good selection for pandemic vaccine.
     Conclusion
     In order to respond to the influenza pandemic in China,we have finished the influenza split prototype vaccine to meet an emergeny outbreak of influenza.We also established the key technology for developing of vaccine:reverse genetics can slove the problem of virus variation and the vaccine strain can be generated in short of period; the development of Vero cell-culture-based vaccine can provide the stabile system to overcome the obstacle of a short supply of eggs during a pandemic; aerosolized vaccine for influenza pandemic can induced the systemic immunity and mucosal immunity at the same time,and also induced cross immunity among different virus strain.These findings indicate that the technology in this study is a better way for vaccine development of pandemic influenza.
引文
1. Alexander, D.et al. J. Report on avian influenza in the Eastern Hemisphere during.1997-2002. 2003. Avian Dis. 47(Suppl. 3):792-797.
    2. Anonymous. et al. Avian influenza virus reappears in Hong Kong Special Administrative Region. 2003. Bull. W. H. O. 81:232.
    3. Claas, E. C., A. D. Osterhaus, R. van Beek, J. C. et al.Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus. 1998. Lancet 351:472-477
    4. Cauthen, A. N., D. E. Swayne, S. Schultz-Cherry, et al. Continued circulation in China of highly pathogenic avian influenza viruses encoding the hemagglutinin gene associated with the 1997 H5N1 outbreak in poultry and humans. 2000.J. Virol. 74:6592-6599.
    5. Fedson, D. S. et al. Pandemic influenza and the global vaccine supply. 2003. Clin. Infect. Dis. 36:1552-1561.
    6. Henry Nicholls, et al.Pandemic Influenza: The Inside Story. PLoS Biol. 2006 February; 4(2): 50.
    7. Aleksandr S. Lipatov, Elena A. et al. Influenza: Emergence and Control. J Virol. 2004 September; 78(17): 8951–8959.
    8. Wood, J. M. et al. Developing vaccines against pandemic influenza. Philos. 2001. Trans. R. Soc. Lond. B 356:1953-1960.
    9. Kemble, G., and H. Greenberg. Novel generations of influenza vaccines. 2003. Vaccine 21:1789-1795.
    10. Webby RJ, Perez DR, Coleman JS, et al.Responsiveness to a pandemic alert: use ofreverse genetics for rapid development of influenza vaccines. Lancet, 2004, 363:1099–1103.
    11. Nicolson C, Major D, Wood JM, et al. Generation of influenza vaccine viruses onVero cells by reverse genetics: an H5N1 candidate vaccine strain produced under a quality system. Vaccine, 2005, 23:2943–2952
    12.董德祥,李琦涵,褚嘉祐,等.《疫苗技术基础与应用》化学工业出版社2002年11月出版.
    13. Jim Swyers,Lisa Rossi.Vaccine provides 100 percent protection against avian flu virus inanimal study,Public release date: 26-Jan-2006.
    14. Webby, R. J., and R. G. Webster. Are we ready for pandemic influenza? 2003. Science 302:1519-1522.
    15. Neumann G, Watanabe T, Ito H, et al. Generation of influenza A viruses entirely from cloned cDNAs. Proc Natl Acad Sci USA, 1999, 96, 9345~50.
    16. Fodor E, Devenish L, Engelhardt OG, Palese P, Brownlee GG, et al. Rescue of influenza A virus from recombinant DNA. J Virol. 1999;73:9679–9682.
    17. Neumann G, Kawaoka Y. Synthesis of influenza virus: new impetus from an old enzyme, RNA polymerase I. Virus Res, 2002,82:153~8
    18. Neumann G, Kawaoka Y. Genetic approach to studying influenza pathogenesis. International Congress Series, 2001,1219:587~90
    19. Neumann G, Kawaoka Y. Reverse genetics of influenza virus. Virology,2001:243~50.
    20. Neumann G, Whitt MA, Kawaoka Y. A decade after the generation of a negative-sense RNA virus from cloned cDNA– what have we learned? J Gen Virol, 2002, 83:2635~62
    21. Palese, P., et al Influenza vaccines: present and future. 2002. J. Clin. Invest 110:9-13 .
    22. Govorkova, E.A., et al. Growth and Immunogenicity of Influenza Virusesz Cultivated in Vero or MDCK Cells And Embryonated Chicken Eggs. 1999.Dev Biol Stand 98:39-51 .
    23. Takashima S, Tsuji S, Tsujimoto M, Characterization of the second type of human beta-galactoside alpha 2,6-sialyltransferase (ST6Gal II), which sialylates Galbeta 1,4GlcNAc structures on oligosaccharides preferentially. Genomic analysis of human sialyltransferase genes, 2002 .J Biol Chem 277, 45719–28 .
    24. Ito T, Suzuki Y, Mitnaul L, Vines A, Kida H, Kawaoka Y, Receptor specificity of influenza A viruses correlates with the agglutination of erythrocytes from different animal species, 1997. Virology 227, 493–9 .
    25. Takeya A, Hosomi O, Kogure T, et al. Identification and characterization of UDP-GalNAc: NeuAc alpha 2-3Gal beta 1-4Glc(NAc) beta 1-4(GalNAc to Gal)N-acetylgalactosaminyltransferase in human blood plasma, 1987.J Biochem (Tokyo) 101, 251–9 .
    26. Mikhail Matrosovich. et al.Overexpression of theα-2,6-Sialyltransferase in MDCK Cells Increases Influenza Virus Sensitivity to Neuraminidase Inhibitors. J Virol. 2003 August; 77(15): 8418–8425.
    27. Robert J. Connor, Yoshihiro Kawaoka, Robert G. et al.Receptor Specificity in Human, Avian, and Equine H2 and H3 Influenza Virus Isolates.Virology .Volume 205, Issue 1, 15 November 1994, Pages 17-23
    28. Govorkova, E. A., G. Murti, B. Meignier, C. et al. Webster. African green monkey kidney (Vero) cells provide an alternative host cell system for influenza A and B viruses. 1996. J. Virol. 70:5519-5524
    29. Garcia-Sastre, A., Egorov, A., Matassov, D., et al.Influenza A virus lacking the NS1 gene replicates in interferon-deficient systems. 1998.Virology 252, 324–330.
    30. Geiss, G. K., Salvatore, M., Tumpey, T. M. & 8 other authors Cellular transcriptional profiling in influenza A virus-infected lung epithelial cells: the role of the nonstructural NS1 protein in the evasion of the host innate defense and its potential contribution for pandemic influenza. 2002.Proc Natl Acad Sci U S A 99, 10736–10741.
    31. Talon, J., Salvatore, M., O'Neill, R. E.,et al.Influenza A and B viruses expressing altered NS1 proteins: a vaccine approach. 2000.Proc Natl Acad Sci U S A 97, 4309–4314.
    32. Egorov, A. et al. Transfectant Influenza A Viruses with Long Deletions in the NS1 Protein Grow Efficiently in Vero Cells .1998.Journal of Virology, 72(8):6437-6441.
    33. Talon, J. et al. Influenza A and B vaccines expressing altered NS1 proteinsL A vaccine approach .2000.Proc. Natl. Acad. Sci. 97(8):4309-4314.
    34. Rober H. Waldmsn.Julius A.et al. Influenza Antibody in Human Respiratory Secretions after Subcutaneous or Respiratory Immunization with Inactivated Virus,1968, Nature 218, 594 - 595
    35. Vogel, F.R., Powell, M.F., et al.A compendium of vaccine adjuvants and excipients. In: Powell, M.F. Newman, M.J. (Eds.), Vaccine Design. The Subunit and Adjuvant Approach. Plenum, 1995.New York, pp. 3-10 and 93-96.
    36. McKenzie et al. "Mucosal Immunity: Overcoming the Barrier for Induction of Proximal Responses" Immunologic Research vol. 30, No. 1 .2004, pp. 35-47.
    37. Moschos et al. "Adjuvant synergy: The effects of nasal coadmin-istration of adjuvants" Immunology and Cell Biology vol. 82 (2004), pp. 628-637.
    38. Palmer et al. A Procedural Guide to the Performance of Rubella Hemagglutination-Inhibition 1977.Tests. U.S. Dept. of Health, Education and Welfare, Immunology Series No. 2 Revised, pp. 25-62.
    39. Lynch et al. "Increased Protection against Pneumococcal Disease by Mucosal Administration of Conjugate Vaccine plus Interleukin-12" Infection and Immunity, vol. 71, No. 8 (Aug. 2003), p. 4780-4788.
    40. Chen HM. et al. Recent advances in mucosal vaccine development[J].J Controlled Release, 2003 ,4(2):156-161.
    41. Lowell GH, Kaminski RW, Grate S, et al. Intranasal and intramuscular proteosome-staphyloccal enterotoxin B(SEB) toxoid vaccines : Immunogenicity and efficacy against lethal SEB intoxication in mice[J].Infect Immun,1995,64(5):1706-1713.
    42. Lowell GH, Kaminski RW, Vancott TC, et al. Proteosomes,emulsomes and cholera toxin B improve nasal immunogenicity of human immunodeficiency virus gp160:induction of serum,intestinal,vaginal and lung IgA and IgG in mice[J].J Infect Dis,1997, 175(2):292-301.
    43. Avian influenza. Pandemic influenza: global update. Science 2005;309: 370-1.
    44. WHO. WHO checklist for influenza pandemic preparedness planning. WHO, Geneva, 2005.
    45. WHO. Guidelines on the use of vaccines and antivirals during influenza pandemics. WHO, Geneva, 2004
    46. WHO. Global influenza preparedness plan. The role of WHO and recommendations for national measures before and during pandemics. WHO, Geneva, 2005.
    47.中华人民共和国药典,2005,第三版。
    48.郭元吉,程小雯等,流行性感冒病毒及其实验技术,中国三峡出版社,2005年出版.
    49.卢圣栋.现代分子生物学实验技术[M].北京:中国协和医科大学出版社,1999.
    50. Sambrook J, Fritsch EF, Maniatis T著,金冬雁译,黎孟枫校.分子克隆实验指南(现代生物技术译丛),第二版,北京:科学出版社,2002,1~911.
    51. Osterholm MT. Preparing for the next pandemic. N Engl J Med 2005;352: 839-42.
    52. WHO consultation on priority public health interventions before and during an influenza pandemic, Geneva, 16-18 March 2004, WHO, Geneva, 2004
    53. Hoffmann E, Neumann G, Hobom G, et al. 'Ambisense' approach for the generation of influenza A virus: vRNA and mRNA synthesis from one template. Virology, 2000,267, 310~7
    54. Hoffmann E, Neumann G, Kawaoka Y, et al. A DNA transfection system for generationof influenza A virus from eight plasmids. Proc Natl Acad Sci, 2000,97:6108~13
    55. Hoffmann E, Krauss S, Perez D, et al. Eight-plasmid system for rapid generation of influenza virus vaccines. Vaccine,2002,20:3165~70
    56. Hoffmann E, Webster RG. Unidirectional RNA polymerase I–polymerase II transcription system for the generation of influenza A virus from eight plasmids. J Gen Virol, 2000, 81:2843~7.
    57. Lazarowitz SG, Goldberg AR, Choppin PW. Proteolytic cleavage by plasmin of the HA polypeptide of influenza virus: host cell activation of serum plasminogen.Virology, 1973,56: 172~80.
    58. Hoffmann E, Mahmood K, Yang CF, et al. Rescue of influenza B virus from eight plasmids. Proc Natl Acad Sci USA, 2002,99:11411~6.
    59.陈稚峰,张立国,董捷等.应用反向遗传学技术在哺乳动物细胞中产生甲型流感病毒.病毒学报. 2002.18(3):193~197.
    60.卢建红,龙进学,邵卫星等.用反向遗传操作技术产生致弱的H5亚型重组流感病毒.微生物学报.2005.45(1):53~57.
    61.卢建红,邵卫星,刘玉良等.用8质粒病毒拯救系统产生H9N2/WSN重组A型流行性感冒病毒.病毒学报.2005.21(1):48~53.
    62.龙进学,吴艳涛,张小荣等.H5N1亚型禽流感病毒拯救体系的建立.微生物学报.2006.46(1):55~59.
    63. Wagner R, Wolff T, Herwig A, et al. Independence of Hemagglutinmin glycosylation and Neuraminidase as regulators of influence virus growth: a study by reverse genetics. Journal of Virology,2000,74:6316-6323
    64. hnell MJ, MebatsionT, Conzelman KK. Infectious rabies virus from cloned cDNA. EMBO J, 1994,13:4195~203.
    65. Naffakh N, Massin P, Escriou N, et al. Genetic analysis of the compatibility between polymerase proteins from human and avian strains of influenza A viruses. J Gen Virol, 2000,81:1283~91.
    66. Subbarao EK, London W, Murphy BR. A single amino acid in the PB2 gene of influenza A virus is a determinant of host range. J Virol, 1993,67:1761~4.
    67. Hatta M, Gao P, Halfmann P, et al. Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science,2001,293(5536):1840~2.
    68. Massin P, van der Werf S, Naffakh N. Residue 627 of PB2 is a determinant of cold sensitivity in RNA replication of avian influenza viruses. J Virol, 2001,75(11):5398~404.
    69. specificity of influenza A viruses correlates with the agglutination of erythrocytes from different animal species. Virology, 1997,227(2):493~9.
    70. Ito T, Kawaoka Y. Host-range barrier of influenza A viruses. Vet Microbiol, 2000,74:71~5.
    71. Bean WJ. Correlation of influenza A virus nucleoprotein genes with host species. Virology, 1984,133:438~42.
    72. Ozaki H, Govorkova EA, Li C, et al. Generation of high-yielding influenza A viruses in Africa green monkey kidney(Vero) cells by reverse genetics. J Virol, 2004,78(4):1851~7.
    73. Belshe RB. The origins of pandemic influenza—Lessons from the 1918 virus. N Engl J Med. 2005;353:2209–2211.
    74. Kawaoka, Y., and R. G. Webster. 1988. Sequence requirements for cleavage activation of influenza virus hemagglutinins in mammalian cells. Proc. Natl. Acad. Sci. USA 85:324–328.
    75. Loomis LD, affe R, Lowell GH, et al. Proteosomes enhance immunogenicity of a recombinant malaria circumsporozoite protein with native or synthetic hydrophobic peptide anchors[J].
    76. Burt DS, Lowell GH, White GL, et al. Novel proteosome-liposaccharide vaccine adjuvant. US.AI, 20030044425,2003
    77. Plante M, Jones T, Allard F, et al. Nasal immunization with subunit proteosome influenza vaccines induce serum HAI, mucosal IgA and protection against Influenza Challenge[J]. Vaccine, 2001,20(1-2):218–225.
    78. Levi R, Aboud-Pirak E, Leclerc C, et al. Intranasal immunization of mice against influenza with synthetic peptides anchored to proteosomes[J].Vaccine, 1995, 13(14):1353-1359.
    79.高杰英.黏膜免疫向免疫学提出了新问题[J].上海免疫学杂志,2000,20(5):257-259.
    80. Mayer L. Mucosal immunity and gastrointestinal antigen processing[J].J Pediatr Gastroenterol Nutr,2000,30(5):4-12.
    81. Xu-Amano J, Kiyono H, Jackson RJ et al. Helper T cell subsets for IgA responses: oral immunization with telanus toxoid and cholera toxin as adjuvant selectively induce Th2cells in mucasa associated tissues[J].J Exp Med,1993,178(4):1309-1320.
    82. Brewer JM, Conacher M, Hunter CA, et al. Aluminium hydroxide adjuvant initiates strong antigen specific Th2 responses in the absence of IL-4-or IL-13-mediated signaling[J]. J Immunol,1999, 163(4):6448–6454.
    83. Jones T, Adamovicz JJ, Cyr S, et al. Intranasal ProtollinTM/F1-V vaccine elicits respiratory and serum antibody responses and protests mice against lethal aerosolized plague infection[J]. Vaccine, 2006, 24(10):1625-1632.
    84. Robbins JB, Schneerson R. Polysaccharide protein conjugates : a new generation of vaccines[J]. Infect Dis, 1990 ,161(5) :821-831.
    85. Kagnoff ME. Mucosal immunology:new frontiers[J].Immunol Today,1996,17(2):57-59.
    86. Cheville NF, Stevens MG, Jensen AE, Tatum FM and Halling SM. Immune responses and protection against infection and abortion in cattle experimentally vaccinated with mutant strains of Brucella abortus. Am J Vet Res 54: 1591-1597, 1993.
    87. .D.S.Davis,P.H.Elzer.Brucella vaccines in wildlife.Veterinary Microbiology90:533-544, 2002.
    88. Munoz-Montesino C, Andrews E, Rivers R, Gonzalez-Smith A, Moraga-Cid G, Folch H, Cespedes S and Onate AA. Intraspleen delivery of a DNA vaccine coding for superoxide dismutase (SOD) of Brucella abortus induces SOD-specific CD4+ and CD8+ T cells. Infect Immun 72: 2081-2087, 2004.
    89. Oliveira SC and Splitter GA. Immunization of mice with recombinant L7/L12 ribosomal protein confers protection against Brucella abortus infection. Vaccine 14: 959-962, 1996.
    90. Donnelly JJ, Ulmer JB, Shiver JW and Liu MA. DNA vaccines. Annu Rev Immunol 15: 617-648, 1997.
    91. Feltquate DM, Heaney S, Webster RG and Robinson HL. Different T helper cell types and antibody isotypes generated by saline and gene gun DNA immunization. J Immunol 158: 2278-2284, 1997.
    92. Johnston D and Bystryn JC. Heterogeneous antibody response to polyvalent melanoma vaccines in syngeneic mice. Cancer Immunol Immunother 54: 345-350, 2005.
    93. Schirmbeck R, Kwissa M, Fissolo N, Elkholy S, Riedl P and Reimann J. Priming polyvalent immunity by DNA vaccines expressing chimeric antigens with a stress protein-capturing, viral J-domain. FASEB J 16: 1108-1110, 2002.
    94. Oliveira SC and Splitter GA. CD8+ type 1 CD44hi CD45 RBlo T lymphocytes control intracellular Brucella abortus infection as demonstrated in major histocompatibility complex class I- and class II-deficient mice. Eur J Immunol 25: 2551-2557, 1995.
    95. .Baloglu S, Boyle SM, Vemulapalli R, Sriranganathan N, Schurig GG and Toth TE. Immune responses of mice to vaccinia virus recombinants expressing either Listeria monocytogenes partial listeriolysin or Brucella abortus ribosomal L7/L12 protein. Vet Microbiol 109: 11-17, 2005.
    96. Little SR, Lynn DM, Ge Q, Anderson DG, Puram SV, Chen J, Eisen HN and Langer R. Poly-beta amino ester-containing microparticles enhance the activity of nonviral genetic vaccines. Proc Natl Acad Sci U S A 101: 9534-9539, 2004.
    1. Lamb, R.A. and Krug, R.M. (2001) Orthomyxoviridae: the viruses and their replication. In Fields Virology (4th edn) (Knipe, D.M. et al., eds), pp. 1487–1531, Lippincott-Raven
    2. Wright, P.F. and Webster, R.G. (2001) Orthomyxoviruses. In Fields Virology (4th edn) (Knipe, D.M. et al., eds), pp. 1533–1579, Lippincott-Raven
    3. Fouchier, R.A. et al. (2005) Characterization of a novel influenza a virus hemagglutinin subtype (H16) obtained from black-headed gulls. J. Virol. 79, 2814–2822
    4. Horimoto, T. and Kawaoka, Y. (2001) Pandemic threat posed by avianinfluenza A viruses. Clin. Microbiol. Rev. 14, 129–149
    5. Johnson, N.P. and Mueller, J. (2002) Updating the accounts: global mortality of the 1918–1920‘Spanish’influenza pandemic. Bull. Hist. Med. 76, 105–115
    6. Reid, A.H. et al. (2004) Evidence of an absence: the genetic origins of the 1918 pandemic influenza virus. Nat. Rev. Microbiol. 2, 909–914
    7. Gamblin, S.J. et al. (2004) The structure and receptor binding properties of the 1918 influenza hemagglutinin. Science 303,1838–1842
    8. Stevens, J. et al. (2004) Structure of the uncleaved human H1 hemagglutinin from the extinct 1918 influenza virus. Science 303,1866–1870
    9. Kobasa, D. et al. (2004) Enhanced virulence of influenza A viruses with the haemagglutinin of the 1918 pandemic virus. Nature 431, 703–707
    10. Tumpey, T.M. et al. (2005) Characterization of the reconstituted 1918 Spanish influenza pandemic virus. Science 310, 77–80
    11. Horimoto, T. and Kawaoka, Y. (2005) Influenza: lessons from past pandemics, warnings from current incidents. Nat. Rev. Microbiol. 3, 591–600
    12. Matrosovich, M. et al. (2000) Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals. J. Virol. 74, 8502–8512
    13. Beare, A.S. and Webster, R.G. (1991) Replication of avian influenza viruses in humans. Arch. Virol. 119, 37–42
    14. Subbarao, K. et al. (1998) Characterization of an avian influenza A (H5N1) virus isolatedfrom a child with a fatal respiratory illness.Science 279, 393–396
    15. Claas, E.C.J. et al. (1998) Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus. Lancet 351, 472–477
    16. Buxton Bridges, C. et al. (2000) Risk of influenza A (H5N1) infection among health care workers exposed to patients with influenza A(H5N1), Hong Kong. J. Infect. Dis. 181, 344–348
    17. Xu, X. et al. (1999) Genetic characterization of the pathogenic influenza A/Goose/Guangdong/1/96 (H5N1) virus: similarity of its hemagglutinin gene to those of H5N1 viruses from the 1997 outbreaks in Hong Kong. Virology 261, 15–19
    18. Cauthen, A.N. et al. (2000) Continued circulation in China of highly pathogenic avian influenza viruses encoding the hemagglutinin gene associated with the 1997 H5N1 outbreak in poultry and humans. J. Virol. 74, 6592–6599
    19. Guan, Y. et al. (2004) H5N1 influenza: a protean pandemic threat. Proc. Natl. Acad. Sci. U. S. A. 101, 8156–8161
    20. Sturm-Ramirez, K.M. et al. (2004) Reemerging H5N1 influenza viruses in Hong Kong in 2002 are highly pathogenic to ducks. J. Virol. 78,4892–4901
    21. Peiris, J.S. et al. (2004) Re-emergence of fatal human influenza A subtype H5N1 disease. Lancet 363, 617–619
    22. Li, K.S. et al. (2004) Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia. Nature 430, 209–213
    23. World Health Organization Global Influenza Program Surveillance Network (2005) Evolution of H5N1 avian influenza viruses in Asia. Emerg. Infect. Dis. 11, 1515–1521
    24. Chen, H. et al. (2005) Avian flu: H5N1 virus outbreak in migratory waterfowl. Nature 436, 191–192
    25. Liu, J. et al. (2005) Highly pathogenic H5N1 influenza virus infection in migratory birds. Science 309, 1206
    26. Enserink, M. and Kaiser, J. (2004) Avian flu finds new mammal hosts.Science 305, 1385
    27. Kuiken, T. et al. (2004) Avian H5N1 influenza in cats. Science 306, 241
    28. Tran, T.H. et al. (2004) Avian influenza A (H5N1) in 10 patients in Vietnam. N. Engl. J. Med. 350, 1179–1188
    29. Ungchusak, K. et al. (2005) Probable person-to-person transmission of avian influenza A(H5N1). N. Engl. J. Med. 352, 333–340
    30. Shinya, K. et al. (2006) Avian flu: influenza virus receptors in thehuman airway. Nature 440, 435–436
    31. van Riel, D. et al. (2006) H5N1 virus attachment to lower respiratorytract. Science 312, 399
    32. Matrosovich,M. et al. (2004)Human and avian influenza viruses target different cell types in cultures of human airway epithelium. Proc. Natl. Acad. Sci. U. S. A. 101, 4620–4624
    33. Hatta, M. et al. (2001) Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science 293, 1840–1842
    34. Seo, S. et al. (2002) Lethal H5N1 influenza viruses escape host anti-viral cytokine responses. Nat. Med. 8, 950–954
    35. Geiss, G.K. et al. (2002) Cellular transcriptional profiling in influenza A virus-infected lung epithelial cells: the role of the nonstructural NS1 protein in the evasion of the host innate defense and its potential contribution to pandemic influenza. Proc. Natl. Acad. Sci. U. S. A. 99, 10736–10741
    36. Crumpacker, C. (2001) Antiviral therapy. In Fields Virology (4th edn) (Knipe, D.M. et al., eds), pp. 393–433, Lippincott-Raven
    37. Gubareva, L.V. et al. (2000) Influenza virus neuraminidase inhibitors. Lancet 355, 827–835
    38. Matrosovich, M.N. et al. (2004) Neuraminidase is important for the initiation of influenza virus infection in human airway epithelium. J. Virol. 78, 12665–12667
    39. Yen, H.L. et al. (2005) Virulence may determine the necessary duration and dosage of oseltamivir treatment for highly pathogenicA/Vietnam/1203/04 influenza virus in mice. J. Infect. Dis. 192, 665–672
    40. Gubareva, L.V. (2004) Molecular mechanisms of influenza virus resistance to neuraminidase inhibitors. Virus Res. 103, 199–203
    41. Kiso, M. et al. (2004) Resistant influenza A viruses in children treated with oseltamivir: descriptive study. Lancet 364, 759–765
    42. Le, Q.M. et al. (2005) Avian flu: isolation of drug-resistant H5N1 virus. Nature 437, 1108
    43. Gupta, R.K. et al. (2006) Oseltamivir resistance in influenza A (H5N1) infection. N. Engl. J. Med. 354, 1423–1424
    44. Nicholson, K.G. et al. (2001) Safety and antigenicity of non-adjuvanted and MF59-adjuvanted influenza A/Duck/Singapore/97 (H5N3) vaccine: a randomised trial of two potential vaccines against H5N1 influenza.Lancet 357, 1937–1943
    45. Stephenson, I. et al. (2004) Confronting the avian influenza threat: vaccine development for a potential pandemic. Lancet Infect. Dis. 4,499–509
    46. Stephenson, I. et al. (2005) Cross-reactivity to highly pathogenic avian influenza H5N1 viruses after vaccination with nonadjuvanted and MF59-adjuvanted influenza A/duck/Singapore/97 (H5N3) vaccine: a potential priming strategy. J. Infect. Dis. 191, 1210–1215
    47. Neumann, G. et al. (1999) Generation of influenza A viruses entirely from cloned cDNAs. Proc. Natl. Acad. Sci. U. S. A. 96, 9345–9350
    48. Hoffmann, E. et al. (2000) A DNA transfection system for generation of influenza A virus from eight plasmids. Proc. Natl. Acad. Sci. U. S. A. 97,6108–6113
    49. .Fodor, E. et al. (1999) Rescue of influenza A virus from recombinant DNA. J. Virol. 73, 9679–9682
    50. Horimoto, T. and Kawaoka, Y. (1994) Reverse genetics provides directevidence for a correlation of hemagglutinin cleavability and virulence of an avian influenza A virus. J. Virol. 68, 3120–3128
    51. Luytjes, W. et al. (1989) Amplification, expression, and packaging of foreign gene by influenza virus. Cell 59, 1107–1113
    52. Stieneke-Gro¨ber, A. et al. (1992) Influenza virus hemagglutinin with multibasic cleavage site is activated by furin, a subtilisin-like endoprotease. EMBO J. 11, 2407–2414
    53. Takada, A. et al. (1999) Avirulent avian influenza virus as a vaccine strain against a potential human pandemic. J. Virol. 73, 8303–8307
    54. Webby, R.J. et al. (2004) Responsiveness to a pandemic alert: use of reverse genetics for rapid development of influenza vaccines. Lancet 363, 1099–1103
    55. Wood, J.M. and Robertson, J.S. (2004) From lethal virus to life-saving vaccine: the development of inactivated influenza vaccines for pandemic influenza. Nat. Rev. Microbiol. 2, 842–8478
    56. Subbarao, K. et al. (2003) Evaluation of a genetically modifiedreassortant H5N1 influenza A virus vaccine candidate generated by plasmid-based reverse genetics. Virology 305,192–200
    57. Horimoto, T. et al. (2006) The development and characterization of H5 influenza virus vaccines derived from a 2003 human isolate. Vaccine 24, 3669–3676
    58. Nicolson, C. et al. (2005) Generation of influenza vaccine viruses on Vero cells by reverse genetics: an H5N1 candidate vaccine strain produced under a quality system. Vaccine 23, 2943–2952
    59. Treanor, J.J. et al. (2001) Safety and immunogenicity of a recombinant hemagglutinin vaccine for H5 influenza in humans. Vaccine 19, 1732–1737
    60. Treanor, J.J. et al. (2006) Safety and immunogenicity of an inactivated subvirion influenza A (H5N1) vaccine. N. Engl. J. Med. 354, 1343–1351
    61. Bresson, J.L. et al. (2006) Safety and immunogenicity of an inactivated split-virion influenza A/Vietnam/1194/2004 (H5N1) vaccine: phase I randomised trial. Lancet 367, 1657–1664
    62. Condon, C. (2005) A vaccine in 50 days? Lancet 366, 1686
    63. Lipatov, A.S. et al. (2005) Efficacy of H5 influenza vaccines produced by reverse genetics in a lethal mousemodel. J. Infect. Dis. 191, 1216–1220
    64. Govorkova, E.A. et al. (2006) Immunization with reverse-geneticsproduced H5N1 influenza vaccine protects ferrets against homologous and heterologous challenge. J. Infect. Dis. 194, 159–167
    65. Medema, J.K. et al. (2006) Safety assessment of Madin Darby canine kidney cells as vaccine substrate. Dev. Biol. (Basel) 123, 243–250
    66. Li, S. et al. (1999) Recombinant influenza A virus vaccines for thepathogenic human A/Hong Kong/97 (H5N1) viruses. J. Infect. Dis. 179, 1132–1138
    67. Beyer, W.E.P. et al. (2002) Cold-adapted live influenza vaccine versus inactivated vaccine: systemic vaccine reactions, local and systemic antibody response, and vaccine efficacy. A meta-analysis. Vaccine 20, 1340–1353
    68. Hoelscher, M.A. et al. (2006) Development of adenoviral-vector-based pandemic influenza vaccine against antigenically distinct human H5N1 strains in mice. Lancet 367, 475–481
    69. Gao, W. et al. (2006) Protection of mice and poultry from lethal H5N1 avian influenza virus through adenovirus-based immunization. J. Virol. 80, 1959–1964
    70. Neumann, G. et al. (2005) An improved reverse genetics system for influenza A virus generation and its implications for vaccine production. Proc. Natl. Acad. Sci. U. S. A. 102, 16825–16829
    71. Forde, G.M. (2005) Rapid-response vaccines– does DNA offer a solution? Nat. Biotechnol. 23, 1059–1062
    72. De Filette, M. et al. (2005) Universal influenza A vaccine: optimization of M2-based constructs. Virology 337, 149–161
    73. D. Chen et al., Adjuvantation of epidermal powder immunization. Vaccine 19 20–22 (2001), pp. 2908–2917.
    74. R.H. Waldman et al., An evaluation of influenza immunization: influence of route of administration and vaccine strain. Bull World Health Organ 41 3 (1969), pp. 543–548.
    75. .E. Greenbaum et al., Mucosal [SIgA] and serum [IgG] immunologic responses in the community after a single intra-nasal immunization with a new inactivated trivalent influenza vaccine. Vaccine 20 78 (2002), pp. 1232–1239.
    76. E. Greenbaum et al., Serum and mucosal immunologic responses in children following the administration of a new inactivated intranasal anti-influenza vaccine. J. Med. Virol. 65 1 (2001), pp. 178–184.
    77. A. Kiderman et al., A double-blind trial of a new inactivated, trivalent, intra-nasal anti-influenza vaccine in general practice: relationship between immunogenicity and respiratory morbidity over the winter of 1997–98. J. Clin. Virol. 20 3 (2001), pp. 155–161.
    78. T.G. Boyce et al., Safety and immunogenicity of adjuvanted and unadjuvanted subunit influenza vaccines administered intranasally to healthy adults. Vaccine 19 23 (2000), pp. 217–226.
    79. R. Glueck, Pre-clinical and clinical investigation of the safety of a novel adjuvant for intranasal immunization. Vaccine 20 Suppl 1 (2001), pp. S42–S44.
    80. M. Plante et al., Nasal immunization with subunit proteosome influenza vaccines induces serum HAI, mucosal IgA and protection against influenza challenge. Vaccine 20 1–2 (2001), pp. 218–225.
    81. Hehme, N. et al. (2002) Pandemic preparedness: lessons learnt from H2N2 and H9N2 candidate vaccines. Med. Microbiol. Immunol. (Berl.) 191, 203–208
    82. Stephenson, I. et al. (2003) Safety and antigenicity of whole virus and subunit influenza A/Hong Kong/1073/99 (H9N2) vaccine in healthy adults: phase I randomised trial. Lancet 362, 1959–1966
    83. de Wit, E. et al. (2005) Protection of mice against lethal infection with highly pathogenic H7N7 influenza A virus by using a recombinant low-pathogenicity vaccine strain. J. Virol. 79, 12401–12407
    84. Longini, I.M. et al. (2005) Containing pandemic influenza at the source. Science 309, 1083–1087

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700