用户名: 密码: 验证码:
神经甾体硫化孕烯醇酮对大鼠前额叶皮层内侧区中间神经元兴奋性突触传入的作用和机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
神经甾体硫化孕烯醇酮对大鼠前额叶皮层内侧区中间神经元兴奋性突触传入的作用和机制
     前额叶皮层内侧区是一个非常重要的脑区,很多实验已经证明前额叶皮层内侧区在认知、思维、记忆等高级脑功能活动中起着关键作用。前额叶皮层内侧区的中间神经元是该脑区功能的调控者,它不仅参与了上述高级认知功能的生理过程而且还涉及其病理机制,因此对中间神经元的功能调节很可能影响认知、思维、记忆等高级脑功能活动,另外也有可能在神经精神疾病以及兴奋性精神药物的成瘾等疾病的发病过程中起调节作用。
     神经甾体是脑中重要的活性分子,对脑功能具有重要作用,在神经系统疾病中也具有重要作用。在神经甾体家族中,硫化孕烯醇酮(Pregnenolone sulfate,PREGS)的含量最丰富,活性最强。我们实验室的最新研究表明,PREGS酮对前额叶皮层内侧区锥体细胞的突触前的谷氨酸传入有显著作用。然而,PREGS对前额叶皮层内侧区中间神经元突触前的谷氨酸传入是否有作用,如果有作用那么对中间神经和锥体细胞的突触前作用相似还是不同,最终对动作电位产生的影响相似还是不同。为回答这些问题,本课题采用脑片全细胞膜片钳方法记录前额叶皮层内侧区中间神经微小兴奋性突触后电流(mEPSCs),首先研究PREGS对前额叶皮层内侧区中间神经元突触前的谷氨酸传入作用,分析其作用的受体机制及信号通路,并且进一步比较其与锥体细胞作用机制的差异;然后研究PREGS对中间神经元自发兴奋性突触后电流(sEPSCs)以及电刺激诱发兴奋性突触后电流(eEPSCs)的作用;最后研究这些兴奋性电流的变化对中间神经元动作电位的影响。
     结果表明PREGS能够明显增加前额叶皮层中间神经元mEPSCs的频率,这个作用同对锥体细胞的作用相同,不同的是对于中间神经元σ_1受体拮抗剂能完全阻断PREGS的作用,而α_1受体拮抗剂却没有作用;并且σ_1受体激动剂能完全模拟PREGS的作用,而α_1受体激动剂不能模拟PREGS的作用,也不能影响σ_1受体激动剂的作用。而对于锥体细胞对σ_1受体拮抗剂部分阻断PREGS的作用,而α_1受体拮抗剂完全阻断PREGS的作用;并且α_1受体激动剂能部分模拟PREGS的作用,σ_1受体激动剂不能模拟PREGS的作用,α_1受体激动剂和σ_1受体激动剂联合作用能模拟PREGS的作用。PREGS的作用可被PKC拮抗剂完全阻断,而PKA拮抗剂没有阻断作用。以上结果说明PREGS增加中间神经元mEPSCs频率是通过σ_1受体而非α_1受体起作用的,细胞内途径是通过PKC而非PKA环节进行信号转导的。另外还发现PREGS作用于中间神经元,增加sEPSCs的频率和eEPSC的幅度。对中间神经元和锥体细胞动作电位的潜伏期比较研究显示,PREGS缩短了中间神经元动作电位产生的潜伏期,而延长了锥体细胞的潜伏期。
The medial prefrontal cortex(mPFC) is a key component of the neural circuitries underlying higher cognitive processes,neuropsychiatric disorders and psychostimulant abuse.Interneurons represent fundamental modulatory elements for cortical function and are thought to be associated with physiological cortical functions underlying several cognitive tasks and some pathological phenomena.Therefore,the control or modulation of the activity of interneurons in mPFC is important in cognitive processes,neuropsychiatric disorders and psychostimulant abuse.
     Neurosteroids are important molecules of brain,which involve in physiological cortical functions and some pathological phenomena.Pregnenolone sulfate(PREGS) is among the most abundant and the most active members of neurosteroids.Recent evidence from our laboratory showed that PREGS could modulate presynaptic glutamatergic inputs to pyramidal cells in the medial prefrontal cortex.However, whether PREGS has actions on presynaptic glutamatergic inputs to interneurons in mPFC or not remains unknown.If this effect exists,our further interest is that is there any difference on interneurons and pyramidal cells concerning the effects PREGS on presynaptic glutamate release,and finally on action potentials.Therefore,in the present paper we studied the effect of neurosteroid PREGS on presynaptic glutamate release in intemeurons of mPFC by examining the frequency of miniature excitatory postsynaptic currents(mEPSCs) using whole-cell patch clamp method in slices and further studied its underlying mechanisms with a comparison with that in pyramidal cells of mPFC.And we also investigated whether PREGS has effects on spontaneous excitatory postsynaptic currents(sEPSCs),evoked excitatory postsynaptic current, (eEPSC) and action potential.
     The results showed that PREGS had an increasing effect on the frequency of mEPSCs in the interneurons of mPFC.This effect is same as that in pyramidal cells. However,the mechanism of these increasing effects is different between interneurons and pyramidal cells.For intemeurons,σ_1 receptor antagonist can block the increasing effect completely,whereasα_1 receptor antagonist has no influence on it. Andσ_1 receptor agonist can mimic the increasing effect,whereasα_1 receptor agonist cannot.Moreover,α_1 receptor agonist has no influence on that effect ofσ_1 receptor agonist.By contrast,σ_1 receptor antagonist can partly block the increasing effect of PREGS,whereasα_1 receptor antagonist can block it completely.Andα_1 receptor agonist can partly mimic the increasing effect in pyramidal cells,whereasσ_1 receptor agonist cannot.Moreover,the combination ofα_1 receptor agonist andσ_1 receptor agonist can completely mimic the increasing effect in pyramidal cells. These data suggested that the effect of PREGS in intemeurons is only throughσ_1 receptor but notα_1 receptor.We found the pathway of transduction of intracellular signals under the effect of PREGS is only through PKC but not PKA by our further study.In addition,we also investigated the other effects of PREGS in interneurons. PREGS can enhance the frequency of sEPSCs and the amplitude of eEPSC,and shorten the latency of action potential in intemeurons,whereas lengthen that in pyramidal cells.
引文
[1]Goldman-Rakic PS.Cellular basis of working memory 2.Neuron,1995,14(3):477-485.
    [2]Seamans JK,Floresco SB,Phillips AG.Functional differences between the prelimbic and anterior cingulate regions of the rat prefrontal cortex.Behav Neurosci,1995,109(6):1063-1073.
    [3]Castner SA,Goldman-Rakic PS,Williams GV.Animal models of working memory:insights for targeting cognitive dysfunction in schizophrenia.Psychopharmacology(Berl),2004,174(1):111-125.
    [4]Berman KF,Zec RF,Weinberger DR.Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia.Ⅱ.Role of neuroleptic treatment,attention,and mental effort 6.Arch Gen Psychiatry,1986,43(2):126-135.
    [5]Berman KF,Illowsky BP,Weinberger DR.Physiological dysfunction of dorsolateral prefrontal cortex in schizophrenia.Ⅳ.Further evidence for regional and behavioral specificity 4.Arch Gen Psychiatry,1988,45(7):616-622.
    [6]Callicott JH,Bertolino A,Mattay VS,et al.Physiological dysfunction of the dorsolateral prefrontal cortex in schizophrenia revisited 1.Cereb Cortex,2000,10(11):1078-1092.
    [7]Weinberger DR,Berman KF,Zec RF.Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia.I.Regional cerebral blood flow evidence 5.Arch Gen Psychiatry,1986,43(2):114-124.
    [8]Weinberger DR,Berman KF,Illowsky BP.Physiological dysfunction of dorsolateral prefrontal cortex in schizophrenia.Ⅲ.A new cohort and evidence for a monoaminergic mechanism 3.Arch Gen Psychiatry,1988,45(7):609-615.
    [9]Pich EM,Pagliusi SR,Tessari M,Talabot-Ayer D,Hooft van HR,Chiamulera C.Common neural substrates for the addictive properties of nicotine and cocaine.Science,1997,275(5296):83-86.
    [10]Giacchino JL,Henriksen SJ.Opioid effects on activation of neurons in the medial prefrontal cortex.Prog Neuropsychopharmacol Biol Psychiatry,1998,22(7):1157-1178.
    [11]Gonzalez-Burgos G,Kroener S,Seamans JK,Lewis DA,Barrionuevo G.Dopaminergic modulation of short-term synaptic plasticity in fast-spiking interneurons of primate dorsolateral prefrontal cortex.J Neurophysiol,2005,94(6):4168-4177.
    [12]Vallee M,Mayo W,Damaudery M,et al.Neurosteroids:deficient cognitive performance in aged rats depends on low pregnenolone sulfate levels in the hippocampus.Proc Natl Acad Sci U S A,1997,94(26):14865-14870.
    [13]Lewis DA,Lewis DA.Structure of the human prefrontal cortex.Am J Psychiatry,2004,161(8):1366.
    [14]Flames N,Marin O.Developmental mechanisms underlying the generation of cortical interneuron diversity 9.Neuron,2005,46(3):377-381.
    [15]Bacci A,Huguenard JR,Prince DA.Modulation of neocortical interneurons:extrinsic influences and exercises in self-control 11.Trends Neurosci,2005,28(11):602-610.
    [16]Freund TF.Interneuron Diversity series:Rhythm and mood in perisomatic inhibition.[Review][70 refs].Trends in Neurosciences,2003,26(9):489-495.
    [17]Rajkowska G,O'Dwyer G,Teleki Z,Stockmeier CA,Miguel-Hidalgo JJ.GABAergic neurons immunoreactive for calcium binding proteins are reduced in the prefrontal cortex in major depression.Neuropsychopharmacology,2007,32(2):471-482.
    [18]Wang XJ.Fast burst firing and short-term synaptic plasticity:a model of neocortical chattering neurons.Neuroscience,1999,89(2):347-362.
    [19]Grobin AC,Lieberman JA,Morrow AL.Perinatal flunitrazepam exposure causes persistent alteration of parvalbumin-immunoreactive interneuron localization in rat prefrontal cortex.Neuroscience Letters,2004,359(1-2):9-12.
    [20]Benes FM,McSparren J,Bird ED,SanGiovanni JP,Vincent SL.Deficits in small interneurons in prefrontal and cingulate cortices of schizophrenic and schizoaffective patients.Archives of General Psychiatry,1991,48(11):996-1001.
    [21]Ikeda K,Ikeda K,Iritani S,Ueno H,Niizato K.Distribution of neuropeptide Y intemeurons in the dorsal prefrontal cortex of schizophrenia.Progress in Neuro-Psychopharmacology & Biological Psychiatry,2004,28(2):379-383.
    [22]Aronica E,Redeker S,Boer K,et al.Inhibitory networks in epilepsy-associated gangliogliomas and in the perilesional epileptic cortex.Epilepsy Research,2007,74(1):33-44.
    [23]Sugiyama S,Fujii M,Ito H.The electrophysiological effects of multiple subpial transection(MST) in an experimental model of epilepsy induced by cortical stimulation.Epilepsy Research,1995,21(1):1-9.
    [24]Kumar SS,Jin X,Buckmaster PS,Huguenard JR.Recurrent circuits in layer Ⅱ of medial entorhinal cortex in a model of temporal lobe epilepsy.J Neurosci,2007,27(6):1239-1246.
    [25]Bolkvadse T,Dzhaparidze ND,Zhvaniia MG,Kotaria NT,Tsitsishvili AS.[Cellular composition of the rat piriform cortex in experimental epilepsy].[Russian].Morfologiia,2005,127(1):14-17.
    [26]Camp MC,Mayfield RD,McCracken M,McCracken L,Alcantara AA.Neuroadaptations of Cdk5 in cholinergic interneurons of the nucleus accumbens and prefrontal cortex of inbred alcohol-preferring rats following voluntary alcohol drinking.Alcoholism:Clinical &Experimental Research,2006,30(8):1322-1335.
    [27]Laviolette SR,Grace AA.The roles of cannabinoid and dopamine receptor systems in neural emotional learning circuits:implications for schizophrenia and addiction.[Review][72 refs].Cellular & Molecular Life Sciences,2006,63(14):1597-1613.
    [28]Mansvelder HD,De RM.Cholinergic modulation of dopaminergic reward areas:upstream and downstream targets of nicotine addiction.[Review][50 refs].European Journal of Phamacology,2003,480(2):117-123.
    [29]Dantzker JL,Callaway EM.Laminar sources of synaptic input to cortical inhibitory interneurons and pyramidal neurons 17.Nat Neurosci,2000,3(7):701-707.
    [30]Xiang H,Chen HX,Yu XX,King MA,Roper SN.Reduced excitatory drive in interneurons in an animal model of cortical dysplasia 18.J Neurophysiol,2006,96(2):569-578.
    [31]Wang JH.Short-term cerebral ischemia causes the dysfunction of interneurons and more excitation of pyramidal neurons in rats.Brain Res Bull,2003,60(1-2):53-58.
    [32]Zhou FM,Hablitz JJ.Dopamine modulation of membrane and synaptic properties of interneurons in rat cerebral cortex 21.J Neurophysiol,1999,81(3):967-976.
    [33]Baulieu EE.Neurosteroids:a novel function of the brain 22.Psychoneuroendocrinology,1998,23(8):963-987.
    [34]Grobin AC,Heenan EJ,Lieberman JA,et al.Perinatal neurosteroid levels influence GABAergic interneuron localization in adult rat prefrontal cortex.J Neurosci,2003,23(5):1832-1839.
    [35]Torres JM,Ortega E.DHEA,PREG and their sulphate derivatives on plasma and brain after CRH and ACTH administration 23.Neurochem Res,2003,28(12):1187-1191.
    [36]Yah CZ,Hou YN.Effects of morphine dependence and withdrawal on levels of neurosteroids in rat brain 25.Acta Pharmacol Sin,2004,25(10):1285-1291.
    [37]Caldeira JC,Wu Y,Mameli M,et al.Fetal alcohol exposure alters neurosteroid levels in the developing rat brain 24.J Neurochem,2004,90(12):1530-1539.
    [38]Higashi T,Sugitani H,Yagi T,Shimada K.Studies on neurosteroids ⅩⅥ.Levels of pregnenolone sulfate in rat brains determined by enzyme-linked immunosorbent assay not requiring solvolysis.Biol Pharm Bull,2003,26(5):709-711.
    [39]Baulieu EE.Neurosteroids:of the nervous system,by the nervous system,for the nervous system 6.Recent Prog Horm Res,1997,52:1-32.:1-32.
    [40]Baulieu EE,Robel P,Schumacher M.Neurosteroids:beginning of the story 8.Int Rev Neurobiol,2001,46:1-32.:1-32.
    [41]Baulieu EE,Robel P.Neurosteroids:a new brain function?9.J Steroid Biochem Mol Biol,1990,%20;37(3):395-403.
    [42]Baulieu EE,Schumacher M,Koenig H,Jung-Testas I,Akwa Y.Progesterone as a neurosteroid:actions within the nervous system 10.Cell Mol Neurobiol,1996,16(2):143-154.
    [43]Herbison AE.Physiological roles for the neurosteroid allopregnanolone in the modulation of brain function during pregnancy and parturition 12.Prog Brain Res,2001,133:39-47.:39-47.
    [44]Mayo W,Le MM,Abrous DN.Pregnenolone sulfate and aging of cognitive functions:behavioral,neurochemical,and morphological investigations 14.Horm Behav,2001,40(2):215-217.
    [45]Barbaccia ML,Concas A,Serra M,Biggio G.Stress and neurosteroids in adult and aged rats 18.Exp Gerontol,1998,33(7-8):697-712.
    [46]Engel SR,Grant KA.Neurosteroids and behavior 11.Int Rev Neurobiol,2001,46:321-48.:321-348.
    [47]Robel P,Baulieu EE.Neurosteroids:biosynthesis and function 15.Crit Rev Neurobiol,1995,9(4):383-394.
    [48]Bitran D,Klibansky DA,Martin GA.The neurosteroid pregnanolone prevents the anxiogenic-like effect of inescapable shock in the rat 19.Psychopharmacology(Berl),2000,151(1):31-37.
    [49]Li PK,Rhodes ME,Burke AM,Johnson DA.Memory enhancement mediated by the steroid sulfatase inhibitor (p-O-sulfamoyl)-N-tetradecanoyl tyramine 13.Life Sci,1997,60(3):L45-L51.
    [50]Devaud LL,Purdy RH,Morrow AL.The neurosteroid,3 alpha-hydroxy-5alpha-pregnan-20-one,protects against bicuculline-induced seizures during ethanol withdrawal in rats 20.Alcohol Clin Exp Res,1995,19(2):350-355.
    [51]Dubrovsky B.The specificity of stress responses to different nocuous stimuli:neurosteroids and depression 22.Brain Res Bull,2000,51(6):443-455.
    [52]Frye CA,Bayon LE.Seizure activity is increased in endocrine states characterized by decline in endogenous levels of the neurosteroid 3 alpha,5alpha-THP 24.Neuroendocrinology,1998,68(4):272-280.
    [53]Khisti RT,Chopde CT,Jain SP.Antidepressant-like effect of the neurosteroid 3alpha-hydroxy-5alpha-pregnan-20-one in mice forced swim test 26.Pharmacol Biochem Behav,2000,67(1):137-143.
    [54]Laconi MR,Casteller G,Gargiulo PA,Bregonzio C,Cabrera RJ.The anxiolytic effect of allopregnanolone is associated with gonadal hormonal status in female rats 28.Eur J Pharmacol,2001,417(1-2):111-116.
    [55]Diamond DM,Fleshner M,Rose GM.The enhancement of hippocampal primed burst potentiation by dehydroepiandrosterone sulfate(DHEAS) is blocked by psychological stress 21.Stress,1999,3(2):107-121.
    [56]Chen J,Chopp M,Li Y.Neuroprotective effects of progesterone after transient middle cerebral artery occlusion in rat 25.J Neurol Sci,1999,171(1):24-30.
    [57]Marx CE,Jarskog LF,Lauder JM,Gilmore JH,Lieberman JA,Morrow AL.Neurosteroid modulation of embryonic neuronal survival in vitro following anoxia 29.Brain Res,2000,871(1):104-112.
    [58]Frank C,Sagratella S.Neuroprotective effects ofallopregnenolone on hippocampal irreversible neurotoxicity in vitro 23.Prog Neuropsychopharmacol Biol Psychiatry,2000,24(7):1117-1126.
    [59]Khisti RT,Mandhane SN,Chopde CT.The neurosteroid 3 alpha-hydroxy-5alpha-pregnan-20-one induces catalepsy in mice 27.Neurosci Lett,1998,251(2):85-88.
    [60]Mizowaki M,Toriizuka K,Hanawa T.Anxiolytic effect of Kami-Shoyo-San(TJ-24) in mice:possible mediation of neurosteroid synthesis 30.Life Sci,2001,69(18):2167-2177.
    [61]Reddy DS,Kim HY,Rogawski MA.Neurosteroid withdrawal model of perimenstrual catamenial epilepsy 32.Epilepsia,2001,42(3):328-336.
    [62]Reddy DS,Kulkarni SK.Development of neurosteroid-based novel psychotropic drugs 34.Prog Med Chem,2000,37:135-75.:135-175.
    [63]Reddy DS,Rogawski MA.Stress-induced deoxycorticosterone-derived neurosteroids modulate GABA(A) receptor function and seizure susceptibility 36.J Neurosci,2002,22(9):3795-3805.
    [64]Waters SL,Miller GW,Aleo MD,Schnellmann RG.Neurosteroid inhibition of cell death 38.
    [65]Prasad A,Imamura M,Prasad C.Dehydroepiandrosterone decreases behavioral despair in high-but not low-anxiety rats 31.Physiol Behav,1997,62(5):1053-1057.
    [66]Reddy DS,Rogawski MA.Enhanced anticonvulsant activity of ganaxolone after neurosteroid withdrawal in a rat model of catamenial epilepsy 35.J Pharmacol Exp Ther,2000,294(3):909-915.
    [67]Jagalur M,Pal C,Learned-Miller E,Zoeller RT,Kulp D.Analyzing in situ gene expression in the mouse brain with image registration,feature extraction and block clustering 39.BMC Bioinformatics,2007,8 Suppl 10:S5.:S5.
    [68]Urani A,Roman FJ,Phan VL,Su TP,Maurice T.The antidepressant-like effect induced by sigma(1)-receptor agonists and neuroactive steroids in mice submitted to the forced swimming test 37.J Pharmacol Exp Ther,2001,298(3):1269-1279.
    [69]Hu AQ,Wang ZM,Lan DM,et al.Inhibition of evoked glutamate release by neurosteroid allopregnanolone via inhibition of L-type calcium channels in rat medial prefrontal cortex 28.Neuropsychopharmacology,2007,32(7):1477-1489.
    [70]Dong LY,Cheng ZX,Fu YM,et al.Neurosteroid dehydroepiandrosterone sulfate enhances spontaneous glutamate release in rat prelimbic cortex through activation of dopamine D1 and sigma-1 receptor 29.Neuropharmacology,2007,52(3):966-974.
    [71]Dong Y,Fu YM,Sun JL,Zhu YH,Sun FY,Zheng P.Neurosteroid enhances glutamate release in rat prelirnbic cortex via activation of alphal-adrenergic and sigmal receptors 31.Cell Mol Life Sci,2005,62(9):1003-1014.
    [72]Feng XQ,Dong Y,Fu YM,et al.Progesterone inhibition of dopamine-induced increase in frequency of spontaneous excitatory postsynaptic currents in rat prelimbic cortical neurons 32.Neuropharmacology,2004,46(2):211-222.
    [73]Cheng ZX,Lan DM,Wu PY,et al.Neurosteroid dehydroepiandrosterone sulphate inhibits persistent sodium currents in rat medial prefrontal cortex via activation of sigma-1 receptors 27.Exp Neurol,2007,.
    [74]Sun JL,Dong YL,Fu YM,Zhu YH,Dong Y,Zheng P.Neurosteroid pregnenolone sulfate inhibits stimulus-evoked EPSC via presynaptic inhibition of protein kinase A in rat prelimbic cortical neurons 30.Neuropharmacology,2005,49(3):389-399.
    [75]Wang ZM,Qi YJ,Wu PY,et al.Neuroactive steroid pregnenolone sulphate inhibits long-term potentiation via activation of alpha2-adrenoreceptors at excitatory synapses in rat medial prefrontal cortex 26.Int J Neuropsychopharmacol,2008,:1-14.:1-14.
    [76]Alkondon M,Pereira EF,Eisenberg HM,Albuquerque EX.Nicotinic receptor activation in human cerebral cortical intemeurons:a mechanism for inhibition and disinhibition of neuronal networks.J Neurosci,2000,20(1):66-75.
    [77]Svoboda KR,Adams CE,Lupica CR.Opioid receptor subtype expression defines morphologically distinct classes of hippocampal intemeurons.J Neurosci,1999,19(1):85-95.
    [78]Krimer LS,Zaitsev AV,Czanner G,et al.Cluster analysis-based physiological classification and morphological properties of inhibitory neurons in layers 2-3 of monkey dorsolateral prefrontal cortex 11.J Neurophysiol,2005,94(5):3009-3022.
    [79]Yang CR,Seamans JK,Gorelova N.Electrophysiological and morphological properties of layers Ⅴ-Ⅵ principal pyramidal cells in rat prefrontal cortex in vitro.J Neurosci,1996,16(5):1904-1921.
    [80]Meyer DA,Carta M,Partridge LD,Covey DF,Valenzuela CF.Neurosteroids enhance spontaneous glutamate release in hippocampal neurons.Possible role of metabotropic sigmal-like receptors.J Biol Chem,2002,277(32):28725-28732.
    [81]Kim HW,Kwon YB,Roh DH,et al.Intrathecal treatment with sigmal receptor antagonists reduces formalin-induced phosphorylation of NMDA receptor subunit 1 and the second phase of formalin test in mice 2.Br J Pharmacol,2006,148(4):490-498.
    [82]Charalampopoulos I,Tsatsanis C,Dermitzaki E,et al.Dehydroepiandrosterone and allopregnanolone protect sympathoadrenal medulla cells against apoptosis via antiapoptotic Bcl-2 proteins 5.Proc Natl Acad Sci U S A,2004,101(21):8209-8214.
    [83]Nuwayhid SJ,Werling LL.Sigrnal receptor agonist-mediated regulation of N-methyl-D-aspartate-stimulated[3H]dopamine release is dependent upon protein kinase C 7.J Pharmacol Exp Ther,2003,304(1):364-369.
    [84]Cormaci G,Mori T,Hayashi T,Su TP.Protein kinase A activation down-regulates,whereas extracellular signal-regulated kinase activation up-regulates sigrna-1 receptors in B-104 cells:Implication for neuroplasticity 10.J Pharmacol Exp Ther,2007,320(1):202-210.
    [85]Stefanski R,Justinova Z,Hayashi T,Takebayashi M,Goldberg SR,Su TP.Sigma1 receptor upregulation after chronic methamphetamine self-administration in rats:a study with yoked controls 11.Psychopharmacology(Berl),2004,175(1):68-75.
    [86]Martin ED,Buno W.Caffeine-mediated presynaptic long-term potentiation in hippocampal CA1 pyramidal neurons.J Neurophysiol,2003,89(6):3029-3038.
    [87]Clark KA,Randall AD,Collingridge GL.A comparison of paired-pulsed facilitation of AMPA and NMDA receptor-mediated excitatory postsynaptic currents in the hippocampus.Exp Brain Res,1994,101(2):272-278.
    [88]Creager R,Dunwiddie T,Lynch G.Paired-pulse and frequency facilitation in the CA1 region of the in vitro rat hippocampus.J Physiol,1980,299:409-24.:409-424.
    [89]Kombian SB,Hirasawa M,Mouginot D,Pittman QJ.Modulation of synaptic transmission by oxytocin and vasopressin in the supraoptic nucleus.Prog Brain Res,2002,139:235-46.:235-246.
    [90]Huang CC,Lo SW,Hsu KS.Presynaptic mechanisms underlying cannabinoid inhibition of excitatory synaptic transmission in rat striatal neurons.J Physiol,2001,532(Pt 3):731-748.
    [91]Bouron A,Reuter H.The D1 dopamine receptor agonist SKF-38393stimulates the release of glutamate in the hippocampus.Neuroscience,1999,94(4):1063-1070.
    [92]Evans DI,Jones RS,Woodhall G.Activation of presynaptic group Ⅲmetabotropic receptors enhances glutamate release in rat entorhinal cortex.J Neurophysiol,2000,83(5):2519-2525.
    [93]Iyadomi M,Iyadomi I,Kumamoto E,Tomokuni K,Yoshimura M.Presynaptic inhibition by baclofen of miniature EPSCs and IPSCs in substantia gelatinosa neurons of the adult rat spinal dorsal horn.Pain,2000,85(3):385-393.
    [94]McQuiston AR,Colmers WF.Neuropeptide Y2 receptors inhibit the frequency of spontaneous but not miniature EPSCs in CA3 pyramidal cells of rat hippocampus.J Neurophysiol,1996,76(5):3159-3168.
    [95]Schoppa NE,Westbrook GL.Modulation of mEPSCs in olfactory bulb mitral cells by metabotropic glutamate receptors.J Neurophysiol,1997,78(3):1468-1475.
    [96]Whittington MA,Traub RD.Interneuron diversity series:inhibitory intemeurons and network oscillations in vitro.[Review][45 refs].Trends in Neurosciences,2003,26(12):676-682.
    [97]Tukker JJ,Fuentealba P,Hartwich K,Somogyi P,Klausberger T.Cell type-specific tuning of hippocampal interneuron firing during gamma oscillations in vivo.Journal of Neuroscience,2007,27(31):8184-8189.
    [98]Whittington MA,Traub RD,Jefferys JG.Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation.[see comment].Nature,1995,373(6515):612-615.
    [99]Bartos M,Vida I,Jonas P.Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks.[Review][128 refs].Nature Reviews Neuroscience,2007,8(1):45-56.
    [100]Maex R,De SE.Oscillations in the cerebellar cortex:a prediction of their frequency bands.[Review][50 refs].Progress in Brain Research,2005,148:181-188.
    [101]Draguhn A,Traub RD,Schmitz D,Jefferys JG.Electrical coupling underlies high-frequency oscillations in the hippocampus in vitro.Nature,1998,394(6689):189-192.
    [102]Carta M,Partridge LD,Savage DD,Valenzuela CF.Neurosteroid modulation of glutamate release in hippocampal neurons:lack of an effect of a chronic prenatal ethanol exposure paradigm.Alcohol Clin Exp Res,2003,27(7):1194-1198.
    [103]Zucker RS.Short-term synaptic plasticity.Annu Rev Neurosci,1989,12:13-31.:13-31.
    [104]Zucker RS,Regehr WG.Short-term synaptic plasticity.Annu Rev Physiol,2002,64:355-405.:355-405.
    [105]Hajos N,Ledent C,Freund TF.Novel cannabinoid-sensitive receptor mediates inhibition of glutamatergic synaptic transmission in the hippocampus.Neuroscience,2001,106(1):1-4.
    [106]Thomson AM.Facilitation,augmentation and potentiation at central synapses.Trends Neurosci,2000,23(7):305-312.
    [107]Liere P,Akwa Y,Weill-Engerer S,et al.Validation of an analytical procedure to measure trace amounts of neurosteroids in brain tissue by gas chromatography-mass spectrometry.J Chromatogr B Biomed Sci Appl,2000,739(2):301-312.
    [1]Holmgren C,Harkany T,Svennenfors B,Zilberter Y.Pyramidal cell communication within local networks in layer 2/3 of rat neocortex.Journal of Physiology,2003,551(Pt 1):139-153.
    [2]Gonzalez-Burgos G,Krimer LS,Povysheva NV,Barrionuevo G,Lewis DA.Functional properties of fast spiking interneurons and their synaptic connections with pyramidal cells in primate dorsolateral prefrontal cortex.Journal of Neurophysiology,2005,93(2):942-953.
    [3]Vallee M,Mayo W,Darnaudery M,et al.Neurosteroids:deficient cognitive performance in aged rats depends on low pregnenolone sulfate levels in the hippocampus.Proc Natl Acad Sci U S A,1997,94(26):14865-14870.
    [4]Lewis DA.Structure of the human prefrontal cortex.American Journal of Psychiatry,2004,161(8):1366.
    [5]Hazlett JC,Jr.,Farkas N.Short axon molecular layer neurons in the opossum fascia dentata:a Golgi study.Brain Research,1978,143(2):355-360.
    [6]Armstrong DM.The mammalian cerebellum and its contribution to movement control.[Review][326 refs].International Review of Physiology,1978,17:239-294.
    [7]Rushrner DS,Woodward DJ.Inhibition of Purkinje cells in the frog cerebellum.I.Evidence for a stellate cell inhibitory pathway.Brain Research,1971,33(1):83-90.
    [8]Woodward DJ,Hoffer BJ,Siggins GR,Oliver AP.Inhibition of Purkinje cells in the frog cerebellum.Ⅱ.Evidence for GABA as the inhibitory transmitter.Brain Research,1971,33(1):91-100.
    [9]Teramae JN,Fukai T.Local cortical circuit model inferred from power-law distributed neuronal avalanches.Journal of Computational Neuroscience,2007,22(3):301-312.
    [10]Yuste R.Origin and classification of neocortical interneurons.[comment].[Review][19 refs].Neuron,2005,48(4):524-527.
    [11]Mott DD,Dingledine R.Interneuron Diversity series:Interneuron research—challenges and strategies.[Review][23 refs].Trends in Neurosciences,2003,26(9):484-488.
    [12]Maccaferri G.Interneuron Diversity series:Hippocampal interneuron classifications—making things as simple as possible,not simpler[Review][83 refs].
    [13]Nieoullon A,Kerkerian-Le GL.Cellular interactions in the striatum involving neuronal systems using "classical" neurotransmitters:possible functional implications.[Review][97 refs].Movement Disorders,1992,7(4):311-325.
    [14]Tepper JM,Bolam JP.Functional diversity and specificity of neostriatal interneurons.[Review][54 refs].Current Opinion in Neurobiology,2004,14(6):685-692.
    [15]Freund TF,Buzsaki G.Interneurons of the hippocampus.Hippocampus,1996,6(4):347-470.
    [16]Andersen P,Dingledine R,Gjerstad L,Langmoen IA,Laursen AM.Two different responses of hippocampal pyramidal cells to application of gamma-amino butyric acid.J Physiol,1980,305:279-96.:279-296.
    [17]Staley KJ,Soldo BL,Proctor WR.Ionic mechanisms of neuronal excitation by inhibitory GABAA receptors.Science,1995,269(5226):977-981.
    [18]Rivera C,Voipio J,Payne JA,et al.The K+/Cl-co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation.Nature,1999,397(6716):251-255.
    [19]Foldy C,Dyhrfjeld-Johnsen J,Soltesz I.Structure of cortical microcircuit theory.[Review][63 refs].Journal of Physiology,2005,562(Pt 1):47-54.
    [20]Flames N,Marin O.Developmental mechanisms underlying the generation of cortical interneuron diversity.[Review][35 refs].Neuron,2005,46(3):377-381.
    [21]Arellano JI.Histopathology and reorganization of chandelier cells in the human epileptic sclerotic hippocampus.[Article].Brain,2004,127(1):45-64.
    [22]Inda MC.The Distribution of Chandelier Cell Axon Terminals that Express the GABA Plasma Membrane Transporter GAT-1 in the Human Neocortex.[Article].Cerebral Cortex,2007,17(9):2060-2071.
    [23]DeFelipe J,DeFelipe J.Cortical interneurons:from Cajal to 2001.Progress in Brain Research,2002,136:215-238.
    [24]Buhl EH,Halasy K,Somogyi P.Diverse sources of hippocampal unitary inhibitory postsynaptic potentials and the number of synaptic release sites.Nature,1994,368(6474):823-828.
    [25]Arellano JI.Histopathology and reorganization of chandelier cells in the human epileptic sclerotic hippocampus.[Article].Brain,2004,127(1):45-64.
    [26]Inda MC.The Distribution of Chandelier Cell Axon Terminals that Express the GABA Plasma Membrane Transporter GAT-1 in the Human Neocortex.[Article].Cerebral Cortex,2007,17(9):2060-2071.
    [27]de FJ,de Felipe J.[Chandelier cells and their possible implication in epilepsy].[Review][122 refs][Spanish].Neurologia,1999,14 Suppl 3:7-19.
    [28]Soriano E,Martinez A,Farinas I,et al.Chandelier cells in the hippocampal formation of the rat:the entorhinal area and subicular complex.Journal of Comparative Neurology,1993,337(1):151-167.
    [29]DeFelipe J,Hendry SH,Jones EG,DeFelipe J,Hendry SH,Jones EG.Visualization of chandelier cell axons by parvalbumin immunoreactivity in monkey cerebral cortex.Proceedings of the National Academy of Sciences of the United States of America,1989,86(6):2093-2097.
    [30]Zaitsev AV.Localization of Calcium-binding Proteins in Physiologically and Morphologically Characterized Interneurons of Monkey Dorsolateral Prefrontal Cortex.[Article].Cerebral Cortex,2005,15(8):1178-1186.
    [31]Berger T,Schwarz C,Kraushaar U,et al.Dentate gyrus basket cell GABAA receptors are blocked by Zn2+ via changes of their desensitization kinetics:an in situ patch-clamp and single-cell PCR study.Journal of Neuroscience,1998,18(7):2437-2448.
    [32]Southan AP,Robertson B,Southan AP,Robertson B.Patch-clamp recordings from cerebellar basket cell bodies and their presynaptic terminals reveal an asymmetric distribution of voltage-gated potassium channels.Journal of Neuroscience,1998,18(3):948-955.
    [33]MILASIN JELE.MAPK Activation in Cerebellar Basket Cell Terminals after Harmaline Treatment.[Announcement].Annals of the New York Academy of Sciences,2005,1048:411-417.
    [34]Finch DM,Babb TL,Finch DM,Babb TL.Response decrement in a hippocampal basket cell.Brain Research,1977,130(2):354-359.
    [35]Chan-Palay V,Palay SL,Chan-Palay V,Palay SL.Interrelations of basket cell axons and climbing fibers in the cerebellar cortex of the rat.Zeitsehrift fur Anatomic und Entwicklungsgeschichte,1970,132(3):191-227.
    [36]Gulyas AI,Miles R,Hajos N,Freund TE Precision and variability in postsynaptic target selection of inhibitory cells in the hippocampal CA3region.Eur J Neurosci,1993,5(12):1729-1751.
    [37]Oliva AA,Jr.,Jiang M,Lain T,Smith KL,Swann JW.Novel hippocampal interneuronal subtypes identified using transgenic mice that express green fluorescent protein in GABAergic interneurons.J Neurosci,2000,20(9):3354-3368.
    [38]Gulyas AI,Hajos N,Katona I,Freund TF.Interneurons are the local targets of hippoeampal inhibitory cells which project to the medial septum.Eur J Neurosci,2003,17(9):1861-1872.
    [39]Maccaferri G,Roberts JD,Szucs P,Cottingham CA,Somogyi P.Cell surface domain specific postsynaptic currents evoked by identified GABAergic neurones in rat hippocampus in vitro.J Physiol,2000,524 Pt 1:91-116.:91-116.
    [40]Cossart R,Dinocourt C,Hirsch JC,et al.Dendritic but not somatic GABAergic inhibition is decreased in experimental epilepsy.Nat Neurosci,2001,4(1):52-62.
    [41]McBain CJ,DiChiara TJ,Kauer JA.Activation of metabotropic glutamate receptors differentially affects two classes of hippocampal interneurons and potentiates excitatory synaptic transmission.J Neurosci,1994,14(7):4433-4445.
    [42]Dumitriu D,Cossart R,Huang J,Yuste R.Correlation between axonal morphologies and synaptic input kinetics of interneurons from mouse visual cortex.Cerebral Cortex,2007,17(1):81-91.
    [43]Woodruff AR,Sah P.Networks of parvalbumin-positive interneurons in the basolateral amygdala.Journal of Neuroscience,2007,27(3):553-563.
    [44]Storm-Mathisen J,Leknes AK,Bore AT,et al.First visualization of glutamate and GABA in neurones by immunocytochemistry.Nature,1983,301(5900):517-520.
    [45]Ribak CE.Aspinous and sparsely-spinous stellate neurons in the visual cortex of rats contain glutamic acid decarboxylase.J Neurocytol,1978,7(4):461-478.
    [46]Baraban SC,Tallent MK.Interneuron Diversity series:Interneuronal neuropeptides—endogenous regulators of neuronal excitability.[Review][93refs].Trends in Neurosciences,2004,27(3):135-142.
    [47]Schwartzkroin PA,Mathers LH.Physiological and morphological identification of a nonpyramidal hippocampal cell type.Brain Res,1978,157(1):1-10.
    [48]Kawaguchi Y,Hama K.Fast-spiking non-pyramidal cells in the hippocampal CA3 region,dentate gyms and subiculum of rats.1987.
    [49]Angulo MC,Staiger JF,Rossier J,Audinat E.Distinct local circuits between neocortical pyramidal cells and fast-spiking interneurons in young adult rats.Journal of Neurophysiology,2003,89(2):943-953.
    [50]Jonas P,Bischofberger J,Fricker D,Miles R.Intemeuron Diversity series:Fast in,fast out—temporal and spatial signal processing in hippocampal interneurons.Trends Neurosci,2004,27(1):30-40.
    [51]Arellano JI.Histopathology and reorganization of chandelier cells in the human epileptic sclerotic hippocampus.[Article].Brain,2004,127(1):45-64.
    [52]Inda MC.The Distribution of Chandelier Cell Axon Terminals that Express the GABA Plasma Membrane Transporter GAT-1 in the Human Neocortex.[Article].Cerebral Cortex,2007,17(9):2060-2071.
    [53]Gonzalez-Burgos G,Krimer LS,Povysheva NV,et al.Functional properties of fast spiking intemeurons and their synaptic connections with pyramidal cells in primate dorsolateral prefrontal cortex.Journal of Neurophysiology,2005,93(2):942-953.
    [54]Stratum lacunosum-moleculare interneurons of hippocampal CA1 region.I.Intracellular response characteristics,synaptic responses,and morphology.
    [55]Martina M,Vida I,Jonas P.Distal initiation and active propagation of action potentials in interneuron dendrites.2000.
    [56]Goldberg JH,Yuste R,Tamas G.Ca2+ imaging of mouse neocortical intemeurone dendrites:contribution of Ca2+-permeable AMPA and NMDA receptors to subthreshold Ca2+dynamics.J Physiol,2003,551(Pt 1):67-78.
    [57]Geiger JR,Melcher T,Koh DS,et al.Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS.Neuron,1995,15(1):193-204.
    [58]McBain CJ,Dingledine R.Heterogeneity of synaptic glutamate receptors on CA3 stratum radiatum intemeurones of rat hippocampus.J Physiol,1993,462:373-92.:373-392.
    [59]Isa T,Itazawa S,Iino M,Tsuzuki K,Ozawa S.Distribution of neurones expressing inwardly rectifying and Ca(2+)-permeable AMPA receptors in rat hippocampal slices.J Physiol,1996,491(Pt 3):719-733.
    [60]Geiger JR,Lubke J,Roth A,Frotscher M,Jonas P.Submillisecond AMPA receptor-mediated signaling at a principal neuron-interneuron synapse.Neuron,1997,18(6):1009-1023.
    [61]Maccaferri G,Dingledine R.Control of feedforward dendritic inhibition by NMDA receptor-dependent spike timing in hippocampal interneurons.2002.
    [62]Nyiri G,Stephenson FA,Freund TF,Somogyi P.Large variability in synaptic N-methyl-D-aspartate receptor density on interneurons and a comparison with pyramidal-cell spines in the rat hippocampus.2003.
    [63]Maccaferri G,McBain CJ.Passive propagation of LTD to stratum oriens-alveus inhibitory neurons modulates the temporoammonic input to the hippocampal CA1 region.Neuron,1995,15(1):137-145.
    [64]McBain CJ,Fisahn A.Interneurons unbound.Nat Rev Neurosci,2001,2(1):11-23.
    [65]Buzsaki G,Chrobak JJ.Temporal structure in spatially organized neuronal ensembles:a role for interneuronal networks.Curr Opin Neurobiol,1995,5(4):504-510.
    [66]Whittington MA,Traub RD,Jefferys JG.Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation.Nature,1995,373(6515):612-615.
    [67]Bartos M,Vida I,Frotscher M,et al.Fast synaptic inhibition promotes synchronized gamma oscillations in hippocampal interneuron networks.Proc Natl Acad Sci U S A,2002,99(20):13222-13227.
    [68]Hajos N,Mody I.Synaptic communication among hippocampal interneurons:properties of spontaneous IPSCs in morphologically identified cells.J Neurosci,1997,17(21):8427-8442.
    [69]Traub RD,Pais I,Bibbig A.Contrasting roles of axonal(pyramidal cell) and dendritic(interneuron) electrical coupling in the generation of neuronal network oscillations.
    [70]Fukuda T,Kosaka T.Gap junctions linking the dendritic network of GABAergic interneurons in the hippocampus.J Neurosci,2000,20(4):1519-1528.
    [71]Chapman CA.Intrinsic theta-frequency membrane potential oscillations in hippocampal CA1 intemeurons of stratum lacunosum-moleculare.
    [72]Cobb SR,Buhl EH,Halasy K,Paulsen O,Somogyi P.Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons.Nature,1995,378(6552):75-78.
    [73]Bland BH,Konopacki J,Dyck RH.Relationship between membrane potential oscillations and rhythmic discharges in identified hippocampal theta-related cells.J Neurophysiol,2002,88(6):3046-3066.
    [74]Gupta A,Wang Y,Markram H.Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex.Science,2000,287(5451):273-278.
    [75]Parra P,Gulyas AI,Miles R.How many subtypes of inhibitory cells in the hippocampus? 1998.
    [76]Bischofberger J,Jonas P.TwoB or not twoB:differential transmission at glutamatergic mossy fiber-interneuron synapses in the hippocampus.Trends Neurosci,2002,25(12):600-603.
    [77]Lei S,McBain CJ.Distinct NMDA receptors provide differential modes of transmission at mossy fiber-interneuron synapses.Neuron,2002,33(6):921-933.
    [78]Mott DD,Turner DA,Okazaki MM,Lewis DV.Interneurons of the dentate-hilus border of the rat dentate gyms:morphological and electrophysiological heterogeneity.J Neurosci,1997,17(11):3990-4005.
    [79]Ross ST,Soltesz I.Long-term plasticity in interneurons of the dentate gyrus.Proc Natl Acad Sci U S A,2001,98(15):8874-8879.
    [80]Alle H,Jonas P,Geiger JR.PTP and LTP at a hippocampal mossy fiber-interneuron synapse.Proc Natl Acad Sci U S A,2001,98(25):14708-14713.
    [81]Maccaferri G,Toth K,McBain CJ.Target-specific expression of presynaptic mossy fiber plasticity.Science,1998,279(5355):1368-1370.
    [82]Perez Y,Morin F.A hebbian form of long-term potentiation dependent on mGluRla in hippocampal inhibitory interneurons.
    [83]McMahon LL,Kauer JA.Hippocampal interneurons express a novel form of synaptic plasticity.Neuron,1997,18(2):295-305.
    [84]Aizenman CD,Linden DJ.Rapid,synaptically driven increases in the intrinsic excitability of cerebellar deep nuclear neurons.Nat Neurosci, 2000,3(2):109-111.
    [85]Liu SJ,Cull-Candy SG.Activity-dependent change in AMPA receptor properties in cerebellar stellate cells.2002.
    [86]Elowitz MB,Levine AJ,Siggia ED,Swain PS.Stochastic gene expression in a single cell.Science,2002,297(5584):1183-1186.
    [87]de la CN,Bromberg S,Pasko D,et al.The Rat Genome Database(RGD):developments towards a phenome database.Nucleic Acids Res,2005,33(Database issue):D485-D491.
    [88]Jagalur M,Pal C,Learned-Miller E,Zoeller RT,Kulp D.Analyzing in situ gene expression in the mouse brain with image registration,feature extraction and block clustering.BMC Bioinformatics,2007,8 Suppl 10:S5.:S5.
    [89]Baitaluk M,Qian X,Godbole S,Raval A,Ray A,Gupta A.PathSys:integrating molecular interaction graphs for systems biology.BMC Bioinformatics,2006,7:55.:55.
    [90]Durinck S,Moreau Y,Kasprzyk A,et al.BioMart and Bioconductor:a powerful link between biological databases and microarray data analysis.Bioinformatics,2005,21(16):3439-3440.
    [91]Karp PD,Paley S,Romero P.The Pathway Tools software.Bioinformatics,2002,18 Suppl 1:S225-32.:S225-S232.
    [92]Pal D.On gene ontology and function annotation.Bioinformation,2006,1(3):97-98.
    [93]Ye J,Fang L,Zheng H,et al.WEGO:a web tool for plotting GO annotations.Nucleic Acids Res,2006,34(Web Server issue):W293-W297.
    [94]Leontis NB,Altman RB,Berman HM,et al.The RNA Ontology Consortium:an open invitation to the RNA community.RNA,2006,12(4):533-541.
    [95]Perez-Rey D,Maojo V,Garcia-Remesal M,et al.ONTOFUSION:ontology-based integration of genomic and clinical databases.Comput Biol Med,2006,36(7-8):712-730.
    [96]Creating the gene ontology resource:design and implementation.Genome Res,2001,11(8):1425-1433.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700