用户名: 密码: 验证码:
G蛋白抑制肽GCIP对自发性高血压大鼠心室重构影响及其药物代谢动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高血压病是遗传和环境等多种因素所致的全球性常见病和多发病。近20多年来,随着社会经济状况的改善和人民生活方式的转变,高血压的发病率呈逐年增加趋势;如果高血压长期不治疗,会引起心、脑、肾等重要脏器的损害,如脑卒中,心肌梗死,充血性心衰及肾衰等。左室肥厚是高血压主要的靶器官损害之一,可以引起心脏顺应性以及收缩和舒张功能的下降,并最终导致心力衰竭的发生。心肌肥厚与重构是引起心血管疾病发生率和死亡率显著升高的独立的危险因素。心室重构特点为心肌细胞肥大,间质纤维化及左室重量、形状、结构及功能的改变。高血压导致的左心室肥厚、心肌纤维化及冠脉结构异常即心室重构,是高血压患者心血管事件发生与死亡的主要病理基础。抗高血压治疗不仅应有效控制血压,更应有效抑制和逆转其心血管结构和功能异常,以减少心血管事件的发生率。
     G蛋白在高血压及心血管重构的形成发展过程中扮演着非常重要的角色,在多种因素诱发心肌肥大的细胞信号转导过程中,G蛋白处于枢纽地位,针对G蛋白设计特异性阻止心肌肥大发生发展的药物可能具有更强的作用。GCIP(G protein competitive inhibitory peptide)是由我室针对在心肌肥厚发生发展过程中具有重要作用的G蛋白α亚单位克隆制备出的一种G蛋白竞争性抑制肽,对体外培养的去甲肾上腺素诱导的大鼠心肌细胞肥大具有较好的抑制作用。GCIP-27是在GCIP基础上经分子优化制备出的一种GCIP的衍生肽,能够抑制由AngⅡ、NE等诱导的心肌细胞的肥大和增生;在多种心肌肥厚模型上具有良好的抗心肌肥大作用;并对自发性高血压大鼠(spontaneous hypertensive rat,SHR)的血管重构有良好的抑制作用。
     本实验以自发性高血压大鼠(SHR)为研究对象,采用多普勒超声心动图及无创尾套法,系统评价GCIP-27对SHR心室重构及血压的影响;采用RT-PCR法从分子水平初步探究其抗心室重构的作用机制;并用同位素标记示踪法观察了GCIP-27在动物体内的分布、排泄、代谢过程,获得药代动力学参数,为其以后研发及应用奠定基础。
     方法:
     1.用SHR作为实验动物模型,给予GCIP-27(10、30、90μg.kg-1,i.p.,bid)或氯沙坦(6mg.kg-1,ig,o.d.)治疗8周,并设立Wistar大鼠正常对照。通过如下方法评价GCIP-27对大鼠心室重构及血压的影响:①大鼠血压的测定采用无创尾套法;②超声心动图评价大鼠的左心室结构和心功能;③心肥厚指数及心肌间质胶原含量的测定评价大鼠的心室肥厚程度;④HE染色,光镜下观察大鼠心肌组织形态学改变;VG染色,对大鼠心肌胶原进行定性及半定量分析;透射电镜观察大鼠心肌细胞超微结构的改变。
     2.采用RT-PCR法检测大鼠心肌ANPmRNA、BNPmRNA、α-MHCmRNA、β-MHC mRNA的表达;放射免疫分析法测定心肌细胞磷脂酶C(PLC)活性。
     3.采用同位素标记示踪法,结合三氯乙酸(TCA)沉淀法及低分子量SDS-PAGE法,对GCIP-27进行了药代动力学研究。
     结果:
     1. GCIP-27对SHR血压的影响SHR的收缩压显著高于正常组,10、30、90μg.kg-1的GCIP-27治疗8周后均能明显降低SHR的收缩压(p<0.01),但其降压效果远不如6mg.kg-1的氯沙坦,90μg.kg-1的GCIP-27降压效果仅为后者的60.6%。
     2. GCIP-27对SHR心室重构的影响
     (1) SHR模型组大鼠有明显的心室重构现象,与正常组相比,模型组大鼠左室后壁厚度(PWT)、室间隔厚度(IVST)、心肌肥厚指数(LVMI)、心肌胶原含量、心肌间质胶原面积(CA)、及胶原容积分数(CVF)明显增高(p<0.01);经治疗8周后,GCIP-27 (10、30、90μg.kg-1)均能显著减少(p<0.05)大鼠的PWT、IVST、LVMI、CA、CVF及胶原含量;氯沙坦也能降低除LVMI之外的上述指标(p<0.05),但降低程度不及GCIP-27显著。
     (2)病理及电镜:
     ①SHR模型组大鼠心肌组织形态及心肌细胞超微结构严重受损,光镜下可见心肌细胞明显浊肿,空泡样变化;细胞核肥大或固缩;细胞内容物成颗粒状,断裂融合;可见到坏死灶。VG染色可见模型组SHR大鼠心肌胶原分布较多。电镜下可见心肌细胞肿大,核肥大、畸形、溶解等呈不规则变化;肌浆网扩张;线粒体增生明显,排列紊乱,不同程度(轻、中、重)肿胀,内有空泡形成。②GCIP-27(90μg.kg-1)能明显改善上述病理改变及心肌细胞超微结构,心肌组织形态及心肌细胞超微结构基本正常。③GCIP-27(10、30μg.kg-1)和氯沙坦组大鼠心肌病理改变及超微结构有所改善,但改善不明显,个别视野仍可见到坏死灶。
     3. GCIP-27抗心室重构作用机制的研究
     (1) SHR模型组大鼠心肌ANPmRNA、BNPmRNA、β-MHCmRNA的表达均显著增加及α-MHCmRNA表达减少;治疗8周后,GCIP-27(10、30、90μg.kg-1)及氯沙坦均能降低ANPmRNA、BNPmRNA、β-MHCmRNA的表达及增加α-MHC mRNA的表达。
     (2)模型组大鼠左心室心肌细胞PLC活性显著增加(p<0.01);治疗8周后,GCIP-27(10、30、90μg.kg-1)大鼠心肌细胞PLC活性显著降低(p<0.01);氯沙坦也显著降低SHR大鼠左室心肌细胞PLC活性(p<0.01),相当于GCIP-27低剂量(10μg.kg-1)的疗效。
     4. GCIP-27在动物体内的药代动力学研究
     (1)血药浓度的测定
     血药浓度-时间曲线数据经DAS2.0药代动力学统计程序拟合,求出有关药代动力学参数为:在3.75-480 ng·ml-1剂量范围内,GCIP-27在小鼠体内按一级动力学代谢,并呈三室开放模型。静注125 I-GCIP-27 90μg·kg-1 ,电泳法和酸沉法测得t1/2α、t1/2β、t1/2γ分别为0.009h、0.245h、2.054h和0.025h、0.306h、2.323h;达峰时间tmax均为0.0333 h,平均血浆清除率(cl)分别为0.295 L·h-1·kg-1、0.322 L·h-1·kg-1,表观分布容积(Vd)分别为0.559 L·kg-1、1.29 L·kg-1 ,体内平均滞留时间(MRT)分别为2.353 h、2.515h。
     (2) GCIP-27在小鼠体内的分布
     GCIP-27在小鼠体内分布广泛,其中心、血管、肾、胃、肺、小肠等组织分布较高,肌肉、脂肪等组织相对较低,脑最低。
     (3) GCIP-27在动物体内的排泄
     大鼠72h尿、粪、胆汁原形药物排泄量分别为给药量的26.13%,0.95%和4.12%,72h总排泄量为31.21%。小鼠72h尿、粪原形药物排泄量分别为给药量的27.92%,0.84%,72h总排泄量为28.76%。GCIP-27主要经尿液排泄,少量经胆汁排泄,少许经粪便排泄,提示肾是GCIP-27的主要排泄器官。
     结论:
     1.GCIP-27具有良好的抗SHR心室重构作用,及较明显降低SHR血压的效应,且呈剂量依赖关系。
     2. GCIP-27改善心室重构作用明显优于氯沙坦,90μg/kg的GCIP-27,剂量仅为氯沙坦(6mg/kg)的1/67,其降低大鼠的PWT、IVST、LVMI分别为氯沙坦的1.6倍、2.7倍、3.2倍;但其降压效果仅为后者的60.6%。因此,GCIP-27改善心室重构的作用并非完全依赖于血压的降低,而有较高的选择性和特异性。
     3. GCIP-27改善心室重构的作用机制与降低心肌细胞磷脂酶C(PLC)活性,以及抑制大鼠心肌ANP mRNA、BNP mRNA、β-MHC mRNA及增加α-MHC mRNA的表达有关。
     4. GCIP-27在动物体内按一级动力学代谢,并呈三室开放模型;GCIP-27在动物体内广泛分布,尤其在心、血管、肾、胃、肺等组织分布较高;肾为其主要排泄器官。
BACKGROUND: A major advance in understanding the pathophysiology of heart failure has been gaining an understanding of the process of left ventricular (LV) remodelling. Hypertension is always accompanied with left ventricular hypertrophy, cardiac fibrosis and artery wall thickening. These structural changes in heart and blood vessels are known as cardiovascular remodeling. Cardiovascular remodeling mainly caused by hypertension is the major pathogeny of cardiovascular diseases, and it also increases morbidity and mortality significantly. Left ventricular hypertrophy and remodling is one of the major forms of cardiovascular remodeling, which consists of cardiac cell proliferation, hypertrophy, interstitial fibrosis and necrosis, and then affects ventricle functions. Left ventricular (LV) remodeling , which is characterized by the alteration of LV size, shape, and function, occurs during several clinical conditions, such as hypertension, chronic heart failure, valvular heart disease, and myocardial infarction, etc. Therefore, the aim of treatment hypertension is not only to control the blood pressure effectively, but also to prevent the cardiovascular remodeling, and then to protect target organ.
     Various factors, including stretch stimulation, AngII, NE, neuropeptide Y and endothelin (ET)-1, among others, can induce ventricular hypertrophy and remodelling through their respective receptor and G-protein signalling pathways. The G-protein is located at the convergent point in the signal transduction pathway that leads to cardiovascular remodelling. It has been shown that the Gα-protein carboxyl terminus imitation polypeptide (GCIP), cloned and expressed in our laboratory, can inhibit cardiomyocyte hypertrophy induced by NE in vitro. GCIP-27, the optimised form of GCIP, has been shown to effectively prevent cardiac hypertrophy in vitro and in vivo.
     AIM: This study was to explore the effects of G protein inhibitory polypeptide GCIP-27 on the left ventricular remodeling and blood pressure in spontaneous hypertensive rats (SHR), the potential underlying mechanisms and its pharmacokinetics.
     METHODS:
     1. In the present study,10, 30 or 90μg/kg, i.p., GCIP-27 was administered for 8 weeks to SHR. In addition, another two groups of SHR were treated with either 6 mg/kg losartan or vehicle (saline). Wistar-Kyoto rats were used as controls. Systolic blood pressure (SBP) was measured using the standard tail-cuff method once every 2 weeks. At the end of the experiment, the LV mass index (LVMI) was evaluated. In addition, LV structure and function, collagen content, microstructure and ultrastructure were examined using echocardiography, the hydroxyproline assay, routine light microscopy and transmission electron microscopy, respectively.
     2. The expression of ANP, BNP,α-MHC,β-MHC were measured with RT-PCR method. The phosphslipase C activity was determined with radioimmunoassay technique. 3. The pharmacokinetics of GCIP-27 were measured by isotope labeling tracer method.
     RESULTS:
     1. In the losartan- and GCIP-27 (10, 30 and 90μg.kg-1)-treated groups, SBP decreased significantly compared with that of the vehicle group. However, even at the highest concentration used, the hypotensive effect of GCIP-27 was weaker than that of losartan.
     2. GCIP-27 (10, 30 and 90μg.kg-1) significantly reduced LV posterior wall thickness(PWT), the thickness of the interventricular septum(IVST), LVMI, collagen content, collagen areas(CA), and collagen volume fractin(CVF) compared with vehicle group(p<0.01), and Losartan (6 mg.kg-1) also obviously reduced PWT, IVST, collagen content, CA and CVF(p<0.05),and reduced LVMI(p>0.05). And the effects of GCIP-27 at all three concentrations tested being greater than that of losartan.
     3. GCIP-27 was more obvious in improving myocardial ultrastructure and pathology such as inflammation, hypertrophy, fibrosis, degeneration and necrosis, simultaneously. And the effects of GCIP-27 was superior to Losartan.
     4. Both GCIP-27 (10, 30 and 90μg.kg-1) and Losartan (6mg.kg-1) significantly inhibited Phospholipase C activity(p<0.01), and ANPmRNA, BNPmRNA,β-MHCmRNA levels expression in SHR(p<0.01), and increasedα-MHCmRNA levels, respectively.
     5. The plasma concentration-time curves of GCIP-27 in mice conformed to three-compartment open model with first order kinetics pattern.After intravenous injection of 125I GCIP-27 at a dose of 90μg.kg-1, t1/2α, t1/2β, t1/2γdetermined by trichloroacetic acid (TCA) method were 0.009h, 0.245h and 2.054h, respectively, and by SDS-PAGE method were 0.025h, 0.306h and 2.323h, respectively. The time to peak ( Tmax) for both methods was 0.0333h, with mean plasma clearance (CL) of 0.295 L·h -1·kg-1 and 0.322 L·h -1·kg-1, apparent volume of distribution ( Vd) of 0.559 L·kg-1 and 1.29L·kg-1 and mean residence time( MRT) of 2.353 h and 2.515h in mice.
     6. GCIP-27 was shown to be widely distributed to the various tissues. There was a relatively higher in heart, blood vessel, kidney, stomach, lung, mall intestine,etc, and relatively lower in fat and muscle, and the lowest in brain.
     7. GCIP-27 excreted in urine, feces and bile within 72h was 26.13% , 0.95% and 4.12% in rats, and urine, feces within 72h was 27.92%, 0.84% in mice respectively.The parent compound of GCIP-27 was mainly excreted by urine. And kidney is main emunctory organ.
     CONCLUSION:
     1. GCIP-27 could effectively attenuate left ventricular remodelling and decreases the SBP in SHR, and the effect was dose-dependent.
     2. GCIP-27 treatment of SHR is superior to treatment with losartan in terms of suppressing the development of LV remodelling, although the hypotensive effect of GCIP-27 is weaker than that of losartan. Therefore, the anti-remodelling effect of GCIP-27 in SHR is not entirely dependent on reductions in BP.
     3. The potential underlying mechanisms of GCIP-27 is the inhibition of G protein, it could inhibite the decrease of phospholipase C activity and ANPmRNA, BNPmRNA,β-MHC mRNA expression, and increaseα-MHCmRNA levels in SHR, respectively.
     4. The Plasma concentration-time curves of GCIP-27 in mice conformed to three-compartment open model of first order kinetics.
     5. GCIP-27 was shown to be widely distributed to the various tissues. There was a relatively higher in heart, blood vessel, kidney, stomach, lung, mall intestine, etc. The parent compound of GCIP-27 was mainly excreted by urine, and, kidney is major emunctory organ.
引文
1. McKinsey TA, Kass DA.Small-molecule therapies for cardiac hypertrophy: moving beneath the cell surface. Nat Rev Drug Discov. 2007; 6(8):617-35.
    2. Domenighetti AA, Boixel C, Cefai D, et al. Chronic angiotensin II stimulation in the heart produces an acquired long QT syndrome associated with IK1 potassium current downregulation. J Mol Cell Cardiol. 2007; 42(1):63-70.
    3. Dietrich A, Kalwa H, Fuchs B, et al. In vivo TRPC functions in the cardiopulmonary vasculature. Cell Calcium. 2007; 42(2):233-44.
    4. Gradman AH, Alfayoumi F. From left ventricular hypertrophy to congestive heart failure: management of hypertensive heart disease. Prog Cardiovasc Dis. 2006; 48(5):326-341.
    5 Carlstrom J, Symons JD, Wu TC, et al. A quercetin supplemented diet does not prevent cardiovascular complications in spontaneously hypertensive rats.JNutr.2007; 137(3):628-33.
    6. Berk BC, Fujiwara K, Lehoux S. ECM remodeling in hypertensive heart disease. J Clin Invest. 2007; 117(3):568-75.
    7. Berenji K, Drazner MH, Rothermel BA, et al. Does load-induced ventricular hypertrophy progress to systolic heart failure? Am J Physiol Heart Circ Physiol.2005; 289(1):H8-H16.
    8. Kostenis E, Martini L, Ellis J, et al. A highly conserved glycine within linker I and the extreme C terminus of G protein alpha subunits interact cooperatively in switching G protein-coupled receptor-to-effector specificity.J Pharmacol ExpTher.2005; 313(1):78-87.
    9. Ridge KD, Palczewski K. Visual rhodopsin sees the light: structure and mechanism of G protein signaling. J Biol Chem. 2007; 282(13):9297-301.
    10. D'Ursi AM, Giusti L, Albrizio S, et al. A membrane-permeable peptide containing the last 21 residues of the Gαs carboxyl terminus inhibits Gs-coupled receptor signaling in intact cells: correlations between peptide structure and biological activity. Mol Pharmacol. 2006; 69(3):727-36.
    11. Zhang HG, Li XH, Zhou JZ, et al. Gαq-protein carboxyl terminus imitation polypeptideGCIP-27 attenuates cardiac hypertrophy in vitro and in vivo. Clin Exp Pharmacol Physiol. 2007; 34(12):1276-81.
    12.程轶群,李晓辉,张海港. G蛋白抑制肽对血管紧张素Ⅱ诱导的大鼠血管平滑肌细胞增殖的影响[J].中国动脉硬化杂志,2006,14(9): 763-766.
    13. Bing OHL, Conrad CH, Boluyt MO, et al. Studies ofprevention, treatment and mechanisms of heart failure in the aging spontaneously hypertensive rat. Heart Fail. Rev. 2002; 7:71-88.
    14. Haugen E, Chen J, Wikstr?m J, et al. Parallel geneexpressions of IL-6 and BNP during cardiac hypertrophy complicated with diastolic dysfunction in spontaneously hypertensive rats. Int. J. Cardiol. 2007; 115:24-8.
    15. Mitchell GF, Pfeffer JM, Pfeffer MA. The transition to failure in the spontaneously hypertensive rats. Am. J. Hypertens . 1997; 10:120–6.
    16. Kota M, Krishna Gopisetty S, Gopal Chitrapu R.V. A non-invasive evaluation by Doppler echocardiography in streptozotocin-induced diabetic rats. Vasc. Pharmacol. 2005; 43:91–100.
    17. Akula A, Kota MK, Gopisetty SG, et al. Biochemical histological and echocardiographical changes during experimental cardiomyopathy in STZ-induced diabetic rats. Pharmacol. Res. 2003; 48:429–35.
    18. Liu J. Experimental Methodology in Pharmacology: Advanced Techniques and NewMethods. Chemical Industry Press, Beijing. 2003 (in Chinese).
    19.徐叔云主编.药理实验方法学.北京:人民卫生出版社,2001: 941-955.
    20. Suzuki J, Ogawa M, Futamatsu H, et al. Tea catechinsimprove left ventricular dysfunction,suppress myocardial inflammation and fibrosis,and alter cytokine expression in rat autoimmune myocarditis. Eur. J. Heart Fail. 2007; 9:152-9.
    21. Lee SS, Naqvi TZ, Forrester J, et al. The effect of granulocyte colony stimulatingfactor on regional and global myocardial function in the porcine infarct model. Int. J.Cardiol. 2007; 116:225-30.
    22. Plante E, Lachance D, Roussel E, et al. Impact of Anesthesia on Echocardiographic Evaluation of Systolic and Diastolic Function in Rats. J. Am. Soc. Echocardiogr. 2006; 19:1520-5.
    23. Mazzolai L, Pedrazzini T, Nicoud F et al. Increased cardiac angiotensin levelsinduceright and left ventricular hypertrophy in normotensive mice. Hypertension. 2000; 35:985-91.
    24. Hu CT, Chang HR, Hsu YH, et al. Ventricular hypertrophy and arterial hemodynamics following deprivation of nitric oxide in rats. Life Sci. 2005; 78:164-73.
    25. Yu JX, Zhang YD,Yin XX, et al. Protective effects of bendazac lysine on diabeticperipheral neuropathy in streptozotocin-induced diabetic rats. Clin. Exp. Pharmacol.Physiol. 2006; 33:1231-8.
    26. Yao HW, Zhu JP, Zhao MH, et al. Losartan attenuates bleomycin-induced pulmonartfibrosis rats. Respiration. 2006; 73:236-42.
    27.蔡文琴主编.现代实用细胞与分子生物学实验技术.北京:人民军医出版社,2003: 66-232.
    28.刘宇宏,曾秋棠,陈斌.氟伐他汀对心肌梗死后心衰大鼠白介素-1β表达的影响[J].中国药理学通报,2006,22(3):361~5.
    29. Brilla C G, Janick J S,Weber K T. Impaired diastolic function and coronary reserve in genetic hypertension .Cir Res. 1991; 69: 107- 115.
    30. Olivotto I, Cecchi F, Gistri R, et al. Relevance of coronary microvascular flow impairment to long-term remodeling and systolic dysfunction in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2006; 47(5): 1043-8.
    31. Simko F, Luptak I, Matuskova J, et al. Heart remodeling in the hereditary hypertriglyceridemic rat : effect of captopril and nitric oxide deficiency. Ann N Y Acad Sci. 2002 ; 967 (3) :454– 462.
    32.刘力生主编.高血压.北京:人民卫生出版社,2001: 870-890,879-885,433-445.
    33. Yamori Y. Spontaneous hypertension in the rat: a model for human "Essential" hypertension. Verh Dtsch Ges Inn Med. 2006; 80: 168-170.
    34.于学军,戚文航,顾德官.自发性高血压大鼠左室肥厚及心肌纤维化的动态变化.高血压杂志,2005,7(2): 159-162.
    35. Diez J, Panizo A, Hernandez M. Cardiomyocyocyte apoptosis and cardiac angiotensin- converting enzyme in spontaneously hypertensive rats. Hypertension. 2007;30: 1029-34.
    36. Liu JJ, Peng LM, Bradley CJ. Increased apoptosis in the heart of genetic hypertension, associated with increased fibroblasts. Cardiovas Res. 2007; 45: 729-735.
    37. Watson LE, Sheth M, Denyer RF, et al. Baseline echocardiographic values for adult male rats. J. Am. Soc. Echocardiogr. 2004; 17:161-7.
    38. Brown L, Fenning A, Chan V, et al. Echocardiographic assessment of cardiac structure and function in rats. Heart Lung Circ. 2002; 11:167-73.
    39. Devi S, Kennedy RH, Joseph L, et al.Joseph J. Effect of long-term hyperhomocysteinemia on myocardial structure and function in hypertensive rats. Cardiovasc. Pathol. 2006; 15:75-82.
    1. Lifton RP, Gharavi AG, Geller DS. Molecular mechanisms of human hypertension. Cell. 2001; 104(4): 545-56.
    2. Gohlke P, Lamberty V, Kuwer L, et al. Vascular Remodeling in systemtic hypertension. Hypertension. 1994; 23(2 Part 3): 74.
    3. Rizzoni D, Castellano M, Porteri E, et al. Vascular structure and functional alterations before and after the development of hypertension in spontaneously hypertension rat. Am J Hypertens. 1994; 7(2): 193-200.
    4. Kostenis E, Martini L, Ellis J, et al. A highly conserved glycine within linker I and theextreme C terminus of G protein alpha subunits interact cooperatively in switching G protein-coupled receptor-to-effector specificity. J Pharmacol Exp Ther. 2005; 313(1): 78-87.
    5. Heydorn A, Ward RJ, Jorgensen R, et al. Identification of a novel site within G protein alpha subunits important for specificity of receptor-G protein interactin. Mol Pharmacol. 2004; 66(2): 250-59.
    6. Xiaoxia Kou, Qingping Wu, Dapeng Wang, et al. Simultaneous detection of norovirus and rotavirus in oysters by multiplex RT–PCR. Food Control. 2008; 19(7): 722-26.
    7. Bor-Sen Wang, Hui Mei Yu, Lee-Wen Chang, et al. Protective effects of pu-erh tea on LDL oxidation and nitric oxide generation in macrophage cells. LWT - Food Science and Technology. 2008; 41(6): 1122-32.
    8. Xiaohui Zhang, Cassandra B. Baughma, et al. In vitro evaluation of electrospun silk fibroin scaffolds for vascular cell growth. Biomaterials. 2008; 29(14): 2217-27.
    9. Song Hua, Yong Zhang, Kai Song, et al. Development of bovine–ovine interspecies cloned embryos and mitochondria segregation in blastomeres during preimplantation. Animal Reproduction Science. 2008; 105(3-4): 245-57.
    10. Schnabel P, G?s H, Nohr T, Camps M, B?hm M. Identification and characterization of G protein-regulated phospholipase C in human myocardium. J. Mol. Cell. Cardiol. 1996; 28:2419-27.
    11. Schnabel P, Nohr T, Nickenig G, Paul M, B?hm M. NA-adrenergic signal transduction in renin transgenic rats. Hypertension. 1997; 30:1356-61.
    12. Marion Schmolke, J?rg Fabian, Matthias Lehr. High-performance liquid chromatographic assay with ultraviolet spectrometric detection for the evaluation of inhibitors of phosphatidylinositol-specific phospholipase C. Analytical Biochemistry. 2008; 375(2): 291-8.
    13. Yu-Min Yang, Jun-Zhu Chen, Xing-Xiang, et al. Resveratrol attenuates thromboxane A2 receptor agonist-induced platelet activation by reducing phospholipase C activity. European Journal of Pharmacology. 2008; 583(1): 148-55.
    14. Francesco Buonocore, Elisa Randelli, Daniela Casani, et al. Molecular cloning, differential expression and 3D structural analysis of the MHC class-IIβchain from sea bass (Dicentrarchus labrax L.). Fish & Shellfish Immunology. 2007; 23(4): 853-66.
    15. Grace Freire, Catherina Ocampo, Nadim Ilbawi, et al. Overt expression of AP-1 reduces alpha myosin heavy chain expression and contributes to heart failure from chronic volume overload. Journal of Molecular and Cellular Cardiology. 2007; 43(4): 465-78.
    16. Bassem H. Dekelbab, Selma F. Witchel , Donald B. DeFranco. TNF-αand glucocorticoid receptor interactin in L6 muscle cells: A cooperative downregulation of myosin heavy chain. Steroids. 2007; 72(9-10): 705-12.
    17. Hitoo Nishi, Koh Ono, Takahiro Horie, et al. MicroRNAs Controls Expression ofα- andβ-myosin Heavy Chain Genes in Cardiac Myocytes. Journal of Cardiac Failure. 2007; 13(6): S39.
    18. JAM ES J , MART IN L , KREN Z M , et al. Forced expression of alpha-myosin heavy chain in the rabbit ventricle results in cardio protection under cardio myopathic conditions. Circulation. 2005; 111 (18) : 2339-46.
    19. SA KURA I S, A SH IDA T, IEK I K, et al. Left ventricular regional variations in myosin isoform shift in Dah l salt-sensitive hypertensive rats. Hypertens Res. 2003; 26 (3) : 251-55.
    20. KRUM ENACKER J S, KA TSU K I S, KOTS A , et al. Differential expression of genes invoved in cGMP-dependent nitric oxide signaling in murine-embryonic stem (ES) cells and ES cell derived cardiomyocytes. N itric Oxide. 2006;14 (1) : 1211.
    21. Freund C, Schmidt-Ull rich R, Baurand A, et al. Requirement of nuclear factor-kappa B in angiotensin II- and isoproterenol-induced cardiac hypertrophy in vivo. Circulation. 2005; 111(18):2319-25.
    22. Hasegawa K, Lee SJ, Jobe, et al. cis-Acting Sequences That Mediate Induction of -Myosin Heavy Chain Gene Expression During Left Ventricular Hypertrophy due to Aortic Constriction. Circulation. 1997; 96(11): 3943-53.
    23. McCarthy JJ, Vyas DR, Tsika GL, et al. Segregated Regulatory Elements Direct b-Myosin Heavy Chain Expression in Response to Altered Muscle Activity. J Biol Chem.1999; 274(29): 14270-79.
    24. Allen DL, Leinwand LA. Intracellular Calcium and Myosin Isoform Transitions. J Biol Chem .2002; 277(47): 45323–30.
    25. Klinger J R, Petit RD, Curtin LA, et al . Cardiopulmonary responses to chronic hypoxia in t ransgenic mice t hat over express ANP . J Appl Physiol. 1993; 75 :198-205.
    26. Luchner A, Muders F, Dietl O, et al. Differential expression of cardiac ANP and BNP in a rabbit model of progressive left ventricular dysfunction. Cardiovas Res. 2001; 51 (3) : 601 - 7.
    27. Tran KL, Lu X, Lei M, et al. Up-regulation of corin gene expression in hypertrophic cardio-myocytes and failing myocardium.Am J Physiol Heart Circ Physiol. 2004; 287 (4) : H1625– 31.
    28. Rebecca C. Stratton, Paul E. Squires,et al. ANP stimulates hepatocyte Ca2+ efflux via plasma membrane recruitment of PKGIα. Biochemical and Biophysical Research Communications. 2008; 368(4): 965-70.
    30. Sofie Trajanovska, John A. Donald. Molecular cloning of natriuretic peptides from the heart of reptiles: Loss of ANP in diapsid reptiles and birds. General and Comparative Endocrinology. 2008; 156(2): 339-46.
    31. Horio T, Nishikimi T, Yoshihara F, et al. Inhibitory regulation of hypertrophy by endogenous atrial natriuretic peptide in cultured cardiac myocytes. Hypertension. 2000; 35 :19– 24.
    32. Thibault G, Amiri F, Garcia R. Regulation of natriuretic peptide secretion by the heart . Annu Rev Physiol. 1999; 61 : 193~217.
    33. SilberbachM, Roberts CT. Natriuretic peptide signalling: molecular and cellular pathways to growth regulation. Cell S ignal. 2001; 13: 221-31.
    34. Yamamoto K, Ohki R, Lee RT et al. Peroxisome proliferators-activated receptorγactivators inhibit cardiac hypertrophy in cardiac myocytes. Circulation. 2001; 104: 1670- 75.
    35. Zhou JZ, Li XH, Zhang HG, et al. Cloning and gene expression of G protein competitive inhibitory polypeptide and its prophylactic effects on myocardial hypertrophy in vitro. Acta Pharmacol. Sin. 2003; 24:1108-12.
    36. Zhang HG, Li XH, Zhou JZ, et al. G_q-protein carboxyl terminus imitation polypeptide GCIP-27 attenuates cardiac hypertrophy in vitro and in vivo. Clin. Exp. Pharmacol. Physiol. 2007; 34:1276-81.
    37. Mazzoni MR, Taddei S, Giusti L, et al. A Gs-carboxyl-terminal peptide prevents Gs activation by the A2A adenosine receptor. Mol. Pharmacol. 2000; 58:226-36.
    38. Grieco P, Albrizio S, D'Ursi AM, et al. A structure-activity relationship study on position-2 of the G_s C-terminal peptide able to inhibit Gs activation by A2A adenosine receptor. Eur. J. Med. Chem. 2003; 38:13-8.
    39. Devi S, Kennedy RH, Joseph L, et al. Effect of long-term hyperhomocysteinemia on myocardial structure and function in hypertensive rats. Cardiovasc. Pathol. 2006; 15:75-82.
    40. Hooper JD, Scarman AL, Clarke BE et al. Localization of the mosaic transmembrane serine protease COR IN to heart myocytes. Eur J B iochem. 2000; 267 (23) : 6931 - 7.
    41. A ZAHAB I, S P ICARD,N FORT IN , et al. Expression of constitutively active guanylate cyclase in cardiomyocytes inhibits the hypertrophic effects of isoprotereno l and aortic constriction on mouse hearts. J Bio l Chem. 2003; 278 (48) : 47694-99.
    1.周见至,李晓辉,张海港,等.抗心肌肥大多肽GCIP表达载体的构建[J].第三军医大学学报,2004,26(4):298-300.
    2.周见至,李晓辉,吴雪晖,等. Gq蛋白竟争性抑制肽GCIP-27质粒载体的构建及表达[J].重庆医学,2007,36(21):2172-73.
    3. Zhang HG, Li XH. Optimization of G protein inhibitory polypeptide and its activities on cardiac hypertrophy (Abstract). Acta Pharmacol Sin. 2006; 27(suppl): 182-183.
    4. Zhou JZ, Li XH, Zhang HG, et al. Cloning and gene expression of Gprotein competitive inhibitory polypeptide and its prophylactic effects on myocardial hypertrophy in vitro. Acta Pharmacol. Sin. 2003; 24:1108-12.
    5. Zhang HG, Li XH, Zhou JZ, et al. Gq-protein carboxyl terminusimitation polypeptide GCIP-27 attenuates cardiac hypertrophy in vitro and in vivo. Clin. Exp. Pharmacol. Physiol. 2007; 34:1276-81.
    6.程轶群,李晓辉,张海港. G蛋白抑制肽对血管紧张素Ⅱ诱导的大鼠血管平滑肌细胞增殖的影响[J].中国动脉硬化杂志. 2006,14(9): 763-766.
    7.王秀琴,李晓辉,张海港,等. GCIP-27对自发性高血压大鼠左心室结构影响的实验研究[J].中国药理学通报,2007,23(8):841-43.
    8. F.Z. Biber Muftuler, P. Unak, S. Teksoz, et al. 131I labeling of tamoxifen and biodistribution studies in rats. Applied Radiation and Isotopes. 2008; 66(2):178-187.
    9. Andreas T.J. Vogg, Andreas K. Buck, Michaela Schmid, et al. Synthesis and biodistribution of 3′-fluoro-5-[131I]iodo-2′-deoxyuridine: a comparative study of [131I]FLIdU and [18F]FLT. Nuclear Medicine and Biology. 2007; 34(3):273-81.
    10. Harinder P.S. Makkar. A review of the use of isotopic and nuclear techniques in animal production. Animal Feed Science and Technology. 2008; 140(3-4):418-443.
    11.汤仲明主编.生物技术药物药代动力学.北京:化学工业出版社,2004:24.
    12.周清武.常用药动学公式的拓展及应用[J].中国药房,2006,14(4)276-77.
    13. Norma Paniagua-Castro, Gerardo Escalona-Cardoso, Eduardo Madrigal-Bujaidar, et al. Protection against cadmium-induced teratogenicity in vitro by glycine. Toxicology in Vitro. 2008; 22(1): 75-79.
    14. Paola Palozza, Rossella Simone, Nevio Picci, et al. Design, synthesis, and antioxidant potency of novelα-tocopherol analogues in isolated membranes and intact cells. Free Radical Biology and Medicine. 2008; 12(1): 174-79.
    15. Doug K. Allen, Yair Shachar-Hill, John B. Ohlrogge. Compartment-specific labeling information in 13C metabolic flux analysis of plants. Phytochemistry. 2007; 68(16-18): 2197-2210.
    16. Yasuaki Tanaka, Toshihiro Miyajima, Isao Koike, et al. Translocation and conservation of organic nitrogen within the coral-zooxanthella symbiotic system of Acropora pulchra, as demonstrated by dual isotope-labeling techniques. Journal of Experimental Marine Biology and Ecology. 2006; 336(1): 110-19.
    17. Micaela Pescuma, Elvira María Hébert, Fernanda Mozzi et al. Whey fermentation by thermophilic lactic acid bacteria: Evolution of carbohydrates and protein content. Food Microbiology. 2008; 36(2): 168-76.
    18. Guorong Liu, Yanni Lv, Pinglan Li, et al. Pentocin 31-1, an anti-Listeria bacteriocin produced by Lactobacillus pentosus 31-1 isolated from Xuan-Wei Ham, a traditional China fermented meat product. Food Contro. 2008; 19(4): 353-59.
    19. Francesca Gubellini, Francesco Francia, Paola Turina, et al. Heterogeneity of photosynthetic membranes from Rhodobacter capsulatus: Size dispersion and ATP synthase distribution. Biochimicaet Biophysica Acta (BBA)– Bioenergetics. 2007; 1767(11):1340-52.
    20. Katrin M. Kirschbaum, Stefanie Henken, Christoph Hiemke. et al. Pharmacodynamic consequences of P-glycoprotein-dependent pharmacokinetics of risperidone and haloperidol in mice. Behavioural Brain Research. 2008; 188(2):298-303.
    21. Guo Ai, Zhihang Chen, Chengqi Shan.et al.Single- and multiple-dose pharmacokinetics of exendin-4 in rhesus monkeys. International Journal of Pharmaceutics. 2008; 353(1-2): 56-64.
    22. Yuying Kou, Ying Liu, Ming Xue, et al.Comparative pharmacokinetics and distribution kinetics in brain of phencynonate enantiomers in rats.International Journal of Pharmaceutics. 2008; 353(1-2): 88-94.
    23. P.J. Bugelski,R.J.Capocasale,D.Makropoulos,et al.CNTO 530: Molecular pharmacology in human UT-7EPO cells and pharmacokinetics and pharmacodynamics in mice. Journalof Biotechnology. 2008; 134(1-2): 171-180.
    24. Robert I. Griffiths, Mike Manefield, Nick Ostle, et al. 13CO2 pulse labelling of plants in tandem with stable isotope probing: methodological considerations for examining microbial function in the rhizosphere. Journal of Microbiological Methods. 2004; 58(1): 119-29.
    25. Mats Bergstr?m, Raymond Awad, Sergio Estrada. et al. Autoradiography with Positron Emitting Isotopes in Positron Emission Tomography Tracer Discovery. Molecular Imaging & Biology. 2003; 5 (6): 390-96.
    26. Silvina A. Pombo, Jutta Kleikemper, Martin H. Schroth. et al. Field-scale isotopic labeling of phospholipid fatty acids from acetate-degrading sulfate-reducing bacteria. FEMS Microbiology Ecology.2005; 51 (2): 197-207.
    27. Jens Dyckmans, Charles M. Scrimgeour, Olaf Schmidt. A simple and rapid method for labelling earthworms with 15N and 13C. Soil Biology and Biochemistry. 2005; 37(5): 989-93.
    1.徐叔云,卞如濂,陈修主编.药理学实验方法学[M].第三版.北京:人民卫生出版社,2002,1026-30.
    2.桂波,曹红,曾因明,等.ERK1/2参与丙泊酚预处理对肾性高血压大鼠离体心肌缺血再灌注损伤的作用[J].中国药理学通报,2006,22(1):76~80.
    3.张晓丹,张伟,张茹,等.葛根素与地高辛联合治疗对充血性心力衰竭大鼠的影响[J].中国心血管杂志,2006,11(4):252~253.
    4. OhkusaT, HisamatsuY, YanoM, et al. Alteredcardiac mechanism and sarcoplasmi creticulum function in pressure overload induced cardiac hy pertrophy in rats. J. Molcell Cardiol . 2007; 29 (1) : 45.
    5.秦强,李福海,冯进波,等.压力容量超负荷大鼠模型右心室重塑过程中细胞间质的改变[J].山东大学学报,2006,44(8):810~15.
    6. T.L. Pitcher, J.R. Wickens and J.N.J. Reynolds Differences in striatal spiny neuron actin potentials between the spontaneously hypertensive and Wistar-Kyoto rat strains. Neuroscience. 2007; 146 (1) : 135-42.
    7.陈利国,戴勇,张纯,等.益气活血复方逆转自发性高血压大鼠左室肥厚的实验研究.时珍国医国药,2006,17(10):1889~91.
    8. Wilfried Briest, Alexander H?lzl, Beate Ra?ler,et al. Cardiac remodeling after long term norepinephrine treatment in rats. Cardiovascular Research. 2007; 52(2): 265-73.
    9.周青,何蔚,周俐,等.三七总皂苷对异丙肾上腺素致大鼠心肌肥厚的保护作用[J].中药药理与临床,2005,21(4)27-31.
    10.梁黔生,程岚,郑智,等.甲状腺素诱发大鼠心肌肥厚时瞬时外向钾电流内向整流钾电流和钙电流的变化[J].中华心律失常杂志,2007,16(5):44-48.
    11.陈朋民,陈兰英,范慕贞,等.仓鼠心肌肥厚模型的建立及左心室chymase,ACE基因表达的检测[J].高血压杂志,2007,8(1):52.
    12. Bernatova I, Pechanova O, Babal P, et al. Wine Polyphenols Improve Cardiolvascular Remodeling and Vascular Function in NO deficient Hypertension. Am J Physiol Heart Circ Physiol. 2007; 282 (3) :H 942.
    13. Chen L, Gan X T, Haist J V, et al. Attenuation of Compensatory Right Ventricular Hypertrophy and Heart Failure Following Monocrotaline2induced Pulmnary VascularInjury by the Na+-H+Exchange Inhibitor Cariporide. The Journal of Pharmacology and Experimental Therapeutics. 2007; 298 :469.
    14.谢增柱,刘福玉,王仕军,等.尼群地平对缺氧性右心室肥大的预防和治疗作用.中国药理学报,2006,17(4):337.
    15.汪大伟,崔金娟,王绍,等.微机控制应激致大鼠的高血压的方法[J].东北师大学报(自然科学版),2007,(4):40-42.
    16.王秀卿,高贞,郭红,等.慢性应激性高血压动物模型的建立[J].白求恩军医学院学报,2007,1(4):202-203.
    17.崔春梅,武庆庆,温红梅,等.易卒中型肾血管性高血压大鼠脑大动脉重塑类型[J].中国动脉硬化杂志,2006,14 (5):374-6.
    18.邓洋,刘慧荣.内毒素对孕鼠血压影响的实验研究[J].山西医药杂志,2000, 29(6):471-72.
    19.俞丽丽,陈鸣,等.寒冷刺激诱发孕鼠妊娠高血压综合征动物模型研究[J].第三军医大学学报,2001,23(4):419-21.
    20. Yan-ling WEI, Xiao-hui LI,Jian-zhi ZHOU. Prenatal exposure to lipopolysaccharide results in increases in blood pressure and body weight in rats. Acta pharmacologica Sinica. 2007; 28(5):651-56.
    21.沈加林,陈克敏,许建荣,等.球囊固定动脉法延髓神经血管压迫建立高血压动物模型的实验研究[J].中华放射学杂志,2002,36(9):773-75.
    22.张晓华,李善泉,沈加林,等.原发性高血压犬模型的建立[J].上海第二医科大学学报,2003,23 (5):406-408.
    24.韩运峰,苏诚坚,区碧如.感觉神经损伤性盐敏感性高血压大鼠新模型的建立及其细胞内游离钙的变化.岭南心血管病杂志,2003,9(2):115-119.
    1. J?rg M. Strotmann, Bj?rn Lengenfelder, Jacques Blondelot,et al.Functional Differences of Left Ventricular Hypertrophy Induced by Either Arterial Hypertension or Aortic Valve Stenosis. The American Journal of Cardiology. 2008; 101(10):1493-97.
    2. Juan Liu, Qin Shen, Yang Wu. Simvastatin prevents cardiac hypertrophy in vitro and in vivo via JAK/STAT pathway. Life Sciences. 2008; 82(19-20) 991-96 .
    3. Schillaci G, Verdecchia P, Porcekkati C, et al.Continuous relation between left ventricular mass and cardiovascular risk in essential hypertension. Hypertens. 2007; 35:580-86.
    4. Ganau hypertrophy A , Devereux RB, Roman MJ, et al. Patterns of left ventricular and geometric remodeling in essential hypertrnsion. J Am Coll Cardiol. 2007; 19: 1550-58.
    5. Kayo Hayato, Makoto Okawa, Yoshihisa Matsumura,et al.Hypertrophic cardiomyopathy with mild left ventricular remodeling: Echocardiographic assessment using left ventricular wall motion score. Journal of Cardiology. 2008; 51(2): 95-105.
    6. Laviades C,Mayor G,Diez J.Treatment with lisinopriol normalizes serum concentrations of procollagen type III amino-terminal peptides in patients with essential hypertension. Am J Hypertens. 2007; 7:52-58.
    7. Edward P. Havranek, Caroline D.B. Emsermann, Desiree N. Froshaug, et al. Thresholds in the relationship between mortality and left ventricular hypertrophy defined by electrocardiography. Journal of Electrocardiology. 2008; 14(4):465-71.
    8. Zhang HG, Li XH. Optimization of G protein inhibitory polypeptide and its activities on cardiac hypertrophy (Abstract). Acta Pharmacol Sin. 2006; 27(suppl): 182-183.
    9. Cooper G 4th. Basic determinants of myocardial hypertrophy: a review of molecular mechanisms. Annu Rev Med. 2007; 48:13-23.
    10. C.E. Huggins, P.L. McLennan, T. Pedrazzini, et al. Dietary omega-3 fatty acids improves ex vivo heart recovery after ischemia in AngII induced cardiac hypertrophy. Journal of Molecular and Cellular Cardiology. 2006;41(4):749.
    11. Miura S, Zhang J, Matsuo Y, et al. Activation of extracellular signal-activated kinase by angiotensin II-induced Gq-independent epidermal growth factor receptor transactivation. Hypertens Res. 2007; 27(10):765-70.
    12. Mo Yang, Chee Chew Lim, Ronglih Liao, et al. A novel microfluidic impedance assay for monitoring endothelin-induced cardiomyocyte hypertrophy. Biosensors and Bioelectronics. 2007; 22(8):1688-93.
    13. Neyses L, Nouskas J, Luyken J,et al.Induction of immediate-early genes by angiotensin II and endothelin-1 in adult rat cardiomyocytes. J Hypertens.2006;11(9):927-34.
    14. Oie E, Yndestad A, Robins SP,et al.Early intervention with a potent endothelin-A/endothelin-B receptor antagonist aggravates left ventricular remodeling after myocardial infarction in rats. Basic Res Cardiol. 2007; 97(3):239-47.
    15. ZimmerHG.. Catecholamine-induced cardiac hypertrophy: significance of proto-oncogene expression. J Mol Med. 2007 ; 75(11~12):849-59.
    16. Tsoporis JN, Marks A, Kahn HJ, et al. Inhibition of norepinephrine-induced cardiac hypertrophy in s100beta transgenic mice. J Clin Invest. 2006; 102(8):1609-16.
    17. Hannan RD, Stennard FA, West AK. Expression of c-fos and related genes in the rat heart in response to norepinephrine. J Mol Cell Cardiol. 2007; 25(10):1137-48.
    18. Starksen NF, Simpson PC, Bishopric N, et al.Cardiac myocyte hypertrophy is associated with c-myc protooncogene expression. Proc Natl Acad Sci USA. 2006; 83(21):8348-50.
    19. Singal T, Dhalla NS, Tappia PS. Phospholipase C may be involved in norepinephrine-induced cardiac hypertrophy. Biochem Biophys Res Commun. 2004; 320(3):1015-19.
    20. Zeng C, Zhou Y, Liu G, et al. The signal transduction pathway causing the synergistic hypertrophic effects of neuropeptide Y and norepinephrine on primary cardiomyocyte. Neuropeptides. 2001; 35(5-6):211-18.
    21. Chen M, Li X, Dong Q,et al. Neuropeptide Y induces cardiomyocyte hypertrophy via calcineurin signaling in rats. Regul Pept. 2005; 125(1-3):9-15.
    22. Harada E, Nakagawa O, Yoshimura M, et al. Effect of interleukin-1 beta on cardiac hypertrophy and production of natriuretic peptides in rat cardiocyte culture. J Mol Cell Cardiol. 2006; 31(11):1997-2006.
    23. Tanaka T, Kanda T, Takahashi T, et al. Interleukin-6-induced reciprocal expression of SERCA and natriuretic peptides mRNA in cultured rat ventricular myocytes. J Int Med Res. 2007; 32(1):57-61.
    24. Kardami E, Jiang ZS, Jimenez SK,et al. Fibroblast growth factor 2 isoforms and cardiac hypertrophy. Cardiovasc Res. 2007; 63(3):458-66.
    25. Tanamura A, Takeda N, Iwai T. et al. Myocardial contractility and ventricular myosin isoenzymes as influenced by cardiac hypertrophy and its regression. Basic Res Cardiol. 1993; 88(1):72-79.
    26. Jalili T,Takeishi Y,Wslsh RA. Signal transduction during cardiac hypertrophy: the role of Gαq,PLCβⅠ, and PKC. Cardiovasc Res. 1999; 44(1):5-9.
    27. Akhter SA, Lutterll LM, Rockman HA, et al. Targeting the receptor the receptor-Gq interface to inhibit in vivo pressure overload myocardial hypertrophy. Science.1998; 280(5363):574-377.
    28. Alicia M. Maceira, Sanjay K. Prasad, Dudley J. Integrated evaluation of hypertensive patients with cardiovascular magnetic resonance. International Journal of Cardiology. 2007; 89(13):195-202.
    29. Rajesh Janardhanan, William L. Daley, Tasneem Z. Naqvi, et al. Rationale and design: The VALsartan In Diastolic Dysfunction (VALIDD) Trial: Evolving the management of diastolic dysfunction in hypertension. American Heart Journal. 2006; 152 (2):246-52.
    30. G. Cohuet and H. Struijker-Boudier. Mechanisms of target organ damage caused by hypertension:Therapeutic potential. Pharmacology & Therapeutics.2006; 111 (1):81-98.
    31.韩艺,黄艳,许逸,等. Amiloride对自发性高血压大鼠心肌肥厚及血管紧张素Ⅱ的影响.中国药理学通报,2002;18(6):710~11.
    32. Dobrucki LW, Kalinowski L, Dobrucki IT. Statin-stimulated nitric oxide release from endothelium. Med Sci Monit. 2007; 7(4): 622-27.
    33.葛长江,胡申江,吕树铮,等.阿托伐他汀对自发性高血压大鼠动脉血压和血管内皮功能的影响.中华神经医学杂志,2006,5(9):907-910.
    34.田美蓉,李莉,赵碧琼,等.阿托伐他汀对心肌肥厚致心衰患者心功能的影响.山东医药,2006,46(31):64.
    35.鞠玉琳,王海洋,王晓波,等.中药SF对大鼠降压及逆转左室肥厚作用的研究.延边大学农学院学报,2004,26(4):264-268.
    36.李瑞,韩红亚.仙人强心片对左室肥厚影响的实验研究.陕西中医学院学报,2003,26(1):56-58.
    37.刘惟莞,曾加雄,石明健.水杉总黄酮对肾性高血压大鼠左室肥厚的作用[J].中草药,2000,31 (11):542.
    38.饶曼人,刘苑斌,刘培庆.前胡丙素对高血压大鼠血管肥厚的细胞内[Ca2+]i及NO的影响[J] .药学学报,2001,36 (3) :165 - 169.
    39.李庆平,陆泽安,饶曼人.粉防己碱抑制血管平滑肌细胞胶原合成[J] .药学学报,2001,36 (7) :481 -484.
    40.陆梁,胡立群,张光毅.红黄花素抑制血管平滑肌细胞增殖与3种蛋白激酶的关系[J].药学学报,2000 ,35 (3) :169 - 171.
    41.周端,肖梅芳,胡嵘.活血潜阳颗粒逆转自发性高血压大鼠左心室肥厚的实验研究中西医结合学报. 2006,4(6):606-610.
    1. Udelson JE. Ventricular remodeling in heart failure and the effect ofβ-blockade. Am. J. Cardiol. 2004;93(Suppl. 1):43–8.
    2. Frigerio M, Roubina E. Drugs for left ventricular remodeling in heart failure. Am. J. Cardiol. 2005;96(suppl. 1):11L–18L.
    3. Ruetten H, Dimmeler S, Gehring D, Ihling C, Zeiher AM. Concentric left ventricular remodeling in endothelial nitric oxide synthase knockout mice by chronic pressure overload. Cardiovasc. Res. 2005;66:444–53.
    4. Conrady AO, Rudomanov OG, Zaharov DV et al. Prospective study of the changes in left ventricular mass and geometry patterns in hypertensive patients during 5 years of follow-up. Circ. J. 2005;69:1374–9.
    5. Mazzolai L, Pedrazzini T, Nicoud F, Gabbiani G, Brunner HR, Nussberger J. Increased cardiac angiotensin II levels induce right and left ventricular hypertrophy in normotensive mice. Hypertension 2000;35:985–91.
    6. Dostal DE, Baker KM. Angiotensin II stimulation of left ventricular hypertrophy in adult rat heart. Mediation by the AT1 receptor. Am. J. Hypertens. 1992;5:276–80.
    7. Susic D, Nu?ez E, Frohlich ED, Prakash O. Angiotensin II increases left ventricular mass without affecting myosin isoform mRNAs. Hypertension 1996;28:265–8.
    8. Harada K, Komuro I, Shiojima I et al. Pressure overload induces cardiac hypertrophy in angiotensin II type 1A receptor knockout mice. Circulation 1998;97:1952–9.
    9. Xu FP, Chen MS, Wang YZ et al. Leptin induces hypertrophy via endothelin-1–reactive oxygen species pathway in cultured neonatal rat cardiomyocytes. Circulation 2004;110:1269–75.
    10. Zhou JZ, Li XH, Zhang HG, Tang Y, Wang XQ. Cloning and gene expression of G-protein competitive inhibitory polypeptide and its prophylactic effects on myocardial hypertrophy in vitro. Acta Pharmacol. Sin. 2003;24:1108–12.
    11. Zhang HG, Li XH, Zhou JZ, Liu Y, Jia Y, Yuan ZB. Gαq-Protein carboxyl terminus imitation polypeptide GCIP-27 attenuates cardiac hypertrophy in vitro and in vivo. Clin. Exp. Pharmacol. Physiol. 2007;34:1276–81.
    12. Liu J. Experimental Methodology in Pharmacology: Advanced Techniques and New Methods. Chemical Industry Press, Beijing. 2003 (in Chinese).
    13. Suzuki J, Ogawa M, Futamatsu H, Kosuge H, Sagesaka YM, Isobe M. Tea catechins improve left ventricular dysfunction, suppress myocardial inflammation and fibrosis, and alter cytokine expression in rat autoimmune myocarditis. Eur. J. Heart Fail. 2007;9:152–9.
    14. Lee SS, Naqvi TZ, Forrester J et al. The effect of granulocyte colony stimulating factor on regional and global myocardial function in the porcine infarct model. Int. J. Cardiol. 2007;116:225–30.
    15. Plante E, Lachance D, Roussel E, Drolet MC, Arsenault M, Couet J. Impact of anesthesia on echocardiographic evaluation of systolic and diastolic function in rats. J. Am. Soc. Echocardiogr. 2006;19:1520–5.
    16. Mazzolai L, Pedrazzini T, Nicoud F et al. Increased cardiac angiotensin II levels induce right and left ventricular hypertrophy in normotensive mice. Hypertension 2000;35:985–91.
    17. Hu CT, Chang HR, Hsu YH, Liu CJ, Chen HI. Ventricular hypertrophy and arterial hemodynamics following deprivation of nitric oxide in rats. Life Sci. 2005;78:164–73.
    18. Yu JX, Zhang YD, Yin XX et al. Protective effects of bendazac lysine on diabetic peripheral neuropathy in streptozotocin-induced diabetic rats. Clin. Exp. Pharmacol. Physiol. 2006;33:1231–8.
    19. Yao HW, Zhu JP, Zhao MH, Lu Y. Losartan attenuates bleomycin-induced pulmonary fibrosis rats. Respiration 2006;73:236–42.
    20. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J. Biol. Chem. 1951;193:265–75.
    20. Schnabel P, G?s H, Nohr T, Camps M, B?hm M. Identification and characterization of G-protein-regulated phospholipase C in human myocardium. J. Mol. Cell. Cardiol. 1996;28:2419–27.
    21. Schnabel P, Nohr T, Nickenig G, Paul M, B?hm M.α-Adrenergic signal transduction in renin transgenic rats. Hypertension 1997;30:1356–61.
    22. Bing OHL, Conrad CH, Boluyt MO, Robinson KG, Brooks WW. Studies of prevention, treatment and mechanisms of heart failure in the aging spontaneously hypertensive rat. Heart Fail. Rev. 2002;7:71–88.
    23. Haugen E, Chen J, Wikstr?m J, Gr?nros J, Gan LM, Fu LX. Parallel gene expressionsof IL-6 and BNP during cardiac hypertrophy complicated with diastolic dysfunction in spontaneously hypertensive rats. Int. J. Cardiol. 2007;115:24–8.
    24. Mitchell GF, Pfeffer JM, Pfeffer MA. The transition to failure in the spontaneously hypertensive rats. Am. J. Hypertens . 1997;10:120–6.
    25. Aoyagi T, Fujii AM, Flanagan MF et al. Transition from compensated hypertrophy to intrinsic myocardial dysfunction during development of left ventricular pressure-overload in conscious sheep: Systolic dysfunction precedes diastolic dysfunction. Circulation. 1993;88:2415–25.
    26. Pu WT, Ma Q, Izumo S. NFAT transcription factors are critical survival factors that inhibit cardiomyocyte apoptosis during phenylephrine stimulation in vitro. Circ. Res. 2003;92:725–31.
    27. Anderson LL, Marshall GR, Crocker E, Smith SO, Baranski TJ. Motion of carboxyl terminus of Gαis restricted upon G-protein activation. A solution NMR study using semisynthetic Gαsubunits. J. Biol. Chem. 2005;280:31019–26.
    28. Kostenis E, Gomeza J, Lerche C, Wess J. Genetic analysis of receptor–Gαq coupling selectivity. J. Biol. Chem. 1997;272:23675–81.
    29. Mazzoni MR, Taddei S, Giusti L et al. A Gsαcarboxyl-terminal peptide prevents Gs activation by the A2A adenosine receptor. Mol. Pharmacol. 2000;58:226–36.
    30. Grieco P, Albrizio S, D’Ursi AM, et al. A structure–activity relationship study on position-2 of the Gαs C-terminal peptide able to inhibit Gs activation by A2A adenosine receptor. Eur. J. Med. Chem. 2003;38:13–18.
    31. Krishna KM, Gopal GS, Chalam CR, et al. The influence of sulindac on diabetic cardiomyopathy: a non-invasive evaluation by Doppler echocardiography in streptozotocin-induced diabetic rats. Vascul. Pharmacol. 2005;43:91-100.
    32. Akula A, Kota MK, Gopisetty SG et al. Biochemical, histological and echocardiographical changes during experimental cardiomyopathy in STZ-induced diabetic rats. Pharmacol. Res. 2003;48:429–35.
    33. Watson LE, Sheth M, Denyer RF, Dostal DE. Baseline echocardiographic values for adult male rats. J. Am. Soc. Echocardiogr. 2004;17:161–7.
    34. Brown L, Fenning A, Chan V et al. Echocardiographic assessment of cardiac structure and function in rats. Heart Lung Circ. 2002;11:167–73.
    35. Devi S, Kennedy RH, Joseph L, Shekhawat NS, Melchert RB, Joseph J. Effect of long-term hyperhomocysteinemia on myocardial structure and function in hypertensive rats. Cardiovasc. Pathol. 2006;15:75–82.
    36. Lathe R. Hormones and the hippocampus. J. Endocrinol. 2001;169:205–31.
    37. Moslavac S, Mirus O, Bredemeier R, Soll J, von Haeseler A, Schleiff E. Conserved pore-forming regions in polypeptide-transporting proteins. FEBS J. 2005;272:1367–78.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700