用户名: 密码: 验证码:
玉米对砷污染的生理生态响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
砷可通过水体-土壤-农作物进入食物链,这不仅影响作物生长发育,降低作物的产量和品质,还对人类健康构成巨大威胁。本文采用盆栽和室内砂培试验相结合的方法,研究了不同基因型玉米对砷污染的响应;探讨了砷作用对玉米产量、品质及生理生化的影响及解决途径。主要研究结果如下:
     1.砷胁迫下玉米基因型差异
     砷胁迫对不同基因型玉米生长发育影响显著,根长、株高、干物重降低,根条数增加。以生物量为指标,甜玉米和糯玉米不抗砷。不同基因型玉米对砷的吸收、积累能力差异显著,生物富集系数相差10.61倍,地下部砷的富集量相差16.35倍,转运系数相差21.13倍。以砷积累与转移为标准,筛选出SN2、KD8等饲用玉米对砷的抗性好于其它玉米品种。兼顾育种和环境治理多种因素,运用主成分分析,筛选出SN2、LX4等玉米品种相对抗砷。
     2.砷对产量的影响
     低浓度砷刺激玉米生长,籽粒产量增加;高浓度砷伤害玉米生长发育,产量降低。T2处理时,ZD958、JN218增产4.5%、3.2%;T4处理时,ZD958、JN218减产48.9%、39.1%。品种之间差异显著,JN218穗长、行粒数、穗粒数、千粒重的变动幅度均大于ZD958,即JN218对砷的敏感性大于ZD958。砷对产量构成因素的影响不同,对穗行数影响不大,对行粒数、穗长、千粒重影响较大。产量降低应是穗粒数减少和千粒重降低共同作用的结果。
     3.砷对品质的影响
     砷作用下,玉米籽粒蛋白质含量变化呈单峰曲线。T2处理,ZD958和JN218粗蛋白含量增加4.9%和2.5%;T4处理,ZD958、JN218粗蛋白含量下降22.3%和18%。随砷浓度增加,氨基酸总量变化呈单峰曲线。T2处理,ZD958和JZN218籽粒氨基酸总量最高,分别增加3.4%和4.7%;T4处理,籽粒氨基酸总量最低,两品种减少了21%。必需氨基酸与非必需氨基酸变化趋势一致,比例保持不变。其中Glu含量最高,除Cys、Met与砷浓度呈正相关外,其余氨基酸都负相关。
     砷影响淀粉的形成。随砷浓度的增加,淀粉含量先增加后降低。T2处理,淀粉含量最高,ZD958与JZN218淀粉含量增加4.8%和2.8%;T4处理,淀粉含量最低,比对照减少8%和10.8%。高浓度砷作用下,大粒径淀粉粒体积明显减少,小粒径淀粉粒体积增加。T4处理,ZD958大于14.9μm的淀粉颗粒体积降低了35.6%,JN218大于16.4μm的淀粉颗粒体积降低了26.4%。糊化特性与砷浓度之间存在显著的相关性。T4处理,ZD958、JN218的糊化温度低于对照,ZD958的峰值黏度低于对照。
     砷胁迫显著影响籽粒的糖代谢,总糖含量降低,Glc、Fru、Mal含量升高,Suc含量下降。ZD958总糖含量变化趋势是:T4>CK>T3,T4处理使总糖含量增加77.8%,T3处理使总糖减少7%。JN218的变化趋势是:T3>T4>CK,T3总糖含量增加38%,T4增加20%。
     砷胁迫下,玉米籽粒中Mn、Fe、K、Ca、Mg、S元素含量变化呈单峰曲线;砷元素含量与Se、B元素含量正相关;As元素含量与P元素含量负相关。砷胁迫下,籽粒大部分矿质元素之间呈极显著正相关。
     4.砷对生理特性的影响
     砷对玉米种子萌发、幼苗生长发育影响显著。种子发芽率、根长、苗高与砷浓度负相关,根数正相关。低浓度砷刺激玉米幼苗生长发育。高浓度砷使根系丛生,发黑,伸长受阻,根重量下降;叶片卷曲、失绿发黄;严重时不能开花结实,甚至死亡。
     砷在玉米体内的积累、迁移与砷浓度、生育时期和组织器官密切相关。不同生育时期,玉米对砷的吸收速率为:开花期>成熟期>拔节期。转运系数依次为:成熟期>开花期>拔节期,即玉米从地下部向地上部转运砷的能力随生育时期推进而加强。成熟期砷在玉米各组织器官的分布不均衡,依次为:根>茎>叶>鞘>籽粒>其它(穗轴、苞叶、雄穗等);玉米植株砷含量的空间分布为:地下部>下部>中部>上部。低浓度时,根茎结合部的砷浓度,与地中茎相近,与下部茎差异显著,说明根茎结合部具有拒砷能力。但范围有限,与砷浓度负相关,且存在品种间差异。砷在玉米体内可以发生形态转化,根、茎、叶、籽粒均有将无机砷转化为有机砷的能力,籽粒的转化效率最强,达60%以上,大大降低了砷毒害。砷胁迫对玉米的超微结构有影响。细胞核膜及线粒体膜系统解体,叶绿体基粒片层稀疏,出现大量的过氧化物体和黑色沉淀,玉米主要通过将砷分隔在液泡和细胞壁来减轻砷的毒害。砷胁迫使二维红外光谱图和荧光谱图发生显著变化。
     5.硒对砷胁迫具有调控作用
     硒有拮抗玉米砷毒害的作用,但有效量关系:即低浓度有拮抗砷的能力,表现为玉米幼苗主根长、株高、叶绿素含量等均增加,光合速率增加,最终产量增加、品质改善等,有效提高玉米中的蛋白质、脂肪、淀粉含量,并使淀粉颗粒变大,砷富集量明显降低。高浓度硒与砷发生协同作用,伤害玉米生长发育,使蛋白质、脂肪、淀粉含量明显降低。
Arsenic can enter the food chain through water-soil-crops,which not only affects crop growth and development,reduces crop yield and quality,but also poses a tremendous threat to human health.In this dissertation,a combination of potted plants and greenhouse tests was used to study the different responses of genotypes' maize to arsenic contamination;this dissertation also explored the effect of arsenic on maize production,quality and physiological and biochemical traits in order to find out the solution of arsenic pollution control.The results were as follows:
     1.Differenees of genotypes under arsenic stress
     Arsenic stress significantly affected the growth and development of maize of different genotypes.Root length,plant height and dry weight decreased,and the number of the roots increased.Regarding biomass as a standard,sweet maize and sticky maize were of little anti-arsenic ability.There were significant differences in the absorption and accumulation of arsenic in maize of different genotypes.The concentration factor of the whole plant could reach up to 10.61 times and the concentration factor of root could reach up to 16.35 times while transportation coefficient would reach up to 21.13 times among different genotypes. Regarding accumulation and transportation of arsenic as a standard,we found out forage maize,such as SN2,KD8 was better resistant to arsenic than other genotypes.Taking various factors(breeding and environmental governance) into account and choosing principal component analysis,SN2,LX4 and some other varieties were proven to be as anti-arsenic genotypes.
     2.Effect of arsenic on yield of kernel
     At low concentrations of arsenic,the growth of maize enhanced and grain yield increased;at high concentrations of arsenic,the growth of maize was affected and yield decreased.At T2,the yield of ZD958,JN218 enjoyed an increase of 4.5%and 3.2%.At T4, the yield of ZD958,JN218 suffered a decrease of 48.85%and 39.13%.There were significant differences between two genotypes.The range of variation of ear length,the number of rows per ear,the number of kernels per row and 1000-kernel weight of JN218 was greater than that of ZD958 because JN218 was more sensitive to arsenic than ZD958.Arsenic had different impact on yield components:little impact on the number of rows per ear,greater impact on the number of kernels per row and weight of 1000 kernels.The decrease of grain yield should be deduced to the reducing of both the number of kemels per ear and weight of 1000 kernels.
     3.Effect of arsenic on quality in maize
     Under arsenic treatments,the content of grain protein was in a single peak curve.At T2 treatment,the increase of ZD958,JN218 were 4.9%and 2.5%respectively;at T4 treatment, the decrease of ZD958,JN218 were 22.3%and 18%respectively.
     With the increased concentration of arsenic,the content of grain amino acids was also in a single peak curve.At T2 treatment,the content of grain amino acids was the highest,an increase of 3.4%and 4.7%respectively;at T4 treatment,the content of grain amino acids was the lowest:the content of grain amino acids for two cultivars declined by 21%.The changes between essential amino acids and non-essential amino acids were the same and the ratio remained unchanged,with the highest content of Glu.With the increased concentration of arsenic,in addition to Cys,Met was positively correlated,the other amino acids had a negative correlation.
     Arsenic affected the formation of starch with the increased concentration of arsenic.At T2 treatment,the content of starch was the highest,an increase of 4.8%and 2.8%respectively; at T4 treatment,the content of starch was the lowest,a decrease of 8%and 10.8%respectively. Under high concentrations of arsenic,the volume of large size starch grains decreased significantly,while the volume of small size starch grains increased.At T4 treatment,the volume of starch grains which were more than 14.9μm decreased by 35.6%in ZD958;the volume of starch grains which were more than 16.4μm decreased by 26.4%in JN218.There was a significant correlation between the concentration of arsenic and pasting.The pasting temperature of T4 treatment was lower than that of CK in ZD958and JN218.The peak viscosity of ZD958 was significantly lower than that of CK.
     Arsenic stress affected sugar metabolism of grain significantly and reduced the content of total sugar.The content of Glc,Fru and Mal were increased,while the content of Suc were decreased.The turn of total sugar in ZD958 is:T4> CK> T3.At T4 treatment,total sugar content increased by 77.8%;while at T3,decreased by 7%.The turn of total sugar in JN218 was:T3> T4> CK.At T4 treatment,total sugar content increased by 38%,while T3 decreased by 20%.
     Under arsenic stress,the content of elements of maize grain,such as P,Mn,Fe,K,Ca, Mg,S was in a single peak.The content of As was relevant to that of Se,B;the content of As was negative to that of P.Under arsenic stress,most of mineral elements in grains were in significantly positive correlation.
     4.Effect of arsenic on the physiological characteristics of maize
     Arsenic affected seed germination,seedling growth and development significantly. Germination rate of seed,root length and plant height are the negative correlation to arsenic concentration,but the number of root is relevant.Low concentrations of arsenic stimulated the growth of maize seedlings,and high concentrations of arsenic decreased the growth of maize:,the root was black,its elongation was blocked and root weight dropped.Leaf curled, became less green and finally turned yellow.The plant was not able to blossom and fill,even turned out to suffer death.
     The accumulation and migration of arsenic is closely related to arsenic concentration, growth stages,tissues and organs.In different growth stages,the absorption rate of arsenic: bloom> mature> joint;transition coefficient:maturity> blossom > jointing.The transfer ability of arsenic from the underground to aboveground would promote and strengthen with growth stages.The distribution of arsenic in maturity is uneven in the tissues and organs, followed by:root> stem> leaf> sheath> grain> other(corncobs,bracteal,tassel,etc.);the spatial distribution of arsenic is:underground> lower> central> top.At low concentration,the arsenic concentration between root and stem was similar to the lower stem and significantly higher than upper stems,that is to say,this part has the ability to resist arsenic.But it had limited scope and had negative correlation to the arsenic concentration,and the existence of differences between the species.The change in arsenic valence can occur in the form of maize into the roots.Stems,leaves and seeds have the ability of changing inorganic arsenic into organic arsenic.The most conversion efficiention was grain which was more than 60%,thus greatly reduced the risk of arsenic poisoning.
     Arsenic stress affected ultra-structure.Cell membrane and mitochondrial membrane system collapsed and chloroplast sparse layer of particle was board,less levels,uneven distribution of a large number of peroxide and black precipitation.Arsenic would mainly be separated from the vacuole and the cell wall to reduce arsenic poisoning.As stress changed two-dimensional infrared spectrum of the fluorescence spectrum
     5.Selenium would regulate the arsenic stress.
     Selenium can play an antagonistic action to arsenic poisoning in maize.At the lower concentration,not only the main root length,plant height and chlorophyll content of maize seedlings increased,but also the photosynthetic rate and kernel yield increased and quality improved.Arsenic improved effectively the activity of POD and the content of protein,fat and starch increased.Starch particles were larger,arsenic concentration was significantly lower.At the higher concentration of selenium,it would increase the arsenic toxicity.
引文
1.毕伟东,王成艳,王成贤.砷及砷化物与人类疾病.微量元素与健康研究,2002,19(2):76-79.
    2.蔡保松,陈同斌,廖晓勇.土壤砷污染对蔬菜砷含量及食用安全性的影响.生态学报,2004,24(4):711-717.
    3.查红平,肖维林,雷晓林,董瑞斌.砷的植物修复研究进展.地质灾害与环境保护,2007,18(2):55-60.
    4.常思敏,马新明,王保安,吴风华.砷对烤烟(Nicotiana tabacum L.)碳代谢的影响.生态学报,2007,27(6):2302-2308.
    5.常思敏,马新明.砷对烤烟碳氮代谢及其产量和品质的影响.植物生态学报,2006,30(4):682-688.
    6.陈海珍.硒与砷在植物中相互作用的实验研究.农业环境保护,2001,20(2):91.93.
    7.陈静生.环境地球化学.北京:海洋出版社,1990,4.
    8.陈同斌,黄泽春,黄宇营,谢华,廖晓勇.砷超富集植物中元素的微区分布及其与砷富集的关系.科学通报,2003,48(11):1163-1168.
    9.陈同斌,刘更另.土壤中砷的吸附和砷对水稻的毒害效应与pH值的关系.中国农业科学,1993,26(1):63-68.
    10.陈同斌,刘更另.砷对水稻生长发育的影响及其原因.中国农业科学,1993,26(6):50-58.
    11.陈同斌.土壤溶液中的砷及其与水稻生长效应的关系.生态学报,1996,16(2):147-153.
    12.陈志澄,毋福海,黄鹏飞.食用植物中砷的形态分析方法研究.中国卫生检验杂志,2002,12(5):548-550.
    13.崔瑞平.砷对稻田土壤的污染研究.遵义医学院学报,2000,23(1):1-3.
    14.戴宇飞.硒对砷毒性的拮抗作用研究中国公共生,2002,18(10):1187-1189.
    15.段桂兰,王利红,陈玉,徐玉新,孟祥燕,朱永官.水稻砷污染健康风险与砷代谢机制的研究.农业环境科学学报,2007,26(2):430-435.
    16.冯德福.砷的污染与防治.沈阳教育学院学报,2000,2(2):110-112.
    17.冯绍元,邵洪波,黄冠华.重金属在小麦作物体中残留特征的田间试验研究.农业工 程学报,2002,18(4):113-115.
    18.龚绍先主编.粮食作物与气象.北京农业大学出版社,1987,245-248.
    19.何孟常,杨居荣.水稻籽实中砷的结合形态特征及其稳定性.应用生态学报,2002,13(9):1141-1144.
    20.胡飞,陈玲,温其标.淀粉微细化国内外研究概况与展望.郑州工程学院学报,2001,22(2):74-77.
    21.胡家恕,邵爱萍,叶兆杰.砷化镓和其它砷化物对大豆种子萌发和异柠檬酸裂解酶(ICL)及超氧物岐化酶(SOD)活性的影响.农业环境保护,1994,13(5):194-198.
    22.胡家恕,童富淡,邵爱萍.砷对大豆种子萌发的伤害.浙江农业大学学报,1996,22(2):121-125.
    23.黄丽玫,陈志澄,颜戊利.砷污染区植物种植的筛选研究.环境与健康杂志,2006,123(4):308-310.
    24.蒋成爱,吴启堂,陈杖榴.土壤中砷污染研究进展.土壤,2004,36(3):264-270.
    25.金银龙,梁超辑,何公理.中国地方性砷中毒分布调查(总报告).卫生研究,2003,32(6):519-540.
    26.康立娟,李香丹,刘景华.砂壤水稻土添加砷对水稻生长发育和残留的研究.吉林农业大学学报,1996,18(3):58-61.
    27.雷梅,陈同斌.磷对土壤中砷吸附的影响.应用生态学报,2003,14(11):1989-1992.
    28.李春喜,邵云,李丹丹,冯淑利,张黛静,高旺盛.砷胁迫对小麦萌发过程中戊聚糖含量和木聚糖酶活性的影响.麦类作物学报,2006,26(6):108-114.
    29.李春喜,邵云,鲁旭阳,姜丽娜,冯淑利,侯小丽.砷对小麦生长发育的影响及其污染防治途径.安徽农业科学,2005,33(8):1908-1909.
    30.李道林,程磊.砷在土壤中的形态分布与青菜的生物学效应.安徽农业大学学报,2000,27(2):131-134.
    31.李典友,陆亦农.土壤中砷污染的危害和防治对策研究.新疆师范大学学报(自然科学版),2005,24(4):89-91.
    32.李勤,俞信,张同存.三氧化二砷诱导细胞凋亡对线粒体的影响.生物物理学报,1999,15(3):470-473.
    33.廖宝凉,徐辉碧,花蓓.硒砷在水稻体内的相互作用及其自由基机理的研究.广东微量元素科学,1996,3(4):55-581.
    34.廖晓勇,陈同斌等.污染水稻田中土壤含砷量的空间变异特征.地理研究,2003,22(5):635-642.
    35.廖益平.微量元素砷与硒的相互关系.饲料博览,1999,11(9):4-6.
    36.刘登义,谢建春,杨世勇.铜尾矿对小麦生长发育和生理功能的影响.应用生态学报,2001,12(1):121-126.
    37.刘更另.土壤中砷对植物生长的影响-南方砷毒田的研究.中国农业科学,1985,18(4):9-16.
    38.欧阳通,刘耀兴.砷污染土壤对人体健康的风险评估应用.华侨大学学报(自然科学版),2008,29(1):152-155.
    39.尚琪.环境砷污染区人群健康危害经济损失分析.环境与健康杂志,2003,20(2):72-74.
    40.苏流坤,袁焕祥.土壤中铜砷对水稻生长发育影响的研究.热带亚热带土壤科学,1997,6(3):194-197.
    41.唐修义,黄文辉.中国煤中微量元素.北京:商务印书馆,2002
    42.田纪春主编.谷物品质测试理论与方法.科学出版社,2006,201-203.
    43.王新.土壤砷污染及修复技术.环境科学与技术,2007,30(2):107-111.
    44.王春旭,李生志,许荣玉.环境中砷的存在形态研究.环境科学,1993,14(4):53-57.
    45.王德永.煤中砷含量分布特片及分级研究.煤质技术,2000,2:27-29.
    46.韦朝阳,陈同斌,黄泽春.大叶井口边草-一种新发现的富集砷的植物.生态学报,2002,22(5):777-778.
    47.吴俊,李斌,苏喜生.玉米淀粉的粒度效应与其微观形貌和性能关系研究.中国粮油学报,2004,19(5):33-36.
    48.夏立江,华珞,韦东普.部分地区蔬菜的含砷量.土壤,1996,(2):105-110.
    49.肖玲.砷对小麦种子萌发酶活性及呼吸强度影响的研究.陕西环境,1999,6(4):22-24.
    50.谢正苗.砷的土壤化学.农业环境保护,1989,8(1):36-38.
    51.邢彩虹,戴宇飞.硒对砷毒性的拮抗作用研究.中国公共卫生,2002,18(10):1187-1189.
    52.许嘉琳,杨居荣,荆红卫.砷污染土壤的作物效应及其影响因素.土壤,1993,26(6):50-58
    53.许炼锋,刘付强.砖红壤添加砷对花生生长和残留的影响.广东农业科学,1991,(1):27-30.
    54.宣之强.中国砷矿资源概述.化工矿产地质,1998,20(3):205-210.
    55.杨清.砷对小麦生长的影响.土壤肥料,1992,(3):23-25.
    56.杨国定.污水灌溉与农业环境污染.农业环境保护,1984,(5):21-23.
    57.杨景辉.土壤污染与防治.北京:科学出版社,1995
    58.杨齐.砷的毒害作用及其研究进展.医学动物防制,2007,23(1):66-67.
    59.杨文婕,刘更另.砷对植物衰老的影响.植物生理学通讯,1997,33(1):54-55.
    60.杨志敏.锌污染对小麦萌发期生长和某些生理生化特性的影响.农业环境保护,1994,13(3):121-123.
    61.张国祥,杨居荣,华珞.土壤环境中的砷及其生态效应.土壤,1996,28(2):64-68.
    62.张素芹,杨居荣.农作物对镉铅砷的吸收与运输.农业环境保护,1992,11(4):171-175.
    63.朱云集,王晨阳,马元喜.砷胁迫对小麦根系生长及活性氧代谢的影响.生态学报,2000,20(4):707-71 0.
    64.Amthor J S.Respiration and Crop Productivity.New York:Springer-Verlag.1989
    65.Andrade F H,Echarte L,Rizzalli R,Maggiora A D,Casanovas M.Kernel Number Prediction in Maize under Nitrogen or Water Stress.Crop Science,2002,42:1173-1179.
    66.Arbouine M W,Wilson H K J.Trace Elem.Electrolytes Health Dis,1992,6:153-160.
    67.Amon D I.Copper enzymes in isolated chloroplasts.Polyphenoloxidase in Beta vulgaris.
    68.Austin R B,Bingham J,Blackwell R D,Evans L T,Ford M A,Morgan C L,Taylor M.Genetic improvements in winter wheat yields since 1900 and associated physiological changes.Agric Sci,1980,94:675-689
    69.Baroni F,Boscagli A,Dilla,all Arsenic in soil and vegetation of contaminated areas in southem Tuscany(Italy).Journal of Geochemical Exploration,2004,81:1-14.
    70.Belkin H E,Zheng B S,Finkelman R B.Geochemistry of coal and endemic arsenism in Southwest Guizhou,China.U.S.Geological Survey Open File Report,1997
    71.Benramdane L,Bressolle F,Vallon J J.Chromatogr.Sci,1999,37:330-344.
    72.Bernhard W R,Kagi H R.Purification and characterization of atypical cadmium-binding polypeptides from zea mays.Experientia,1987,52:309-315.
    73.Bhadula S K,Yang G P,Sterzinger A,Ristic Z.Synthesis of a family of 45 ku heat shock proteins in a drought and heat resistant line of maize under controlled and field conditions. Plant Physiol, 1998,152:104-111.
    
    74. Bhuvaneswaran C. Biochem Biophys Res. Commun, 1979 ,90 :1201-1206
    
    75. Bissen M, Frimmel F H, Fresenius J. Anal.Chem. 2000,367: 51.
    
    76. Blaylock M J. Environmental Science&Technology, 1997,31: 860-865.
    
    77. Brooks R R, lee J, Reeves R D. Detection of nickeliferous rocks analysis of herbarium species of indicator plants. Journal of Geochemical Exploration, 1977,7:49-57.
    
    78. Brooks R R. Phytochemistry of Hyperaccumulators. In R.R.Brookseds Plants That Hyperaccumulate Heavy Metals. CAB international. New York, NY, 1998,55-94.
    
    79. Brown S L, Chaney R L, Angle J S. Zinc and Cadmium uptake by hyperaccmulator Thlaspi caerulescenc grown in nutrient solution. Soil Sci Soc AmJ, 1995, 59:125-133.
    
    80. Brown S L. Phytoremediation potential of Thlaspi caerulescens and blader campion for zinc and cadmium-contaminated soil. Environ.Qual, 1994,23: 1151-1157.
    
    81. Bruin A D. Biochemical toxicology of environment agents. Elsevier, 1976
    
    82. Buckley W T, Buckley K E, Grant C A Absorption and translocation of cadmium in high cadmium and low cadmium accumulation lines of durum wheat in I.K.Iskandar, S.E.Hardy, A.C.Chang and G.M.Pierzynski.Proc.Forth International Conference on the Biogeoche mistry of Trace Elements, Berkeley, 1997,129-130.
    
    83. Burlo F, Guijarro I, Carbonell-Barrachina A A, Valer D, Martinez-Sanchez F J. Agri- c Food Chem, 1999,47: 1247-1253.
    
    84. Cakmak 1, Welch R M, Hart J. Uptake retranslation of leaf applied cadmium in diploid tetraploid and hexaploid wheat.Journal of Experimental Botany, 2000,51:221-226.
    
    85. Cakmak I.Welch R M,Erenoglu Betal. Inflence of varied zine supply on retranslation of cadmium and Rubidium applied on mature leaf of durum wheat seedling.Plant and Soil,, 2000,219:279-284.
    
    86. Carbonell-Barrachina A A, Burlo F, Valero D, lopez E, Martinez-Romero D, Martinez-Sanchez F J. Agri Food Chem, 1999,47:2288-2294.
    
    87. CGWB. High incidence of arsenic in groundwater in West Bengal Central Ground Water Board, India, Ministry of Water Resources, Govern-ment of India,1999,3(11): 512-516
    
    88. Chaney R L. Plant uptake of inorganic waste constitents in land treatment of hazardrous wastes (Eds: James F.Parr et al), Noyes Data Corporation, Park Ridge, New Jersey, USA. 1983,50-75.
    
    89. Chassaigne H, Vacchina V. Identification of phytochelatin-related peptides in maize seedlings exposed to cadmium and obtained enzymatically in vitro. Ohytochemistry, 2001, 56: 657-668.
    
    90. Chaudhry T M, Hayes W J, Khan A G etal. Phytoremediation Focus on accumulator plants that remediate metal-contaminated soil.Australia Journal of Ecotoxilogy, 1998,4: 37-51.
    
    91. Chausseau M, Roussel C, Gilon NetalJ. Anal.Chem, 2000,366:476.
    
    92. Chaves M M. Effects of water deficit on carbon assimilation. J.Exp Bot 1991,42:1-16.
    
    93. Christensen L E, Below F E, Hageman R H.The effect of ear removal on senescence and metab- olism of maize.Plant Physiol. 1981,68: 1180-1185
    
    94. Chen J, Goldsbrough P B. Increased activity of Y-glutamylcysteine synthetase in tomato cells selected for cadmium tolerance.Plant Physiol, 1994,106: 233-239.
    
    95. Chino M, Baba A. The effect of some environmental factors on the partitioning of zine and cadmium between roots and top of rice plants. Plant nutr, 1981, 3: 203-214.
    
    96. Chiou H Y, Hueh Y M, liaw K F. Incidenceof internal cancersandingestedinorganic: a 72year follow up study in Taiwan 1 Cancer Research, 1995 , 55:1296-1300.
    
    97. Chirenje T, Rivero C, Ma L Q. Leaching of As and Cr in wood-ashamended soil columns. Soil and Sediment Contamination, 2002,11: 359-375.
    
    98. Cho U H, Park J O. Mercury induced oxidative stress In tomato seedlings. Plant scie nce, 2000,159: 1-91.
    
    99. Chowdhury A M R, Jakariya M. Testing of water for arsenic in Bangladesh. SCIENCE, 1999,284(5420): 1622-1622.
    
    100.Chowdhury T R, Basu G K, Mandal B K. Arsenic poisoning in the Ganges delta NATURE, 1999,401(6753): 545-546.
    101.Christen K. The arsenic threat worsens. Environmental Science&Technology, 2001, 35: 286-291.
    102.Clarke T. Bangladeshis to sue over arsenic poisoning NATURE, 2001, 413(6856): 556-556.
    103.Clemens S, Kim E J, Neumannd D. Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast.EMBO J, 1999,18: 3325-3333.
    104.Cobbett C S, Peter G B. Phytochelatins and metallothioneins: roles in heavy metal detoxificati on and homeostasis Annu.Rev. Plant Biol, 2002, 53:159-182.
    105.Colom M R, Vazzana C. Photosynthesis and PS II functionality of drought-resistant and drought-sensitive weeping lovegrass plants. Environ.Exp Bot, 2003,49:135-144.
    106. Constable G A, Rawson H M. Effect of leaf position,expansion and age on photosynthesis, transpiration and water use efficiency of cotton.Aust.J Plant Physiol.1980,7: 89-100.
    107.Correia C M, Pereira J M, Coutinho J F, Bjrn L O, Torres-Pereira J M G. Ultraviolet-B radiation and nitrogen affect the photosynthesis of maize:a Mediterranean field study .European Journal of Agronomy(Article in Press) Crafts-Brandner S J, Below FE, Harper J E. Hageman RH.Differential senescence of maize hybrids following ear removal.I. Whole plant.Plant Physiol, 1984,74: 360-367.
    108.Crafts-Brandner S J, Salvucci M E, Egli D B. Changes in ribulosbisphosphate carboxylase/ oxygenase and ribulosebisphsphate5-phosphate kinase abundances and photosynthetic capacity during leaf senescence. Photosynth.Res, 1990,23, :223-230.
    109.Crosbie T M. Changes in physiological traits associated with long-term breeding efforts to improve grain yield of maize.In Loden H D, Wilkinson D.(eds.)Proc.37th Corn and Sorghum Res. Conf.Washington, DC: Am.Seed Trade Assoc, 1982:206-233.
    110.Cullen W R, Reimer K J. Arsenic speciation in the environment.Chem Rev, 1989, 89: 713-763.
    111 .DaMatta F M, loos R A, Silva E A, loureiro M E, Ducatti C. Effects of soil water deficit and nitrogen nutrition on water relations and photosynthesis of pot-grown Coffea Canephora Pierre Trees, 2002,16: 555-558.
    112.Daniel P, Robert E. Health risks associated with contamination of groundwater by abandoned minesnear Twisp in Okanogan County .Washington ,USA .Environmental Geochemist ry and Health, 2004,26 (1): 69-79.
    113.Das D, Chatteee C, Mandal B K. Arsenic in groundwater in six districts of West Bengal.India: The biggest arsenic calamity in the world.Part 2: Arsenic concentration in drinking water, hair ,nails, urine, skin-scale and liver tissue of the affected people. Analy -st, 1995,120:917-924.
    114.Das H K, Mitra A K, Sengupta P K. Arsenic concentrations in rice, vegetables and fish in Bangladesh: a preliminary study. Environment International, 2004, 30: 383-387.
    115.Deba P S, Kunnath S S. Arsenic poisoning in West Bengal.Science, 1996,274: 1285-1289.
    116.Dushenkove V, Kumar P B. Harry Motto et al.Rhizofiltration: The use of plants to remove heavy metals from aqueous stream.Environ.Sci.Technol, 1995,29: 1239-1245.
    117.Ebbs S D, lasat M M. Phytoextraction of cadmium and zinc from a contaminated soil.Journal of Environmental Quality. 1997,26: 1424-1430.
    118.Ei-kherbawy M, Angle J S, Heggo A. .Soil pH rhizobia and vesicular-arbuscularmycorrhizae inoculation effects on growth and heavy metal uptake of alfalfa. Biol.Fertil. Soils, 1989,8:61-65.
    
    119.EPA 3010A.www.epa.gov/epaoswer/hazwaste/test main.htm, revision 2,1996,3010A-.1- 5.
    120.EPA 3050B.www.epa.gov/epaoswer/hazwaste/test main.htm,revision 2, 1996, 3050B: 1- 12.
    121.Finkelman R B, Belkin H E, Zheng B. Health impacts of domestic coal use in China. Proc Natl Acad Sci USA, 1999,96: 3427-3431.
    
    122.Flowler Bruce A. Biological and environmental effects of arsenic.Elsevier, 1983,277.
    123.Foa V, Colombi A, Maroni M, Buratti M, Calzaferri G. Sci Total Environ, 1984, 34: 241-259.
    124.Fukushi K, Sasaki M, Sato T A. natural attenuation of arsenic in drainage from an abandoned arsenic mine dump. Applied Geochemistry, 2003,18(8): 1267-1278.
    125.Gallego S M, Benavides M P, Tomaro M L. Effects of Heavy metalion exces on sunflower leaves evidence for Involvement of oxidative stress. Plantscience, 1996,121: 151-1591.
    126.Gebel T. Confounding variables in the environmental toxicology of arsenic. Toxicolog -y, 2000,144(123): 155-162.
    127.Geiger G, Federer P, Sticher H. Reclamation of heavy metal-contaminated soils: field studies and germination experiments..!. Environ.Qual, 1993,22: 201-207.
    128.Gekeler W, Grill E, Winnacker E L. Survey of the plant kingdom for the ability to bind heavy metals through phytochelatins.Z.Naturforsch, 1989,44: 361-369.
    129.Geng C N, Zhu Y G, Tong Y P. Arsenate (As) uptake by and distribution in two cultivars of winter wheat (Triticum aestivum L.). Chemosphere, 2006,62:608-615.
    130.Grill E, Winnacker E L, Zeek M H. Synthesis of seven different homologuous phytochelatins in metal-exposed Schizasaccharomyces pombe cells.FEBS Lett, 1986, 197: 115-120.
    
    131. Grill E, loffler S, Winnacker EL. Phytochelatins the heavy-metal-binding peptides of plants are synthesized from glutathione by a specific Y-glutamylcysteine dipeptidy transpeptidase (phytochelatin synthase).Proc.Natl.Acad.Sci, 1989, 86: 6838-6842.
    
    132. Grill E, Winnacker E L, Zenk M H. Phytochelatins: the principal heavy-metal complexing peptides of higher plants.Science, 1985,230: 674-676.
    
    133.HaSts, Smith A P. Phytochelatin synthase gene from Arabidopsis and the yeast Schizosaccharomyces pombe. Plant cell, 1999,11:1153-1163.
    134. Hamilton E T. Environmental variables in a holistic evaluation of land contaminated by historic mine wastes: a study of multi-element mine wastes in west Devon .England using arsenic as an element of potential concern to human health.Sic Total Environ, 2000, 249 (123): 171-221.
    135.Harvey C F, Swartz C H, Badruzzaman A B MArsenic mobility and groundwater extraction in Bangladesh. Science, 298 (5598): 1602-1606.
    136.Hasegawa I, Tarada E. Genetic improvement of heavy metal tolerance in plant by transfer of the yeast metallothionein gene (CUP1) In: Ando T, Fuj ita K, Mae Tetal.(eds). Plant nutrition for sustainable food production and environment.Netherland:Kluwer Academic Publishers, 1997, 391-395.
    137.Hill C H.Interrelationships of selenium with other trace elements.Fedration Proceedings, 1975,34 (11): 2096-2100.
    138.Howden R, Goldsbroggh P B, Andersen C R. Cadmium-sensitive, cad, mutants of Arabid-opsis thaliana are phytochelatin deficient.Plant Physiol, 1995,107:1059-1066.
    139.Howeler R H. Identifying plants adaptable to low pH conditions. In Wright RJ etal (eds.)Plant-soil interactions at.low pH. Kluwer Academic Publishers, 1991, 885-904.
    140.Huang Jianwei, Michael J, Blaylock. Phytoremediation of uranium-contaminated soil: role of organic acids in triggering uranium hyperaccumulation in plants. Environ. Sci. Tech nol.1998,32:2004-2008.
    141.Huang J W, Cunningham S D. New Phytologist, 1996,134: 75-84.
    142. Islam F S, Gault A G, Boothman C. Role of metal-reducing bacteria in arsenic release from Bengal delta sediments NATURE, 430(6995): 68-71.
    
    143.Jack C N, Johnson D, Imray P, Chiswell B, Moore M R. Analyst, 1998,123: 929-933.
    144. Jacobs L W, Keeney D R. Arsenic-phosphorus interaction on corn.Communications in Soil Science and Plant Analysis, 1970,1: 85-93.
    145.Jeanette H W, Gillian A, Riet V. Phytochelatins are involved in differential arsenate tolerance in Holcus lanatus.Plant Physiology, 2001,26: 299-306.
    
    146. Jenkins G I, Woolhouse H W. Photosynthetic electron transport during senescence of the primary leaves of Phaseolus vulgaris L.J.Exp.Bot. 1981, 32: 467-478.
    
    147. Jiang G M, Hao N B, Bai K Z, Zhang Q D, Sun J Z, Guo R J, Ge Q Y, Kuang T Y. Chain correlation between variables of gas exchange and yield potential in different winter wheat cultivars. Photosynthetica, 2000, 38:227-232.
    
    148. Johnson D R,Tanner J W.Calculation of the rate and duration of grain filling in corn(Zea mays). Crop Science, 1972,12:485-486.
    
    149. Johnson R C, Mornhinweg D W, Ferris D M, Heitholt J J. Leaf photosynthesis and conductance of selected Triticum species at different water potentials.Plant Physiol. 1987, 83:1014-1017.
    
    150.Joinal Abedin M D, Cresser M S, Meharg A A. Arsenic accumulation and metabolism in rice (Oryza sativa L). Environ Sci Technol, 2002, 36(5): 962-968.
    
    151. Jones C A. Arsenic transport in contaminated mine tailings following liming. Environ. Qual, 1997,20:433-439.
    
    152. Jorge B. Physiological bases for yield differences in selected maize cultivars from Central America. Field Crops Res, 1995,42: 69-80.
    
    153.Jorge I S, Hector G, Estela S J, James R D. Physiological traits associated with mass selection for improved yield in a maize population. Field Crops Res, 1998, 56: 239-246.
    
    154.Kaiser Jocelyn. Toxicologist shed new light on old poisons.Seience, 1998,297:1850-1851.
    
    155.Kalbitz K, Wennrich R. Mobilizationof heavy metalsand arsenic in polluted wetland soilsan -dits dependenceon dissolved organic matter.The Science of the Total Environment, 1998, 209: 27-39.
    
    156.Kalt Torres W, Kerr P S, Usuda H, Huber S C. Diurnal changes in maize leaf photosynt -hesis.I. Carbon exchange rate, assimilate export rate and enzyme activities. Plant Physiol, 1987,83:283-288.
    157.Karim M M. Arsenic in groundwater and health problems in Bangladesh. Water Research, 2000,34:304-310.
    158.Kneer R, Zenk M E. Phytochelatins protect plant enzymes from heavy metal poisoning. Phytochem, 1992,31:2663-2667.
    159.Kondo N, Isobe M, Imai K. Synthesis of metallothionein-like peptides Cadystin A and B occurring in a fission yeast and their isomers.Agric.Biol.Chem, 1985,49: 71-83.
    
    160.Kot A, Namiesnik J. Trac-Trends Anal.Chem, 2000,19 (2-3): 69-79.
    161.Kristin A S, Nikolay V S, Barbar L S. Arsenic mobility in alteration product s of sulfide-rich ,arsenopy-Rite-bearing mine was tes, Snow Lake, Manitoba, Canada. Applied Geochemist ry, 2005,20:2303-2314.
    162.Kubota H, Sato K, Yamada T. Phytochelatins homologs induced in hairy roots of horseradish. Phytochem, 2000,53:239-245.
    163.Kuo T L. Arsenic content of artesian well water in endemic area of chronic arsenic poisoning. Rep Inst Pathol National Taiwan University, 1968,20: 7-13.
    164.Lasat M M, Fuhrman M, Ebbs S D. Phytoextraction of radiocesium-contaminated soil: Evaluation of cesium bioaccumulation in the shoots of three plant species.J of Envionm -ental Quality, 1998,27(1): 165-165.
    165.Lee R B. Selectivity and kinetics of ion uptake by barley plants following nutrient deficiency. Annals of Botany, 1982, 50: 429-449.
    166.Lepp N W. Effect of Heavy metal pollution on plants. Applied Science Publication. London and New Jersey, 1981,(2): 230-235
    
    167.Li W, Lu D. Industrial Geography of Chinal Beijing: Science Press, 1995.
    168.Li Y M, Chaney R L, Brewer E P. Phytoextraction of Nickel and Cobalt by Hyperaccumul -ator Alyssum Species Grown on Nickel-Contaminated Soils. Environmental Science& Technology, 2003,37: 1463-1468.
    169.Liao X Y, Chen T B. Root distributions and elemental accumulations of Chinese brake (Pteris vittata L) from As-contaminated soils.Plant and Soil, 2003,0: 1-8.
    170. Liu W J, Zhu Y G, Smith F A. Do phosphorus nutrition and iron plaque alter arsenate (As) uptake by rice seedlings in hydroponic culture. New Phytologist, 2004,162: 481-488.
    171.Lombi E, Zhao F J, Dunham S J. Cadmium accumulation in population of Thlaspi caerulescens and Thlaspi goesingense. New Phytologist, 2000,145: 11-20.
    172.Lopez Gonzalvez M, Gomez M M, Palacios M A, Camara C. Chromatog raphia, 1996, 43: 507-512.
    
    173.Mandal B K, Suzuki K T. Arsenic round the world: a review.Talanta, 2002, 58: 201-235.
    174.MANNINGA, SUAREZ D L. Modeling arsenic( III) adsorption and heterogeneous oxidation kinetics in soils. Soi.Sci Soc AmJ, 2000,64(1): 128-137.
    175.Matschulla J. Arsenic in the geosphere-a review. The Science of the Total Environm ent, 2000,249:297-312.
    176.MAZUMDER B K, CHOWDHURY T R, SAMANTA G. Arsenic in groundwater in seven districts of West Bengal, India-the biggest arsenic calamity in the world. Curr Sci India, 1996, 70: 976-986.
    177.Meharg A A. Arsenic in rice-understanding a newdisaster for South-East Asia. TRENDS in Plant Science, 2004,9 (9): 415-417.
    178.Mkandawire M, Dudel E G. Accumulation of arsenic in L emna gibba L.( duckweed) in tailing waters oftwo abandoned uranium mining sites in Saxony, Germany .Science of the Total Environment, 2005,336 (1/ 3): 81-89.
    179.Monni S M, Salemaa.Copperresistance of calluna vulgaris originating from the pollution gradient of a Cu-Nismelter in southwest Finland.Environmental pollution, 2000, 109:211-219.
    180.Murphy E A, Aucott M. An Assessment of the Amounts of Arsenical Pesticides Used Historically in a Geographical Area. The Science of the Total Environment, 1998, 218: 89-101.
    181.Nickson R, McArthur J, Burgess W. Arsenic poisoning of Bangladesh groundwater NATURE, 1998, 395 (6700): 338-338.
    182.Norra S, Berner Z A, Agarwala P. Impact of irrigation with As rich groundwater on soil and crops: A geochemical case study in West Bengal Delta Plain ,India.Applied Geochemist ry, 2005,20 (10): 1890-1906.
    183.Nriagu J O, Pacyna J M. Quantitative assessment of world wide contamination of air, water and soils by trace metals. Nature, 1988, 333:134-139.
    184.Nriagu J O. Arsenic in the Environment, Part II, Human Health and Ecosystem Effects. New York, 1994:55-91.
    185.Penner G A, Clarke J, Bezte L J. Identification of RAPD markerslinked to a gene governing cadmium uptake in durum-wheat. Genome,1995,38 (3): 543-547.
    
    186.Poison C J, Tattersal RN. Clinical Toxicology Pitman, london, England, 1969:181-184.
    187.Pongratz R. Arsenic speciation in environmental samples of contaminated soil.The science of the total environment, 1998,224:133-141.
    188.PrasadM H V. Cadmium toxicity and tolerance in vacular p lant.Envir Exper Botany, 1995, 35 (4): 525-545.
    189.Rossman T G. Mechanism of arsenic carcinogenesis: an integrated app roach.Mutation Research Fundamental and Molecu-Lar Mechanisms of Mutagenesis, 2003,533: 37-65.
    190.ROSSMAN T G. Molecular and genetic toxicology of arsenic.Amsterdam: Gordon and Breach Publishers, 1998,171-187.
    191.S.Monni, C U, hlig E. Hansenetal.Ecophysiological responses of empetrum nigrum to heavy metal pollutionJEnvironmental Pollution, 2001,112.
    192.Sadler R, Olszowy H, Shaw G. Soil and water contamination by Arsenic from tannery waste. Wat.Air Soil Poll., 1994,78: 189-198.
    193.Shibata Y, Morita M.Anal Sci, 1989,5: 507-509.
    194.Smedley P L, Nicolli H B, Macdonald D M J.Hydrogeochemistry of arsenic and other inorganic constituent s in groundwaters from La Pampa, Argentina. Applied Geochemistry, 2002,17:259-284.
    195.Smedley P L, Zhang M, Zhang G. Arsenic and other redox-sensitive elements in groundwaterf romthe Huhhot Basin, Inner Mongolia.Water-Rock Interaction, 2001, 1: 581-584.
    196. Smith A H, Hopenhayn Rich C, Bates M N. Cancer risk from arsenic in drinking water 1 Envrionmental Health Perspectives, 1992,103: 13-15.
    197.Stokstad E. Bangladesh: Agricultural pumping linked to arsenic. Science, 2002,298 (5598): 1535.
    198.Takahashi W, Pfenninger K, Wong L. Arch.Environ. Health, 1983,34:209-214.
    199.Thumann J, Grill E, Winnacker E L. Reactivation of metal-requiring apoenzymes by phytochelatin-metal complexes. FEBS Lett, 1991,284: 66-69.
    200.Toppi S, Gabbrielli R. Response to cadmium in higher plants. Environ.Exp Bot, 1999, 41: 105-130.
    201. Tu C, Ma L Q. Effects of arsenic concentrations and forms on arsenic uptake by the hyperac cumulator ladder brake.Journal of Environmental Quality, 2002, 31: 641-647.
    202.Turpeinen R, Pantsar-Kallio M, Haggblom M. Influence of microbes on the mobilization, toxicity and biomethylation of arsenic in soil.The Science of the Total Environment, 1999, 236: 80-173.
    203.Ullrich-Eberius C I, Sanz A, Novacky A J. Evaluation of arsenate-and vanadate-associated changes of electrical membrane potential and phosphate transport in Lemna gibba-G, Journal of Experimental Botany, 1989,40: 119-128.
    204. Van Assche F, Clijsters H. Effects of metal on enzyme activity in plant, Plant Cell Environ. 1990,13:195-206.
    205.Vatamaniuk O K, Mari S, lu Y P. a phytochelatin synthase from Arabidopsis: Isolation and in vitro reconstitution. Proc Nat Acad Sci, 1999,96: 7110-7115.
    206.Verkleij J A C, Koewoets P. Poly( r-gluylcysteinyl) glucines or phytochelatins and their role in cadmium tolerance of silene vulgaris.Plant Cell and Environ., 1990, 13: 913-921.
    
    207. Wagner G J. Accumulation of cadmium in crop plants and its consequences to human health. Adv Agron, 1993, 51: 173-212.
    
    208. Wang G. Arsenic poisoning from drinking water in Xinjiang.Chin J Prevent Med, 1984,18: 105-107.
    
    209. Wang Y X, Guo H M, Yan S L. Geochemical evolution of shallow groundwater systems and their vulnerability to contaminants: A case study at Datong Basin, Shanxi Province, China Beijing: Science Press, 2004:23-25.
    
    210. Webster R. Quantitative spatial analysisof soil in the field.Advances in Soil Scences, 1985, (3): 1-70.
    
    211. Welch A H, lico M S. Factors cont rolling As and U in shallow ground water, southern Carson Desert, Nevada Applied Geochemistry, 1998,13: 521-539.
    
    212. Williams M, Fordyce F, Paijitprapapon A. Arsenic contamination in surface drainage and ground-water in part of the southeast Asian tin belt, Nakhon Si Thammarat Province, southern Thailand. Environ Geol, 1996,27: 16-33.
    213. Williams M. Mining related arsenic hazards: Thailand case study Summary Report: Brit Geo Sury Tech Rep, 1997: WC/ 97/ 49.
    214.Woolson E A, Axley J H, Kearney P C. The chemistry andphytotoxicityof arsenicin soils.I. Contaminatedfield soils. Soil Science Society of America Proceedings, 1971,35: 938-943.
    215.Xu yanhua, Tsunenori Nkajima, akira ohki. Adsorption and removal of arsenic (V) from drinking water by aluminium-loaded shirasu-zeo-lite. Journal of hazardous materials, 2002, B92:275-287.
    216.Yamauchi H, Fower B A. Arsenic in the Environment, Part Ⅱ, (ed.Nriagu J O), New Yor k: John Willey, Son, 1994:35.
    217.Zhang X, Vanderbiesen V, Cubber A D, Vanholder R.Clin. Chem, 1996,42:1231-1237.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700