用户名: 密码: 验证码:
不同倍性虹鳟Oncorhynchus mykiss性腺和配子发育及血细胞比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
虹鳟Onchorynchus mykiss(Walbaum)是重要的冷水性养殖鱼类。为提高产品的质量和群体产量,近年来养殖人工诱导三倍体不育系虹鳟已成为一种发展趋势。四倍体虹鳟作为三倍体制种的亲本,也已被成功诱导和培育。由于染色体多倍化,多倍体虹鳟的生殖机制发生了改变,甚至导致了三倍体虹鳟雌性不育。性腺是鱼类进行繁殖活动的基础,只有充分了解性腺发育和配子发生的规律,才能对鱼类的繁殖过程更好地进行调控。尽管有关三倍体虹鳟性腺发育已有一些研究,但缺乏对其整个发育过程的组织学、细胞学、生殖内分泌学等的系统研究,尤其缺乏对早期性腺发育的了解,对三倍体虹鳟卵巢败育的起始变化过程没有描述,对卵母细胞败育的起始时间也各有不同的观点,更缺乏对性腺中非生殖细胞发育变化及其作用的研究,对三倍体虹鳟的生殖机制也有各自不同的解释。有关四倍体虹鳟的性腺发育研究尚未见报道。
     本研究以4~35月龄的二倍体和三倍体虹鳟以及26月龄、35月龄的四倍体虹鳟为试验材料,采用比较解剖技术、光学显微技术、透射电镜技术、放射免疫和免疫组化等技术,从性腺解剖结构、组织结构、超微结构以及生殖激素含量变化等几方面,对二倍体、三倍体和四倍体虹鳟进行了比较研究,并对二倍体和三倍体虹鳟的卵黄蛋白原进行了免疫组化定位,以了解染色体多倍化对多倍体虹鳟性腺发育和配子发生的影响,探讨多倍体虹鳟的生殖机制。此外,对不同倍性虹鳟的血细胞特征进行了研究。试验结果表明:
     1.二倍体雌性虹鳟35月龄卵巢已接近成熟,多数样本卵巢发育至IV+++期并排卵;雄鱼26月龄基本成熟,绝大多数样本精巢进入V期(排精期)。性成熟前雌雄虹鳟性体指数GSI持续上升,产前达峰值;雌性虹鳟肝体指数HSI在卵巢发育中后期显著下降,与GSI变化呈负相关。
     2.三倍体卵巢形态发育异常,不能成熟。I期卵巢与二倍体没有区别,在II期(8月龄)后发育停滞,始终保持前部稍膨大而后部呈线状的形态,没有可见的卵母细胞。个别样本卵巢中有极少数正常发育的卵母细胞。GSI始终维持在较低水平,低于同期二倍体。HSI也低于同期二倍体,与GSI没有明显的相关性;三倍体精巢形态发育基本正常,与二倍体比较发育滞后,35月龄只有少数个体成熟进入V期。GSI低于二倍体。
     3.四倍体雌、雄虹鳟性腺均能正常发育,形态与二倍体相似,性成熟稍晚于二倍体。35月龄仅有少数个体卵巢进入IV+++期,绝大多数样本卵巢仍处于未排卵的IV++期;26月龄仅有少数样本精巢发育成熟(V期);GSI与二倍体无显著差异。
     4.二倍体虹鳟卵黄发生早期的卵母细胞卵黄核呈条块状,然后迁移至皮质区形成外周环,超微结构显示,卵黄核由高尔基体和线粒体组成,为内源性卵黄的来源。生长环即将消失时,卵母细胞胞质中部出现一种嗜碱性丝状环,并消失于III时相。
     5.三倍体虹鳟卵巢发育阻滞,经历了卵原细胞→卵黄发育前期卵母细胞→败育卵母细胞+卵原细胞簇→卵原细胞簇+类生精细胞囊→类生精细胞囊的过程。染色体三倍化对雌鱼的影响主要发生在卵巢发育早期,发育中后期卵巢有雄性化趋势。在性腺分化期,雌性三倍体虹鳟卵巢发育与同期二倍体没有区别,卵母细胞败育发生在第一次减数分裂的双线期(核仁外周晚期、卵黄发生前期),而不是其他学者报道的偶线期到粗线期。三倍体虹鳟雌性不育是综合因素所致:卵母细胞在第一次减数分裂的双线期败育是由于已配对的染色体分离紊乱;此后,卵巢中的卵原细胞不能进一步发育,是因为被卵原细胞簇壁的基质细胞阻隔,缺乏与滤泡细胞的互作而不能进一步分化。游离于卵原细胞簇外的卵原细胞可正常发育至成熟。
     6.三倍体雄性虹鳟能够完成精子发生过程,较同期二倍体精巢发育迟缓、坏死细胞多、精子大且大小不等。染色体三倍化对雄鱼的影响主要发生在精子发生的晚期(精子变态期)。
     7.三倍体虹鳟精巢和卵巢发育中败育的生殖细胞主要被支持细胞(雄性)、类支持细胞(雌性)和成纤维细胞所吞噬。
     8.四倍体虹鳟卵巢和卵母细胞能够正常发育成熟;精子发生过程与二倍体基本相同,稍有滞后。其精子头部直径为2.82±0.33μm,体积明显大于三倍体(2.37±0.12μm)和二倍体(1.86±0.12μm)。
     9.二倍体雌性虹鳟未成熟期血清中GtH-Ⅰ和17β-E2持续升高,临近性成熟前GtH-Ⅰ和17β-E2下降。GtH-Ⅱ和T在发育前期含量很低,持续缓慢上升,在临近性成熟前迅速增加。表明GtH-Ⅰ通过刺激性腺产生17β-E2,促进卵母细胞的发育,而GTH-Ⅱ则促进卵子的成熟;三倍体雌性虹鳟生殖激素的变化与二倍体有明显不同,血清中GtH-Ⅰ、GtH-Ⅱ和17β-E2始终在低水平波动,没有明显变化规律。T含量在21月龄后持续上升,显著高于同期二倍体,为三倍体虹鳟卵巢发育类雄性化提供了生理学证据;四倍体雌性虹鳟血清中GtH-Ⅰ、GtH-Ⅱ、17β-E2和T含量与二倍体呈现相同的变化规律。
     10.二倍体雄性虹鳟未成熟期血清中GtH-Ⅰ和17β-E2持续升高,临近性成熟前GtH-Ⅰ和17β-E2下降。GtH-Ⅱ和T在发育前期含量很低,持续缓慢上升,在临近性成熟前迅速增加。11~35月龄雄性个体呈现了2个周期性变化;三倍体雄性虹鳟血清中GtH-Ⅰ、GtH-Ⅱ、17β-E2和T含量与二倍体有相同的变化规律,其变化较同期二倍体滞后,只有1个变化周期;四倍体雄性虹鳟血清中GtH-Ⅰ、GtH-Ⅱ、17β-E2和T含量与二倍体呈现相同的变化规律。
     11.采用饱和硫酸铵分步沉淀与凝胶色谱两步层析法,从虹鳟卵粗提液中分离、纯化的蛋白为含糖、磷和脂的卵黄脂磷蛋白,分子量为123.2kDa。其抗血清在无外源诱导物诱导的情况下,只与正常雌鱼血浆中的卵黄蛋白原Vg反应,为雌性特异性蛋白。
     12.免疫组化组织定位显示,二倍体雌性虹鳟卵巢发育至III~V期,肝细胞和血液中存在Vg,卵巢阳性反应滞后,IV~V期卵母细胞中出现Vg。其它生长期,二倍体雌性虹鳟肝细胞和血液Vg呈阴性反应;各发育期三倍体雌性虹鳟,肝脏、血液及性腺Vg呈阴性反应;各发育期雄性二倍体和三倍体虹鳟,肝脏、血液及性腺Vg均呈阴性反应,表明环境中不存在诱导卵黄蛋白原非正常表达的诱导因子;各发育期雌、雄二倍体和三倍体虹鳟肠组织Vg均呈阴性反应,表明Vg的形成与肠道无关。
     13.三倍体和四倍体虹鳟红细胞比二倍体更大、更长。三倍体和四倍体虹鳟红细胞大小分别为17.35±1.59×10.52±0.70μm和18.66±2.28×11.08±1.47μm ,均大于二倍体(13.30±1.31×8.34±0.63μm),与二倍体红细胞体积之比及核体积之比预期理论值(1.5︰1、2.0︰1)无显著差异;红细胞短径/长径比值分别为0.60、0.59,小于二倍体(0.63)。三倍体虹鳟红细胞压积明显小于二倍体,是由于三倍体虹鳟单位体积的红细胞数量比二倍体少所致;三倍体虹鳟的红细胞脆性小于二倍体;三倍体虹鳟与二倍体虹鳟的单位体积血液血红蛋白量没有显著差异。
     14.多倍体虹鳟血液中有一定比例的红细胞核呈哑铃型或双核型。低渗试验显示为红细胞异常分裂,表明多倍体虹鳟的外周血液中红细胞不是终端分化细胞,具有分裂能力。双核型红细胞是核先于质分裂,哑铃型红细胞核是核质同步分裂的中间过程。
     15.三倍体虹鳟血细胞的发育经历了原始、幼稚和成熟三个阶段。外周血液红细胞系、单核细胞系、淋巴细胞系和粒细胞系中未成熟血细胞的比例分别为13.8%±1.24%、4.14%±0.99%、5.52%±0.58%和3.96%±0.47%,明显高于造血器官的相应指数。外周血液中红细胞的异常分裂是其幼稚红细胞数量增多的主要原因。
     16.在头肾所产生的血细胞中红细胞比例为66.90%±3.85%,高于脾脏和肝脏的相应指数(56.90%±1.77%、47.20%±2.14%);在肝脏所产生的血细胞中单核细胞和粒细胞比例分别为21.80%±1.58%和4.92%±0.01%,高于脾脏和头肾的相应指数(17.80%±2.34%、4.87%±0.99%;6.82%±1.24%、3.11%±1.10%);在肝脏所产生的血细胞中淋巴细胞的比例为14.90%±1.29%,高于头肾和脾脏的相应指数(13.20±2.86%、12.60%±2.74%)。
Rainbow trout (Onchorynchus mykiss Walbaum) was one of important cultivated cold water species. In order to improve quality of the products and output of the stock, cultivating artificial-inducing sterile triploid rainbow trout has come into practice in recent years. The tetraploid rainbow trout has already been inducted and cultivated successfully as the parent of breeding of triploid rainbow trout. Due to the polyploidisation of chromosome, the reproductive mechanism of the polyploid rainbow trout has changed and resulted in triploid female rainbow trout sterile. Since the gonad was the foundation of fishes for breeding, comprehensively understanding the regularity of gonadal development and gametogenesis can benefit controlling the process of breeding. Although there were some studies on the gonadal development of triploid rainbow trout, the systemic studies on histology, cytology, reproductive endocrinology have not finished in the whole developmental process, especially on gonadal development at the early stage. Up to now, there were no systemic reports about triploid ovaries from normal to diapause.
     This experiment was done with diploid and triploid rainbow trout of 4~35 months old and with tetraploid rainbow trout of 26 and 35 months old. The comparative studies on gonad of diploid, triploid and tetraploid rainbow trout were done in several aspects such as anatomic, histological ones and the changes of reproductive hormone. This study also made location of diploid and triploid female rainbow trout’s vitellogenin by immune histochemistry method. In addition, the blood cell characteristics of polyploid rainbow trout were researched. The conclusions were showed as follow:
     1. 35 month-old diploid female rainbow trout was near sexual maturity, the most of the ovary developed to stage IV+++ and ovulated. 26 month-old diploid male is up to maturity, the most of them developed to stage V (spermiation stage). The GSI of female and male rainbow trout before sexual mature was increasing constantly and reached the peak near the time of reproduction. The HSI of female rainbow trout was descending obviously in the midphase and anaphase of ovary development, and was negatively correlated to GSI.
     2. The ovaries of triploid rainbow trout developed abnormally and immaturely. The ovaries of triploid and diploid rainbow trout have no differences between stage I. After stage II (8 month old), ovaries diapause, the front parts of them were intumescentia slightly and the posterior parts linear. Some individuals have small number of normal developmental oocytes. The GSI was keeps in low level and lower than one of diploid individuals of the same stage. The HSI was lower than one of diploid rainbow trout and there were no obvious correlation compared with GSI. Triploid rainbow trout had morphological normal development spermary which developed slower than diploid spermary. Only a few individuals maturited and came into stage V at 35 month-old. The GSI was lower than that of diploid individuals.
     3. The gonadal morphology of tetraploid was similar to that of diploid, but the sexual maturation of teraploid was later than that of diploid. At 35 months old, a few ovaries developed to the stage IV+++, and mostly samples were still at the stage IV++. At 26 months old, a few spermaries developed to stage V. The GSI of tetraploid was not significantly different from that of diploid at same stage.
     4. The oocyte’s yolk nucleus of diploid rainbow trout looked like lump in the early egg yolk genesis, and transferred and formed outer ring at the cortex. It was the source of endogenous egg yolk, composing by Gaogi apparatus and mitochondria. Soon after the growing links were disappearing, a basophilla silkiness link formed in the oocyte’s cytoplasm and disappeared in stage III.
     5. The triploid rainbow trout’s ovary diapaused and underwent the process: ovogonium→oocyte in the earlier of yolk development→ovogonium cluster→grp-androgone cytocyst. The influence of chromosome triplication on female triploid fish mainly took place at the early ovary development. There was no difference between female triploid rainbow trout and diploid one in ovaries development at the gonad differentiated stages. Oocyte was abortion at the diplotene stage of meiosisⅠ(advanced stages of nucleolus periphery, protophase of Vitellogenesis) rather than at amphitene and pachynema of meiosisⅠin other reports. The ovaries had the tendency of masculinization at the midanaphase of gonadal development. The triploid female sterility resulted from comprehensive factor: the abortion of oocyte at the diplotene stage of meiosisⅠwas due to the disorder separation of the paired chromosome. After abortion of oocyte, oogonium can not further development in ovaries, this resulted from separating block of the matrix cell in the wall of ovogonium cluster. Duing to the separation, oogonium lost the interaction with the follicular cells and could not go on further differentiation. Oogonium which was liberated from outside of oogonium cluster could continue developing and maturate.
     6. The triploid male trout could finish spermatogenesis, but their spermary developed slower than the spermary development of the diploid in the same stage. More dead cells appeared, the sperm of triploid trout was large with the inequality of size. The impact of chromosome triplication on male triploid mainly happened in the advanced stage (stage of metamorphosis) of spermatogenesis.
     7. The abortive generative cells in the spermary and ovaries of triploid rainbow trout was phagocytized by sertoli’s cells (male), grp- sertoli’s cells (female) and fibroblast.
     8. Tetraploid female rainbow trout’s ovary and oocytes could develop normally and be fertile. The spermatogenesis was quite similar to one in diploid trout and slightly lagged behind. The diameter of sperm head was 2.82±0.33μm, and the volume was obviously bigger than triploid (2.37±0.12μm ) and diploid (1.86±0.12μm ).
     9. The levels of GtH-Ⅰand 17β-E2 in serum of diploid female rainbow trout increased constantly during immaturity, and decreased near maturity. The contents of GtH-Ⅱand T were low at the protophase of development, and increased slowly and constantly, but increased quickly near sexual maturity. It indicated that 17β-E2 was produced by GtH-Ⅰthrough the stimulation to gonad, and promoted the development of oocytes. GTH-II promoted the ovum to maturity. The changes of reproductive hormone in triploid female rainbow trout were obviously different from diploid, the levels of GtH-Ⅰ, GtH-Ⅱand 17β-E2 in the serum fluctuate within a low range, and the regularity was not obvious. There was a constant increasing in the levels of T in triploid female rainbow trout after 21 months and was higher than the diploid at the same stage, which provides a physiological evidence for the masculinization-like of ovaries in triploid rainbow trout. The changes of GtH-Ⅰ, GtH-Ⅱ, 17β-E2 and T in tetraploid female rainbow trout was as the same as diploid.
     10. The levels of GtH-Ⅰand 17β-E2 in immature diploid male rainbow trout increased constantly and became lower near sexual maturation. The contents of GtH-Ⅱand T was low at the protophase of development, increased slowly and constantly, and shew a quickly increase near sexual maturity. The male individuals had two periodic changes during 11-35months. The change s of GtH-Ⅰ, GtH-Ⅱ, 17β-E2 and T in male triploid rainbow trout were identical to ones in the diploid, but lagged behind diploid at the same stage, and existed only in one variation cycle. The contents of GtH-Ⅰ, GtH-Ⅱ, 17β-E2 and T in male tetraploid rainbow trout had the same change regularity with the diploid.
     11. Vitellogenin of rainbow trout’s ovum were extracted and purified by saturated ammonium sulfate fractional precipitation and gel chromatography. Lipovitellenin contained sugar, phosphorus and adipose with 123.2 kDa molecular weight. Its antiserum reacted only with the vitellogenin (Vg) in the normal female fish plasma without exogenous inducer, which indicated that it was a female peculiar protein.
     12. Immuno-histochemistry allocation showed that the hepatocyte and blood had Vg in diploid rainbow trout’s ovaries whichdeveloped to stage III~V, positive reaction of its ovaries was hysteresis and the oocyte had Vg during stage IV~V. In other developmentive periods, the Vg in diploid female rainbow trout’s hepatocyte and blood presented the negative reaction. The Vg in liver, blood and gonad of triploid female rainbow trout also shew the negative reaction, and the Vg in liver, blood and gonad of diploid and triploid male rainbow trout in every developmental stage had similar negative reaction, which indicated that there no inducing factor in surrounding to induce the unusual expression of vitellogenin. The Vg negative reaction appeared in intestine tissue of both male and female diploid and triploid rainbow trout in every developmental stage, illustrating the formation of Vg had not any relation with intestines.
     13. The red blood corpuscles were bigger, longer in triploid and tetraploid rainbow trout than the diploids. The size of triploid and tetraploid rainbow trout’s erythrocyte were 17.35±1.59×10.52±0.70μm and 18.66±2.28×11.08±1.47μm respectively, greater than the diploid (13.30±1.31×8.34±0.63μm ) , and they were all larger than diploid(13.30±1.31×8.34±0.63μm)and had no significant deviation from expectant theoretical value (1.5︰1, 2.0︰1) . The rate of short diameter to long diameter for erythrocyte was 0.60 and 0.59 respectively, and was smaller than diploid (0.63). Because of the number of erythrocyte per unit in triploid rainbow trout was smaller than in diploid, the volume of packed red cells was obviously smaller than diploid. Erythrocyte in triploid rainbow trout was less fragile than in diploid, there were no significant differences in levels of hemoglobin per unit volume blood between triploid and diploid rainbow trout.
     14. Some of red cell nucleus looks like dumbbell or dikaryon. Hypotonic test showed that the erythrocytes were not terminal differentiated cells in the peripheral blood of polyploid rainbow trout and had ability to division. The dikaryotic erythrocyte’s karyodieresis was earlier ones of nuclus than cytokinesis and the dumbbell-like red blood corpuscle was middle course of synchronized division in the karyoplasm and cytoplasm.
     15. The development of erythrocyte in triploid rainbow trout passed through primitive, inmature and ripe stages. The proportion of immature blood cell was13.8%±1.24%, 4.14%±0.99%, 5.52%±0.58% and 3.96%±0.47% respectively in the triploid rainbow trout’s erythrocyte series, monocyte series, lymphocyte series and granulocyte series, and was higher than the corresponding index of the hematogenic organ. The abnormal division of the erythrocyte in the peripheral blood was the main causes of inmature red blood corpuscles increase.
     16. The proportion of erythrocyte was 66.90%±3.85% in the blood cell from head kidney, which was higher than corresponding index from the spleen and liver (56.90%±1.77%, 47.20%±2.14% ) .The proportions of monocyte and granulocyte were 21.80%±1.58% and 4.92%±0.01% in the blood cells from liver, higher than corresponding index from the spleen and head kidney (17.80%±2.34%, 4.87%±0.99%;6.82%±1.24%, 3.11%±1.10%). The proportion of lymphocyte was 14.90%±1.29% in the blood cell from liver, higher than corresponding index from the head kidney and spleen(13.20±2.86%, 12.60%±2.74%).
引文
常重杰,杜启艳.2002.人工诱导四倍体大鳞副泥鳅的研究.河南师范大学学报,30(4):70-73.
    陈礼强.2007.细鳞裂腹鱼生殖生物学研究.西南大学硕士学位论文.
    陈敏容,杨兴棋,俞小牧等.1997.白鲫(♀)×红鲫(♂)异源四倍体鱼的倍性操作及生殖力的研究.水生生物学报,21(3):197-206.
    陈敏容,俞小牧,杨兴棋等.1998.人工诱导异源四倍体、新四倍体及异源三倍体白鲫的细胞遗传学研究.水生生物学报,22(3):209-218.
    陈晓耘.2000.南方鲇幼鱼血细胞发生的研究.西南师范大学学报,25(3):281-287.
    成嘉.2005.鲫鲤杂种F1性腺发育及雄性配子染色体加倍机制的研究.湖南师范大学硕士学位论文.
    邓亚光,陈立侨,王学明,等.2001.三倍体虹鳟性转换及性腺发育的研究.动物学报,47(1):71-78.
    范兆廷.2005.水产动物育种学.中国农业出版社,146-149.
    方永强,Welsch.1995.文昌鱼卵巢中滤泡细胞超微结构及功能的研究.中国科学(B辑),25(10):1079-1087.
    方永强,林君卓,翁幼竹.2004.池养鲻鱼的卵巢发育和卵子发生过程.水产学报,28(4):353-359.
    方永强,翁幼竹,洪万树.2001.鲻鱼早期卵子发生的超微结构研究.水生生物学报,25(6):583-589.
    方永强,翁幼竹,周晶.2002.大黄鱼性早熟的机制:精巢中间质细胞和足细胞的显微与亚显微结构.台湾海峡,21(3):275-279.
    方展强,郑文彪,马广智.2002.鲇卵膜形成和卵黄发生的超微结构观察.华南师范大学学报,2:25-31.
    冯伯森,王秋雨,胡玉兴.2000.动物细胞工程原理与实践[M].北京:科学出版社,69-75.
    福州部队总医院主编.1997.临床医学检验.上海:上海科学技术出版社
    龚启祥,曹克驹,曾增.1982.香鱼卵巢发育组织学研究.水产学报,6(3):221-234.
    桂建芳,梁绍昌.1990.鱼类染色体组操作的研究I:静水压休克诱导三倍体水晶彩卿.水生生物学报,14(4):336-343.
    桂建芳,肖武汉,陈丽等.1991.人工三倍体水晶彩鲫的性腺发育.动物学报,37(3):297-304.
    桂建芳,肖武汉,梁绍昌等.1995.静水压休克诱导水晶彩鲫三倍体和四倍体的细胞学机理初探.水生生物学报,19(3):223-226.
    桂建芳,易梅生.2002.发育生物学.北京:科学出版社.
    豪富华.2006.亚东鲑生物学和遗传多样性.中国科学院研究生院博士学位论文.
    何德奎,陈毅峰,蔡斌.2001a.纳木错裸鲤性腺发育的组织学研究.水生生物学报,25(1):1-13.
    何德奎,陈毅峰,陈自明,等.2001b.色林错裸鲤性腺发育的组织学研究.水产学报,25(2):97-103.
    何福林,向建国,肖调义,等.2007.不同水温下虹鳟血液红细胞数及血清中血糖与矿质元素含量测定.淡水渔业,37(3):8-11.
    侯亚义,韩晓冬,铃木让.1999.皮质醇的周年变化与雌性虹鳟性腺成熟的关系.生命科学研究,3(4):308-315.
    胡成钰.1990.鳙外周血细胞细微结构.江西科学,8(3):20-28.
    姜波,王昭萍,于瑞海等. 2004.多倍体贝类的繁殖生物学研究进展.海洋湖沼通报,2:73-79.
    姜永华,颜素芬,王重刚,等.2005.凡纳滨对虾卵子发生的超微结构.水产学报,29(4):454-460.
    姜作发,卢彤岩,李永发等.2003.虹鳟鱼卵形态观察初步研究.水产学杂志,16(1):31-34.
    金丽.2005.长吻鮠循环系统结构及血细胞发生.西南师范大学硕士学位论文.
    赖勤.2001.大鲵卵巢发育和输卵管组织学结构的研究.湖南教育学院学报,19(3):159-164.
    黎双飞,刘少军,刘筠等. 2001.三倍体湘云鲫及其亲本线粒体DNA的比较研究.中国水产科学,8(1):1-5.
    李长玲,曹伏君,刘楚吾,等.2001.大弹涂鱼血细胞发生的研究.中国水产科学, 8(1):10-14.
    李国友,王国恩,何孟元.1989.虹鳟(Salmo gairdneri Richardson)原始生殖细胞的光镜和电镜研究.大连水产学院学报,4(3-4):25-76.
    李建中,刘筠.2002.异源四倍体鲤鲫的性腺发育研究.水生生物学报,26(2): 118-119.
    林丹军,尤永隆,苏敏.2003.黑脊倒刺鲃精巢结构和精子发生的研究.水生生物学报,27(6):563-571.
    林光华,林琼,洪一江,等.1998.兴国红鲤血细胞发生的研究.动物学报,44(4):488-489.
    林光华,熊敬维.1995.革胡子鲇卵巢在第一次性周期内分化与发育的研究.动物学研究,16(4):365-372.
    林光华.1996.成年草鱼外周血细胞的超微结构.动物学报,42(2):123-127.
    林国辉,方展强.2007.鳜鱼卵母细胞发育的组织学和超微结构观察.华南师范大学学报,1:98-103.
    林浩然.1997.鱼类促性腺激素(GtH)的生理学和分子生物学.鱼类学论文集(第六集).北京:科学出版社,6:153-158.
    林浩然.1999.鱼类生理学.广州:广东高等教育出版社林琪,吴建绍.2004.三倍体大黄鱼的诱导及其对生长、性腺发育的影响.水产学报,28(6):728-732.
    刘焕亮,黄樟翰.2008.中国水产养殖学.北京:科学出版社.129.
    刘筠.1993.养殖鱼类繁殖生理学.北京:农业出版社.
    刘筠.1997.我国淡水养殖鱼类育种的实践和思考.生命科学研究,1(1):1-8.
    刘巧,王跃群,刘少军.2004.不同倍性鲤鲫鱼血液及血细胞的比较.自然科学进展,14(10):1111-1119.
    刘少军,曹运长,何晓晓,等.2001.异源四倍体鲫鲤群体的形成及四倍体化在脊椎动物进化中的作用.中国工程科学,3(12):33-41.
    刘少军,冯浩,刘筠,等.1999.四倍体湘鲫F3-F4、三倍体湘云鲫、湘云鲤及有关二倍体的DNA含量.湖南师范大学自然科学学报,22(4):61-68.
    刘少军,胡芳,周工建,等.2000.三倍体湘云鲫繁殖季节的性体结构观察.水生生物学报,24(4):301-306.
    刘少军,孙远东,黎双飞,等.2002.三倍体湘云鲫性腺指数分析.水产学报,26(2):111-114.
    刘少军,孙远东,周工健,等.2003.异源四倍体鲫鲤成熟性腺和红细胞超微结构观察.自然科学进展,13(2):194-197.
    刘思阳.1988.三倍体草鱼鲂杂种与双亲性腺发育的比较观察.淡水渔业,45(4):27-28.
    刘文彬,张轩杰.2003.黄颡鱼的卵巢发育和周年变化.湖南师范大学自然科学学报,26(2):73-78.
    刘文彬.2004.黄颡鱼的生殖生理及一些生物学特性研究.湖南师范大学硕士学位论文.
    刘雄,王昭明,金国善,等.1990.虹鳟养殖技术.北京:农业出版社.
    刘灼见,高书堂,邓青.1996.食蚊鱼的性腺发育及性周期研究.武汉大学学报,42(4):487-493.
    楼允东.1984.国外对鱼类多倍体育种的研究.水产学报,8 (4) :343-354.
    陆仁厚.1982.四倍化草鱼细胞株的获得、特性和移核实验的初步试探.遗传学报,9(5):381-388.
    马涛,朱才宝,朱秉仁.1987.虹鳟鱼四倍体制作.水生生物学报,11(4):331-335.
    米洪文,工浩,秦国强.1985.鲫鱼外周血细胞显微和亚显微结构的观察.动物学研究, 6(2):147-153.
    倪子绵,张其永,洪万树.1995.大弹涂鱼卵细胞发育的显微和超微结构.台湾海峡,14.
    蒲德永.2007.大眼鳜的卵子发生及早期发育.西南大学硕士学位论文.
    曲秋芝,孙大江,刘雄.1991.人工控制光周期条件下虹鳟血浆中17β-雌二醇和睾酮的浓度变化.鲑鳟渔业,4(1):32-41.
    荣寿柏,周泉涌,安艳芳.1994.用热休克诱导四倍体罗非鱼.中国实验生物学杂志,4(2):97-101.
    沈盎绿,姚维志.2004.水产动物三倍体育种的研究进展.水利渔业,24(3):1-3.
    石连玉.2005.我国冷水性鱼类育种概况及展望.水产研究,7:43-46.
    宋卉,王树迎,彭克美,等.2006.多鳞铲颌鱼性腺分化发育的组织学研究.中国水产科学,13(5):723-731.
    宋苏祥,刘洪柏,孙大江等.1997.施氏鲟的核型及DNA含量研究.遗传,19(3):5-7.
    孙远东,刘少军,张纯.2003.异源四倍体鲫鲤F9~F11染色体和性腺观察.遗传学报,30 (5): 414-418.
    陶炳春,乔秀亭,董仕.1994.二、三倍体鲤鱼血液生理指标的比较研究[J].淡水渔业, 24 (4):8-9.
    汪家政,范明.2000.蛋白质技术手册.北京:科学出版社.
    汪小东,林浩然.1998.硬骨鱼类卵母细胞最后成熟的调控.水产学报,22(1):27-28.
    王爱民.1994.莫桑比克非鲫卵黄形成的电镜观察.水生生物学报,18(1):6-31.
    王炳谦.2005.虹鳟(Oncorhynchus mykiss)染色体工程技术研究.东北农业大学硕士学位论文.
    王玢.1986.人体及动物生理学.北京:高等教育出版社.
    王凤计.1980.血细胞学图谱.天津:天津科学技术出版社.
    王军萍,韩希福,王所安.1999.虹鳟染色体组型的研究.中国水产科学,6(2):117-118.
    王茂林,姜海波,史会来.2006.海水鱼类多倍体的研究.中国论文在线,http://www.paper.edu.cn
    王跃群,刘少军,王刚,等.1998.湘云鲤和湘江野鲤血液指标的比较.湖南师范大学自然科学学报,21(1):71-75.
    王昭萍,王如才,于瑞海,等.1998.多倍体贝类的生物学特性.青岛海洋大学学报(自然科学版),28(3):399-404.
    魏刚,戴大临,陈永等.1994.鲇卵巢发育的显微和超微结构.西南农业大学学报,16(4):355-361.
    吴萍. 2005.我国鱼类多倍体育种的研究进展.上海水产大学学报,14(1):73-78.
    吴清江,桂建芳,崔宗斌,等.1999.鱼类遗传育种工程.上海科学出版社.
    吴维宁.1990.团头鲂血细胞发生的研究.水产学报,14(4):328-335.
    吴维新,林临安,徐大义.1981.一个四倍体杂种兴国红鲤×草鱼.水生生物学集刊,7(3):433-436.
    徐革锋,李永发,贾钟贺,等.2006.虹鳟、银鲑及其杂交种血液指标的比较研究.大连水产学院学报,21(3):212-218.
    徐吉山.2002.大鳍鳠卵子发生的研究[D].硕士论文.西南师范大学.
    严云勤,徐立滨.1994.鲫鱼卵子发生I∶皮层小泡的形成和卵黄发生.东北农业大学学报,25(1):81-88.
    严正凛,江宏,李丕廉,等.1999.杂色鲍和九孔鲍三倍体的化学诱导.台湾海峡,18(3): 337-341.
    杨桂枝,张耀光.2000.南方鲇卵黄发生的研究.四川解剖学杂志,8(3):136-144.
    杨桂枝.1998.南方鲇卵子发生的研究.西南师范大学硕士学位论文.
    杨筱珍,吴旭干,成永旭,等.2007.中华绒螯蟹卵黄发生期卵母细胞和卵泡细胞超微结构观察.水产学报,31(2):171-177.
    杨兴棋,陈敏容,俞小牧,等.1994.三倍体白鲫的生物学特性.水生生物学报, 18(2):156-163.
    殷名称.1995.鱼类生态学.北京:农业出版社.
    尹洪滨,潘伟志,孙中武.1996.三倍体鲇鱼的形态学性状及生长.水产学杂志,9(2):23-26.
    尹洪滨,孙中武,潘伟志.1996.三倍体鲇鱼的核型研究.水产学杂志,20(2):178-182.
    尹洪滨,孙中武,潘伟志,等.2000.三倍体鲇鱼性腺发育的研究.海洋与湖沼,31(2):124-129.
    尤锋.1993.黑鲷三倍体的人工诱导研究.海洋与湖沼,24(3):248-255.
    俞小牧,陈敏容,杨兴祺,等.1998.人工诱导异源四倍体和倍间三倍体白鲫的红细胞观察及其相对DNA含量测定(1).水生生物学报,22(3):291-294.
    袁仕取,张永安,姚卫建,等.1988.鳜鱼外周血细胞显微和亚显微结构的观察.水生生物学报,22(1):39-45.
    昝瑞光.1985.鱼类中的多倍体及其在鱼类演化中的作用.云南大学学报,7(2):235-243.
    张立飞,杨万喜.2003.硬骨鱼类卵子发生研究及其应用前景.浙江大学学报,30(2):210-222.
    张年国,张颖,孙大江,等.2007.卵黄蛋白原的发生、结构及功能研究现状.水产学杂志,20(1):97-106.
    张士璀,孙旭彤,李红岩.2002.卵黄蛋白原研究及其进展.海洋科学,26(7):32-35.
    张贤芳,张耀光,王志坚.2006.硬骨鱼类卵巢发育和卵子发生的研究综述.海南师范学院学报,19(1):70-78.
    张贤芳.2003.圆口铜鱼卵巢发育及卵子发生的初步研究.西南师范大学硕士学位论文.
    张旭晨,王所安.1992.细鳞鱼精巢超微结构和精子发生.动物学报,38(4):355-358.
    张耀光,谢小军.1995.南方鲶卵巢滤泡细胞和卵膜生成的组织学研究.动物学研究,16(2):166-172.
    张耀光,杨桂枝.2004.南方鲶卵子发生的超微结构研究.西南师范大学学报,29(2):265-272.
    张跃环,陈斌.2006.常见滩涂贝类的精卵超微结构及个体发育过程的研究进展.中国科技论文在线,http://www.paper.edu.cn
    赵明蓟,苏泽古,黄文郁,等.1979.池养鲤和草鱼血液学指标的研究.水生生物学集刊, 6(4):453-464.
    赵维信,Harache Y,刘丽燕.1994.大西洋鲑性腺分化及热休克的影响.水产学杂志,7(2):1-5.
    赵维信,彭仕兵,谈毅奇,等.1990.虹鳟性腺分化的研究.鲑鳟渔业,3(2):17-22.
    赵维信.1987.虹鳟排卵前后血清中性类固醇激素浓度变化的研究.水产学报,11(3):205-213.
    周玉,郭文场,杨振国.2001.鱼类血细胞的研究进展.动物学杂志,36(6):55-57.
    周玉,郭文场,杨振国,等.2002.欧洲鳗鲡血细胞的显微和亚显微结构.动物学报,48(3):393-401.
    周振英.2004.实用流式细胞术彩色图谱.上海第二军医大学出版社,16-33.
    朱传忠,邹桂伟. 2004.鱼类多倍体育种技术及其在水产养殖中的应用.淡水渔业,34(3):53-56.
    朱蓝菲,桂建芳,梁绍昌,等.1992.人工同源和异源三倍体鲢的红细胞观察.水生生物学报,16 (1):84-86.
    朱玲,温海深,毛玉泽.2002.野生鲇性腺发育及其与肝重指数关系的研究.水利渔业, 22(5):26-27.
    朱冼.2000.鱼类的生殖及子代的生殖、生长与变迁.北京:科学出版社.1-249.
    邹曙明,李思发,蔡完其等.2006.团头鲂同源四倍体、倍间三倍体与二倍体红细胞的形态特征比较.中国水产科学,13(6):891-896.
    尾崎久雄(许学龙等译).1982.鱼类血液与循环生理.上海:上海科学出版社.
    小林徹.1990.虹鳟全雌三倍体的大量生产及实用化.养殖(日刊),27:12.
    中村將,長浜嘉孝,岩橋正雄,等.1987.ニジマス三倍体雌の生殖腺と血中マテロイドホルモン.Nippon Suisan Gakkaishi,53(6):1105.
    Abramenko M I, et all. 2004. Distribution and Cytogenetic Features of Triploid Males of Crucian Carp in Azov Basin. Russian Journal of Developmental Biology, 35(5): 305-315
    Alberts B, Bray D, Lewis J et al. 1994.Germ Cells and Fertilization in Molecular Biology of the Cell. New York: Garland Inc., 101-103.
    Al-Sabti K.1995.Detection of triploidy in fish using the cytokinesis-blocked method for erythrocyte and hepatic cells.Cytobios, 82:181-187.
    Amano M, Hyodo S, Kitamura S, IkutaK, et al. 1995.Salmon GnRH synthesis in the preoptic area and the ventral telencephalic salmon GnRH synthesis and precocious maturation in under yealing male masu salmon. General and Comparative Endocrinology,99: 13-21.
    Amano M, urano A, Aida K.1997.Distribution and function of gonadotropin– releasing hormone (GnRH) in the teleost brain. Zool Sci, 14: 1-11.
    Amor M J,RamóM and Durfort M. 2004. Ultrastructural studies of oogenesis in Bolinus brandaris (Gastropoda: Muricidae). Scientia Marina, 68(3):343-353.
    Arai K,Matsubara K and Suzuki R. 1993.Production of polypioids and viable gynogens using spontaneously occurring tetraploid loach, Misgumus anguillicaudatus.Aquaculture,117: 227-235.
    Basant K T, Kirubagaran R, Ray A K. 2004.The biology of triploid fish. Reviews in Fish Biology and Fisheries,14: 391-402.
    Basant K T, Kirubagaran R, Ray A K. 2001. Plasma levels of Gonadotropin-II and gonadal sex steroids in triploid catfish, Heteropneustes fossilis (Bloch). Fish Physiology and Biochemistry, 24: 9-14.
    Benfey T J and Sutterlin A M.1984.Growth and gonadal development in triploid landlocked Atlantic salmon(Salmo salar). Can. J.Fish. Aquat. Sci. 41, 1387-1392.
    Benfey T J, 1999.The physiology and behavior of triploid fishes. Rev. Fish. Sci., 7:39-67.
    Benfey T J, Biron M. 2000. Acute stress response in triploid rainbow trout(Oncorhynchusmykiss) and brook trout (Salvelinus fontinalis). Aquaculture, 184:167-176.
    Benfey T J, Dye H M, Solar I I et al.1989a.The growth and reproductive endocrinology of adult triploid Pacific salmonids. Fish Physiology and Biochemistry, 6: 113-120.
    Benfey T J, Dye H M and Donaldson E M.1989b.Estrogen induced vitellogen in production by triploid coho salmon(Oncorhynhus kisutch)and its effect on plasma and pituitary gonadotropin. Gen.Comp. Endocrinol, 75: 83-87.
    Benfey T J, Solar I I, DeJong G, Donaldson E M.1986.Flowcytometric confirmation of aneuploidy in sperm from triploid rainbow trout. Trans Am Fish Soc, 115:838-840.
    Benfey T J and Sutterlin A M.1984.The haematology of triploid landlocked Atlantic salmon, Salmo salar L. J. Fish Biol., 24: 333-338.
    Benfey T J.1991.The physiology of triploid salmonids in relation to aquaculture.Can Rep Fish Aqua Sci, 1789:73-80.
    Bernard B, Elisabeth S. 1996.Steroid Activation of the Brain–Pituitary Complex Gonadotropic Function in the Triploid Rainbow Trout Oncorhynchus mykiss. General and Comparative Endocrinology,101:155-164.
    Billard R, Breton A, Fostier, et al. 1978. Endocrine control of the teleost reproductive cycle and its relation to external factors: salmonid and cyprinid models. In PJ Galard, HH Beer, eds. Comparative endocrinology, Amsterdam: Elsevier, 37-48.
    Billard R. 1983.Spermiogenesis in the rainbow trout (Salmo gairdneri). Cell and Tissue Research,(2):233.
    Billard R.1986.Spermatogenesis and spermatology of some teleost fish species.Reprod.Nutr.Develop,26(4):877-920.
    Bohemen C, Van G and Lambert D. 1981. Estrogen synthesis in relation to estrone, estradiol and vitellogenin plasma levels during the reproductive eycle of the female rainbow trout, Salmo gairdneri. General and Comparative Endocrinology,45: 105-114.
    Bon E, Breton B, Govoroun M S. 1999. Effects of accelerated photoperiod regimes on the reproductive cycle of the female rainbow trout: II Seasonal variations of plasma gonadotropins (GTH I and GTH II) levels correlated with ovarian follicle growth and egg size. Fish Physiology and Biochemistry, 20: 143-154.
    Bon, E, Barbe, U. 1997. Plasma vitellogein levels during the annual reproductive cycle of the female rainbow trout (Oncorhynchus mykiss): establishment and validation of an ELISA. Comp.Biochem.Physiol, 117B: 75-84.
    Boulanger Y. 1987. Preliminary results on the growth of sterile rainbow trout(triploidy induced by a pressure shock)in fish culture. Proc. Ann. Meet. Aquacult. Assoc. Can, 1: 55-58.
    Bradford M M.1976.A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding.Anal.Biochem,72 :248 -254.
    Breton B, Antonopoulou E, Andersson E, et al. 1998.Effects of gonadoectomy and androgen treatments on p ituitary and plasma levels of gonadotropins in mature male Atlantic salmon, Salmon salar, parr - postive feed - back control of both gonadotropins. Biol Reprod., 58: 814-820.
    Browder L W. 1980.Development Biology. Philadelphia: Saunders College:194-197.
    Cadoret J P. 1992. Electric field-induced polyploidy in mollusc embryos.Aquaculture, 160(2): 127-139.
    Campbell CM, IdlerD R.1980.Characterization of an estradiol - induced p rotein from rainbow trout as vitellogenin by the cross reactivity to ovarian yolk fractions.Biol Rep rod,22: 605-617.
    Carrasco L A P, oroshov S D, Penman D J, et al. 1998.Long-term quantitative analysis of gametogenesis in autotriploid rainbow trout, Oncorhynchus mykiss. Journal of Reproduction and Fertility, 113:197-210.
    Chang S L, Chang C F and Liao I C.1993.Comparative study on the growth and gonadal development of diploid and triploid tilapia, Oreochromis aureus. J. Taiwan Fish. Res, 1(1):43-49.
    Chen J S, Sappington T W and Raikhel A S. 1997.Extensive sequence conservation among insect, nematode, and vertebrate vitellogenins reveals ancient common ancestry. J. Mol Evol,44:440-451.
    Cherfas N B,Hulata G, Kozinsky O.1993.Induces diploid gynogenesis and polyploidy in ornamental (koi) carp, Cyprinus carpio L. 2.Timining of heat shock during the first cleavage. Aquaculture, 111:281-290.
    Chorrout D.1984. Pressure-induced retention of second polar body and suppression of first cleavage in rainbow trout: production of all-triploids, all-tetraploids and heterozygous and homozygous diploid gynogenetic. Aquac, 36:111-126.
    Chourrout D. 1980.Thermal induction of diploid gynogenesis and triploidy in the eggs of the rainbow trout(Salmon gairdner Richardson). Reprod, Nutr Develop,20(3A) :727-733.
    Christiane A, Angelique V, Alexis F. 2003.Effects of progesterone and estradiol on the reproductive axis in immature diploid and triploid rainbow trout. Comparative Biochemistry and Physiology Part A, 134:693-705.
    Cogswell A T, Benfey T J and Sutterlin A M.2002.The hematology of diploid and triploid transgenic Atlantic salmon (Salmo salar). Fish Physiology and Biochemistry 24: 271-277.
    Copeland P A.1986.Vitellogenin levels in male and female rainbow trout at various stages the reproductive cycle [J]. Comp Biochem Physiol, 83: 487-493.
    Crim L W, Billard R, Genge P D, Idler D R. 1982. The influence of immature gonads on onset of gonadotropic hormone accumulation in the juvenile rainbow trout pituitary gland.General and
    Comparative Endocrinology, 48:161-166. Dong Soo Kim, Jae Yoon Jo, Taek YuilLee. 1994. Induction of triploidy in mudloach (Misgurnus mizolepis) and it seffectong gonad development and growth. Aquac, 120:263-270.
    Droller M J, Roth T F.1966.An electron microscope study of yolk formation during oogenesis in Lebistes reteculatus Goppyi. Cell Biol, 28:209-232.
    E11is A E. 1984. Bizarre forms of erythrocytes in a specimen of plaice, Pleuronectes platessa L. Journal of Fish Diseases, 7: 411-414.
    Felip A, Piferrer F, Carrillo M. 2001. Comparison of the gonadal development and plasma levels of sex steroid hormones in diploid and triploid sea bass, Dicentrarchus labrax L. Journal of experimental zoology, 290:384-395.
    Fijan N. 2002.Morphogenesis of blood cell lineages in channel catfish.Journal of Fish Biology, 60: 999-1014.
    Flouriot G, Pakdel F, Ducouret B, et al. 1997. Differential regulation of two genes implicated in fish reproduction: vitellogenin and est rogen receptor gene. Mol. Reprod. Dev, 48:317-323.
    Gary H. Thorgaard , Daniel N. Arbogas, Jerry D. Hendricks et al. 1999.Tumor suppression in triploid trout. Aquatic Toxicology, 46: 121-126
    Gervai J, Peter S, Nagy A. 1980.Induced triploidy in carp, Cyprinus carpio L. J. Fish Biol, 17:667-671.
    Goodwin A E, Grizzle J M, Bradley J T, et al. 1992. Monoclonal antibody-based immunoassay of vitellogenin in the blood of male channel catfish (Ictalurus punctatus).Comp.Biochem.Physiol,101B: 441-446.
    Gray A K, Evans M A and Thorgaard G H.1993.Viability and development of diploid and triploid salmonid hybrids. Aquaculture, 112:125-142.
    Guraya S.1979.Recent Progress in the Morphology, Cytochemistry and function of balbiai’s vitelline body in animal oocyte. Int Rev Cyto, 59: 24-32.
    Haddy J A and Pankhurst N W.1998.The dynamics of in vitro 17 b-estradiol secretion by isolated ovarian follicles of the rainbow trout (Oncorhynchus mykiss).Fish Physiology and Biochemistry,18: 267-275.
    Hara A, Matsubara T, Sancyashi, et al. 1984. Vitellogenin and its derivatives in egg yolk proteins of white–spotted char (Salivelinus leucomaenis). Bull Fac Fish Hokkaido Univ, 35: 144-153.
    Hashimoto N, Kubokawa R, Yamazaki K et al. 1990. Germ cell deficiency causes testis cord differentiation in reconstituted mouse fetal ovaries. Journal of Experimental Zoology, 253:61-70.
    Heppell S A, Denslow N D, Folmar L C, et al. 1995.Universal assay of vitellogenin as a biomarker for environmental estrogens. Environ. Health Perspec, 103: 9-15.
    Higaki S, Deng Y, Murada S, et al. 1989. The Ann Meetg of Japan.Soc of Sci Fish, 4(2):163-168.
    Hiramatsu N, Hara A. 1996. Relationship between vitellogenin and its related egg yolk proteins in Sakhalin Taimen(Hucho perryi). Comp. Biochem. physiol, 115A: 243-251.
    Holbech H, Andersen L, Petersen G I, et al. 2001.Development of an EL1SA for vitellogenin in whole body homogenate of zebrafish (Daniorerio). Comp Biochem Physiol. 130C: 119-131.
    Houston A H and Murad A. 1995.Erythrodynamics in fish: recovery of the goldfish Carassius auratus from acute anemia. Canadian Journal of Zoology, 73:411-418.
    Humphrey RR, Briggs R, Fankhauser G. 1950.Sex differentiation in triploid Rana pipiens larvae and the subsequent reversal of females to males.J Exp Zool, 115:399-428.
    Hurk R, Peute J.1979. Cyclic changes in the ovary of the rainbow trout, Salmo gairdneri, with special reference to sites of steroidogenesis. Cell and Tissue Research, 199(2), 267.
    Johnson O W, Dickhoff W W. and Utter F M. 1986. Comparative growth and development of diploid and triploid coho salmon,Oncorhynchus kisutch. Aquaculture, 57:329-336.
    Johnstone R, et al. 1989.Triploidy Induction in Recently Fertilized Atlantic Salmon Ova Using Anaesthetics.Aquculture, 78:229-236.
    Johnstone R, McLay H A and Walsingham M V.1991.Production and performance of triploid Atlantic salmon in Scotland. Can.Tech.Rep.Fish.Aquat.Sci,1789: 15-36.
    Josep V, Jaime A, Frederick W, et al. 2000.Regulation of Ovarian Steroidogenesis in Vitro by Follicle-Stimulating Hormone and Luteinizing Hormone during Sexual Maturation in Salmonid Fish. Biology of reproduction, 62:1262-1269.
    Kavumpurath S, Pandian T J. 1992.The development of all-male sterile triploid fighting fish (Beta splendens Regan) by integrating hormonal sex reversal of broodstock and chromosome–set manipulation. Isr.J.Aquacult, 44:111-119.
    Kawauchi H, Suzuki K, Itoh H, et al. 1989.The duality of teleost gonadotropins. Fish Physiology and Biochemistry, 7: 29-38.
    Kobayashi H, Iwamatsu T.2000.Development and fine structure of the yolk nucleus of previtellogenic oocytes in the medaka Oryzias latipes. Dev Growth Differ, 42:623-631.
    Kobayashi T, Fushiki S, Sakai N, et al. 1998.Oogenesis and changes in the levels of reproductive hormones in triploid female rainbow trout. Fish Sci, 64: 206-215.
    Kojima K, Matsubara K, Kawashima M. 1984.Studies on gametogenesis in polyploid ginbuna, Carassius auratus langsdorfii. J. Fac. Sci. Shinshu Univ, 19: 37-52.
    Krisfalusi M, Cloud J G. 1996. Efects of exogenous estradiol-17βon early growth and gonadal development of diploid and triploid female rainbow trout (Oncorhynchus mykiss).Dev Genet, 19:302-308.
    Krisfalusi M, Wheeler P A, Thorgaard G H, et al. 2000. Gonadal Morphology of Female Diploid Gynogenetic and Triploid Rainbow Trout.Journal of Experimental Zoology, 286:505-512.
    Kusunoki T, Arai K, Suzuki R.1994.Production of viable gynogens without chromosome duplication in the spinous loach, Cobitis biwae.Aquaculture 119: 11-23.
    Li M D, Ford J J. 1998. A comprehensive evolutionary analysis based on nucleotide and amino acid sequences of the alpha - and beta - subunits of glycoprote in hormone gene family. J Endocrinol, 156: 529-542.
    Lin M, Thorne MH, Martin IC, et al. 1995.Development of the gonads in the triploid (ZZW and ZZZ) fowl, Gallus domesticus, and comparison with normal diploid males (ZW). Reprod Fert Dev, 7:1185-1197.
    Lincoln R F, Scott A P. 1984.Sexual maturation in triploid rainbow trout, Salmo gairdneri Richardson. J Fish Biol, 25:385-392.
    Lisette B, Bjerregaard, Allan H, et al. 2006. Gonad histology and vitellogenin concentrationsin brown trout (Salmo trutta) from Danish streams impacted by sewage effluent.Ecotoxicology, 15: 315-327.
    Liu S J, Liu Y, Zhou G J,et al. 2001.The formation of tetraploid stocks of red crucian carp×common carp hybrids as an effect of interspecific hybridization.Aquaculture, 192:171-186.
    Liu S J, Hu F, Zhou G J, et al.2000. Gonadal structure of triploid crucian carp produced by crossing allotetraploid hybrids ofCarassium auratus red var.(♀)×Cyprinus carpio(♂) with Japanese crucian carp (Carassius auratus Cavieri T et S).Acta Hydrobiologica Sinica, 24(4):301-306.
    Liu S J. 2004. Triploid Crucain Carp-Allotetraploid Hybrids (♂)×Goldfish (♀). Acta Genetica Sinica, 31 (1): 31-38.
    Maitre J L, Mercier L, Valotaire K Y.1985.Bingding of estrodia-17βin the hepatocytes of salmo gairdneri and induction of vitellogenin and its specific arnm.Biol basis in Aqua (Moutpellier),6: 333-348.
    Malison.J.1993.The influence of triploidy and heat and hydrostatic pressure shocks on the growth and reproductive development of juvenile yellow prech (perca flavescents). Aquac, 116:121-133.
    Manning A J and Burton M P M.2003.Cytological abnormalities in the ovaries of triploid yellowtail flounder,Limanda ferruginea (Storer). Fish Physiology and Biochemistry 29: 269-273.
    Matsubara T, Ohkubo N, Andoh T, et al. 1999.Two forms of vitellogenin, yielding two distinct lipovitellins play different roles during oocyte maturation and early development of barfin flounder Verasper moseri, a marine teleost that Spawns pelagic eggs. Developm Biol. 213: 18-32.
    Mccarthy D, Stevenson J, Roberts M.1973. Some blood parameters of rainbow trout (Salmo gairdneri Richardson):I.The Kamloops variety. J Fish Biol, 5:1-8.
    Mccarthy D, Stevenson J, Roberts M.1975. Some blood parameters of the rainbow trout (Salmo gairdneri Richardson):II.The Shata variety. J Fish Biol, 7:215-219.
    Miles-Richardson S R, Kramer V J, Fitzgerald S D, et al.1999.Effects of waterborne exposure of 17b-estradiol on secondary sex characteristics and gonads of fathead minnows (Pimephales promelas).Aquat Toxicol, 47:129-145.
    Miller W, Hendricks A, Cairns J. 1983. Normal ranges for diagnostically important hematological and blood chemistry characteristics of rainbow trout (Salmo gairdneri).Can J Fisheries Aquat Sci, 40: 420-425.
    Mouchel N, Trichet V, Betz A, et al. 1996. Characterization of a fish(Oncorhynhus kisutch)vitellogenin. Gene, 174: 59-64.
    Murad A, Everill S, Houston A H.1993.Division of goldfish erythrocytes in circulation. Canadian Journal of Zoology, 71: 2190-2198.
    Myers J M.1986.Tetraploid induction in Oreochromis spp. Aquaculture, 57:281-287.
    Nagahama Y, Yoshikuni M, Yamashita M, et al. 1995. Regulation of oocyte growth and maturation in fish.Curr Top Dev Biol, 30:103-145.
    Nagahama Y. 1983. The functional morphology of teleost gonads in WS Hoar, DJ Randall, EN Donaldson, eds. Fish physiology,Vol. 9, Part A. Endocrine tissue and homone S. New York: Academic Press, 6:223-275.
    Nagahama Y. 1997. 17α, 20β-Dihydroxy-4-pregnen-3-one, a maturation-inducing hormone in fish oocytes: mechanisms of synthesis and action. Steroids, 62:190-196.
    Nakamura M, Nagahama Y, Iwahashi M, Kojima M. 1987. Ovarian structure and plasma steroid hormones of triploid female rainbow trout.Nippon Suisan Gakaishi 53:1055.
    Chorrout D.1984. Pressure-induced retention of second polar body and suppression of first cleavage in rainbow trout: production of all-triploids, all-tetraploids and heterozygous and homozygous diploid gynogenetic. Aquac, 36:111-126.
    Noyes A D, Grizzle J, Mand Plumb J A. 1991. Hematology and histopathology of an idiopathic anemia of channel catfish.Journal of Aquatic Animal Health, 3:161-167.
    Nozaki M, Naito N, Swanson P, et al.1990a.Salmonid pituitary gonadotrops I. Distinct cellulardistributions of two gonadotropins GtH I and GtH II. Gen. Comp. Endocrinol, 77 (3): 348-357.
    Nozaki M, Naito N, Swanson P, et al.1990b. Salmonid pituitary gonadotrops II Ontogeny of GtH I and GtH II cells in the rainbow trout (Salmo gairdneri irideus). General and Comparative Endocrinology,77: 358-367.
    Ojima Y, Makino S. 1989. Triploidy induced by cold shock in fertilized eggs of the carp. Proc Japan Acad 4978, 54, ser B:359-362.
    Oliveira C, Foresti F, Rigolino M G et al. 1995.Synaptonemal complex formation in spermatocytes of the autotriploid rainbow trout, Oncorhynchus mykiss (Pisces, Salmonidae). Hereditas 123: 215-220.
    Pacoli C Q, Grizzle J M, Bradley J T. 1990. Seasonal levels of serum vitellogein and oocyte growth in the channel fish Ictalurus punctatus Aquaculture, 90: 353-367.
    Pan M L, Bell W J, Telfer W H.1969.Vitellogenic blood protein synthesis by insect fat body.Science N Y, 165: 393-394.
    Pandian T J, Koteeswaran R.1998.Ploidy induction and sex control in fish. Hydrobiologia, 384: 167-243.
    Patrick J B, Joan Cerdà, Esther L. 2007. The fish oocyte. The Netherlands: http//:www.springer.com.
    Peter F, Galbreath B, Samples. 2000. Optimization of thermal shock protocols for induction of triploidy in brook trout. North American journal of aquaculture, 62(4): 249-259.
    Purdom C E. 1994. Estrogenic effects of effluents from sewage treatment works. Chem. Ecol. 8: 275-285.
    Purdom C E.1972.Induced polyploidy in plaice (Pleuronectes platessa) and its hybrid with the flounder (Platichthys flesus).Heredity, 29:11-24.
    Rohrkasten A, Ferenz H J. 1985. In vitro study of selee endocytosts of vitellogenin by locusts oocytes. Roux’s Arch Dev Biol, 194:411-416.
    Roubal W T, Lomax D P, Maryjean L, et al. 1997. Purification and partial characterization of English Sole (Pleuronectes vetulus)vitellogenin. Comp. Biochem. Physiol, 118(3): 613-622.
    Sato E, Koide S S.1987. Biochemical transmitters regulating the arrest and resumption of meisis in oocytes.International review of Cytology,106:1-33.
    Schafhauser S D and Benfey T J.2001.The reproductive physiology of three age classes of adult female diploid and triploid brook trout (Salvelinus fontinalis).Fish Physiology and Biochemistry, 25: 319-333.
    Schafhauser S D and Benfey T J. 2002.The purification and development of a quantitative enzyme linked immunosorbent assay (ELISA) for the measurement of vitellogenin in diploid and triploid brook trout (Salvelinus fontinalis). Fish Physiology and Biochemistry 24: 287-298.
    Schafhauser S D and Benfey T J.2003.The effects of long term estradiol 17 beta treatment on the growth and physiology of female triploid brook trout (Salvelinus fontinalis).Gen Comp Endocrinol,131:9-20.
    Scott A P, Sumpter J P, Hardiman P A. 1983. Hormone changes during ovulation in the rainbow trout (salmo gairdneri richardson). General and Comparative Endocrinology,49: 128-134.
    Simpson T H and Wright R S.1977.A radioimmunoassay for 11-oxotestosterone: its application in the measurement of levels in blood serum of rainbow trout (S. Gairdneri).steroid, 29(3):383-398.
    Small S A and Benfey T J.1987.Cell size in triploid salmon. Exp Zool, 241:339-342.
    So Y P, Idler D R, Hwang S J. 1985. Plasma vitellogenin in landlocked Atlantic salmon (Salmo salar Ouaninche): isolation, homologous radioimmunoassay and immunological cross-reactivity with vitellogein from other teleosts. Comp. Biocheem. Physiol, 81B: 63-71.
    Solar I I, Donaldson EM, Hunter GA.1984.Induction of triploidy in rainbow trout (Salmo gairdneri Richardson) by heat shock, and investigation of early growth. Aquaculture, 42:57-67.
    SoléM et al.2000.Vitellogenin induction and other biochemical responses in carp, Cyprinus carpio, after experimental injection with 17α-ehynyl estradiol.Arch. Environ. Contam. Toxicol.38:494-500.
    Sumpter J P, Scott A P, Baynes S M, et al.1984.Early stages of the reproductive cycle in virgin female rainbow trout (Salmo gairdneri Richdson). Aquaculture, 43:235-242.
    Sun X T, Zhang S C. 2001. Purification and characterization of a putative vitellogenin from the ovary of amphioxus (Branchiostoma belcheri tsingtaunese). Comparative Biochemistry and Physiology, 129B:121-127.
    Sutterlin A M, Collier C. 1991. Some observation on the Commercial use of triploid rainbow trout and Atlantic salmon in Newfoundland, Canada. Can Tech Rep Fish Aquat Sci, 1789:89-96.
    Suzuki K, Kawauchi H and Nagahama Y.1988b.Effects salmon GtHⅠand GtHⅡgenesis by ovarian follicles of the am ago salmon. General and Comparative Endocrinology, 71(2): 432-436.
    Suzuki K, Nagahama T, Kawauchi H. 1988a. Steroidogenic activities of two distinct salmon gonadotrop–ins. Gen Comp Endocrinol, 71 (3): 452-458.
    Suzuki K, Nakanishi T, Oshiio T. 1985. Survival, growth and sterility of induced triploids in the cyprinid loach, Misgurnus anguillicaudatus. Bull. Jap Soc Sci Fish, 51: 889-894.
    Swarup H. 1959.Production of triploidy in Gasterosteus aculeatus (L). J Genet, 5(6):129-142.
    Tanaka H, Kagawa H, Okuzawa K, et al. 1993. Purification of gonadotropins (Pm GTHⅠandⅡ) from Red bream (Pagrus major) and development of a homologous radioimmunoassay for GTHⅡ. Fish Physiology Biochemisrey, 10: 409-418.
    Teskeredzic E, Teskeredzic Z, Donaldson E M, et al. 1993.Triploidization of coho salmon following application of heat and electric shocks.Aquaculture, 03(3-4):377-387.
    Thorgaard G H. 1983. Chromosome set manipulation and sex control in fish. In: Hoar W S, Randall D J and Donaldson E M (eds.). Fish Physiology, Vol. IX, Part B. Academic Press, New York, 405-434.
    Thorgaard G H, Jazwin M E, Stier A R.1981.Polyploidy induced by heat shock in rainbow trout. Trans. am. Fish. Soc. 110: 546-550.
    Thorgaard G H and Gall G A E.1979.Adult triploids in a rainbow trout family. Genetics, 93: 961-973.
    Tolar Joseph F, Mehollin Amy R, Wat son R Douglas, et al. 2001. Mosquitofish ( Gambusia affinis) vitellogenin: identification, purification, and immunoassay. Comparative Biochemistry and Physiology Part C, 128: 237-245.
    Tsuchiya T, Umeda M. 1997. Relationship between exposure to TPA and appearance of transformed cells in MNNG initiated transformation of BALB c 3T3 cells. Int J cancer, 73:271-276.
    Tyler C R, Van der Eerden B, Jobling S, et al.1996.Measurement of vitellogenin, a biomarker for exposure to oestrogenic chemicals in a wide variety of cyprinid fish.J.Comp. Physiol. B, 166: 418- 426.
    Ueda T, Sato R, Kobayashi J. 1988. Triploid rainbow trout induced by high-PH highcalium. Nippon Suisan Gakkaishi, 54(11): 2045.
    Utarabhand P, Bunlipatanon P. 1996. Plasma vitellogenin of grouper ( Epinephelus malabaricus):Isolation and properties.Comp Biochem Physiol, 115: 101-110.
    Virtanen E, Forsman L, Sundley A. 1990. Triploidy decreases the aerobic swimming capacity of rainbow trout (Salmo gairdneri). Comp Biochem Physiol, 96A:117-121.
    Wahli T, Meier W, Segner H, et al. 1998.Immunohistochemical detection of vitellogenin male brown trout from Swiss rivers. Histochemical Journal, 30: 753-758.
    Wahli T, Meier W, Segner H, et al. 1998. Immunohistochemical detection of vitellogenin in male brown trout f rom Swiss rivers.Histochem J, 30:758-759.
    Wallace R A.1978.The vertebrate ovary Comparative Biology and evolution.New York,Plenum Press, 469-502.
    Wang T, Zou J, Cun ning ham, et al.2002.Cloning and functional characterisation of the interleukin-β1promoter of rainbow trout(Oncorhynchus mykiss). Biochem Biophy Aci, 1575:108-116.
    Wedemeyer G, Nelson N. 1975.Statistical methods for estimating normal blood chemistry ranges and variance in rainbow trout (Salmo gaindneri), Shasta strain. Fisheries Research Board of Canada, 32:551-554.
    Well C, Marcuzzi O. 1991.Cultured pituitary cell GtH response to GnRH at different stage s of rainbow trout oogenesis and influence of steroid hormines. Gen Comp Endocrino l, 79: 483-491.
    Wiegard M D, Idiie D R. 1984. Failure of antibody to carbohydrate-rich gonadtropin to inhibit rapid ovarian growth in land locked atlantic salmon. Gen Comp Endocrinol, 55:260-268.
    Wilkins N P, Cotter D, O’Maoil′eidigh N.2001.Ocean migration and recaptures of tagged, triploid, mixed-sex and all-female Atlantic salmon (Salmo salar L.) released from rivers in Ireland. Genetica, 111: 197-212.
    Wolters W K, Libuy G S, Chrisman C L. 1981.Induction of triploidy in channel catfish. Transs Am Fish, 90C,110 (2) :310-312.
    Wu W, Li C, Liu G et al. 1988. Studies of tetraploid hybrid between red common carp (Cyprinus carpio) and grass carp (Ctenopharyngodon idellus) and its back cross triploid. Acta hydrobiol. Sin, 12: 335-363.
    Yamamoto A and Iida T.1994.Haematological characterstics of triploid rainbow trout.Fish Pathol, 29: 239-243.
    Yamamoto K, Qcta L. 1967.An electron microscope study of the formation of yolk globule in the oocyte of zebrafish, Brzchydanio ratio. Bull. Fac. Hokkaido Univ., 17:165-174.
    Yamamoto K. 1995. Studies on the Formation of fish Eggs. V. The Chemical Nature and Origin of the Yolk Vesicle in the Oocyte of the Herring. Clupea Pallasii Annot Zool Japon, 28:158-162.
    Yaron Z, Gur G, Melamed P, et al. 2003.Regulation of fish gonadotropins. International Review of Cytology, 225:131-185.
    Yoon K N, Geyong C C, Dong J P, et al. 2001.Survival and growth of induced tetraploid mud loach. Aquaculture International 9: 61-71.
    Zhang Chun, He Xiao-xiao, Liu Shao-Jun et al.2005.Chromosome pairing in meiosisⅠin allotetraploid hybrids and allotriploid crucian carp. Acta Zoologica Sinic, 51(1):89-94.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700