用户名: 密码: 验证码:
负载型M/SBA-15催化剂在双戊烯脱氢裂解与N_2O催化分解中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SBA-15是一种新颖的介孔分子筛材料,具有较大的比表面积、孔体积和均一的孔径(5~30 nm)等特点,同时具有良好的水热稳定性,因此它在催化领域具有更加广泛的应用前景,受到人们的普遍关注。另一方面绿色化学概念日益受到世人关注,研究与开发环境友好的催化剂及催化反应工艺,对化学工业发展将产生重大影响。
     本文的主要工作是以SBA-15作为催化剂载体,采用浸渍、嫁接等方法将金属组分负载于介孔分子筛表面,并将其应用于两类绿色化学催化反应中,一类是工业双戊烯的催化脱氢裂解反应,另一类是温室气体N_2O的催化分解反应,研究金属氧化物负载的介孔分子筛催化剂的构效关系以及在不同反应体系中的催化反应规律。
     一.M/SBA-15催化剂的合成及其在双戊烯脱氢裂解中的应用
     工业双戊烯主要是由单环单萜烯的异构体混合物组成,通用分子式为C_(10)H_(16),是多种化工生产中的副产品。由于双戊烯是可再生资源,理论上可由它代替石油生产目前以石油为基础的大部分烃类产品。
     以SBA-15作为载体,不同金属盐溶液作为前驱体,通过浸渍法制得负载型M/SBA-15催化剂。表征结果表明:当硅与金属摩尔比Si/M在10以上时,所得催化剂负载组分分散性较好,且都可保持SBA-15二维六角的介孔结构,而孔径、孔容和比表面等物理性质随负载量上升略微有所下降。将M/SBA-15催化剂应用于双戊烯的催化转化过程中发现:以Zn/SBA-15为催化剂可高选择性制得对伞花烃,副产物主要为双戊烯歧化产物对孟烯,反应活性稳定。以Si/Zn=28的Zn/SBA-15为催化剂,在723 K,GHSV=800 h~(-1),LHSV=0.2 h~(-1)的反应条件下,双戊烯转化率可达98.2%,对伞花烃选择性为88.3%。在Al/SBA-15催化剂上,双戊烯也可脱氢制得对伞花烃,同时伴有裂解产物甲苯生成,在反应过程中甲苯和对伞花烃选择性比值在反应过程中逐渐下降;在M/SBA-15(M=Fe、Cr、Ni)催化剂上,反应产物分布介于两者之间,对伞花烃的选择性略低。
     双戊烯的催化脱氢裂解与催化剂表面酸性质有密切关系,为了研究M/SBA-15催化剂表面酸性与催化活性的关系,采用碱金属元素K对Al/SBA-15催化剂的表面酸性进行修饰,同时选用具有较强表面酸性的HZSM-5(Si/Al=25)分子筛为催化剂以作比较。研究结果表明,在KAl/SBA-15催化剂上,随K含量增加,双戊烯转化率明显下降,同时甲苯的生成很大程度地受到抑制;以HZSM-5为催化剂,反应初期双戊烯转化率可达95%以上,产物中以甲苯为主,但随反应的进行,转化率与甲苯选择性明显下降,产物中对伞花烃选择性显著提高。采用吡啶吸附脱附红外对以上各催化剂表面酸性能进行了表征。结果表明:HZSM-5酸性位以Br(?)nsted酸为主,Al/SBA-15以Lewis酸为主,Zn/SBA-15表面只有Lewis酸中心。综合催化活性与催化剂表面酸性表征结果,推测双戊烯在Lewis酸位进行双键异构后脱氢生成对伞花烃,而Br(?)nsted酸位可使对伞花烃进一步裂解生成甲苯。Br(?)nsted酸位上易发生烯烃聚合产生结焦是造成HZSM-5催化剂活性降低的主要原因,Zn/SBA-15表面只有Lewis酸,稳定性有显著提高,而K的修饰能有效减少Al/SBA-15催化剂表面B酸中心数,促进催化的活性及稳定性的提高。双戊烯的催化脱氢反应活性受酸强度的影响较小,较弱酸性下即能发生,而与酸性位数量呈正比关系。
     采用Silicalite-1、MCM-41、SBA-15、KIT-6等具有不同孔径、结构的载体成功制备了含5%金属氧化物的负载型催化剂。研究结果表明:催化剂的孔径增加对于促进催化反应活性和稳定性的提高有显著作用,载体孔径的增加有利于提高催化剂传质性能,有效抑制失活现象发生。
     二、M/SBA-15催化剂的合成及其在N_2O催化分解反应过程研究
     N_2O是一种温室效应气体,对臭氧层也有潜在的破坏作用。目前大气中N_2O主要来源于硝酸工业尾气和汽车尾气排放,通过催化分解的手段有效去除废气中的N_2O已经成为环境催化中的重点研究课题。研究结果表明:Rh、Ru对N_2O催化分解具有很高的活性。使用SBA-15作为载体可以为活性组分提供较大的载体表面,通过不同合成手段也可显著改善金属元素在催化剂表面的分散性能,同时引入Zn、Zr、Ce等修饰组分可以进一步改变活性组分的分散状态,促进其活性的提高。本部分的工作着重于研究Rh、Ru这两种元素在SBA-15上的分散性能及其与修饰元素相互之间作用关系,评价该类催化剂在N_2O催化分解的活性。
     (一)不同Rh前驱体制备Rh/SBA-15上的N_2O分解反应
     采用系列Rh的有机金属络合物(配位体包括羰基、乙酰丙酮、三苯基膦等)作为前驱体,通过浸渍与嫁接的方法将Rh引入SBA-15。结构表征与TEM结果表明:Rh在SBA-15表面的分散与前驱体分子大小及亲疏水性质相关,亲水性小分子在SBA-15表面能较好分散,而疏水大分子较容易形成大颗粒聚集体。N_2O催化分解反应结果表明:Rh分散性较好的以二聚二羰基氯化铑作为前驱体的Rh/SBA-15-CDCR上N_2O分解率较高,N_2O的50%转化率温度T_(50)比其它催化剂低50 K以上。
     (二) Ru/SBA-15与RuM/SBA-15上的N_2O分解反应
     通过浸渍手段将Zn、Zr、Ce等修饰元素引入SBA-15作为载体负载Ru用于N_2O分解。研究结果表明:经过适当修饰的RuM/SBA-15催化剂对于N_2O分解活性要高于Ru/SBA-15。其中Zr对Ru/SBA-15催化剂的修饰作用最为显著,且在Zr修饰含量5%-20%时基本相同,N_2O完全分解温度同比下降100 K。RuCe/SBA-15在Ce载量10%的情况下其活性与RuZr/SBA-15活性相当,推测Zr和Ce能提供氧空穴,帮助Ru上吸附氧迁移,从而增加反应活性。但CeO_2较易聚集,负载量较大时容易造成孔道堵塞,引起活性下降。
SBA-15 is a mesoporous silica material with large surface area,pore size,pore volume and high hydrothermal stability,thus its advantage of application in catalysis as catalysts support are fully anticipated.On the other hand,green chemistry becomes a widely accepted idea and a lot of efforts have been made in environmental benign catalysts and catalytic process.
     In this paper,active phases are introduced into SBA-15 by various method and test for the activity in two different green catalytic processes,the catalytic dehydrogenation of dipentene to cymene and the direct decomposition of N_2O,a green house effect gas.The aim of the paper is to grasp further understanding of the relation between catalytic activities and the catalysts mesoporous structures in different catalytic processes,so that constructive patterns can be drawn on practical catalysts preparation.
     Section 1 Catalytic dehydrogenation of dipentene over M/SBA-15
     Industrial dipentene is a cheap mixture of different terpenes as the byproduct of camphor preparation and pulp-paper industry,it can serve as a natural and renewable feedstock for fine chemical industries.Owing to the similarity of the molecular structure,p-cymene is the most promising and valuable product obtained by the dehydrogenation of industrial dipentene.
     Fe,Cr,Ni,Zn,Al were introduced into SBA-15 by impregnation method. Charaterization results suggest that the dispersion of the metal species over SBA-15 is fine when Si/M ratio is above 10 and the two dimension hexagonal structure of SBA-15 is remained,though the specific area,pore volume and size will be smaller than before.Activity test showed that dipentene is converted to p-cymene on these catalysts at different rate and with different by-products.P-cymene was cracked to toluene over Al/SBA-15 catalysts,while on Zn/SBA-15,the major by-product is menthene disproportionated from dipentene,and the stability of Zn/SBA-15 is better than Al/SBA-15.Other catalysts were similar to these two but hold less selectivity to cymene.The yield of p-cymene is maximized on Zn/SBA-15 at 723 K,GHSV = 800 h~(-1),LHSV=0.2 h~(-1),whereas the conversion of dipeneene is 98.2%and the selectivity ofp-cymene is 88.3%.
     The performances of the M/SBA-15 in catalytic dehydrogenation of dipentene are highly related to the acidity of the catalysts.In order to have a better understading, alkali doped KAl/SBA-15 catalysts and microporous zeolite HZSM-5 are compared with original catalysts.Activity tests show that the conversion of dipentene dropped drastically with doping of K and cracking process was inhibited.High conversioin rate was observed in HZSM-5 in the starting period of the reaction and toluene was the main product,however,the stability was not as good as the mesoporous catalysts. The acidities of the catalysts were studied by pyridine adsorption-desorption FT-IR. The result suggests that only Lewis acidity exists on Zn/SBA-15,both Br(?)nsted and Lewis acidity were found on Al/SBA-15,and HZSM-5 owns the strongest Br(?)nsted acidity above all.Together with the activity results,it is concluded that,the acidity plays the vital role in the catalytic process.Dehydrogenation of dipentene to cymene happens on both kinds of acidic sites and cymene will be further cracked on Br(?)nsted sites.Also the Br(?)nsted acidic site is easy to coke and deactivate with TOS.The strengthe of the acidity affect little to the reaction.
     The effect of the support on the catalytic process of dipentene dehydrogenation was also checked.With different supporting materials of silica(Silicalite-l,MCM-41, SBA-15,KIT-6),the catalysts show different acitivties.It is proved that the mesoporous materials are better than the microporous Silicalite-1 in terms of conversion rate and stability.This is due to the improved mass transfer with increasing pore size.The structure of the mesopores may affect the contact time between the reactants and the active sites so that the activity and stability is changed accordingly.
     Section 2 Catalytic decomposition of N_2O
     1.Research on Rh/SBA-15 prepared from different precursors
     Different Rh precursors with carbonyl,acetylacetone or triphenylphosphine ligands were synthesized and used to introduce Rh into SBA-15.Characterization suggests that the dispersion status were closely related to the nature of precursors. Small hydrophilic molecules tend to have better dispersion on SBA-15 by impregnation,while by grafting,it will diffuse into the micro-meso window on the siliceous wall.Big hydrophobic precursors are easier to aggregate into big particles inside the mesoporous tunnel or on the outer surface.
     Catalytic results showed that the higher activity was reached on the better dispersed Rh/SBA-15.Rh/SBA-15-CDCR prepared from[(CO)_2RhCl]_2 shows the best activity of N_2O decomposition and the best Rh dispersion.The activity is also affect by some other factors such as residue of Cl.
     2.Direct decomposition of N_2O over RuM/SBA-15
     Zn,Zr and Ce were introduced into SBA-15 as additives to improve the Ru activity on N_2O decomposition.It is found the activity can be improved at certain concentration of additives and RuZr/SBA-15 gave out a nice resuIt by decreasing the N_2O total conversion temperature from 573 K to 473 K.The performance of RuCe/SBA-15 is also remarkable at proper Ce loading.However,CeO_2 will block the runnel at high loading and affect the decomposition ability.The improvement of the catalytic performance was supposed to connect with the surface characteristics of ZrO_2 and CeO_2.
引文
[1] K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, T. Siemieniewska. Reporting Physisorption Data for Gas Solid Systems with Special Reference to the Determination of Surface-Area and Porosity (Recommendations 1984)[J]. Pure and Applied Chemistry, 1985, 57(4): 603-619.
    [2] C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck. Ordered Mesoporous Molecular-Sieves Synthesized by a Liquid-Crystal Template Mechanism[J].Nature, 1992, 359(6397): 710-712.
    [3] D. Y. Zhao, J. L. Feng, Q. S. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J]. Science, 1998, 279(5350): 548-552.
    [4] S. A. Bagshaw, E. Prouzet, T. J. Pinnavaia. Templating of Mesoporous Molecular-Sieves by Nonionic Polyethylene Oxide Surfactants[J]. Science, 1995, 269(5228): 1242-1244.
    [5] R. Ryoo, C. H. Ko, M. Kruk, V. Antochshuk, M. Jaroniec. Block-copolymer-templated ordered mesoporous silica: Array of uniform mesopores or mesopore-micropore network?[J]. Journal of Physical Chemistry B, 2000, 104(48): 11465-11471.
    [6] F. Kleitz, T. W. Kim, R. Ryoo. Design of mesoporous silica at low acid concentrations in triblock copolymer-butanol-water systems[J]. Bulletin of the Korean Chemical Society, 2005, 26(11): 1653-1668.
    [7] K. J. Edler, J. W. White. Room-Temperature Formation of Molecular-Sieve Mcm-41[J]. Journal of the Chemical Society-Chemical Communications, 1995, (2): 155-156.
    [8] C. A. Fyfe, G. Y. Fu. Structure Organization of Silicate Polyanions with Surfactants - a New Approach to the Syntheses, Structure Transformations, and Formation Mechanisms of Mesostructural Materials[J]. Journal of the American Chemical Society, 1995, 117(38): 9709-9714.
    [9] P. D. Yang, D. Y. Zhao, D. I. Margolese, B. F. Chmelka, G. D. Stucky. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks[J]. Nature, 1998,396(6707): 152-155.
    [10] A. Taguchi, F. Schuth. Ordered mesoporous materials in catalysis[J]. Microporous and Mesoporous Materials, 2005, 77(1): 1-45.
    [11]S.Inagaki,Y.Fukushima,K.Kuroda.Synthesis of Highly Ordered Mesoporous Materials from a Layered Polysilicate[J].Journal of the Chemical Society-Chemical Communications,1993,(8):680-682.
    [12]C.Z.Yu,Y.H.Yu,D.Y.Zhao.Highly ordered large caged cubic mesoporous silica structures templated by triblock PEO-PBO-PEO copolymer[J].Chemical Communications,2000,(7):575-576.
    [13]J.W.Miao,J.Zhou,G.H.Song,Y.N.Fan,C.Gong.Chromium Oxide supported on mesoporous SBA-15 as catalysts for oxidative dehydrogenation of propane by CO_2[J].Chinese Journal of Inorganic Chemistry,2005,21(10):1541-1545.
    [14]刘永梅.丙烷氧化脱氢制丙烯纳米催化剂的制备、表征及应用[D].上海:复旦大学,2004.
    [15]B.Z.Tian,X.Y.Liu,H.F.Yang,S.H.Xie,C.Z.Yu,B.Tu,D.Y.Zhao.General synthesis of ordered crystallized metal oxide nanoarrays replicated by microwave-digested mesoporous silica[J].Advanced Materials,2003,15(16):1370-+.
    [16]R.J.Song,Z.W.Jiang,W.G.Bi,W.X.Cheng,J.Lu,B.T.Huang,T.Tang.The combined catalytic action of solid acids with nickel for the transformation of polypropylene into carbon nanotubes by pyrolysis[J].Chemistry-a European Journal,2007,13(11):3234-3240.
    [17]陈雪莹.新型非晶态合金材料的设计合成及催化性能研究[D].上海:复旦大学,2006.
    [18]P.M.Rao,A.Wolfson,S.Kababya,S.Vega,M.V.Landau.Immobilization of molecular H3PW12040 heteropolyacid catalyst in alumina-grafted silica-gel and mesostructured SBA-15 silica matrices[J].Journal of Catalysis,2005,232(1):210-225.
    [19]P.M.Rao,M.V.Landau,A.Wolfson,A.M.Shapira-Tchelet,M.Herskowitz.Cesium salt of a heteropolyacid in nanotubular channels and on the external surface of SBA-15 crystals:preparation and performance as acidic catalysts[J].Microporous and Mesoporous Materials,2005,80(1-3):43-55.
    [20]A.Vinu,B.M.Devassy,S.B.Halligudi,W.Bohlmann,M.Hartmann.Highly active and selective AlSBA-15 catalysts for the vapor phase tert-butylation of phenol[J].Applied Catalysis a-General,2005,281(1-2):207-213.
    [21]A.Vinu,D.P.Sawant,K.Ariga,M.Hartmann,S.B.Halligudi.Benzylation of benzene and other aromatics by benzyl chloride over mesoporous AlSBA-15catalysts[J].Microporous and Mesoporous Materials,2005,80(1-3):195-203.
    [22]A.Vinu,G.S.Kumar,K.Ariga,V.Murugesan.Preparation of highly ordered mesoporous AISBA-15 and its application to isopropylation of m-cresol[J].Journal of Molecular Catalysis a-Chemical,2005,235(1-2):57-66.
    [23]D.P.Sawant,A.Vinu,J.Justus,P.Srinivasu,S.B.Halligudi.Catalytic performances of silicotungstic acid/zirconia supported SBA-15 in an esterification of benzyl alcohol with acetic acid[J].Journal of Molecular Catalysis a-Chemical,2007,276(1-2):150-157.
    [24]Z.El Berrichi,L.Cherif,J.P.Tessonnier,B.Louis,J.Fraissard,M.J.Ledoux,C.Pham-Huu.GaSBA-15:a new and active Friedel-Crafts acylation catalyst[J].Molecular Sieves:From Basic Research to Industrial Applications,Pts a and B,2005,158:1413-1420.
    [25]X.X.Wang,Q.H.Zhang,S.F.Yang,Y.Wang.Iron-catalyzed propylene epoxidation by nitrous oxide:Studies on the effects of alkali metal salts[J].Journal of Physical Chemistry B,2005,109(49):23500-23508.
    [26]J.J.Chiu,D.J.Pine,S.T.Bishop,B.F.Chrnelka.Friedel-Crafts alkylation properties of aluminosilica SBA-15 meso/macroporous monoliths and mesoporous powders[J].Journal of Catalysis,2004,221(2):400-412.
    [27]郭超.负载于SBA-15的“茂后”过渡金属催化剂及其乙烯聚合[D].上海:复旦大学,2005.
    [28]C.Guo,D.Zhang,F.S.Wang,G.X.Jin.Nanofibers of polyethylene produced by SBA-15 supported zirconium catalyst[N-(3-tert-butylsalicylidene)-4'-allyloxylanilinato](2)Zr(Ⅳ)Cl-2[J].Journal of Catalysis,2005,234(2):356-363.
    [29]C.Guo,G.X.Jin,F.S.Wang.Preparation and characterization of SBA-15supported iron(Ⅱ)-bisimine pyridine catalyst for ethylene polymerization[J].Journal of Polymer Science Part a-Polymer Chemistry,2004,42(19):4830-4837.
    [30]C.Guo,D.Zhang,G.X.Jin.Mesoporous zeolite SBA-15 supported nickel diimine catalysts for ethylene polymerization[J].Chinese Science Bulletin,2004,49(3):249-253.
    [31]Y.Kanda,T.Aizawa,T.Kobayashi,Y.Uemichi,S.Namba,M.Sugioka.Preparation of highly active AlSBA-15-supported platinum catalyst for thiophene hydrodesulfurization[J].Applied Catalysis B-Environmental,2007,77(1-2):117-124.
    [32]Y.J.Guan,Y.Li,R.A.van Santen,E.J.M.Hensen,C.Li.Controlling reaction pathways for alcohol dehydration and dehydrogenation over FeSBA-15catalysts[J].Catalysis Letters,2007,117(1-2):18-24.
    [33]X.L.Yang,W.L.Dai,R.H.Gao,K.N.Fan.Characterization and catalytic behavior of highly active tungsten-doped SBA-15 catalyst in the synthesis of glutaraldehyde using an anhydrous approach[J].Journal of Catalysis,2007,249(2):278-288.
    [34]S.F.Yang,Q.H.Zhang,Y.Wang.Boron-modified chlorine-free K+-FeOx/SBA-15 as highly effective catalyst for propylene epoxidation by nitrous oxide[J].Chemistry Letters,2007,36(6):786-787.
    [35]M.Selvaraj,S.Kawi.Direct synthesis ofmesoporous CrSBA-15 catalyst and its high activity and selectivity for oxidation of anthracene[J].Microporous and Mesoporous Materials,2007,101(1-2):240-249.
    [36]M.L.Zhang,S.F.Ji,L.H.Hu,F.X.Yin,C.Y.Li,H.Liu.Structural characterization of highly stable Ni/SBA-15 catalyst and its catalytic performance for methane reforming with CO_2[J].Chinese Journal of Catalysis,2006,27(9):777-782.
    [37]Y.Y.Sun,S.Walspurger,J.P.Tessonnier,B.Louis,J.Sommer.Highly dispersed iron oxide nanoclusters supported on ordered mesoporous SBA-15:A very active catalyst for Friedel-Crafts alkylations[J].Applied Catalysis a-General,2006,300(1):1-7.
    [38]C.W.Chiang,A.Q.Wang,B.Z.Wan,C.Y.Mou.High catalytic activity for CO oxidation of gold nanoparticles confined in acidic support Al-SBA-15 at low temperatures[J].Journal of Physical Chemistry B,2005,109(38):18042-18047.
    [39]W.F.Hoelderich.Environmentally benign manufacturing of fine and intermediate chemicals[J].Catalysis Today,2000,62(1):115-130.
    [40]K.A.D.Swift.Catalytic transformations of the major terpene feedstocks[J].Topics in Catalysis,2004,27(1-4):143-155.
    [41]J.L.F.Monteiro,C.O.Veloso.Catalytic conversion of terpenes into fine chemicals[J].Topics in Catalysis,2004,27(1-4):169-180.
    [42]孙崇鲁,黄克瀛,陈丛瑾,张炎强.工业双戊烯合成香料的研究实例[J].生物质化学工程,2006,40(5):47-50.
    [43]廖英,冯亚青,那平.工业双戊烯下游产品研究进展[J].化学工业与工程,2004,21(2):121-124.
    [44]C.Perego,P.Ingallina.Recent advances in the industrial alkylation of aromatics:new catalysts and new processes[J].Catalysis Today,2002,73(1-2):3-22.
    [45]刘先章,胡樨萼,李冬梅,胡贵贤,蒋同夫,何小平,李跃文,李小波,王又平,李平先.工业双戊烯加工利用的研究(Ⅱ)--双戊烯氢化反应的中试研究[J].林产化学与工业,1994,14(Special):109-115.
    [46]H.Pines,R.C.Olberg,V.N.Ipatieff.Studies in the Terpene Series.14.Skeletal Isomerization and Hydrogen Transfer of Cyclic Olefins in the Presence of Alumina Hydrogen Chloride and Silica Alumina Catalysts[J].Journal of the American Chemical Society,1952,74(19):4872-4876.
    [47]R.Neumann,M.Lissel.Aromatization of Hydrocarbons by Oxidative Dehydrogenation Catalyzed by the Mixed Addenda Heteropoly Acid H_5PMo_(10)V_2O_(40)[J].Journal of Organic Chemistry,1989,54(19):4607-4610.
    [48]D.M.Roberge,D.Buhl,J.P.M.Niederer,W.F.Holderich.Catalytic aspects in the transformation of pinenes to p-cymene[J].Applied Catalysis a-General,2001,215(1-2):111-124.
    [49]P.A.Weyrich,W.Holderich,M.A.van Daelen,A.M.Gorman.Theoretical and experimental study on the selectivity of dehydrogenation of alpha-limonene in ZSM-5 and zeolite-Y[J].Catalysis Letters,1998,52(1-2):7-12.
    [50]P.A.Weyrich,H.Trevino,W.F.Holderich,W.M.H.Sachtler.Characterization of Ce promoted,zeolite supported Pd catalysts[J].Applied Catalysis a-General,1997,163(1-2):31-44.
    [51]P.A.Weyrich,W.F.Holderich.Dehydrogenation of alpha-limonene over Ce promoted,zeolite supported Pd catalysts[J].Applied Catalysis a-General,1997,158(1-2):145-162.
    [52]张庆,任艳惠.对异丙基甲苯的实验室制备研究[J].林产化工通讯,2001,35(2):14-17.
    [53]毕良武,赵振东,刘先章,李冬梅,王婧.双戊烯脱氢裂解同步反应与异步反应对比研究[J].林产化工通讯,2004,38(1):5-8.
    [54]毕良武,刘先章,赵振东,许鹏翔,储富祥.工业双戊烯脱氢裂解反应及产物分析[J].化工时刊,2003,17(1):30-33.
    [55]刘德臣,孙志强,郭清华.工业双戊烯气相催化脱氢制对伞花烃的研究[J].精细化工,1998,15(6):42-45.
    [56]郭清华,刘德臣,孙志强.工业双戊烯气相催化脱氢制对伞花烃机理初探[J].烟台大学学报(自然科学与工程版),1999,12(1):50-56.
    [57]F.Kapteijn,J.Rodriguez Mirasol,J.A.Moulijn.Heterogeneous catalytic decomposition of nitrous oxide[J].Applied Catalysis B-Environmental,1996,9(1-4):25-64.
    [58]J.Haber,M.Nattich,T.Machej.Alkali-metal promoted rhodium-on-alumina catalysts for nitrous oxide decomposition[J].Applied Catalysis B-Environmental,2008,77(3-4):278-283.
    [59]E.R.S.Winter.Decomposition of N2O on Oxide Catalysts.3.Effect of O2[J].Journal of Catalysis,1974,34(3):431-439.
    [60]E.R.S.Winter.Catalytic Decomposition of Nitric-Oxide by Metallic Oxides.2.Effect of Oxygen[J].Journal of Catalysis,1974,34(3):440-444.
    [61]N.Russo,D.Fino,G.Saracco,V.Specchia.N_2O catalytic decomposition over various spinel-type oxides[J].Catalysis Today,2007,119(1-4):228-232.
    [62]L.Obalova,V.Fila.Kinetic analysis of N2O decomposition over calcined hydrotalcites[J].Applied Catalysis B-Environmental,2007,70(1-4):353-359.
    [63]L.Obalova,K.Pacultova,J.Balabanova,K.Jiratova,Z.Bastl,M.Valaskova,Z.Lacny,F.Kovanda.Effect of Mn/Al ratio in Co-Mn-Al mixed oxide catalysts prepared from hydrotalcite-like precursors on catalytic decomposition of N2O[J].Catalysis Today,2007,119(1-4):233-238.
    [64]L.Obalova,K.Jiratova,F.Kovanda,K.Pacultova,Z.Lacny,Z.Mikulova.Catalytic decomposition of nitrous oxide over catalysts prepared from Co/Mg-Mn/Al hydrotalcite-like compounds[J].Applied Catalysis B-Environmental,2005,60(3-4):289-297.
    [65]L.Obalova,K.Jiratova,F.Kovanda,M.Valaskova,J.Balabanova,K.Pacultova.Structure-activity relationship in the N_2O decomposition over Ni-(Mg)-Al and Ni-(Mg)-Mn mixed oxides prepared from hydrotalcite-like precursors[J].Journal of Molecular Catalysis a-Chemical,2006,248(1-2):210-219.
    [66]赵丹,张守臣,刘长厚,王立秋.以活性炭纤维为载体的金属氧化物上分解N_2O研究[J].高校化学工程学报,2003,17(3):289-294.
    [67]K.S.Chang,H.Song,Y.S.Park,J.W.Woo.Analysis of N_2O decomposition over fixed bed mixed metal oxide catalysts made from hydrotalcite-type precursors[J].Applied Catalysis a-General,2004,273(1-2):223-231.
    [68]K.S.Chang,H.J.Lee,Y.S.Park,J.W.Woo.Enhanced performances of N_2O destruction in the presence of CO over the mixed metal oxide catalysts derived from hydrotalcite-type precursors[J].Applied Catalysis a-General,2006,309(1):129-138.
    [69]S.Kannan,C.S.Swamy.Catalytic decomposition of nitrous oxide over calcined cobalt aluminum hydrotalcites[J].Catalysis Today,1999,53(4):725-737.
    [70]S.Kannan,A.Narayanan,C.S.Swamy.Effect of composition on the physicochemical properties of nickel aluminium hydrotalcites[J].Journal of Materials Science,1996,31(9):2353-2360.
    [71] S. Kannan, S. Velu, V. Ramkumar, C. S. Swamy. Synthesis and Physicochemical Properties of Cobalt Aluminum Hydrotalcites[J]. Journal of Materials Science, 1995, 30(6): 1462-1468.
    [72] S. Kannan, C. S. Swamy. Catalytic Decomposition of Nitrous-Oxide on in-Situ Generated Thermally Calcined Hydrotalcites[J]. Applied Catalysis B-Environmental, 1994, 3(2-3): 109-116.
    [73] S. Kannan, C. S. Swamy. Synthesis and Physicochemical Characterization of Cobalt Aluminum Hydrotalcite[J]. Journal of Materials Science Letters, 1992, 11(23): 1585-1587.
    [74] G. D. Pirngruber, P. K. Roy, N. Weiher. An in situ x-ray absorption spectroscopy study of N2O decomposition over Fe-ZSM-5 prepared by chemical vapor deposition of FeC13[J]. Journal of Physical Chemistry B, 2004, 108(36): 13746-13754.
    [75] C. M. Sang, B. H. Kim, C. R. F. Lund. Effect of NO upon N2O decomposition over Fe/ZSM-5 with low iron loading[J]. Journal of Physical Chemistry B, 2005, 109(6): 2295-2301.
    [76] E. Berrier, O. Ovsitser, E. V. Kondratenko, M. Schwidder, W. Grunert, A. Bruckner. Temperature-dependent N_2O decomposition over Fe-ZSM-5: Identification of sites with different activity[J]. Journal of Catalysis, 2007, 249(1): 67-78.
    [77] G. D. Pirngruber, P. K. Roy, R. Prins. The role of autoreduction and of oxygen mobility in N2O decomposition over Fe-ZSM-5[J]. Journal of Catalysis, 2007, 246(1): 147-157.
    [78] J. C. Groen, A. Bruckner, E. Berrier, L. Maldonado, J. A. Moulijn, J. Perez-Ramirez. Iron site modification upon alkaline treatment of Fe-ZSM-5 zeolites -Opportunities for improved N_2O decomposition activity[J]. Journal of Catalysis, 2006, 243(1): 212-216.
    [79] C. R. F. Lund. Effects of zeolite channel walls and cation migration on N_2O decomposition energies in Fe/ZSM-5[J]. Journal of Catalysis, 2006, 243(2): 438-441.
    [80] D. A. Bulushev, L. Kiwi-Minsker, A. Renken. Dynamics of N_2O decomposition over HZSM-5 with low Fe content[J]. Journal of Catalysis, 2004, 222(2): 389-396.
    [81] G. D. Pirngruber, P. K. Roy. The mechanism of N_2O decomposition on Fe-ZSM-5: an isotope labeling study[J]. Catalysis Letters, 2004, 93(1-2): 75-80.
    [82] D. R. Burri, K. M. Choi, J. H. Lee, D. S. Han, S. E. Park. Influence of SBA-15 support on CeO2-ZrO2 catalyst for the dehydrogenation of ethylbenzene to styrene with CO_2[J]. Catalysis Communications, 2007, 8(1): 43-48.
    [83]J.A.Z.Pieterse,G.D.Pirngruber,J.A.van Bokhoven,S.Booneveld.Hydrothermal stability of Fe-ZSM-5 and Fe-BEA prepared by wet ion-exchange for N_2O decomposition[J].Applied Catalysis B-Environmental,2007,71(1-2):16-22.
    [84]A.Bueno-Lopez,I.Such-Basanez,C.S.M.de Lecea.Stabilization of active Rh_2O_3 species for catalytic decomposition of N_2O on La-,Pr-doped CeO_2[J].Journal of Catalysis,2006,244(1):102-112.
    [85]S.Suarez,M.Yates,A.L.Petre,J.A.Martin,P.Avila,J.Blanco.Development of a new Rh/TiO_2-sepiolite monolithic catalyst for N_2O decomposition[J].Applied Catalysis B-Environmental,2006,64(3-4):302-311.
    [86]S.Suarez,C.Saiz,M.Yates,J.A.Martin,P.Avila,J.Blanco.Rh/gamma-Al_2O_3-sepiolite monolithic catalysts for decomposition of N_2O traces[J].Applied Catalysis B-Environmental,2005,55(1):57-64.
    [87]X.Xu,H.Xu,F.Kapteijn,J.Moulijn.SBA-15 based catalysts in catalytic N2O decomposition in a model tail-gas from nitric acid plants[J].Applied Catalysis B-Environmental,2004,53(4):265-274.
    [88]朱昌朋,黄金龙.由双戊烯制备甲苯的方法及所用催化剂[P].中国:CN1292371A,2001-04-25.
    [89]P.Kustrowski,L.Chmielarz,R.Dziembaj,P.Cool,E.F.Vansant.Dehydrogenation of ethylbenzene with nitrous oxide in the presence of mesoporous silica materials modified with transition metal oxides[J].Journal of Physical Chemistry A,2005,109(2):330-336.
    [90]P.Kustrowski,L.Chmielarz,J.Surman,E.Bidzinska,R.Dziembaj,P.Cool,E.F.Vansant.Catalytic activity of MCM-48-,SBA-15-,MCF-,and MSU-type mesoporous silicas modified with Fe3+ species in the oxidative dehydrogenation of ethylbenzene in the presence of N2O[J].Journal of Physical Chemistry A,2005,109(43):9808-9815.
    [91]R.B.Biniwale,N.Kariya,M.Ichikawa.Dehydrogenation of cyclohexane over Ni based catalysts supported on activated carbon using spray-pulsed reactor and enhancement in activity by addition of a small amount of Pt[J].Catalysis Letters,2005,105(1-2):83-87.
    [92]J.Escobar,J.A.D.L.Reyes,T.Viveros,M.C.Ban-era.Cyclohexane dehydrogenation over wet-impregnated Ni on Al_2O_3-TiO_2 sol-gel oxides[J].Industrial & Engineering Chemistry Research,2006,45(16):5693-5700.
    [93]J.H.Zhang,Y.Q.Yang,J.M.Shen,J.A.Wang.Mesostructured CeO2 and Pd/CeO2 nanophases:Templated synthesis,crystalline structure and catalytic properties[J].Journal of Molecular Catalysis a-Chemical,2005,237(1-2):182-190.
    [94]程谟杰,王江迈,杨亚书,李灿.ZnHZSM-5上丙烷芳构化的研究--丙烷的活化[J].物理化学学报,1995,11(8):724-729.
    [95]程谟杰,杨亚书.ZnHZSM-5上脱氢环化芳构化过程的探讨[J].分子催化,1996,10(6):418-422.
    [96]聂聪.新型中孔分子筛SBA-15的稳定性、铝化及催化性能研究[D].上海:复旦大学,2000.
    [97]C.Nie,L.M.Huang,D.Y.Zhao,Q.Z.Li.Performance of Pt/Al-SBA-15catalysts in hydroisomerization of n-dodecane[J].Catalysis Letters,2001,71(1-2):117-125.
    [98]N.A.Comelli,E.N.Ponzi,M.I.Ponzi.Isomerization of alpha-Pinene,limonene,alpha-terpinene,and terpinolene on sulfated zirconia[J].Journal of the American Oil Chemists Society,2005,82(7):531-535.
    [99]G.Chen,W.Shen,H.L.Xu.Effect of potassium on the MnO_x/gamma-Al_2O_3catalysts for hydrogenation of methyl benzoate[J].Acta Chimica Sinica,2002,60(9):1601-1605.
    [100]A.S.Kumar,J.Perez-Ramirez,M.N.Debbagh,B.Smarsly,U.Bentrup,A.Bruckner.Evidence of the vital role of the pore network on various catalytic conversions of N_2O over Fe-silicalite and Fe-SBA-15 with the same iron constitution[J].Applied Catalysis B-Environmental,2006,62(3-4):244-254.
    [101]E.Kondratenko,R.Kraehnert,J.Radnik,M.Baerns,J.Perez-Ramirez.Distinct activity and time-on-stream behavior of pure Pt and Rh metals and Pt-Rh alloys in the high-temperature N_2O decomposition[J].Applied Catalysis a-General,2006,298:73-79.
    [102]V.Boissel,S.Tahir,C.A.Koh.Catalytic decomposition of N_2O over monolithic supported noble metal-transition metal oxides[J].Applied Catalysis B-Environmental,2006,64(3-4):234-242.
    [103]J.Oi,A.Obuchi,G.Bamwenda,A.Ogata,H.Yagita,S.Kushiyama,K.Mizuno.Decomposition of nitrous oxide over supported rhodium catalysts and dependency on feed gas composition[J].Applied Catalysis B-Environmental,1997,12(4):277-286.
    [104]S.Imamura,J.Tadani,Y.Saito,Y.Okamoto,H.Jindai,C.Kaito.Decomposition of N_2O on Rh-loaded Pr/Ce composite oxides[J].Applied Catalysis a-General,2000,201(1):121-127.
    [105]S.Imamura,R.Hamada,Y.Saito,K.Hashimoto,H.Jindai.Decomposition of N_2O on Rh/CeO_2/ZrO_2 composite catalyst[J].Journal of Molecular Catalysis a-Chemical,1999,139(1):55-62.
    [106] K. Hashimoto, N. Toukai, R. Hamada, S. Imamura. Reduction of Rh/CeO_2-ZrO_2 with hydrogen[J]. Catalysis Letters, 1998, 50(3-4): 193-198.
    
    [107] S. Imamura, T. Kitao, H. Kanai, S. Shono, K. Utani, H. Jindai. Decomposition of N_2O on Rh-loaded zeolites[J]. Reaction Kinetics and Catalysis Letters, 1997, 61(1): 201-207.
    
    [108] K. Yuzaki, T. Yarimizu, S. Ito, K. Kunimori. Catalytic decomposition of N_2O over supported rhodium catalysts: high activities of Rh/USY and Rh/Al_2O_3 and the effect of Rh precursors [J]. Catalysis Letters, 1997, 47(3-4): 173-175.
    
    [109] Y. W. Li, D. H. He, Q. M. Zhu, X. Zhang, B. Q. Xu. Effects of redox properties and acid-base properties on isosynthesis over ZrO_2-based catalysts[J]. Journal of Catalysis, 2004,221(2): 584-593.
    
    [110] P. G. Gassman, D. W. Macomber, S. M. Willging. Isolation and Characterization of Reactive Intermediates and Active Catalysts in Homogeneous Catalysis[J]. Journal of the American Chemical Society, 1985, 107(8): 2380-2388.
    
    [111] F. Malbosc, V. Chauby, C. Serra-Le Berre, M. Etienne, J. C. Daran, P. Kalck. Solid-state and solution structures of a series of [(HBPZ_3 (Me_2))Rh(CO)(PR_3)] and [(HBPZ_3Me_2,4Cl)Rh(CO)(PR_3)] complexes[J]. European Journal of Inorganic Chemistry, 2001, (10): 2689-2697.
    
    [112] A. M. Trzeciak, B. Borak, Z. Ciunik, J. J. Ziolkowski, M. F. C. G. da Silva, A. J. L. Pombeiro. Structure, electrochemistry and hydroformylation catalytic activity of the bis(pyrazolylborato)rhodium(I) complexes [RhBp(CO)P] [P = P(NC_4H_4)_3, PPh_3, PCy_3, P(C_6H_4OMe-4)_3][J]. European Journal of Inorganic Chemistry, 2004, (7): 1411-1419.
    
    [113] G. Calleja, R. van Grieken, R. Garcia, J. A. Melero, J. Iglesias. Preparation of titanium molecular species supported on mesostructured silica by different grafting methods[J]. Journal of Molecular Catalysis a-Chemical, 2002, 182(1): 215-225.
    
    [114] J. Pires, M. Pinto, J. Estella, J. C. Echeverria. Characterization of the hydrophobicity of mesoporous silicas and clays with silica pillars by water adsorption and DRIFT[J]. Journal of Colloid and Interface Science, 2008, 317(1): 206-213.
    
    [115] F. Omota, A. C. Dimian, A. Bliek. Partially hydrophobized silica supported Pd catalyst for hydrogenation reactions in aqueous media[J]. Applied Catalysis a-General, 2005, 294(2): 121-130.
    
    [116] C. Force, E. Roman, J. M. Guil, J. Sanz. XPS and H-1 NMR study of thermally stabilized Rh/CeO_2 catalysts submitted to reduction/oxidation treatments[J]. Langmuir, 2007, 23(8): 4569-4574.
    [117]P.S.Lambrou,P.G.Sawa,J.L.G.Fierro,A.A.Efstathiou.The effect of Fe on the catalytic behavior of model Pd-Rh/CeO_2-Al2O_3 three-way catalyst[J].Applied Catalysis B-Environmental,2007,76(3-4):375-385.
    [118]F.Bertinchamps,C.Gregoire,E.M.Gaigneaux.Systematic investigation of supported transition metal oxide based formulations for the catalytic oxidative elimination of(chloro)-aromatics - Part Ⅰ:Identification of the optimal main active phases and supports[J].Applied Catalysis B-Environmental,2006,66(1-2):1-9.
    [119]S.Suhonen,R.Polvinen,M.Valden,K.Kallinen,M.Harkonen.Surface oxides on supported Rh particles:thermal decomposition of Rh oxide under high vacuum conditions[J].Applied Surface Science,2002,200(1-4):48-54.
    [120]S.Hosokawa,S.Nogawa,M.Taniguchi,K.Utani,H.Kanai,S.Imamura.Oxidation characteristics of Ru/CeO_2 catalyst[J].Applied Catalysis a-General,2005,288(1-2):67-73.
    [121]P.S.S.Reddy,N.Pasha,M.Rao,N.Lingaiah,I.Suryanarayana,P.S.S.Prasad.Direct decomposition of nitrous oxide over Ru/Al_2O_3 catalysts prepared by deposition-precipitation method[J].Catalysis Communications,2007,8(9):1406-1410.
    [122]叶青,王瑞璞,徐柏庆.柠檬酸溶胶-凝胶法制备的Ce_(1-) _xZr_xO_2:结构及其氧移动性[J].物理化学学报,2006,22(1):33-37.
    [123]M.Zhao,L.Cai,Q.W.Yu,M.C.Gong,S.H.Yuan,Y.Q.Chen.The application of ceria-zirconia composite oxide in motorcycle catalyst[J].Rare Metal Materials and Engineering,2007,36:277-281.
    [124]X.C.Zheng,D.Z.Han,S.P.Wang,S.M.Zhang,S.R.Wang,W.P.Haung,S.H.Wu.Preparation,characterization of CuO/CeO2 and Cu/CeO2 catalysts and their applications in low-temperature CO oxidation[J].Journal of Rare Earths,2005,23(1):47-51.
    [125]D.Duprez.Study of surface mobility by isotopic exchange:recent developments and perspectives[M].Amsterdam:Elsevier Science,1997:p 13-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700