用户名: 密码: 验证码:
乙烯选择性三聚与串联共聚催化体系制备LLDPE
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以HN(C_2H_4SR)_2·CrCl_3/MAO为催化体系,实验考察了反应条件对乙烯三聚的选择性、活性及其动力学特性的影响,建立了相应的模型,并进一步实验考察了催化剂负载化对其活性和选择性的影响规律;又以HN(C_2H_4SC_(12)H_(25))_2·CrCl_3/Et(Ind)_2ZrCl_2/MAO为串联催化体系催化乙烯三聚及共聚制备线性低密度聚乙烯(LLDPE)——乙烯/1-己烯共聚物,实验并建模考察了反应条件对乙烯三聚选择性、乙烯/1-己烯共聚活性、齐聚与共聚动力学特性以及产物性能等的影响;考察了催化体系的负载化对串联反应过程及其产物性能的影响。
     HN(C_2H_4SR)_2·CRCl_3催化乙烯齐聚实验发现该催化剂在低压和较低的MAO用量下有非常高的三聚选择性(>99%)。当R基为-C_2H_5时,1atm下65℃时活性最高可达550kg hexene/(mol Crh),提高反应压力有助于得到更高的活性,但是会降低催化剂的选择性;当R基为-C_(12)H_(25)时,1atm下75℃时活性最高可达450kg hexene/(mol Crh)。实验发现,该类催化剂的最佳反应温度区间在55-75℃之间。将HN(C_2H_4SR)_2·CrCl_3催化剂负载于SiO_2上,发现负载化对催化剂的三聚选择性没有影响,但是催化剂的活性有所下降,动力学曲线则更趋平缓。当R基为-C_2H_5时,负载型催化剂活性相对于均相催化剂下降了1 00 kg hexene/(mol Cr.h)左右;而当R基为-C_(12)H_(25)时,活性下降到其均相时的1/4。负载化对两种催化剂活性的影响程度不同,是由于R基为-C_(12)H_(25)时催化剂本身的位阻基团比较大,催化剂负载化加剧了位阻对乙烯配位、络合及插入的影响。
     三聚催化剂HN(C_2H_4SC_(12)H_(25))_2·CrCl_3(1)与茂金属催化剂Et(Ind)_2ZrCl_2(2)配合组成串联催化剂体系,以乙烯为唯一原料,在同一个反应器中催化剂1催化乙烯选择性三聚生成1-己烯,而催化剂2催化乙烯与原位生成的1-己烯共聚生成乙烯/1-己烯共聚物。共聚物的性能可通过催化剂配比、反应温度等条件控制。~(13)C-NMR表征发现,聚合物只含有C4支链,表明三聚催化剂的选择性在串联共聚时保持不变。当反应温度较低或者Cr/Zr较高时,串联催化体系得到的共聚物的DSC曲线分布较宽,甚至出现双峰分布。1-己烯的浓度累积与漂移是造成这一现象的主要原因,采用预齐聚的方法抑制这种漂移,得到结构更均一的共聚物。
     针对HN(C_2H_4SR)_2·CrCl_3催化剂,应用金属成环中间体三聚机理,建立了相应的动力学模型,导出了常压下该类催化剂催化乙烯三聚的反应速率方程:R_p=k_1.ka.C_E~2/k_a-k_d(e~(-k_dt)-e~(-k_at)).M_w,获得了对应的动力学参数。针对HN(C_2H_4SC_(12)H_(25))_2·CrCl_3/Et(Ind)_2ZrCl_2/MAO串联催化体系,基于简化的金属成环中间体三聚机理和乙烯/1-己烯共聚机理,建立了一个半连续乙烯串联反应制备LLDPE的数学模型。该模型可以很好的预测反应速率、共聚单体浓度、共聚物组成、产物分子量及分子量分布等。串联催化反应实验和仿真研究发现,反应过程中三聚反应和共聚反应存在着速度差;正是这一速度差导致了反应过程中1-己烯的浓度从零起不断累积增大;采用预齐聚的方法可使1-己烯先在短期内累积到比较高的浓度,进而使其消耗的速率与生成的速率达到平衡,得到组成结构更均一的共聚物。
     使用均相或负载化HN(C_2H_4SC_(12)H_(25))_2·CrCl_3与均相或负载化Et(Ind)_2ZrCl_2组合成的不同的串联催化体系进行乙烯的化学反应,研究发现,共聚催化剂Et(Ind)_2ZrCl_2负载化对其活性和1-己烯的插入都有影响。固定Cr/Zr比条件下,串联催化体系的活性取决于共聚催化剂负载与否,与三聚催化剂的负载与否则没有关系;采用均相共聚催化剂,其聚合产物的分子量较小,分子量分布窄,DSC曲线呈单峰分布;采用负载型共聚催化剂,由于其具有多活性中心,产物分子量高,分子量分布宽,DSC曲线比较复杂。使用双负载型串联催化剂活性比较高,产物中只有C4支链,熔点介于95℃到120℃之间,是典型的LLDPE。在相同的反应条件下,双负载催化体系得到的聚合物分子量最大。负载三聚催化剂降低了体系中1-己烯的浓度,而负载型共聚催化剂降低了链转移速率和β-氢消除速率,这两种作用共同影响了产物的分子量。
In this study, the ethylene trimerization catalyst system, HN(C_2H_4SR)_2·CrCl_3/MAO, was studied under various reaction conditions on the selectivity, activity, and dynamic evolution. The effect of SiO_2 support on the catalyst selectivity and activity was also studied. A simplified metallacyclic intermediates model was applied to describe trimerization mechanism. A tandem catalysis system composed of HN(C_2H_4S C_(12)H_(25))_2·CrCl_3and Et(Ind)_2ZrCl_2 was used to synthesize ethylene-1-hexene copolymers. A mathematical model was developed to describe ethylene/1-hexene copolymerization with this tandem catalysis system based on a simplified trimerization model and an ethylene/a-olefin copolymerization model. The effect of reaction conditions, on trimerization catalyst selectivity, copolymerization catalyst activity, polymerization kinetics, and polymer properties were investigated both by experiment and simulation. HN(C_2H_4S C_(12)H_(25))_2·CrCl_3 and Et(Ind)_2ZrCl_2 were supported on SiO_2 and the effects of different supporting strategies on trimerization selectivity, 1-hexene incorporation efficiency and copolymerization activity were studied and compared to the homogeneous system.
     The selectivity of HN(C_2H_4SR)_2·CrCl_3 were high (>99%) with small amount of MAO at atmosphere pressure. The highest activity is 550 kg hexene/(mol Cr h) for HN(C_2H_4SC_2H_5)_2·CrCl3 at 65℃, while 450 kg hexene/(mol Cr h) for HN(C_2H_4SC_(12)H_(25))_2·CrCl_3 at 75℃. Supporting HN(C_2H_4SR)_2·CrCl_3 on SiO_2 did not change the trimerization selectivity, but a decrease of activity and improved catalyst stability were found. The activity for supported HN(C_2H_4SC_2H_5)_2·CrCl_3 dropped about 100 kg hexene/ (mol Cr. h) at each condition compared to its homogeneous counterpart, while the activity for supported HN(C_2H_4SC_(12)H_(25))_2·CrCl_3 only remained 1/4. The different effect of support on trimerization catalyst activity was due to the hindrance of the ligand imposed to the active site, which might block off ethylene coupling, coordination, and insertion.
     Ethylene-1-hexene copolymers were synthesized with a tandem catalysis system that consisted of HN(C_2H_4SC_(12)H_(25))_2·CrCl_3/MAO (1/MAO) and Et(Ind)_2ZrCl_2/MAO (2/MAO) at atmosphere pressure. Catalyst 1 trimerized ethylene with high activity and excellent selectivity, while catalyst 2 incorporated the 1-hexene content and produced ethylene-1-hexene copolymer from an ethylene-only stock in the same reactor. Adjusting the Cr/Zr ratio and reaction temperature yielded various branching densities and thus melting temperatures. Only C4 side chain was found in the copolymer. However, broad DSC curves were observed when low temperatures and/or high Cr/Zr ratios were employed due to an accumulation of 1-hexene component and composition drifting during the copolymerization. It was found that applying a short time period of pre-trimerization resulted in more homogeneous materials that gave unimodal DSC curves.
     A simplified metallacyclic intermediate model was applied to describe trimerization mechanism of HN(C_2H_4SR)_2·CrCl_3, taking a first order catalyst activation, a first order deactivation, and a second order ethylene chelating intoaccount. The reaction rate can be described as R_p=k_1.k_a.C_E~2/k_a-k_d(e~(-k_dt)-e~(-k_at)).M_w.Based on this expression and an ethylene/a-olefin copolymerization kinetic model, a mathematical model was developed to describe ethylene/1-hexene copolymerization with HN(C_2H_4SC_(12)H_(25))_2·CrCl_3/Et(Ind)_2ZrCl_2/MAO system. The model could predict the reaction rate, 1-hexene concentration in the liquid phase, copolymer composition, and molecular weight. A series of semi-batch polymerization runs were carried out to verify the model. Both experimentation and modeling showed that adjusting the Cr/Zr ratio yielded various branching densities and thus melting temperatures, as well as molecular weights and polydispersities. Broad composition distributions and thus broad DSC curves were observed at high Cr/Zr ratios. Modeling results elucidated that this is due to an accumulation of 1-hexene component and to composition drifting during the copolymerization. It was also found that applying a short time period of pre-trimerization improved homogeneity in chain microstructure and minimized broadening in DSC curves.
     Catalysts 1 and 2 were supported on silica particles and the effects of different supporting strategies on trimerization selectivity, 1-hexene incorporation efficiency and copolymerization activity were studied and compared to the homogeneous system. Supporting 2 resulted in a reduction in both catalytic activity and incorporation ability of 1-hexene because of a hindrance effect. At fixed Cr/Zr ratio, the activity of tandem system depended on if 2 was supported, but was not affected by 1 supporting. Homogeneous 2 yielded lower molecular weight copolymers with lower polydispersity index and having narrow DSC curves. Supported 2 gave higher molecular weight, higher polydispersity, and broader DSC curves because of its multiple-site nature. The tandem action of supported 1 and supported 2 gave high activities at a 10~7 g/(mol Zr h) level. The resulting copolymers contained only C4 side chains with melting temperature ranged from 95℃to 120℃, similar to commercial LLDPE. The samples had the highest molecular weight among the four catalysis systems under similar reaction conditions. This could be attributed to the lower 1-hexene concentration generated by supported 1 and the lower rate constants of chain transfer andβ-hydrogen elimination of supported 2.
引文
[1] Alpha-Olefins- World Markets, 2005-2015, COLIN A. HOUSTON & ASSOCIATES, INC
    
    [2] Dixon J T, Green M J, Hess F M, Morgan D H. Advances in selective ethylene trimerisation- a critical overview. J Organomet Chem, 2004, 689: 3641-3668.
    
    [3] Bollmann A, Blann K, Dixon J T, Hess F M, Killian E, Maumela H, McGuinness D S,Morgan D H, Neveling A, Otto S, Overett M,. Slawin A M Z, Wasserscheid P, Kuhlmann S.Ethylene tetramerization: A new route to produce 1-octene in exceptionally highselectivities. J Am Chem Soc, 2004,126:14712-14713.
    
    [4] Beach D L, Kissin Y V. Dual functional catalysis for ethylene polymerization to branchedpolyethylene. I. Evaluation of catalytic systems. J Polym. Sci: Polym Chem Ed, 1984, 22:3027-3042.
    
    [5] Wasilke J C, Obrey S J, Baker R T, Bazan G C. Concurrent Tandem Catalysis. Chem Rev,2005, 105:1001-1020.
    
    [6] de Souza R F, Casagrande O L Jr. Recent advances in olefin polymerization using binarycatalyst systems. Macromol Rapid Commun, 2001, 22: 1293-1301.
    
    [7] Barnhart R W, Bazan G C. Synthesis of Branched Polyolefins Using a Combination ofHomogeneous Metallocene Mimics. J Am Chem Soc, 1998,120: 1082-1083.
    
    [8] AlObaidi F, Ye Z B, Zhu S P. Direct synthesis of linear low-density Polyethylene ofethylene/1-hexene from ethylene with a tandem catalytic system in a single reactor. JPolym Sci Part A Polym Chem, 2004,42: 4327-4336.
    
    [9] Zhang Z C, Cui, N N, Lu Y Y, Ke Y C, Hu Y L. Preparation of Linear Low-DensityPolyethylene by the In Situ Copolymerization of Ethylene with an Iron OligomerizationCatalyst and rac-Ethylene bis(indenyl) Zirconium (Ⅳ) Dichloride. J Polym Sci Part APolym Chem, 2005,43: 984-993.
    
    [10] Bianchini C, Frediani M, Giambastiani G, Kaminsky W., Meli A, Passaglia E. Amorphouspolyethylene by tandem action of cobalt and titanium single-site catalysts. MacromolRapid Commun, 2005, 26:1218-1223.
    
    [11] de Wet-Roos D, du Toit A, Joubert D J. Homogeneous Tandem Catalysis of the Bis-(Diphenylphosphino)-Amine/Chromium Tetramerization Catalyst with Metallocene Catalysts. J Polym Sci Part A Polym Chem, 2006,44; 6847-6856.
    
    [12]何平,栗同林.线性α-烯烃的综合利用.石化技术2006,13:61-64.
    
    [13] 邸鸿,何仁,唐超时.α-烯烃合成工艺概述.化工科技2003,11:48-52.
    
    [14] Fernald H N, Hay R G, Kresge A N. US 3,510,539 (Gulf research & developmentcompany), May 5, 1970.
    
    [15] Davis W T, Gautreaux M F, US 3,391,219 (Ethyl corporation), July 2, 1968.
    
    [16] van Zwet H, Bauer R S, Keim W, US 3,644,564 (Shell oil company), Feb 22,1972.
    
    [17] Peuckert M, Keim W. A new nickel complex for the oligomerization of ethylene.Organometallics, 1983,2: 594-597.
    
    [18] Small B L. Brookhart M. Iron-based catalysts with exceptionally high activities andselectivities for oligomerization of ethylene to linear α-olefins. J Am Chem Soc, 1998, 120:7143-7144.
    
    [19] Britovsek G J P, Mastroianni S, Solan G A., Baugh S P D, Redshow C, Gibson V C, WhiteA. J P, Willams D J, Elsegood M R J. Oligomerisation of ethylene by bis(imino)pyriylironand-cobalt complexes. Chem Eur J, 2000, 6: 2221-2231.
    
    [20] Zhang Z C, Chen S T, Zhang X F, Li H Y, Ke Y C, Lu Y Y, Hu Y L. A series of novel2,6-bis(imino)pyridyl iron catalysts: synthesis, characterization and ethyleneoligomerization. J Mol Catal A-Chem, 2005,230:1-8.
    
    [21] Zhang Z C, Zou J F, Cui N N, Ke Y C, Hu Y L. Ethylene oligomerization catalyzed by anovel iron complex containing fluoro and methyl substituents. J Mol Catal A-Chem, 2004,219:249-254.
    
    [22] Sun W H, Hao P, Zhang S, S Q S, Zuo W W, Tang X B, Lu X M.. Iron(Ⅱ) and Cobalt(Ⅱ)2-(Benzimidazolyl)-6-(1-(arylimino)ethyl)pyridyl Complexes as Catalysts for EthyleneOligomerization and Polymerization. Organometallics, 2007, 26: 2720-2734.
    
    [23] Qian M X, Wang M, Zhou B, He R. Ethylene oligomerization by cobalt(Ⅱ) diiminecomplexes/EAO. Appl Catal A: Gen, 2001, 209: 11-15.
    
    [24] Hou J X, Sun W H, Zhang S, Ma H W, Deng Y, Lu X M. Synthesis and Characterization ofTridentate Nickel Complexes Bearing P^N^N and P^N^P Ligands and Their CatalyticProperty in Ethylene Oligomerization. Organometallics, 2006, 25: 236-244.
    
    [25] Hao P, Zhang S, Sun W H, Shi Q S, Adewuyi S, Lu X M, Li P Z. Synthesis,Characterization and Ethylene Oligomerization Studies of Nickel Complexes Bearing2-Benzimidazoly -lpyridine Derivatives. Organometallics, 2007,26: 2439-2446.
    
    [26] Tomov A K,Chirinos J J, Long R J, Gibson V C, Elsegood M R J. An Unprecedentedα-Olefin Distribution Arising from a Homogeneous Ethylene Oligomerization Catalyst. JAm Chem Soc, 2006, 128: 7704-7705.
    
    [27] Zhang W J, Sun W H, Zhang S, Hou J X, Wedeking K, Schultz S, Frohlich R, Song H B.Synthesis, Characterization, and Ethylene Oligomerization and Polymerization of[2,6-Bis(2-benzimidazolyl)pyridyl]chromium Chlorides. Organometallics 2006, 25:1961-1969.
    
    [28] Wang M, Shen Y M, Qian M X, Li R, He R. Oligomerization and simultaneous cyclizationof ethylene to methylenecyclopentane catalyzed by zirconocene complexes. J Org Chem,2000, 599: 143-146.
    
    [29] Wang M, Li R, Qian M X, Yu X M, He R. The effect of cocatalysts on the oligomerizationand cyclization of ethylene catalyzed by zirconocene complexes. J Mol Cat A: Chem, 2000,??160:337-341.
    
    [30] Wang M, Zhu H J, Jin K, Dai D, Sun L C. Ethylene oligomerization by salen-typezirconium complexes to low-carbon linear α-olefins. J Catal, 2003, 220: 392-398.
    
    [31] Wang M, Dai D, Zhu H J, Zhang X, Sun L C. Effects of the precatalyst structure and theMg-containing third-component on cyclo-oligomerization of ethane. J Mol Cat A: Chem,2004,216:13-17.
    
    [32] Zhu H J, Wang M, Ma C B, Li B, Chen C N, Sun L C. Preparation and structures of 6- and7-coordinate salen-type zirconium complexes and their catalytic properties foroligomerization of ethylene. J Org Chem, 2005,690:3929-3936.
    
    [33] Pillai S M, Ravindranathan M, Sivaram S. Dimerization of Ethylene and PropyleneCatalyzed by Transition-Metal Complexes. Chem Rev, 1086, 86: 353-399.
    
    [34] Tellmann K P, Gibson V C, White A J P, Williams D J. SelectiveDimerization/Oligomerization of α-Olefins by Cobalt Bis(imino)pyridine CatalystsStabilized by Trifluoromethyl Substituents: Group 9 Metal Catalysts with ProductivitiesMatching Those of Iron Systems. Organometallics 2005, 24: 280-286.
    
    [35] Speiser F, Braunstein P, Saussine L. Catalytic Ethylene Dimerization and Oligomerization:Recent Developments with Nickel Complexes Containing P,N-Chelating Ligands. AccChem Res, 2005,38:784-793.
    
    [36] Small B L, Marcucci A. J. Iron Catalysts for the Head-to-Head Dimerization of α-Olefinsand Mechanistic Implications for the Production of Linear α-Olefins. Organometallics.2001,20:5738-5744.
    
    [37] Wielstra Y, Gambarotta S, Chiang M Y. [1,2-Bis(dimethyl-phosphlno)ethane](cyclopentadlenyi) methylzlrconlum(Ⅱ) [CpZrMe(DMPE),]: A Catalyst Precursor for theSelective Dimerization of Ethylene to 1-Butene. Organometallics, 1988, 7: 1866-1867.
    
    [38] Manyik R M, Walker W E, Wilson T P, US 3330458 (Union Carbide Corporation), Jan 24,1967.
    
    [39] Briggs J R. The selective trimerization of ethylene to hex-1-ene. J Chem Soc, ChemCommun, 1989,674-675.
    
    [40] Sato H, Suzuki S, JP 07215896 (Idemitsu Chemical Company), August 15,1995.
    
    [41] Kodoi K, Sato H, JP 08183746 (Idemitsu Chemical Company), July 16,1996.
    
    [42] Reagan W K, EP 0417477 (Phillips Petroleum Company), March 20,1991.
    
    [43] Araki Y, Nakamura H, Nanba Y, Okanu T, US 5,856,612 (Mitsubishi ChemicalCorporation), January 5, 1999.
    
    [44] Aoyama T, Mimura H, Yamamoto T, Oguri M, Koie Y, JP09176299 (Tosoh Corporation),July 8, 1997.
    
    [45] Mahomed H, Bollmann A, Dixon J, Gokul V, Griesel L, Grove C, Hess F, Maumela H,Pepler L, Ethylene trimerisation catalyst based on substituted cyclopentadienes. ApplCatal A: Gen, 2003,255: 355-359.
    
    [46] Aoshima T, Urata T,JP11181016 (Mitsubishi Chemical Industries), July 6,1999.
    
    [47] Commereuc D C, Drochon R M, Saussine C, US 6031145 (Institut Francais du Petrole),June 17,1998.
    
    [48] Commereuc D C, Drochon R M, Saussine C, EP 1110930 (Institut Francais du Petrole),June 27, 2001.
    
    [49] Morgan D H, Schwikkard S L, Dixon J T, Nair J J, Hunter R. The Effect of Aromatic Etherson the Trimerisation of Ethylene using a Chromium Catalyst and Aryloxy Ligands. AdvSynth Catal, 2003, 345: 939-942.
    
    [50] Wu F J, EP 0537609 (Albemarle Corporation), July 10,1992.
    
    [51] Yoshida T, Yamamoto T, Okada H, Murakita H, US2002/0035029 (Tosoh Corporation),March 21,2002.
    
    [52] Iwanaga K, Tamura M, GB 2314518 (Sumitomo Chemical Company), June 27,1997.
    
    [53] Aoshima T, Urata T, JP11222445 (Mitsubishi Chemical Industries), August 17,1999.
    
    [54] Wu F J, US 5811618 (Amoco Corporation), August 25,1995.
    
    [55] Carter A., Cohen S A, Cooley N A, Murphy A, Scutt J, Wass D F. High activity ethylenetrimerisation catalysts based on diphosphine ligands. Chem Commun, 2002, 858-859.
    
    [56] McGuinness D S, Wasserscheid P, Keim W, Dixon J T, Grove J J C, Hu C, Englert U,Novel Cr-PNP complexes as catalysts for the trimerisation of ethylene. Chem Commun,2003, 334-335.
    
    [57] McGuiness D S, Wasserscheid P, Keim W, Morgan D, Dixon J T, Bollmann A, Maumela H,Hess F, Englert U. First Cr(Ⅲ)-SNS complexes and their use as highly efficient catalystsfor the trimerization of ethylene to 1-hexene. J Am Chem Soc, 2003, 125: 5272-5273.
    
    [58] McGuinness D S, Wasserscheid P, Morgan D H, Dixon J T. Ethylene Trimerization withMixed-Donor Ligand (N,P,S) Chromium Complexes: Effect of Ligand Structure on Activityand Selectivity. Organometallics. 2005, 24: 552-556.
    
    [59] McGuinness D S, Brown D B, Tooze R P, Hess F M, Dixon J T, Slawin A M Z. Ethylenetrimerization with Cr-PNP and Cr-SNS complexes: Effect of ligand structure, metaloxidation state, and role of activator on catalysis. Organometallics, 2006, 25: 3605-3610.
    
    [60] Temple C N, Gambarotta S, Korobkov I, Duchateau R. New insight into the role of themetal oxidation state in controlling the selectivity of the Cr-(SNS) ethylene trimerizationcatalyst. Organometallics, 2007,26: 4598-4603.
    
    [61] Jabri A, Temple C, Crewdson P, Gambarotta S, Korobkov I, Duchateau R. Role of themetal oxidation state in the SNS-Cr catalyst for ethylene trimerization: Isolation of di- andtrivalent cationic intermediates. J Am Chem Soc, 2006,128:9238-9247.
    
    [62] Temple C, Jabri A, Crewdson P, Gambarotta S, Korobkov I, Duchateau R. The question ofthe Cr oxidation state in the Cr-SNS catalyst for selective ethylene trimerization: Anunanticipated re-oxidation pathway. Angew Chem Int Ed 2006, 45: 7050 -7053.
    
    [63] Janse van Rensburg W, van den Berg J. A, Steynberg P J. Role of MAO in??Chromium-Catalyzed ethylene tri- and tetramerization: a DFT study. Organometallics,2007,26, 1000-1013.
    
    [64] Hessen B. Monocyclopentadienyl titanium catalysts: ethene polymerisation versus ethenetrimerisation. J Mol Cat A: Chem, 2004,213; 129-135.
    
    [65] Andes C, Harkins S B, Murtuza S, Oyler K, Sen A. New Tantalum-Based Catalyst Systemfor the Selective Trimerization of Ethene to 1-Hexene. J Am Chem Soc, 2001, 123:7423-7424.
    
    [66] Ban K, Hayashi T, Suzuki Y, JP 10101587 (Mitsui Chemicals Incorporated), April 21,1998.
    
    [67] Ban K, Hayashi T, Suzuki Y, JP 11060627 (Mitsui Chemicals Incorporated), March 2,1999.
    
    [68] Deckers P J W, van der Linden A J, Meetsma A, Hessen B. Cationicansa-(η~5-Cyclopentadienyl)(η~6-arene) Complexes of Titanium. Eur J Inorg Chem, 2000,929-932.
    
    [69] Deckers P J W, Hessen B, WO 02/066404 (Stichting Dutch Polymer Institute), August 29,2002.
    
    [70] Deckers P J W, Hessen B, WO 02/066405 (Stichting Dutch Polymer Institute), August 29,2002.
    
    [71] Deckers P J W, Hessen B, Teuben J H. Switching a Catalyst System from EthenePolymerization to Ethene Trimerization with a Hemilabile Ancillary Ligand. Angew ChemInt Ed, 2001, 40: 2516-2519.
    
    [72] Deckers P J W, Hessen B, Teuben J H. Catalytic Trimerization of Ethene with HighlyActive Cyclopentadienyl-Arene Titanium Catalysts. Organometallics, 2002, 21:5122-5135.
    
    [73] Huang J L, Wu T Z, Qian Y L. Ethylene trimerization with a half-sandwich titaniumcomplex bearing a pendant thienyl group. Chem Commun, 2003,2816-2817.
    
    [74] Wu T Z, Qian Y L, Huang J L. Catalytic trimerization of ethylene by half-sandwichtitanium complexes bearing a pendant ethereal group. J Mol Cat A: Chem, 2004, 214:227-229.
    
    [75] Tobisch S, Ziegler T. Catalytic Linear Oligomerization of Ethylene to Higher r-Olefins:Insight into the Origin of the Selective Generation of 1-Hexene Promoted by a CationicCyclopentadienyl-Arene Titanium Active Catalyst. Organometallics, 2003, 22: 5392-5405.
    
    [76] Tobisch S, Ziegler T. Catalytic Oligomerization of Ethylene to Higher Linear r-OlefinsPromoted by Cationic Group 4 Cyclopentadienyl-Arene Active Catalysts: A DFTInvestigation Exploring the Influence of Electronic Factors on the Catalytic Properties byModification of the Hemilabile Arene Functionality. Organometallics, 2004, 23:4077-4088.
    
    [77] Tobisch S, Ziegler T. Catalytic Oligomerization of Ethylene to Higher Linear r-Olefins??Promoted by the Cationic Group 4 [(η~5-Cp-(CMe2-bridge)-Ph)M~(Ⅱ)(ethylene)2]~+ (M) Ti, Zr,Hf) Active Catalysts: A Density Functional Investigation of the Influence of the Metal onthe Catalytic Activity and Selectivity. J Am Chem Soc, 2004, 126:9059-9071.
    
    [78] Severn J R, Chadwick J C. Activation of Titanium-Based Single-Site Catalysts for EthylenePolymerization Using Supports of Type MgCl_2/AlR_n(OEt)_(3-n). Macromol Chem Phys, 2004,205, 1987-1994.
    
    [79] Blok A N J, Budzelaar P H M, Gal A W. Mechanism of Ethene Trimerization at anansa-(Arene)(cyclopentadienyl) Titanium Fragment. Organometallics, 2003, 22:2564-2570.
    
    [80] Hagen H, Kretschmer W P, van Buren F R, Hessen B, van Oeffelen D A. Selective ethylenetrimerization: A study into the mechanismand the reduction of PE formation. J Mol Cat A:Chem, 2006,248: 237-247.
    
    [81] Kuhlmann S, Blann K, Bollmann A, Dixon J T, Killian E, Maumela M C, Maumela H,Morgan D H, Pretorius M, Taccardi N, Wasserscheid P. N-substituted diphosphinoamines:Toward rational ligand design for the efficient tetramerization of ethylene. J catal, 2007,245: 279-284.
    
    [82] McGuinness D S, Overett M, Tooze R P, Blann K, Dixon J T, Slawin A M Z. Ethylene TriandTetramerization with Borate Cocatalysts: Effects on Activity, Selectivity, and CatalystDegradation Pathways. Organometallics, 2007, 26: 1108-1 111.
    
    [83] McGuinness D S, Rucklidge A J, Tooze R P, Slawin A M Z. Cocatalyst Influence inSelective Oligomerization: Effect on Activity, Catalyst Stability, and 1-Hexene/1-OcteneSelectivity in the Ethylene Trimerization and Tetramerization Reaction. Organometallics2007,26:2561-2569.
    
    [84] Jiang T, Liu X Y, Ning Y N, Chen H X, Luo M J, Wang L B, Huang Z J. Performance ofvarious aluminoxane activators in ethylene tetramerization based on PNP/Cr(III) catalystsystem. Catal Commun,2007, 8: 1145-1148.
    
    [85] Agapie T, Labinger J A., Bercaw J E. Mechanistic Studies of Olefin and AlkyneTrimerization with Chromium Catalysts Deuterium Labeling and Studies of RegiochemistryUsing a Model Chromacyclopentane Complex. J Am Chem Soc, 2005, 127: 10723-10730.
    
    [86] Walsh R, Morgan D H, Bollmann A, Dixon J T. Reaction kinetics of an ethylenetetramerisation catalyst. Appl Catal A: Gen, 2006, 306: 184-191.
    
    [87] Manyik R M, Walker W E, Wilson T P. A soluble chromium-based catalyst for ethylenetrimerization and polymerization. J Catal, 1977, 47: 197-209.
    
    [88] Yang Y, Kim H, Lee J, Paik H, Jang H G. Roles of chloro compound in homogeneous[Cr(2-ethylhexanoate)_3/2,5-dimethylpyrro\e/triethylaluminum/ chloro compound] catalystsystem for ethylene trimerization. Appl Catal A: Gen, 2000, 193:29-38.
    
    [89] Aggarwal S L, Sweeting O J. Polyethylene: Preparation, Structure, And Properties. ChemRev, 1957,57:665-742.
    
    [90] McKnight A L, Waymouth R M. Group 4 ansa-Cyclopentadienyl-Amido Catalysts forOlefin Polymerization. Chem Rev, 1998, 98:2587-2598.
    
    [91] Ittel S D, Johnson L K, Brookhart M. Late-Metal Catalysts for Ethylene Homo- andCopolymerization. Chem Rev, 2000, 100:1169-1204.
    
    [92] Coates G W. Precise Control of Polyolefin Stereochemistry Using Single-Site MetalCatalysts. Chem Rev, 2000,100:1223-1252.
    
    [93] Hlatky G G Heterogeneous Single-Site Catalysts for Olefin Polymerization. Chem Rev,2000,100:1347-1376.
    
    [94] Gibson V C, Spitzmesser S K. Advances in Non-Metallocene Olefin PolymerizationCatalysis. Chem Rev, 2003,103:283-316.
    
    [95] Chum P S, Kruper W J, Guest M J. Materials Properties Derived from INSITE MetalloceneCatalysts. Adv Mater, 2000,121759-1767.
    
    [96] Kissin Y V, Beach D L. Dual-functional catalysis for ethylene polymerization to branchedpolyethylene. Ⅱ. Kinetics of ethylene polymerization with a mixedhomogeneous-heterogeneous Ziegler-Natta catalyst system. J Polym Sci: Polym Chem Ed,1986,24:1069-1084.
    
    [97] Lu Z X, Zhang Z C, Li Y, Wu C H, Hu Y L. Synthesis of branched polyethylene by in situpolymerization of ethylene with combined iron catalyst and Ziegler-Natta catalyst. J ApplPolym Sci, 2006, 99: 2898-2903.
    
    [98] Zhang Z C, Lu Z X, Chen S T, Li H Y, Zhang X F, Lu Y Y, Hu Y L. Synthesis of branchedpolyethylene from ethylene stock by an interference-free tandem catalysis of TiCl_4/MgCl_2and iron catalyst. J Mol Cat A: Chem, 2005,236: 87-93.
    
    [99] Denger C, Haase U, Fink G. Simultaneous oligomerization and polymerization of ethylene.Makromol Chem, Rapid Commun, 1991,12: 697-701.
    
    [100] Komon Z J A., Bu X H, Bazan G C. Synthesis of Butene-Ethylene andHexene-Butene-Ethylene Copolymers from Ethylene via Tandem Action of Well-DefinedHomogeneous Catalysts. J Am Chem Soc, 2000,122:1830-1831.
    
    [101] Komon Z J A, Bazan G C. Synthesis of branched polyethylene by tandem catalysis.Macromol Rapid Commun, 2001, 22, 467-478.
    
    [102] Wang H, Ma Z, Ke Y C, Hu Y L. Synthesis of linear low density polyethylene (LLDPE) byin situ copolymerization with novel cobalt and zirconium catalysts. Polym Int, 2003,52:1546-1552.
    
    [103]黄英娟,刘盘阁,姬荣琴,曹晨刚,闫卫东,胡友良.一种新型亚胺基吡啶铁配合物和茂金属 复配催化乙烯原位共聚制备LLDPE,高分子学报,2004,125-128.
    
    [104]王如义,郑元锁,崔楠楠,张志成,柯毓才,胡友良.(2-Me-3-C1Ph)_2PBIMe_2FeCl_2/rac- C_2H_4(Ind)_2ZrCl_2/MAO双功能催化体系乙烯原位共聚制备LLDPE高分子学报, 2005,132-136.
    
    [105]柳忠阳,贾明,郭存悦,贺大为,胡友良.双功能催化剂体系催化乙烯原位聚合制备长链??支化聚乙烯研究.高分子学报,2001,751-754.
    
    [106]柳忠阳,王军,李秀华,贺大为,胡友良,闫卫东.一种新型制备LLDPE的双功能聚合催化 体系Ti(OBu-n)_4/AlEt_3-[Me_2SiN~tBuInd]ZrCl_2/MAO.高等学校化学学报,2001,22: 1271-1273.
    
    [107]柳忠阳,杨玲,谭志俊,贺大为,胡友良,吴春红.桥联茂金属催化剂用于双功能催化体系制 备LLDPE的研究.高分子学报,2001,471-475.
    
    [108] Ye Z B, AlObaidi F, Zhu S P, Subramanian R. Long-chain branching and rheologicalproperties of ethylene-1-hexene copolymers synthesized from ethylene stock by concurrenttandem catalysis. Macromol Chem Phys, 2005, 206: 2096-2105.
    
    [109] Ye Z B, AlObaidi F, Zhu S P. A tandem catalytic system for the synthesis ofethylene-hex-1-ene copolymers from ethylene stock. Macromol Rapid Commun, 2004, 25:647-652.
    
    [110] de Wet-Roos D, Dixon J T. Homogeneous tandem catalysis ofbis(2-decylthioethyl)amine-chromium trimerization catalyst in combination withmetallocene catalysts. Macromolecules, 2004,37, 9314-9320.
    
    [111] Quijada R, Rojas R, Bazan G C, Komon Z J A, Mauler R S, Galland G B. Synthesis ofbranched polyethylene from ethylene by tandem action of iron and zirconium single sitecatalysts. Macromolecules, 2001, 34: 2411-2417.
    
    [112] Komon Z J A, Bazan G C. Triple tandem catalyst mixtures for the synthesis ofpolyethylenes with varying structures. J Am Chem Soc, 2002, 124: 15280-15285.
    
    [113] Sperber O, Kaminsky W. Synthesis of long-chain branched comp-structured polyethylenefromethylene by tandem action of two single-site catalysts. Macromolecules, 2003, 36:9014-9019.
    
    [114]柳忠阳,王军,徐德民,贺大为,胡友良.载体茂金属用于原位聚合反应制备LLDPE研究. 高分子学报,2001,509-512.
    
    [115] Zhu B C, Guo C Y, Liu Z Y, Yin Y Q. In situ copolymerization of ethylene to produce linear-low-density polyethylene by Ti(OBu)_4/AlEt_3-MAO/SiO_2/Et(Ind)_2 -ZrCl_2. J Appl Polym Sci, 2004,94: 2451-2455.
    
    [116] Zhang Z C, Guo C Y, Cui N N, Ke Y C, Hu Y L. Preparation of linear low-density polyethylene by in situ copolymerization of ethylene with Zr supported on montmorillonite/Fe/methylaluminoxane catalyst system. J Appl Polym Sci, 2004, 94: 1690-1694.
    
    [117]张志成,王如义,柯毓才,郑元锁,郭存悦,崔楠楠,胡友良.蒙脱土负载聚合催化剂用于乙烯 原位共聚制备LLDPE.高分子学报,2004,713-718.
    
    [118] Xu H, Guo C Y, Zhang M G, Yang H J, Dong J X, Yuan G Q. In situ copolymerization of ethylene to linear low-density polyethylene (LLDPE) with calcosilicate (CAS-1) supported dual-functional catalytic system. Catal Commun, 2007, 8: 2143-2149.
    
    [119] Luciano G. Furlan, Fabio A. Kunrath, Raquel S. Mauler, Roberto F. de Souza, Osvaldo L.Casagrande, Jr. Linear low density polyethylene (LLDPE) from ethylene using Tp~(Ms)MCl(Tp~(Ms)= hydridotris(3-mesitylpyrazol-1-yl)) and Cp_2ZrCl_2 as a tandem catalyst system. JMol Cat A: Chem, 2004,214:207-211.
    
    [120] Kuhn M C A, Silva J L, Casagrande A C A, Mauler R S, Casagrande O L Jr. Tandem actionof Tp~(Ms)NiCl and supported Cp_2ZrCl_2 catalysts for the production of linear low-densitypolyethylene. Macromol Chem Phys, 2006,207: 827-835.
    
    [121] Musikabhumma K, Okuda J. Synthesis of branched polyethylenes by the tandem catalysisof silica-supported linked cyclopentadienylamido titanium catalysts and a homogeneousdibromo nickel catalyst having a pyridylimine ligand. J Polym Sci Part A Polym Chem,2003,41:528-544.
    
    [122] Skupinska J. Oligomerization of alpha-olefins to higher oligomers. Chem Rev, 1991; 91:613-648.
    
    [123] Agapie T, Labinger J A, Bercaw J E. Mechanistic studies of olefin and alkyne trimerizationwith chromium catalysts: Deuterium labeling and studies of regiochemistry using a modelchromacyclopentane complex. J Am Chem Soc, 2007,129:14281-14295.
    
    [124] Zhang J W, Li B G, Fan H, Zhu S P. Synthesis of ethylene- 1-hexene copolymers fromethylene stock by tandem action of bis(2-dodecylsulfanyl-ethyl)amine-CrCl_3 andEt(Ind)_2ZrCl_2. J Polym Sci Part A Polym Chem, 2007,45: 3562-3569.
    
    [125] Zhang J W, Fan H, Li B G, Zhu S P. Modeling and kinetics of tandem polymerization ofethylene catalyzed by Bis(2-dodecylsulfanyl-ethyl)amine- CrCl_3 and Et(Ind)_2ZrCl_2. ChemEng Sci, 2008,63: 2057-2065.
    
    [126] Monoi T, Sasaki Y. Silica-supported Cr[N(SiMe3)2]3/isobutylalumoxane catalyst forselective ethylene trimerization. J Mol Cat A: Chem, 2002, 187: 135-141.
    
    [127] Nenu C N, Bodart P, Weckhuysen B M. Turning a Cr-based heterogeneous ethylenepolymerisation catalyst into a selective ethylene trimerisation catalyst. J Mol Cat A:Chem, 2007,269: 5-11.
    
    [128] Shamir J. New synthesis of chromium trichloride tetrahydrofuranate. Inorg Chim Acta,1989, 156:163-164.
    
    [129] Konrad M, Meyer F, Heinze K, Zsolnai L. Unsymmetrically substituted pyrazolates:nickel(Ⅱ) complexes of a novel dinucleating ligand providing both N- and S-richco-ordination spheres. J Chem Soc, Dalton Trans, 1989,199-205.
    
    [130] Kaminsky W. New polymers by metallocene catalysis. Macromol Chem Phys, 1996, 197:3907-3945.
    
    [131] Yoon J S, Lee D H, Park E S, Lee 1 M, Park D K, Jung S O. Copolymerization ofEthylene/a-Olefms over (2-MeInd)_2ZrCl_2/MAO and (2-Bzlnd)_2ZrCl_2/MAO Systems. J ApplPolym Sci, 2000,75: 928-937.
    
    [132] Hagen H. Determination of Kinetic Constants for Titanium-based Ethylene Trimerization??catalysis. Ind End Chem Res, 2006,45: 3544-3551.
    
    [133] Junges F, de Souza R F, dos Santos J H Z, Casagrande O L Jr. Ethylene polymerizationusing combined Ni and Ti catalysts supported in situ on MAO-modified silica. MacromolMat Eng, 2005, 290:72-77.
    
    [134] Randall J C. A review of high resolution liquid carbon nuclear magnetic resonancecharacterizations of ethylene-based polymers. J Macromol Sci, part C-Rev inMacromolr Chem Phys, 1989, C29: 201-317.
    
    [135] Yano A, Sone M, Yamada S, Hasegawa S, Akimoto A. Homo- and copolymerization ofethylene at high temperature with cationic zirconocene catalysts. Macromol Chem Phys,1999,200:917-923.
    
    [136] Chu K J, Soares J B P. Copolymerization of ethylene and 1-hexene with in-situ supportedEt[Ind]_2ZrCl_2. Macromol Chem Phys, 1999,200: 2372-2376.
    
    [137] Quijada R, Galland G B, Mauler R S. The influence of the comonomer in thecopolymerization of ethylene with α-olefins using C_2H_4[Ind]_2ZrCl_2/ methylaluminoxane ascatalyst system. Macromol Chem Phys, 1996,197: 3091-3098.
    
    [138] Sano T, Niimi T, Miyazaki T, Tsubaki S, Oumi Y, Uozumi T. Effective activation ofmetallocene catalyst with AlMCM-41 in propylene polymerization. Catal Lett, 2001, 71:105-110.
    
    [139] Wang W, Fan Z Q, Feng L X, Li C H. Substituent effect of bisindenyl zirconene catalyst onethylene/1-hexene copolymerization and propylene polymerization. Eur Polym J, 2005, 41:83-89.
    
    [140] Koivumaki J, Seppala J V. Observations on the rate enhancement effect with magnesiumchloride/titanium tetrachloride and dicyclopentadienylzirconium dichloride (Cp_2ZrCl_2)catalyst systems upon 1-hexene addition. Macromolecules, 1993,26: 5535-5538.
    
    [141] Xu G, Ruckenstein E. Ethylene Copolymerization with 1-Octene Using a2-Methylbenz[e]indenyl-Based ansa-Monocyclopentadienylamido Complex andMethylaluminoxanes Catalyst. Macromolecules, 1998, 31: 4724-4729.
    
    [142] Xu J T, Feng L X. Application of temperature rising elution fractionation in polyolefins.Eur Polym J, 2000,36: 867-878.
    
    [143] Xu J T, Feng L X, Yang S L, Yang Y Q, Kong X M. Temperature rising elutionfractionation of polypropylene produced by heterogeneous Ziegler-Natta catalysts. EurPolym J, 1998,34:431-434.
    
    [144] Monrabal B, Blanco J, Nieto J, Soares J B P. Characterization of homogeneousethylene/1-octene copolymers made with a single site catalyst. CRYSTAF analysis andcalibration. J Polym Sci A Polym Chem, 1999, 37: 89-93
    
    [145] Sarzotti D M, Soares J B P, Penlidis A. Ethylene/1-hexene copolymers synthesized with asingle-site catalyst: crystallization analysis fractionation, modeling, and reactivity ratioestimation. J. Polym. Sci. B: Polym. Phys, 2002, 40: 2595-2611.
    
    [146] Chien J C W, Wang B P. Metallocene-methylaluminoxane catalysts for olefinpolymerization. V. Comparison of Cp_2ZrCl_2 and CpZrCl_3. J Polym Sci Part A PolymChem, 1990,28:15-38.
    
    [147] Kou B, McAuley K B, Hsu J C C, Bacon D W. Mathematical model and parameterestimation for gas-phase ethylene/hexene copolymerization with metallocene catalyst.Macromol Mat Eng, 2005,290: 537-557.
    
    [148] Soares J B P. Mathematical modeling of the microstructure of polyolefins made bycoordination polymerization: A review. Chem Eng Sci, 2001, 56:4131-4153.
    
    [149] Wang L, Zhang P Y, Jiang S, Feng L X. Study of Ethylene Polymerization Catalyzed bynBu-Cp_2ZrCl_2/MAO Catalytic System and Their Polymerization Kinetics. J Appl PolymSci, 2001, 81: 3186-3189.
    
    [150] Kissin Y V. Isospecific Polymerization of Olefins with Heterogeneous Ziegler-NattaCatalysts. New York: Springer-Verlag Press, 1985.
    
    [151] Holderbaum, T, Gmehling, J. PSRK: a group contribution equation of state based onUNIFAC. Fluid Phase Equilibr, 1991, 70: 251-265.
    
    [152] Haag M C, dos Santos J H Z, Dupont J, Secchi A R. Dynamic simulation and experimentalevaluation of EPDM synthesis with Et(Ind)_2ZrCl_2 catalyst system. J Appl Polym Sci, 2000,76: 425-438.
    
    [153] Wu L, Bu N, Wanke S E. Kinetic behavior of ethylene/1 -hexene copolymerization in slurryand solution reactors. J Polym Sci Part A Polym Chem, 2005,43: 2248-2257.
    
    [154] Chakravarti S, Ray H W. Kinetic study of olefin polymerization with a supportedmetallocene catalyst. Ⅱ. Ethylene/1-hexene copolymerization in gas phase. J Appl PolymSci, 2001, 80: 1096-1119.
    
    [155] Quijada R, Rojas R, Mauler R S, Galland G B, Scipioni R B. Study of the effect of themonomer pressure on the copolymerization of ethylene with 1-hexene. J Appl Polym Sci,1997,64:2567-2574.
    
    [156] Walter P, Trinkle S, Suhm J, Mader D, Friedrich C, Miilhaupt R. Short and long chainbranching of polyethene prepared by means of ethene copolymerization with 1-eicoseneusing MAO activated Me_2Si(Me_4Cp)(N'Bu)TiCl_2. Macromol Chem Phys, 2000, 201:604-612.
    
    [157] Galland G B, Seferin M, Mauler R. S, Dos Santos J H Z. Linear low-density polyethylenesynthesis promoted by homogeneous and supported catalysts. Polym Int, 1999, 48:660-664.
    
    [158] Kumkaew P, Wu L, Praserthdam P, Wanke S E. Rates and product properties ofpolyethylene produced by copolymerization of 1-hexene and ethylene in the gas phase with(n-BuCp)_2ZrCl_2 on supports with different pore sizes. Polymer, 2003,44: 4791-4803.
    
    [159] Luo Y W, Cao X P, Feng L X. Filled polyolefin composites prepared from in-situpolymerization via a catalyst supported approach I. Morphology of PE in carbon black (CB)/PE in-situ composites. Chinese J Polym Sci, 2003,3: 333-338.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700