用户名: 密码: 验证码:
水酶法从油菜籽中提取油和生物活性肽的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油菜在全世界范围内都是一种重要的油料作物,我国现在的油菜种植面积及油菜籽(简称菜籽)产量均居世界之首。菜籽含有丰富的油脂和蛋白质。菜籽蛋白具有平衡性强的必需氨基酸组成模式,几乎不存在限制性氨基酸,是一种优质的蛋白质。传统的制油工艺都是以取油为主要目的,得到的菜籽粕由于经过高温处理以及含有抗营养因子仅能作为饲用或肥料。在人类蛋白质资源日益缺乏的今天,提高菜籽蛋白的利用价值具有重要意义。新兴的水酶法制油工艺能够同时提取油脂和蛋白质,而且可以避免使用有机溶剂减少大气污染。本文以甘蓝型“双低”脱皮菜籽为研究对象,采用水酶法从菜籽中提取油及生物活性肽,主要研究内容及实验结果如下:
     论文首先研究了菜籽内源硫苷酶及硫苷的湿热稳定性,确定将菜籽置于水中煮沸5min,此时硫苷酶基本失活而硫苷的降解率为11.28%。以乳化油得率为考察指标,通过对不同酶制剂的筛选以及复配实验,最终确定将果胶酶、纤维素酶和β-葡聚糖酶按4∶1∶1(v/v/v)复配后处理湿磨菜籽浆。扫描电镜实验结果直观地揭示细胞壁多糖复合酶水解菜籽浆释放油脂的作用机理。通过单因素优化实验确定复合酶的最优水解条件为:固液比1∶5,加酶量3%(v/w),酶解时间4h。
     对湿磨水酶法提油工艺所得乳状液的部分性质进行了研究,包括不同pH值下乳状液油滴表面电位、蛋白质结合量和界面膜的微观结构,在此基础上提出了水酶法提油过程中碱提的作用机理:通过提高体系的pH值,使油滴界面膜上蛋白质分子带电量增加,分子间静电斥力增强,蛋白质分子易从油滴表面脱吸,导致界面膜变薄,从而有利于蛋白酶的作用和油滴聚集,提高了清油得率。进一步研究了水酶法体系中蛋白质水解度与其乳化能力的关系,得出结论:当水解度>10%时,蛋白质乳化能力降低可释放出被其乳化的油脂。
     为最大程度破乳获得清油和水解蛋白,在细胞壁多糖复合酶水解菜籽浆后,将体系pH值调至碱性并加入碱性蛋白酶Alcalase 2.4L进一步水解菜籽浆。响应面回归分析结果表明,实验范围内碱提pH对清油得率和水解度的影响并不显著(p>0.05),而对水解蛋白得率影响显著(p<0.05);随着加酶量和酶解时间的增加,清油和水解蛋白得率及水解度均显著(p<0.05)增高;加酶量和酶解时间对水解蛋白得率具有显著的(p<0.05)交互作用。通过对单因素以及响应面实验结果的优化,确定碱提和Alcalase 2.4L水解的最佳条件分别为:碱提pH10,温度60℃,时间45min;Alcalase 2.4L加酶量1.3%(v/w),酶解时间160min。在优化的复合酶水解、碱提和Alcalase 2.4L水解条件下,菜籽清油和水解蛋白得率分别为74.2~75.1%和80.9~82.5%,蛋白质水解度为18.9~21.0%。通过增加洗渣以及二次破乳(低温静置—离心法和冷冻解冻—离心法)步骤可显著提高清油及水解蛋白得率。在优化的水酶法工艺条件下最终可获得88~90%的清油和94~97%的水解蛋白。
     和索氏抽提油相比,水酶法提取油颜色略深,酸价较高,但过氧化值低,两者的皂化价、碘价及脂肪酸组成接近。水酶法提取的菜籽油中总不饱和脂肪酸含量占90%左右,亚麻酸和亚油酸之比约为1∶2.5,因此它是一种品质优良的油脂。
     采用DA201-C型大孔吸附树脂对菜籽蛋白水解液进行纯化及脱苦。动态吸附与解吸实验结果表明,将菜籽蛋白水解液pH值调整为4后上柱,使用相同pH值的去离子水洗脱除盐后,再用85%乙醇溶液解吸,蛋白质回收率为66.7%。所得菜籽粗肽(crude rapeseed peptides,CRPs)味较苦,糖和灰分含量显著降低,蛋白质含量从纯化前47.0%增加至纯化后73.5%,抗营养因子硫苷和植酸均未检出。为分离出CRPs中的苦味组分,在水洗脱盐后采用不同浓度的乙醇溶液(25%,55%和85%)分步洗脱,可得到3个菜籽肽组分:RP25,RP55和RP85,其所占相对比例分别为64~66%,29~32%和5~7%。RP25颜色最浅,蛋白质含量最高(81.04%),单宁含量最低(0.91%),没有苦味,因此可作为理想的食品配料。
     采用体外模型分别研究了菜籽肽的抗氧化和抗血栓活性。实验结果表明,菜籽肽具有广谱清除自由基的能力和抑制脂质过氧化活性,并随浓度的增加而增强。RP25、RP55和CRPs清除DPPH·的ED_(50)值分别为499、41和72μg/mL;RP55和CRPs清除O_2~-·的ED_(50)分别为0.91和1.70mg/mL,两者的清除能力均显著(p<0.05)高于RP25;在相同浓度下RP25清除·OH的能力显著(p<0.05)高于RP55和CRPs,RP25和RP55清·OH的ED_(50)分别为2.53和6.79mg/mL。RP55和CRPs抑制脂质过氧化的ED_(50)(?)分别为4.06和4.69 mg/mL,两者的抑制能力均显著(p<0.05)高于RP25。浓度为5.0mg/mL时,RP55抑制脂质过氧化的能力和抗坏血酸无显著差异(p>0.05)。将RP55添加到曲奇中可以显著(p<0.05)降低油脂的氧化程度。RP55的高抗氧化活性与其特殊的氨基酸组成、单宁和深褐色物质含量密切相关。此外,菜籽肽在一定浓度时具有显著(p<0.05)抑制凝血酶催化的纤维蛋白形成的能力。
     通过分离重组实验,证实RP55的高抗氧化活性来自单宁和肽的共同作用。采用阴离子交换树脂、凝胶色谱和反相高效液相色谱对RP55进行分离纯化,最终得到1个具有较高抗氧化活性的菜籽肽单体(RP55-E2-G5-R8-F1),其抑制DPPH·的ED_(50)为0.063mg/mL。经电喷雾—四极杆—飞行时间串联质谱分析该肽的相对分子质量为487.2,氨基酸序列为Pro-Ala-Gly-Pro-Phe。此外,还通过串联质谱分析得到相对分子质量分别为661.4和683.3的2个菜籽抗氧化肽的结构,其氨基酸序列分别为Arg-Asn-Leu(Ile)-Pro-Tyr和Tyr-Pro-Leu(Ile)-Tyr-Glu。3个抗氧化肽的氨基酸组成或/和序列信息符合已报道的抗氧化肽的结构特征。
Rapeseed is one of the most important oilseeds and the production of rapeseed in China ranks first now in the world.Rapeseed contains rich oil and protein.The composition of amino acids in rapeseed protein is well-balanced.Conventional industrial processing of rapeseed involves pressing and hexane extraction,which yields two products-the oil and a low-valued meal that is mainly used as animal feed or fertilizer.It is necessary to effectively utilize the rapeseed protein for edible use when the protein sources for human are increasingly scarce.Aqueous enzymatic extraction (AEE) has emerged as a novel oil extraction technique by which oil and protein can be obtained simultaneously without use of organic solvent.In this dissertation,AEE was applied to "double-low" rapeseeds(Brassica napus) for simultaneous production of free oil and bioactive peptides.The results are as follows:
     The wet-heating inactivation of endo-myrosinases in intact rapeseeds and the stability of glucosinolates during the heat treatment were investigated.Results indicate that boiling intact rapeseed for 5min can inactivate myrosinases effectively and 11.28% of glucosinolates is degraded due to heating.Through screening the enzymes,the formula of pectinase,cellulase andβ-glucanase(4:1:1,v/v/v) was used to treat the rapeseed slurries.The experimental results of SEM threw light on the mechanisms of the AEE.The optimal conditions for the complex enzyme hydrolysis are as follows:the ratio of solid to liquid 1:5,enzymes/rapeseeds 3%(v/w) and hydrolysis time 4 h.
     The properties of emulsions from the AEE during different pH conditions was studied,including the zeta potential,the amount of bound protein and the microstructures of the surface membrane of oil droplet.The mechanisms of alkaline extraction were proposed:the pH value of the slurries is raised which would lead to an increase in the charges of the proteins on the surface of the oil droplet.As a result,the electrostatic repulsive power among the protein molecules is enhanced and then they are easily desorbed from the surface.Thus,the membrane would become thin which is in favor of the protein hydrolysis and the aggregation of oil droplets.Further,the relationship between the degree of protein hydrolysis(DH) and its emulsifying capacity was investigated.A conclusion was drawn that notable amounts of free oil could be obtained due to the decrease of the protein emulsifying capacity as the DH rose above 10%.
     Following the carbohydrase treatment,sequential treatments were carried out consisting of alkaline extraction and an alkaline protease(Alcalase 2.4L) hydrolysis to simultaneously produce free oil and protein hydrolysates.Response surface methodology(RSM) was used to study and optimize the effects of alkaline extraction pH,Alcalase 2.4L concentration and hydrolysis time.Increasing Alcalase 2.4L concentration and hydrolysis time significantly(p<0.05) increased free oil,protein hydrolysates yields and the DH while the alkaline extraction pH had a significant (p<0.05) effect on the protein hydrolysates yield.The optimal conditions for the alkaline extraction and Alcalase 2.4L hydrolysis are as follows:alkaline extraction pH 10, temperature 60℃,extraction time 45 min;Alcalase 2.4L concentration 1.3%(v/w), hydrolysis time 160min.Under these conditions,the yields of free oil and protein hydrolysates were 74.2-75.1%and 80.9~82.5%,respectively,and the protein DH was 18.9~21.0%.Through washing the wet precipitate and a stepwise demulsification procedure consisting of storage-centrifugation and freezing-thawing followed by centrifugation,notable amounts of free oil and protein hydrolysates could be obtained. The total yields of free oil and protein hydrolysates were 88~90%and 94~97%, respectively.
     Compared with Soxlet-extracted oil,the content of free fatty acid of enzyme-extracted oil is higher while the peroxide value is lower.The color of enzyme-extracted oil is slightly darker than that of Soxlet-extracted oil.The iodine value,sapo(?)ificati(?)n value and fatty acid composition between them are similar.The total content ot the unsaturated fatty acids in the enzyme-extracted oil is about 90%. Therefore,the quality of the oil is high.
     The macroporous adsorption resins(type:DA201-C) were used to treat the aqueous phase.Aqueous phases were pooled and adsorbed onto macroporous adsorption resins to remove salts and sugars.Following extensive rinsing with deionized water (pH4),desorption was achieved by washing with 85%ethanol(v/v) to obtain crude rapeseed peptides(CRPs).The protein recovery was 66.7%and the protein content was enriched from 47.04 to 73.51%in the CRPs.No glucosinolates and phytic acid were detected in the CRPs.In a separate experiment,stepwise desorption was carried out with 25,55 and 85%ethanol to separate the bitter peptides from the other peptides. From the stepwise desorption,a non-bitter fraction RP25(containing 64~66%of total desorbed protein) had bland color and significantly higher protein content(81.04%) and hence was the more desirable product.
     The in vitro antioxidant and antithrombotic activities of crude rapeseed peptides (CRPs) and peptide fractions(RP25 and RP55) were determined.The results indicate that rapeseed peptides possess potent antioxidant activities and they are dose-dependent. The median effective dose(ED_(50)) values of CRPs,RP25 and RP55 forα,α-diphenyl-β-picrylhydrazyl(DPPH) radical scavenging were 72,499 and 41μg/mL, respectively.The ED_(50) values for RP55 and CRPs for O_2~-·scavenging were 0.91 and 1.70mg/mL,respectively.The ED_(50) values for RP25 and RP55 for hydroxyl radicals scavenging were 2.53 and 6.79mg/mL,respectively while the ED_(50) values of RP55 and CRPs for inhibition of lipid peroxidation in a liposome model system were 4.06 and 4.69mg/mL,respectively.The difference between RP55 and ascorbic acid with respect to inhibition of lipid peroxidation was insignificant(p>0.05) at a concentration of 5mg/mL.With addition of RP55 in the cookies,the lipid peroxidation was significantly (p<0.05) inhibited during the storage.RP55 generally showed more potent antioxidant activities except for hydroxyl radicals scavenging ability than RP25 and CRPs at the same concentrations,which was thought to relate to the significantly higher contents of hydrophobic amino acid,tannin,and the brown color substances in RP55.Rapeseed peptides possess marked inhibitory activities on the thrombin-catalyzed coagulation of fibrinogen at certain concentrations.
     It can be established that both tannin and peptides contribute much to the potent antioxidant activities of RP55 according to the fractionation and reconstitution experimental results.A peptide(RP55-E2-G5-RS-F1) showing strong antioxidant activity was isolated from RP55 using consecutive chromatographic methods including ton-exchange chromatography,gel-filtration chromatography and RP-HPLC.Its ED_(50) value for DPPH radical scavenging was 0.063mg/mL.The molecular mass(487.2) and the amino acid sequence of the purified peptide(Pro-Ala-Gly-Pro-Phe) were determined using electrospray ionization-quadrupole-time of flight(ESI-Q-TOF) mass spectrometry. Another two peptides(the molecular mass is 661.4 and 683.3,respectively) were also analyzed for their amino acid sequences using tandem mass spectrometry.The respective sequences were Arg-Asn-Leu(Ile)-Pro-Tyr and Tyr-Pro-Leu(Ile)-Tyr-Glu. The amino acid compositions and sequences of these peptides agreed with the reported characteristics of antioxidant peptides.
引文
1.厉秋岳.油菜籽综合利用[M].北京:中国农业科技出版社,1987.
    2.王瑞元.2004年中国油脂工业的回顾.中国油脂,2005,30(7):7-11
    3.Hui YH主编.徐生庚,裘爱泳主译.贝雷:油脂化学与工业学[M]:第二卷.第五版.北京:中国轻工业出版社,2001.
    4.黄凤洪.双低油菜国内外发展动向及国家十五产业化发展战略[C].2001年全国粮油农产品深加工及产业化技术研讨会论文,2001,18-23
    5.李诗龙.油菜籽的物理特性浅析[J].中国油脂,2005,30(2):17-20
    6.周瑞宝,莫重文,钱向明,等.水剂法制油和饲用菜籽浓缩蛋白中试[J].郑州粮食学院学报,1991(3):1-12
    7.刘玉兰.植物油脂生产与综合利用[M].北京:中国轻工业出版社,1999.
    8.毕艳兰.油脂化学[M].北京:化学工业出版社,2005.
    9.周斌,马榕.菜籽浓缩蛋白和分离蛋白的制取综述[J].中国油脂,1990(4):15-20
    10.周瑞宝,王广润,郭兴凤,等.提高菜籽粕生物学效价制油新工艺[J].粮油加工与食品机械,2003(6):37-39.
    11.Jones JD.Rapeseed protein concentrate preparation and evaluation[J].J Am Oil Chem Soc,1979,56:716-721
    12.任国谱.硫代葡萄糖甙葡萄糖水解酶[J].郑州粮食学院学报,1991(4):97-104
    13.李德芳.油菜籽中抗营养成分及其毒性作用[J].江苏食品与发酵,1994(4):22-26
    14.李瑚传,周瑞宝,钱向明,等.水剂法制取菜籽油和饲用菜籽蛋白的研究报告[J].郑州粮食学院学报,1986(2):6-15
    15.Erdman JW.Oilseed phytates:nutritional implications[J].J Am Oil Chem Soc,1979,56:736-741
    16.Serraino MR,Thompson LU.Removal of phytic acid and protein-phytic interactions in rapeseed[J].J Agric Food Chem,1984,32:38-40
    17.章一平,张国平.植酸在草莓保鲜中的应用[J].食品科学,1993(5):53-57
    18.毕艳兰,徐学兵,张根旺.植酸应用和提取研究进展述评[J].粮食与油脂,1995(2):38-42
    19.Naczk M,Amarowicz R,Sullivan A,et al.Current research developments on polyphenolics of rapeseed/canola:a review[J].Food Chem,1998,62:489-502
    20.狄莹,石碧.植物单宁化学研究进展[J].化学通报,1999(3):1-5
    21.何东平.中国双低油菜籽制油及应用展望[J].中国油脂,2003,28(1):14-16
    22.钱和.硫代葡萄糖苷降解化学与油菜籽脱毒工艺的研究[D].博士学位论文,无锡:无锡轻工业学院,1994.
    23.Sosulskl K,Sosulskl FW,Coxworth E.Carbohydrase hydrolysis of canola to enhance oil extraction with hexane[J].J Am Oil Chem Soc,1988,65(3):357-361
    24.Sosulskl K,Sosulskl FW.Enzyme-aided vs.two-stage processing of canola:technology,product quality and cost evaluation[J].J Am Oil Chem Soc,1993,70(9):825-829
    25.胡小泓,狄强,张新才,等.菜籽酶法直接浸出工艺的研究[J].中国油脂,2004,29(8):13-15
    26.钱和,雕鸿荪.油菜籽脱壳技术的研究[J].江苏食品与发酵,1994,(2):11-13
    27.黄凤洪,周立新.菜籽脱皮加工利用[J].粮食与油脂,1998(1):30-33
    28.胡健华,韦一良,周锦兰.双低油菜籽加工工艺的研究[J].中国油脂,2003,28(1):21-23
    29.秦卫国,徐健中,周人楷.双低油菜籽加工工艺设计初探[J].粮食与食品工业,2003,4:18-19
    30.Sugarman N.Process for simultaneously extracting oil and protein from oleaginous materials[P].U.S.Patent,2762820,1956.
    31.Hagenmaier R,Cater CM,Mattil KF.Critical unit operations of the aqueous processing of fresh coconuts[J].J Am Oil Chem Soc,1972,49:178-181
    32.Hagenmaier R.Aqueous processing of full-fat sunflower seeds:yields of oil and protein[J].J Am Oil Chem Soc,1974,51:470-471
    33.Henryk N.Rapeseed[M].Amsterdam:Elsevier,1990
    34.Hanmoungjai P,Pyle L,Niranjan K.Extraction of rice bran oil using aqueous media[J].J Chem Technol Biotechnol,2000,75:348-352
    35.Lanzani A,Petrini MC,Cozzoli O,et al.On the use of enzymes for vegetable-oil extraction.A preliminary report.Riv Ital Sostanze Grasse,1975,L11:226-229
    36.Fullbrook PD.The use of enzymes in the processing of oilseeds[J].J Am Oil Chem Soc,1983,60(2):476-478
    37.Yoon SH,Kim IH,Kim SH.Effects of enzymes treatments and ultrasonification on extraction yields of lipids and protein from soybean by aqueous process[J].Korean J Food Sci Technol,1991,23(6):673-676
    38.王璋,许时婴,林岚,等.酶法从全酯大豆中同时制备大豆油和大豆水解蛋白工艺的研究[J].无锡轻工业学院学报,1994,13(3):179-191
    39.Rosenthal A,Pyle DL,Niranjan K,et al.Combined effect of operational variables and enzyme activity on aqueous enzymatic extraction of oil and protein from soybean[J].Enzyme Microb Technol,2001,28:499-509
    40.Jensen SK,Olsen HS,Sorensen H.Aqueous enzymatic processing of rapeseed for production of high quality products,In:Canola and Rapeseed." Production,Chemistry,Nutrition and Processing Technology[M],edited by Shahidi F,Van Nostrand Reinhold,New York,1990.
    41.刘志强,令玉林,曾云龙,等.水相酶解法提取菜籽油与菜籽蛋白工艺的优化[J].农业工程学报,2004,20(3):163-166
    42.Sharma A,Khare SK,Gupta MN.Enzyme-assisted aqueous extraction of peanut oil[J].J Am Oil Chem Soc,2002,79(3):215-218
    43.刘志强,何昭青.水酶法花生蛋白提取及制油研究[J].中国粮油学报,1999,14(1):36-39
    44.王瑛瑶,王璋,许时婴.水酶法从花生中提取油和水解蛋白[J].中国粮油学报,2004,19(5):59-63
    45.Sarkar BC,Pandey S,Kumbhar BK,et al.Aqueous oil extraction from enzyme pretreated sesame seed and process parameters optimization[J].J Food Sci Technol,2004,41(6):604-608
    46.Dominguez H,Nunez M J,Lema JM.Aqueous processing of sunflower kernels with enzymatic technology[J].Food Chem,1995,53:427-434
    47.Sineiro J,Dominguez H,Nunez MJ,et al.Optimization of the enzymatic treatment during aqueous oil extraction from sunflower seeds[J].Food Chem,1998,61(4):467-474
    48.Bocevska M,Karlovic D,Turkulov J,et al.Quality of corn germ oil obtained by aqueous enzymatic extraction[J].J Am Oil Chem Soc,1993,70(12):1273-1277
    49.Moreau RA,Johnston DB,Powell M J,et al.A comparison of commercial enzymes for the aqueous enzymatic extraction of corn oil from corn germ[J].J Am Oil Chem Soc,2004,81(11):1071-1075
    50.王素梅,王璋.水酶法提油工艺对玉米胚芽油质量的影响[J].中国油脂,2003,28(4):18-20
    51.Che Man YB,Suhardiyono,Asbi AB,et al.Aqueous enzymatic extraction of coconut oil[J].J Am Oil Chem Soc,1996,73(6):683-686
    52.Tano-Debrah K,Ohta Y.Aqueous extraction of coconut oil by an enzyme-assisted process[J].J Sci Food Agric,1997,74.:497-502
    53.Chen B,Diosady LL.Enzymatic aqueous processing of coconut[J].Inter J Applied Sci Eng,2003,(1):55-61
    54.Sengupta R,Bhattacharyya DK.Enzymatic extraction of mustard seed and rice bran[J].J Am Oil Chem Soc,1996,73(6):687-692
    55.Hemandez N,Rodriguez-Alegria,Gonzalez F,et al.Enzymatic treatment of rice bran to improve processing[J].J Am Oil C hem Soc,2000,77(2):177-180
    56.Hanmoungjai P,Pyle DL,Niranjan K.Enzymatic process for extracting oil and protein from rice bran[J].J Am Oil Chem Soc,2001,78(8):817-821
    57.Tano-Debrah K,Yoshimura Y,Ohta Y.Enzyme-assisted aqueous extraction of shea fat:evidence from light microscopy on the degradative effects of enzyme treatment on cells of shea kernel meal[J].J Am Oil Chem Soc,1996,73(4):449-453
    58.Rosenthal A,Pyle D L and Niranjan K.Aqueous and enzymatic processes for edible oil extraction[J].Enzyme Microb.Technol,1996,19(1):402-420
    59.Dominguez H,Nunez M J,Lema JM.Enzymatic pretreatment to enhance oil extraction from fruits and oilseeds:A Review[J].Food Chem,1994,49:271-286
    60.Tano-Debrah K,Ohta Y.Enzyme-assisted aqueous extraction of shea fat:A rural approach[J].J Am Oil Chem Soc,1995(72):251-256
    61.王瑛瑶,王璋.水酶法从花生中提取油与水解蛋白的研究[J].食品与机械,2005,21(3):17-23
    62.李桂英,袁永俊.水酶法提取菜籽油中破乳的研究[J].食品科技,2006,31(3):101-103
    63.Olsen HAS.Method of Producing Soy Protein Hydrolysate from Fat-Containing Soy Material,and Soy Protein Hydrolysate[P].U.S.Patent,4324805,1981
    64.吴谋成,邵锦华,周海涛.双低菜籽粕中植酸的脱除技术研究[J].中国粮油学报,2002,17(3):1-3
    65.胡道道,房喻,孙作民,等.国外菜籽饼粕脱毒及其营养价值研究概况[J].中国油脂,199015(1):33-41
    66.魏晶石,汪正华,沈俭.菜籽粕生物降解法脱毒及综合利用[J].西部粮油科技,1999,24(6):49-52
    67.于化民.菜籽的脱毒方法[J].中国油脂,1989,14(2):51-54
    68.曾晓波,吴谋成,王海英.丙酮浸提法制取菜籽浓缩蛋白[J].中国粮油学报,2001,16(4):10-13
    69.刘大川,周俊梅,张寒俊,等.低植酸、低单宁“双低”菜籽分离蛋白制备工艺的研究[J].中国油脂,2005,30(8):38-41
    70.曾晓波.菜籽浓缩蛋白的制取及菜籽肽生物活性的研究[D].博士学位论文,武汉:华中农业大学,2002.
    71.Pihlanto A.Antioxidative peptides derived from milk proteins[J].Inter Dairy J,2006,16:1306-1314
    72.Pena-Ramos EA,Xiong YL.Antioxidative activity of whey protein hydrolysates in a liposomal system[J].J Dairy Sci,2001,84:2577-2583
    73.Davalos A,Miguel M,Bartolome B,et al.Antioxidant activity of peptides derived from egg white proteins by enzymatic hydrolysis[J].J Food Prot,2004,67:1939-1944
    74.Sakanaka S,Tachibana Y.Active oxygen scavenging activity of egg-yolk protein hydrolysates and their effects on lipid oxidation in beef and tuna homogenates[J].Food Chem,2006,95:243-249
    75.Wu HC,Chen HM,Shiau CY.Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel(Scomber austriasicus)[J].Food Res Inter,2003,36:949-957
    76.Kim SY.Je J,Kim S.Purification and characterization of antioxidant peptide from hoki (Johnius belengerii) frame protein by gastrointestinal digestion[J].J Nutr Biochem,2007,18:31-38
    77.Je J,Qian Z,Byun H,et al.Purification and characterization of an antioxidant peptide obtained from tuna backbone protein by enzymatic hydrolysis[J].Proc Biochem,2007,42:840-846
    78.LI B,Chen F,Wang X,et al.Isolation and identification of antioxidative peptides from porcine collagen hydrolysate by consecutive chromatography and electrospray ionization-mass spectrometry.Food Chem,2007,102:1135-1143
    79.Chen HM,Muramoto K,Yamauchi F,et al.Antioxidant activity of designed peptides based on the antioxidative peptide isolated from digests of a soybean protein[J].J Agric Food Chem,1996,44:2619-2623
    80.Chiang WD,Shih C J,Chu YH.Functional properties of soy protein hydrolysate produced from a continuous membrane reactor system[J].Food Chem,1999,65:189-194
    81.Zhu K,Zhou H,Qian H.Antioxidant and free radical-scavenging activities of wheat germ protein hydrolysates(WGPH) prepared with alcalase[J].Proc Biochem,2006,41:1296-1302
    82.徐力,李相鲁,吴晓霞,等.一种新的玉米抗氧化肽的制备与结构表征[J].高等学校化学学报,2004,25(3):466-469
    83.Pihlanto A.Bioactive peptide derived from bovine whey proteins:opioid and ace-inhibitory peptides[J].Trends in Food Sci and Tech,2001,11:347-356
    84.Fujita H,Yoshikawa M.LKPNM:a prodrug-type ACE-inhibitory peptide derived from fish protein.Immunopharmcology,1999,44(1-2):123-127
    85.Shin ZI,Yu R,Park SA,et al.His-His-Leu,an angiotensin I converting enzyme inhibitory peptide derived from korean soybean paste,exerts antihypertensive activity in vivo[J].J Agric Food Chem,2001,49(6):3004-3009
    86.Matsui T,Li CH,Osajima Y.Preparation and characterization of novel bioactive peptides responsible for angiotensin I-converting enzy(?)e inhibition from wheat germ[J].J Peptide Sci,1999,5(7):289-297
    87.McCann KB,Shiell B J,Michalski WP,et al.Isolation and characterisation of a novel antibacterial peptide from bovine α_(s1)-casein[J].Int Dairy J,2006,16:316-323
    88.Leblanc JG,Matar C,Valdez JC,et al.Immuomodulating effects of peptidic fractions issued from milk fermented with Lactobacillus Helveticus.J Dairy Sci,2002,85(11):2733-2742
    89.Yoshikawa M,Takahashi M.Immunomodulating peptide derived from soybean protein[J].Annals New York Acad Sci,1993,716:375-376
    90.Kim HD,Lee JH,Shin ZI,et al.Anticancer effects of hydrophobic peptides derived from a cheese slurry[J].Food Sci Biotech,1995,4(4):268-272
    91.Yi HJ,Kim JY,Kim KH.Anticancer activity of peptide fractions from egg white hydrolysate against mouse lymphoma cells[J].Food Sci Biotech,2003,12(3):224-227.
    92.Fukudome S,Yoshikawa M.Gluten exorphin C.A novel opioid peptide derived from wheat gluten[J].FEBS Lett,1993,316(1):17-19
    93.冯秀燕,计成.寡肽在蛋白质营养中的作用[J].动物营养学报,2001,13(3):8-13
    94.郭智宏.肠道吸收-氨基酸与肽[J].食品工业(台湾),2001,33(5):15-25
    95.王进波,刘建新.寡肽的吸收机制及其生理作用[J].饲料研究,2000,(6):1-4
    96.Harman D.Free-radical theory of aging.Increasing the functional life span[J].Annals New YorkAcad Sci,1994,717(1):1-15
    97.王秋林,王浩毅,王树人.氧化应激状态的评价[J].中国病理生理杂志,2005,21(10):2069-2074
    98.崔剑,李兆陇,洪啸吟.自由基生物抗氧化与疾病[J].清华大学学报(自然科学版),2000,40(6):9-12
    99.Hernandez-Ledesma B,Davalos A,Bartolome B,et al.Preparation of antioxidant enzymatic hydrolysates from α-Lactalbumin and β-Lactoglobulin.Identification of active peptides by HPLC-MS/MS[J].J Agric Food Chem,2005,53:588-593
    100.Mendis E,Rajapakse N,Kim S.Antioxidant properties of a radical-scavenging peptide purified from enzymatically prepared fish skin gelatin hydrolysate[J].J Agric Food Chem,2005,53:581-587
    101.Davalos A,Miguel M,Bartolome B.Antioxidant activity of peptides derived from egg white proteins by enzymatic hydrolysis[J].J Food Prot,2004,67(9):1939-1944
    102.Chen HM,Muramoto K,Yama(?)chi F.Structural analysis of antioxidative peptides from soybean β-Conglycinin[J].J Agric Food Chem,1995,43:574-578
    103.张逸凡.血栓的形成及中药抗栓溶栓概况[J].沈阳药科大学学报,1997,14(3):231-234
    104.Scheraga HA.The thrombin-fibrinogen interaction[J].B iophys Chem,2004,112:117-130
    105.张汉忠,董明华,张汉贞.水蛭活性物质体外抗凝及纤溶活性的研究[J].湖北中医学院学报,2002,4(2):31-32
    106.郑军,王英,钱俊杰.褐藻糖胶的提取纯化及其抗凝血活性的研究[J].分子科学学报,2002,18(2):109-112
    107.许泓瑜,韩亮,许正宏.玉米芯木聚糖硫酸酯抗凝血活性及其机制的研究[J].天然产物研究与开发,2006,18:545-548
    108.Pereira MG,Norma MB,Marcia RS,et al.Structure and anticoagulant activity of a sulfated galactan from the red alga,Gelidium crinale.Is there a specific structural requirement for the anticoagulant action?[J].Carbohydrate Res,2005,340:2015-2023
    109.Laudano AP,Doolittle RF.Synthetic peptides derivatives that bind to fibrinogen and prevent the polymerization of fibrin monomers[C].Proc Natl Acad Sci USA,1978,75:3085-3089
    110.Qian,ZY,Jolles P,Migliore-Samour D,et al.Sheep k-casein peptides inhibit platelet agregation[J].Biochimica et Biophysica Acta,1995,1244(2-3):411-417
    111.Lacroix M,Amiot J and Brisson GJ.Hydrolysis and ultrafiltration treatment to improve the nutritive value of rapeseed proteins[J].J Food Sci,1983,48:1644-1645
    112.Vioque J,Vioque RS,Clemente A,et al.Production and characterization of an extensive rapeseed protein hydrolysate[J].J Am Oil Chem Soc,1999,76:819-823
    113.Vioque J,Vioque RS,Clemente A,et al.Partially hydrolyzed rapeseed protein isolates with improved functional properties[J].J Am Oil Chem Soc,2000,77:447-450
    114.Marezak ED,Usui H,Fujita H,et al.New antipertensive peptides isolated from rapeseed[J].Peptides,2003,24:791-798
    115.Yust MM,Pedroche J,Megias C,et al.Rapeseed protein hydrolysates:a source of HIV protease peptide inhibitors[J].Food them,2004,87:387-392
    116.刘大川,胡小泓,张立伟,等.富硒菜籽蛋白的酶水解工艺研究[J].中国油脂,1994,19(5):11-13
    117.郭兴凤,周瑞宝.汤坚,等.酶水解菜籽蛋白衍生风味物质的研究-水解度对风味衍生物的影响[J].郑州工程学院学报,2002,23(1):48-49
    118.刘海梅,熊善柏,谭汝成.脱脂菜籽粕中蛋白质的分布酶水解研究[J]。中国油脂,2003,28(7):15-17
    119.王志军,姜延程.菜籽蛋白酶解液制备N2酰化肽的研究(1)-酰化肽制备工艺的优化[J].氨基酸和生物资源,2001,23(1):29-31
    120.车丽涛,周安国.解决我国蛋白质资源缺乏的途径.饲料工业[J],2006,27(9):57-59
    121.钱志娟,王璋,许时婴,等.玉米胚芽水酶法提油及蛋白质的回收[J].无锡轻工大学学报,2004,23(5):58-62
    122.段作营,李君,尤新,等.水酶法提取玉米胚芽油的研究[J].中国油脂,2002,27(3):15-18
    123.大连轻工业学院等八大院校编.食品分析[M].北京:中国轻工业出版社,1994.
    124.Wetter LR and Youngs CG.A thiourea-UV assay for total glucosinolate content in rapeseed meals[J].J Am Oil Chem Soc,1976,53:162-164
    125.钱和,雕鸿荪,沈培英.现行油菜籽加工过程中各种成分的变化[J].无锡轻工大学学报,1995,14(2):129-135
    126.王永真,崔淑文,吴秀琴,等.饲料和谷物中植酸磷测定方法研究[J].中国饲料,1991,(6):28-31
    127.Price ML,Scoyoc SV,Butler LG.A critical evaluation of the vanillin reaction as an assay for tannin in sorghum wain[J].J Agric Food Chem,1978,26:1214-1218
    128.张树政.酶制剂工业(下册)[M].北京:中国轻工业出版社,1998.
    129.张飞,岳田利,费坚,等.果胶酶活力的测定方法研究[J].西北农业学报,2004,13(4):134-137
    130.郭兴凤.蛋白质水解度的测定[J].中国油脂,2000,25(6):176-177
    131.王素梅.玉米胚芽酶法提油工艺及其机理研究[D].博士学位论文,无锡:江南大学,2003
    132.Eapen KE,Tape NW and Sims R P A.New process for the production of better-quality rapeseed oil and meal.I.Effect of heat treatments on enzyme destruction and color of rapeseed oil[J].J Am Oil Chem Soc,1968,45:194-196
    133.伯奇 GG 主编.郑寿亭,郑士民,高培基,等译.酶与食品加工[M].北京:轻工业出版社,1991.
    134.秦蓝.蔬菜汁-南瓜混汁和胡萝卜混汁的研究[D].博士学位论文,无锡:江南大学,2005.
    135.Dubols,MW,Anglemier AF,Montgomery MW,et al.Effect of proteolysis on the emulsification characteristics of bovine skeletal muscle[J].J Food Sci,1972,37:27-28
    136.Smith DM,Brekke CJ.Functional properties of enzymatically modified beef heart protein[J].J Food Sci 1984,49:1525-1528
    137.Myers RH,Montgomery DC.Response Surface Methodology:Process and Product Optimization Using,Designed Experiments[M],John Wiley & Sons,Inc.,Chichester,1995.
    138.Xu L,Diosady LL.The production of Chinese rapeseed protein isolates by membrane processing[J].J Am Oil Chem Soc,1994,71:935-939
    139.Klockeman DM,Toledo R,Sims KA.Isolation and characterization of defatted Canola meal protein[J].J Agri Food Chem,1997,45:3867-3870
    140.赵利,王璋,许时婴.大孔吸附树脂对酪蛋白非磷肽的脱盐和色谱分离[J].无锡轻工大学学报,2003,22(4):68-72
    141.刘健敏,钟芳,麻建国.大豆生理活性肽的研究(Ⅰ)-酶法水解的工艺[J].无锡轻工大学学报:食品与生物技术,2004,23(3):41-45
    142.程云辉,王璋,许时婴.大孔吸附树脂对麦胚肽的吸附特性研究[J].食品与机械,2005,21(6):7-12
    143.何炳林,黄文强.离子交换与吸附树脂[M].上海:上海科技教育出版社,1995.
    144.Tang ZG,Zhou RQ,Duan ZT.Adsorption and desorption behaviour of taurine on macroporous adsorption resins[J].J Chem Technol Biotechnol,2001,76:752-756
    145.Adler-Nissen J.A review of food protein hydrolysis-specific areas,In:Enzymic Hydrolysis of Food Proteins[M].Elsevier Applied Science,London,pp 57-109,1986.
    146.Cheison SC,Wang Z,Xu SY.Use of Macroporous adsorption resin for simultaneous desalting and debittering of whey protein hydrolysate[J].Int J Food Sci Technol,2007,42(10):1228-1239
    147.Dubois M,Gilles KA,Hamilton JK,et al.Colorimetric method for determination of sugars and related substances[J].Anal Chem,1956,28:350-356
    148.Adler-Nissen J.Appendix Ⅱ:calculation of the Q value,In:Enzymic Hydrolysis of Food Proteins[M].Elsevier Applied Science,London,pp 336-339,1986.
    149.Tanford C.Contribution of Hydrophobic Interactions to the Stability of the Globular Conformation of Proteins[J].J Am Chem Soc,1962,84:4240-4247
    150.Palou E,L6pez-Malo A,Barbosa-Canovas GV,et al.Poly-phenoloxidase activity and color of blanched and high hydrostatic pressure treetated banana puree[J].J Food Sci,1999,64:42-45
    151.Minagawa E,Kaminogawa S,Tsukasaki F,et al.Debittering mechanism in bitter peptides of enzymatic hydrolysates from milk casein by aminopeptidase T[J].J Food Sci,54(5):1225-1229
    152.郭兴凤,周瑞宝,汤坚等.菜籽蛋白的制备[J].郑州工程学院学报,2001,22(1):60-62
    153.Matoba T,Hata T.Relationship between bittemess of peptides and their chemical structures[J].Agric Biol Chem,1972,36:1423-1431
    154.Adler-Nissen J,Olsen HS.The influence of peptide chain length on taste and functional properties of enzymatically modified soy protein[C].ACS Symp Set,1979,92:125-146
    155.Yang WG,Wang Z,Xu SY.A new method for determination of antithrombotic activity of egg white protein hydrolysate by microplate reader[J].Chinese Chem Letters,2007,18(4):449-451
    156.Oyaizu M.Studies on products of browning reactions:antioxidative activities of products of browning reaction prepared from glucosamine[J].Jpn J Nutr,1986,44:307-315
    157.Shimada K,Fujikawa K,Yahara K,et al.Antioxidative properties of xanthan on the antioxidation of soybean oil in cyclodextrin emulsion[J].J Agric Food Chem,1992,40:945-948
    158.静天玉,赵晓瑜.用终止剂改进超氧化物歧化酶邻苯三酚测活法[J].生物化学与生物物理进展,1995,22(1):84-86
    159.Halliwell B,Gutteridge JMC,Aruoma OI.The deoxyribose method:a simple 'test tube' assay for determination of rate constants for reactions of hydroxyl radicals[J].Anal Biochem,1987,165:215-219
    160.Decker EA,Welch B.Role of ferritin as a lipid oxidation catalyst in muscle food[J].J Agric Food Chem,1990,38(3):674-677
    161.Pena-Ramos EA,Xiong YL.Antioxidative activity of whey protein hydrolysates in a liposomal system[J].J Dairy Sci,2001,84:2577-2583
    162.Dreher D,Junod AF.Role of oxygen free radicals in cancer development[J].Eur J Cancer,1996,32(1):30-35
    163.许申鸿.一种测定·OH产生与清除的新化学发光体系[J].分析测试学报,2000,19(3):11-13
    164.贾之慎,邬建敏,唐孟成.比色法测定Fenton反应产生的自由基[J].生物化学与生物物理进展,1996,23(2):184-186
    165.Rajapakse N,Mendis E,Jung WK,et al.Purification of a radical scavenging peptide from fermented mussel sauce and its antioxidant properties[J].Food Res Inter,2005,38:175-182
    166.Erickson MC,Hultin HO.Influence of histidine on lipid peroxidation in sarcoplasmic reticulum[J].Arch Biochem and Biophys,1992,292:427-432
    167.姜平平,吕晓玲,姚秀玲,等.紫心甘薯花色苷抗氧化活性体外实验研究[J].中国食品添加剂,2002(6):8-11
    168.Saito K,Jin DH,Ogawa T,et al.Antioxidative properties of tripeptide libraries prepared by the combinatorial chemistry[J].J Agric Food Chem,2003,51:3668-3674
    169.Cheng Z,Ren J,Li Y,et al.Establishment of a quantitative structure-activity relationship model for evaluating and predicting the protective potentials of phenolic antioxidants on lipid peroxidation[J].J Pharm Sci,2003,92:475-484
    170.Yoshie-Stark Y,Wada Y,Schott M,et al.Functional and bioactive properties of rapeseed protein concentrates and sensory analysis of food application with rapeseed protein concentrates[J].LWT,2006,39:503-512
    171.Yoshimura Y,Iijina T,Watanabe T,et al.Antioxidative effect of Maillard reaction products using glucose-glycine model system[J].J Agric Food Chem,1997,45:4106-4109
    172.马志玲,王延平.模式美拉德反应产物抗氧化性能的研究[J].中国油脂,2002,27(4):68-71
    173.李爱华.茶多酚对桃酥的保鲜作用研究[J].食品科学,1995,16(1):26-29
    174.黄桂宽,雷耀兴,陈文.茶多酚对方便面的抗氧化试验[J].食品科学,1996,17(1):22-23
    175.Laudano AP,Doolittle RF.Studies On synthetic peptides that bind to fibrinogen and prevent fibrin polymerization.Structural requirements,number of binding sites,and species differences[J].Biochemistry,1980,19:1013-1019
    176.徐向群.红茶酚性色素的分离[J].茶叶科学,1998,18:155-156
    177.张丽珍,刘惠茹.弱碱离子交换树脂应用于含酚废水的处理[J].惠州大学学报(自然科学版),2001,12:52-56
    178.赵永芳.生物化学技术原理及其应用[M].武汉:武汉大学出版社,1994.
    179.朱晓囡,苏志国.反相液相色谱在蛋白质及多肽分离分析中的应用[J].分析化学学,2004,32(2):248-254
    180.梁宋平.世纪之交的蛋白质序列测定技术[J].生命科学,1999(1):31-34
    181.刘建军,庄志雄,邓平建,等.质谱技术在蛋白质组研究中的应用[J].卫生研究,2003,32(3):257-260
    182.刘清萍,刘中华,唐新科,等.串联质谱在多肽测序中的应用[J].生命科学研究,2004,8(2):112-116
    183.盛泉虎.串联质谱蛋白质鉴定方法的研究[D].硕士学位论文,上海:中国科学院上海生命科学研究院,2003.
    184.Fenn JB,Mann M,Meng CK,et al.Electrospray ionization-principles and practice[J].Mass Spectrom.Rev,1990,9(1):37-40
    185.夏树华.螺蛳中生物活性物质的研究[D].博士学位论文,无锡:江南大学,2006.
    186.程云辉.麦胚蛋白酶解物的制备、结构及其生物活性功能的研究[D].博士学位论文,无锡:江南大学,2006.
    187.王金水.天然抗氧化剂在食用油脂中的应用[J].粮食与油脂,1990(4):35-39
    188.刘海英.斑点叉尾鱼皮胶原蛋白及胶原蛋白多肽的研究[D].博士学位论文,无锡:江南大学.2006.
    189.Suetsuna K,Ukeda H,Ochi H.Isolation and characterization of free radical scavenging activities peptides derived from casein[J].J Nutr Biochem,2000,11:128-131
    190. Kim S, Kim Y, Byun H, et al. Isolation and characterization of antioxidative peptides from gelatin hydrolysate of Alaska Pollack skin[J]. J Agric Food Chem,2001,49:1984-1989

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700