用户名: 密码: 验证码:
基于生物质谱的蛋白质组学数据处理及检索质量控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文的主要贡献:1.建立了复旦大学蛋白质组研究中心实验平台的数据模板,并应用于人类肝脏蛋白质组计划(Human Liver Proteome Project,HLPP)的数据交流和管理,为大规模实验数据管理和交流的标准化提供了实际经验和实现思路;2.基于2-DE(二维电泳)-MALDI-TOF/TOF(基质辅助激光解析飞行时间质谱)及类似的以蛋白质为最终分离单元的组学实验,提出了一种优化的搜索策略,避免了因共享质荷比所产生的假阳性结果,同时采用迭代搜索全面反映单元内的蛋白存在;3.针对MALDI-TOF/TOF的相关数据,通过图谱特征变量的提取和线性判别分析(Linear Discriminant Analysis,LDA),建立了PMF(PeptideMass Fingerprint)和PFF(Peptide Fragment Fingerprint)图谱的评价模型,并应用于检索质量控制研究中;4.为配合人类肝脏蛋白质组的数据分析,构建了四个参考数据集:人类及小鼠肝脏蛋白质组数据集、健康人血浆蛋白质组数据集、健康人心脏蛋白质组学数据集以及肝病相关基因及蛋白质数据集;5.应用液相等电聚焦预富集方法(Liquid-phase Isoelectric Focusing,LIEF)对小鼠肝脏蛋白质组进行分析,证明了LIEF和多实验路线结合的策略在复杂样本蛋白质组学研究中的优势。
     在复杂的生命过程中,蛋白质是各种生命活动的具体实现者。1994年Williams正式提出了蛋白质组的概念,1995年Willkins正式提出了“Proteome(蛋白质组)”的专业术语及其定义。十余年来,蛋白质组学蓬勃发展,已成为生命科学、化学、信息科学等领域研究的重点与交叉的热点,被广泛地应用于各类模式生物和人类的探索之中。随着生物质谱技术的成熟,尤其是电喷雾(ESI)和基质辅助激光解吸(MALDI)等接口技术在20世纪后期的突破性发展,质谱检测满足了高通量、高分辨率的要求,逐渐替代了先前的Edman测序等生物化学手段进而成为蛋白质组鉴定的首选平台。但从蛋白质组学的发展现况来看,由于分离和检测过程还存在诸多的不完善,实验结果往往受蛋白质分离效果、丰度、化学特性等因素的影响;而各类检索算法也或多或少的存在缺陷。它们导致检索结果中常伴随有假阳性(False Positive)和假阴性(False Negative)的问题。而其解决需要实验科学和信息科学双方面的努力,其中除实验技术不断改进和发展外,数据处理流程的优化及检索质量的控制至关重要,但至今仍缺乏公认的理想数据处理范本。本文基于复旦大学蛋白质组研究中心的生物质谱平台,对目前蛋白质组数据处理流程中所涉及的数据标准化管理、检索策略的优化和质量控制等重要方面,进行了系列尝试,为进一步提高蛋白质鉴定的可靠性,以及更精确地展示生物样本的蛋白质组提供了理论依据和实现思路。
     论文共分六章,内容摘要如下:
     第一章:前言。概述了蛋白质组学的发展历程,对目前主要的技术体系和发展方向进行了评述。其中对蛋白质组学研究中所涉及的数据处理方法,进行了详细的综述,主要包括:数据处理流程、数据检索软件的分类及简介、数据处理所面临的挑战和目前研究的热点等。基于这些总结和评述,提出了本文的研究方向和思路。
     第二章:蛋白质组实验流程及数据标准化管理初探。针对HLPP中复旦大学相关仪器设备与产出数据的特点,基于PSI(The Proteomics Standards Initiative)原则,对实验流程和数据产出进行了信息抽提,并建立了相关的数据模板。其中,所涉及的实验流程包含了目前主流的实验平台,数字化地反映了双向凝胶电泳(2-DE)、多维液相(MDLC)等分离技术及MALDI、ESI质谱的实验参数和数据参数。模板已应用于HLPP实际的数据交流和管理中,并为标准化管理大规模实验数据提供了实际经验。
     第三章:大规模质谱数据分析中的非同质荷比迭代检索规则。由于目前分离过程尚无法保证每一分离单元只含一种蛋白质,因而常影响到后续的搜索过程,并产生假阳性或假阴性的匹配结果。在本章工作中,通过数据库统计和对实验数据的模拟匹配,发现检索结果之间质荷比的共享是产生假阳性的重要原因。因此,本文提出了一种优化的检索策略,首先以改进的半小数规则和频度限制对质谱进行去噪处理,然后以匹配分数高低及是否包含共享质荷比作为可信结果的评判标准,再将质谱文件中已匹配的质荷比进行过滤,产生新的质谱搜索文件并进行迭代搜索,直到没有可信结果产出为止。为进一步保证结果的可信度,反转数据库方法也被用于其中。在标准蛋白实验和法国人肝蛋白质组实验中的应用显示,非同质荷比迭代规则和反转数据库方法的结合可以更全面地反映蛋白质组的组分,同时赋予了检索结果更好的可信度。至此,为2-DE-MALDI TOF/TOF及类似实验平台,提供了一套系统可信的数据分析方法。
     第四章:MALDI TOF/TOF质谱图谱的质量评价及其在检索质量控制研究中的应用。作为生物质谱数据分析的根本,质谱图谱的质量与检索结果之间息息相关,但目前相关研究所涉及的数据基本来源于离子阱质谱(主要为LTQ,LCQ)的串级数据,对于PMF图谱及基于MALDI TOF/TOF的串级数据的评价则非常少见。本文基于MALDI TOF/TOF所产生的大规模数据,通过图谱特征变量的提取和线性判别分析,建立了相应的PMF和PFF数据的评价模型。在评价模型的基础上,通过反转库分析方法,进一步讨论了PMF图谱与相关PFF图谱质量之间的影响关系、图谱质量与蛋白质检索鉴定之间的关系,最终定义了WellQuality指数,对源于同一分离单元的PMF和PFF的质量进行了统一的评价。结果显示,质谱质量是决定蛋白质匹配是否成功的决定性因素,好的图谱往往是高质量匹配的先决条件。Well Quality指数可以很好地反映分离单元质谱检测的优劣,其指数与鉴定成功率和得分之间存在着明显的线性关系。此外,对于质量较好的图谱,随机匹配的可能性也在增加,因此本文同时采用了一种新的分数背景扣除方式进行质量控制,取得了良好的效果。MALDI TOF/TOF图谱的质量评价为蛋白质鉴定的质量控制提供了新的思路,同时也对蛋白质组学实验优化和机理研究提供了新的途径。
     第五章:肝脏蛋白质组参考数据集的建立及初步分析。对于组织样本的大规模蛋白质组研究方兴未艾,所产生的数据量极其可观。本章针对肝脏、血浆、心脏的蛋白质组和肝病相关基因及蛋白质的研究,建立了相关的参考数据集,并进行了初步分析。为保证数据的完备性和可靠性,基于NCBI PubMed医学文献数据库,采用人工搜索和判读的方式,对近年发表在国际知名杂志上的相关研究成果进行了遍历查询,并尽可能提取蛋白质组研究的相关参数。最终构建成四个参考数据集:人及小鼠肝脏蛋白质组数据集、健康人血浆蛋白质组数据集、健康人心脏蛋白质组学数据集以及肝病相关基因及蛋白质数据集。数据集的初步分析表明:各数据集的蛋白质存在一定的交互,而HLPP数据集对各参考数据集的覆盖均非常大。这样的重叠很可能反映了机体内各组织器官间的一些共性。同时作为机体最为重要的代谢器官,肝脏合成了很大部分的血浆蛋白,数据集间的高度交盖暗示了肝脏对于人体的重要性。这些数据的收集和整理对相关科学研究提供了系统可信的数据参考,有助于相关研究的深入和发展。
     第六章基于液相等电聚焦预富集方法(LIEF)的小鼠肝脏蛋白质组研究及数据分析。预分离技术已被证明可大大促进蛋白质的鉴定效果,对低丰度蛋白尤其明显。本章通过LIEF技术对小鼠肝脏中的蛋白质进行了预富集,并结合二维凝胶电泳(2-DE)和一维反相色谱(SDS-PAGE RPLC)分析策略对富集的蛋白质进行了分析。结果表明:LIEF技术可大大增加后续2-DE分析中蛋白质斑点的数目,同时大幅度提高相应的检索质量。LIEF富集后的LC路线和2-DE之间存在良好的互补性,这说明新技术的应用和现有实验路线的融合是全面高效分析复杂生物样本蛋白质组的有效途经。同时,LIEF可以更好的反映包含修饰信息的蛋白质斑点,这对深入挖掘表达谱数据的功能状态具有重要的意义。
The main contributions of this dissertation are as follows. 1. The templates construction and application of proteomics standards for data management and exchange. 2. Development of an optimized search strategy named 'Iterative Non-m/z-sharing Rule' for confident and sensitive protein identification of 2-DE based Proteomics. 3. Spectral quality assessment and application for gel based MALDI-TOF/TOF MS data interpretation. 4. Establishment of four reference datasets for human liver proteome analysis. 5. Comprehensive proteome analysis of mouse liver by ampholyte-free liquid-phase isoelectric focusing.
     As the nature of life, proteins act as executants of complex biological processes, and then are more close to the core of biological systems than genes. In 1994, Dr. Williams presented the original conception of proteomics, and Dr. Willkins defined the term "proteome". In the past two decades, technical thrusts have turned high-throughput proteome analysis into reality. The development of proteomics relies mainly on the improvement of ESI-MS and MALDI-MS technology, and also sprang up the proteomic-orientated bioinformatics. Now, proteomics has burst onto the scientific scene as an important objective crossing over life science, chemistry and informatics. MS-based proteomics have been the main force of large scale protein identification instead of classic Edman sequencing method. However, proteomics is still hindered by the deficiencies of separation and detection platforms. Although lots of efforts have been dedicated to solve the problem, the false positive and false negative results are still inevitable. As expected, its solution lies on progress or/and brekthrough from both analytic sciences (wet) and informatics (dry). Corresponding algorithm evaluations and developments are continuously progressive, but still remain largely not to be addressed. Herein, based on the proteomics platforms of Fudan University, a series of efforts were made to resolve several key problems of comprehensive proteome data analysis which were described briefly as follows:
     Firstly, current status of proteome data processing methods was reviewed including the introduction of search engines, progress and challenges of proteome data analysis, and important research objectives as well.
     Secondly, the process of templates construction and application of proteomics standards was introduced in detail. According to the principles from HUPO PSI (Proteomics Standards Initiative), the templates construction was performed by parameter extraction, minimization of parameter requirement, test of templates draft and application. The templates covered the most important proteomics platforms and have been successfully applied to data management and exchange of Human Liver Proteome Project (HLPP).
     Thirdly, a systematic search strategy named Iterative Non-m/z-Sharing (INMZS) analysis was proposed to address the problem. Actually, lots of pseudo-matches of 2-DE-based proteomic data are caused by over-used sharing m/z. Therefore, our strategy focused primarily on the validation of matched m/z. It utilized decimal rule and frequency threshold to filter the noise signal in the PMF and corresponding PFF peak-lists. Then search results were screened based on share status of corresponding matched m/z. Only the proteins that were matched with exclusive m/z information would be reserved as final results. Further iterative search was applied to improve discovery of minor components in a spot. Finally, identifications were all confirmed by reverse database evaluation. Simulation and application test of INMZS were implemented on large datasets of human liver proteome and standard protein cocktails. These results showed that INMZS was efficient to ensure the confidence and sensitivity of 2-DE based protein identification.
     Fourthly, a multi-variant regression approach was utilized to assess spectral quality for both PMF and PFF spectra obtained from MALDI TOF/TOF mass spectrometry. Then the assessed index was applied to investigations of MASCOT search results. After analyzing different search modes of MASCOT, a validation method based on score difference between normal and reference (reverse or random) database searching was proposed to define the positive matches. Systematic examinations on two large scale datasets of human liver tissues proved that spectral quality was a key factor for successful matching. Further analysis showed that spectral quality assessment was also efficient in representing the quality of 2-DE gel spot and promoting the discovery of potential post-translation modifications.
     Fifthly, to construct comprehensive and reliable reference datasets, manually searching and analyzing were implemented basing on NCBI PubMed search engine. Liver disease related dataset was collected from OMIM and Genecards with strict quality control. Four reference datasets were constructed: Integrated Liver tissue Proteome (ILP), Human Heart Proteome (HHP), Human Plasma Proteome (HPP) and Liver Disease Genes and Proteins (LDGP). The overlaps between the constructed datasets and Human Liver Proteome (HLP) are all considerable, indicating the remarkable similarity or/and protein exchanges between liver and plasma and other tissues. After annotated by HLP semi-quantitative information, lots of HLP proteins trend to be expressed at low, extra low or trace abundance in liver. Such abundance distribution suggested that HLP presented a comprehensive protein profiling of liver tissue.
     Sixthly, the ampholyte-free liquid-phase isoelectric focusing (LIEF) was combined with narrow pH range 2-DE and SDS-PAGE HPLC for comprehensive analysis of mouse liver proteome. As LIEF-prefractionation could greatly reduce complexity of sample and enhance loading capacity of IEF strips, the number of visible protein spots on subsequent 2-DE gels was significantly increased, facilitating discovery of low-abundant proteins. Totally, 6271 protein spots were detected after LIEF-prefractionation and integrating five narrow pH rang 2-DE gels from pH 3~11. Furthermore, LIEF fraction of pH 3~5 and unfractionated sample were separated by pH 3~6 2-DE respectively and identified by MALDI-TOF/TOF. Synchronously, LIEF fraction of pH 3~5 was also analyzed with SDS-PAGE RP-HPLC MS/MS strategy. More proteins with low abundance, or/and with extremely physicochemical characteristics were identified in comparison to the conventional 2-DE method. The combination of LIEF hyphened 2-DE and LC strategies is also effective to promote the identification of new proteins and investigations on post-translational modifications of mouse liver proteins.
引文
[1] Venter, J. C, Adams, M. D., Myers, E. W., Li, P. W., et al. The sequence of the human genome [J]. Science, 2001, 291 (5507): 1304-51.
    [2] McPherson, J. D., Marra, M., Hillier, L., Waterston, R. H., et al. A physical map of the human genome [J]. Nature, 2001,409 (6822): 934-41.
    [3] Wasinger, V. C, Cordwell, S. J., Cerpa-Poljak, A., Yan, J. X., et al. Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium [J]. Electrophoresis, 1995,16(7): 1090-4.
    [4] Wilkins, M. R., Pasquali, C, Appel, R. D., Ou, K., et al. From proteins to proteomes: large scale protein identification by two-dimensional electrophoresis and amino acid analysis [J]. Biotechnology (N Y), 1996, 14 (1): 61-5.
    [5] Jia, H., Louet, S. China pushes liver proteomics [J]. Nat Biotechnol, 2004, 22 (2): 136.
    [6] Matsudaira, P. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes [J]. J Biol Chem, 1987, 262 (21): 10035-8.
    [7] Domon, B., Aebersold, R. Mass spectrometry and protein analysis [J]. Science, 2006, 312 (5771): 212-7.
    [8] Baldwin, M. A. Protein identification by mass spectrometry: issues to be considered [J]. Mol Cell Proteomics, 2004,3 (1): 1-9.
    [9] Henzel, W. J., Watanabe, C, Stults, J. T. Protein identification: the origins of peptide mass fingerprinting [J]. J Am Soc Mass Spectrom, 2003,14 (9): 931-42.
    [10]Bairoch, A., Boeckmann, B., Ferro, S., Gasteiger, E. Swiss-Prot: juggling between evolution and stability [J]. Brief Bioinform, 2004, 5 (1): 39-55.
    [11] Smith, J. C, Lambert, J. P., Elisma, F., Figeys, D. Proteomics in 2005/2006: developments, applications and challenges [J]. Anal Chem, 2007, 79 (12): 4325-43.
    [12]Perkins, D. N., Pappin, D. J., Creasy, D. M., Cottrell, J. S. Probability-based protein identification by searching sequence databases using mass spectrometry data [J]. Electrophoresis, 1999, 20 (18): 3551-67.
    [13]Havilio, M., Haddad, Y., Smilansky, Z. Intensity-based statistical scorer for tandem mass spectrometry [J]. Anal Chem, 2003, 75 (3): 435-44.
    [14]Clauser, K. R., Baker, P., Burlingame, A. L. Role of accurate mass measurement (+/- 10 ppm) in protein identification strategies employing MS or MS/MS and database searching [J]. Anal Chem, 1999, 71 (14): 2871-82.
    [15]Fenyo, D., Qin, J., Chait, B. T. Protein identification using mass spectrometric information [J]. Electrophoresis, 1998, 19 (6): 998-1005.
    [16]Zhang, W., Chait, B. T. ProFound: an expert system for protein identification using mass spectrometric peptide mapping information [J]. Anal Chem, 2000, 72 (11): 2482-9.
    [17]Fenyo, D., Beavis, R. C. A method for assessing the statistical significance of mass spectrometry-based protein identifications using general scoring schemes [J]. Anal Chem, 2003, 75 (4): 768-74.
    [18]Sheng, Q. H., Tang, H. X., Xie, T., Wang, L. S., et al. [A novel approach for peptide identification by tandem mass spectrometry] [J]. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai), 2003, 35 (8): 734-40.
    [19] Mann, M., Wilm, M. Error-tolerant identification of peptides in sequence databases by peptide sequence tags [J]. Anal Chem, 1994, 66 (24): 4390-9.
    [20]Zhang, N., Aebersold, R., Schwikowski, B. ProbID: a probabilistic algorithm to identify peptides through sequence database searching using tandem mass spectral data [J]. Proteomics, 2002,2 (10): 1406-12.
    [21]Wilkins, M. R., Gasteiger, E., Wheeler, C. H., Lindskog, I., et al. Multiple parameter cross-species protein identification using Multildent--a world-wide web accessible tool [J]. Electrophoresis, 1998, 19 (18): 3199-206.
    [22]Wilkins, M. R., Williams, K. L. Cross-species protein identification using amino acid composition, peptide mass fingerprinting, isoelectric point and molecular mass: a theoretical evaluation [J]. J Theor Biol, 1997, 186 (1): 7-15.
    [23]Kristensen, D. B., Brond, J. C, Nielsen, P. A., Andersen, J. R., et al. Experimental Peptide Identification Repository (EPIR): an integrated peptide-centric platform for validation and mining of tandem mass spectrometry data [J]. Mol Cell Proteomics, 2004, 3 (10): 1023-38.
    [24] Craig, R., Beavis, R. C. TANDEM: matching proteins with tandem mass spectra [J]. Bioinformatics, 2004, 20 (9): 1466-7.
    [25]Sadygov, R. G, Yates, J. R. 3rd. A hypergeometric probability model for protein identification and validation using tandem mass spectral data and protein sequence databases [J]. Anal Chem, 2003, 75 (15): 3792-8.
    [26] Eriksson, J., Fenyo, D. The statistical significance of protein identification results as a function of the number of protein sequences searched [J]. J Proteome Res, 2004, 3 (5): 979-82.
    [27]Eriksson, J., Fenyo, D. Probity: a protein identification algorithm with accurate assignment of the statistical significance of the results [J]. J Proteome Res, 2004, 3 (1): 32-6.
    [28]Geer, L. Y., Markey, S. P., Kowalak, J. A., Wagner, L., et al. Open mass spectrometry search algorithm [J]. J Proteome Res, 2004, 3 (5): 958-64.
    [29]Heller, M., Ye, M., Michel, P. E., Morier, P., et al. Added value for tandem mass spectrometry shotgun proteomics data validation through isoelectric focusing of peptides [J]. J Proteome Res, 2005, 4 (6): 2273-82.
    [30]MacCoss, M. J. Computational analysis of shotgun proteomics data [J]. Curr Opin Chem Biol, 2005, 9 (1): 88-94.
    [31]Chamrad, D. C., Korting, G, Stuhler, K., Meyer, H. E., et al. Evaluation of algorithms for protein identification from sequence databases using mass spectrometry data [J]. Proteomics, 2004, 4 (3): 619-28.
    [32]Fenyo, D. Identifying the proteome: software tools [J]. Curr Opin Biotechnol, 2000,11 (4): 391-5.
    [33]Fenyo, D., Beavis, R. C. Informatics and data management in proteomics [J]. Trends Biotechnol, 2002, 20 (12 Suppl): S35-8.
    [34]Sadygov, R. G, Cociorva, D., Yates, J. R. 3rd. Large-scale database searching using tandem mass spectra: looking up the answer in the back of the book [J]. Nat Methods, 2004, 1 (3): 195-202.
    [35]Pappin, D. J., Hojrup, P., Bleasby, A. J. Rapid identification of proteins by peptide-mass fingerprinting [J]. Curr Biol, 1993, 3 (6): 327-32.
    [36]Bafha, V., Edwards, N. SCOPE: a probabilistic model for scoring tandem mass spectra against a peptide database [J]. Bioinformatics, 2001,17 Suppl 1: S13-21.
    [37]Keller, A., Nesvizhskii, A. I., Kolker, E., Aebersold, R. Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search [J]. Anal Chem, 2002, 74 (20): 5383-92.
    [38]Elias, J. E., Haas, W., Faherty, B. K., Gygi, S. P. Comparative evaluation of mass spectrometry platforms used in large-scale proteomics investigations [J]. Nat Methods, 2005,2 (9): 667-75.
    [39]Elias, J. E., Gibbons, F. D., King, O. D., Roth, F. P., et al. Intensity-based protein identification by machine learning from a library of tandem mass spectra [J]. Nat Biotechnol, 2004, 22 (2): 214-9.
    [40]Green, M. K., Johnston, M. V., Larsen, B. S. Mass accuracy and sequence requirements for protein database searching [J]. Anal Biochem, 1999,275 (1): 39-46.
    [41]Bern, M., Goldberg, D., McDonald, W. H., Yates, J. R. 3rd. Automatic quality assessment of peptide tandem mass spectra [J]. Bioinformatics, 2004, 20 Suppl 1: i49-54.
    [42] Moore, R. E., Young, M. K., Lee, T. D. Method for screening peptide fragment ion mass spectra prior to database searching [J]. J Am Soc Mass Spectrom, 2000, 11 (5): 422-6.
    [43]Lanne, B., Panfilov, O. Protein staining influences the quality of mass spectra obtained by peptide mass fingerprinting after separation on 2-d gels. A comparison of staining with coomassie brilliant blue and sypro ruby [J]. J Proteome Res, 2005, 4(1): 175-9.
    [44] Pan, S., Gu, S., Bradbury, E. M., Chen, X. Single peptide-based protein identification in human proteome through MALDI-TOF MS coupled with amino acids coded mass tagging [J]. Anal Chem, 2003,75 (6): 1316-24.
    [45]Cargile, B. J., Bundy, J. L., Stephenson, J. L., Jr. Potential for false positive identifications from large databases through tandem mass spectrometry [J]. J Proteome Res, 2004, 3 (5): 1082-5.
    [46]Moore, R. E., Young, M. K., Lee, T. D. Qscore: an algorithm for evaluating SEQUEST database search results [J]. J Am Soc Mass Spectrom, 2002, 13 (4): 378-86.
    [47]Qian, W. J., Liu, T., Monroe, M. E., Strittmatter, E. F., et al. Probability-based evaluation of peptide and protein identifications from tandem mass spectrometry and SEQUEST analysis: the human proteome [J]. J Proteome Res, 2005,4(1): 53-62.
    [48]Resing, K. A., Meyer-Arendt, K., Mendoza, A. M., Aveline-Wolf, L. D., et al. Improving reproducibility and sensitivity in identifying human proteins by shotgun proteomics [J]. Anal Chem, 2004, 76 (13): 3556-68.
    [49]Nielsen, M. L., Savitski, M. M., Zubarev, R. A. Improving protein identification using complementary fragmentation techniques in fourier transform mass spectrometry [J]. Mol Cell Proteomics, 2005, 4 (6): 835-45.
    [50]Olsen, J. V., Mann, M. Improved peptide identification in proteomics by two consecutive stages of mass spectrometric fragmentation [J]. Proc Natl Acad Sci U S A, 2004,101 (37): 13417-22.
    [51]Nesvizhskii, A. I., Keller, A., Kolker, E., Aebersold, R. A statistical model for identifying proteins by tandem mass spectrometry [J]. Anal Chem, 2003, 75 (17): 4646-58.
    [52] Anderson, D. C, Li, W., Payan, D. G, Noble, W. S. A new algorithm for the evaluation of shotgun peptide sequencing in proteomics: support vector machine classification of peptide MS/MS spectra and SEQUEST scores [J]. J Proteome Res, 2003,2 (2): 137-46.
    [53]Carr, S., Aebersold, R., Baldwin, M., Burlingame, A., et al. The need for guidelines in publication of peptide and protein identification data: Working Group on Publication Guidelines for Peptide and Protein Identification Data [J]. Mol Cell Proteomics, 2004,3 (6): 531-3.
    [54]Bradshaw, R. A., Burlingame, A. L., Carr, S., Aebersold, R. Reporting protein identification data: the next generation of guidelines [J]. Mol Cell Proteomics, 2006, 5 (5): 787-8.
    [1]Kaiser,J.Proteomics.Public-private group maps out initiatives[J].Science,2002,296(5569):827.
    [2]Orchard,S.,Hermjakob,H.,Binz,P.A.,Hoogland,C.,et al.Further steps towards data standardisation:the Proteomic Standards Initiative HUPO 3(rd) annual congress,Beijing 25-27(th) October,2004[J].Proteomics,2005,5(2):337-9.
    [3]Orchard,S.,Hermjakob,H.,Taylor,C.F.,Potthast,F.,et al.Second proteomics standards initiative spring workshop[J].Expert Rev Proteomics,2005,2(3):287-9.
    [4]Orchard,S.,Hermjakob,H.,Apweiler,R.The proteomics standards initiative[J].Proteomics,2003,3(7):1374-6.
    [5]orchard,S.,Taylor,C.F.,Hermjakob,H.,Weimin,Z.,et al.Advances in the development of common interchange standards for proteomic data[J].Proteomics,2004,4(8):2363-5.
    [6]Orchard,S.,Zhu,W.,Julian,R.K.,Jr.,Hermjakob,H.,et al.Further advances in the development of a data interchange standard for proteomics data[J].Proteomics,2003,3(10):2065-6.
    [7]Bader,G.D.,Betel,D.,Hogue,C.W.BIND:the Biomolecular Interaction Network Database[J].Nucleic Acids Res,2003,31(1):248-50.
    [8]Bader,G.D.,Donaldson,I.,Wolting,C.,Ouellette,B.F.,et al.BIND--The Biomolecular Interaction Network Database[J].Nucleic Acids Res,2001,29(1):242-5.
    [9]Bader,G.D.,Hogue,C.W.BIND--a data specification for storing and describing biomolecular interactions,molecular complexes and pathways[J].Bioinformatics,2000,16(5):465-77.
    [10]Xenarios,I.,Fernandez,E.,Salwinski,L.,Duan,X.J.,et al.DIP:The Database of Interacting Proteins:2001 update[J].Nucleic Acids Res,2001,29(1):239-41.
    [11]Xenarios,I.,Salwinski,L.,Duan,X.J.,Higney,P.,et al.DIP,the Database of Interacting Proteins:a research tool for studying cellular networks of protein interactions[J].Nucleic Acids Res,2002,30(1):303-5.
    [12]Hermjakob,H.,Montecchi-Palazzi,L.,Lewington,C.,Mudali,S.,et al.IntAct:an open source molecular interaction database[J].Nucleic Acids Res,2004,32(Database issue):D452-5.
    [13]Kerrien,S.,Alam-Faruque,Y.,Aranda,B.,Bancarz,I.,et al.IntAct--open source resource for molecular interaction data[J].Nucleic Acids Res,2007,35(Database issue):D561-5.
    [14]Zanzoni,A.,Montecchi-Palazzi,L.,Quondam,M.,Ausiello,G.,et al.MINT:a Molecular INTeraction database[J].FEBS Lett,2002,513(1):135-40.
    [15]Guldener,U.,Munsterkotter,M.,Oesterheld,M.,Pagel,P.,et al.MPact:the MIPS protein interaction resource on yeast[J].Nucleic Acids Res,2006,34(Database issue):D436-41.
    [16]Hermjakob,H.,Montecchi-Palazzi,L.,Bader,G.,Wojcik,J.,et al.The HUPO PSI's molecular interaction format-a community standard for the representation of protein interaction data[J].Nat Biotechnol,2004,22(2):177-83.
    [17]orchard,S.,Montecchi-Palazzi,L.,Hermjakob,H.,Apweiler,R.The use of common ontologies and controlled vocabularies to enable data exchange and deposition for complex proteomic experiments[J].Pac Symp Biocomput,2005:186-96.
    [18]Orchard,S.,Hermjakob,H.,Julian,R.K.,Jr.,Runte,K.,et al.Common interchange standards for proteomics data:Public availability of tools and schema[J].Proteomics,2004,4(2):490-1.
    [19]Taylor,C.F.,Paton,N.W.,Lilley,K.S.,Binz,P.A.,et al.The minimum information about a proteomics experiment(MIAPE)[J].Nat Biotechnol,2007,25(8):887-93.
    [20]贺福初.中国蛋白质组计划[J].中国科学基金,2002,(5):264-268.
    [21]Jia,H.,Louet,S.China pushes liver proteomics[J].Nat Biotechnol,2004,22(2):136.
    [22]Nebrich,G.,Herrmann,M.,Sagi,D.,Klose,J.,et al.High MS-compatibility of silver nitrate-stained protein spots from 2-DE gels using ZipPlates and AnchorChips for successful protein identification[J].Electrophoresis,2007,28(10):1607-14.
    [1]Godovac-Zimmermann,J.,Brown,L.R.Proteomics approaches to elucidation of signal transduction pathways[J].Curr Opin Mol Ther,2003,5(3):241-9.
    [2]Bogdanov,B.,Smith,R.D.Proteomics by FTICR mass spectrometry:top down and bottom up[J].Mass Spectrom Rev,2005,24(2):168-200.
    [3]Wysocki,V.H.,Resing,K.A.,Zhang,Q.,Cheng,G.Mass spectrometry of peptides and proteins[J].Methods,2005,35(3):211-22.
    [4]McCormack,A.L.,Schieltz,D.M.,Goode,B.,Yang,S.,et al.Direct analysis and identification of proteins in mixtures by LC/MS/MS and database searching at the low-femtomole level[J].Anal Chem,1997,69(4):767-76.
    [5]Thiede,B.,Lamer,S.,Mattow,J.,Siejak,F.,et al.Analysis of missed cleavage sites,tryptophan oxidation and N-terminal pyroglutamylation after in-gel tryptic digestion[J].Rapid Commun Mass Spectrom,2000,14(6):496-502.
    [6]Chalkley,R.J.,Baker,P.R.,Hansen,K.C.,Medzihradszky,K.F.,et al.Comprehensive analysis of a multidimensional liquid chromatography mass spectrometry dataset acquired on a quadrupole selecting,quadrupole collision cell,time-of-flight mass spectrometer:I.How much of the data is theoretically interpretable by search engines?[J].Mol Cell Proteomics,2005,4(8):1189-93.
    [7]Nesvizhskii,A.I.,Aebersold,R.Interpretation of shotgun proteomic data:the protein inference problem[J].Mol Cell Proteomics,2005,4(10):1419-40.
    [8]Smith,J.C.,Lambert,J.P.,Elisma,F.,Figeys,D.Proteomics in 2005/2006:developments,applications and challenges[J].Anal Chem,2007,79(12):4325-43.
    [9]Ding,Q.,Xiao,L.,Xiong,S.,Jia,Y.,et al.Unmatched masses in peptide mass fingerprints caused by cross-contamination:an updated statistical result[J].Proteomics,2003,3(7):1313-7.
    [10]Fenyo,D.,Beavis,R.C.Informatics and data management in proteomics[J].Trends Biotechnol,2002,20(12 Suppl):$35-8.
    [11]Henzel,W.J.,Watanabe,C.,Stults,J.T.Protein identification:the origins of peptide mass fingerprinting[J].JAm Soc Mass Spectrom,2003,14(9):931-42.
    [12]Reinders,J.,Lewandrowski,U.,Moebius,J.,Wagner,Y.,et al.Challenges in mass spectrometry-based proteomics[J].Proteomics,2004,4(12):3686-703.
    [13]MacCoss,M.J.Computational analysis of shotgun proteomics data[J].Curr Opin Chem Biol,2005,9(1):88-94.
    [14]Perkins,D.N.,Pappin,D.J.,Creasy,D.M.,Cottrell,J.S.Probability-based protein identification by searching sequence databases using mass spectrometry data [J].Electrophoresis,1999,20(18):3551-67.
    [15]Nandakumar,R.,Nandakumar,M.P.,Marten,M.R.,Ross,J.M.Proteome analysis of membrane and cell wall associated proteins from Staphylococcus aureus [J].JProteome Res,2005,4(2):250-7.
    [16]Xiong,Y.,Chalmers,M.J.,Gao,F.P.,Cross,T.A.,et al.Identification of Mycobacterium tuberculosis H37Rv integral membrane proteins by one-dimensional gel electrophoresis and liquid chromatography electrospray ionization tandem mass spectrometry[J].J Proteome Res,2005,4(3):855-61.
    [17]Elias,J.E.,Haas,W.,Faherty,B.K.,Gygi,S.P.Comparative evaluation of mass spectrometry platforms used in large-scale proteomics investigations [J]. Nat Methods, 2005,2 (9): 667-75.
    [18]Sadygov, R. G, Cociorva, D., Yates, J. R. 3rd. Large-scale database searching using tandem mass spectra: looking up the answer in the back of the book [J]. Nat Methods, 2004, 1 (3): 195-202.
    [19]Moore, R. E., Young, M. K., Lee, T. D. Qscore: an algorithm for evaluating SEQUEST database search results [J]. J Am Soc Mass Spectrom, 2002, 13 (4): 378-86.
    [20]Heller, M., Ye, M., Michel, P. E., Morier, P., et al. Added value for tandem mass spectrometry shotgun proteomics data validation through isoelectric focusing of peptides [J]. J Proteome Res, 2005,4 (6): 2273-82.
    [21]Havilio, M., Haddad, Y, Smilansky, Z. Intensity-based statistical scorer for tandem mass spectrometry [J]. Anal Chem, 2003, 75 (3): 435-44.
    [22] Schmidt, F., Schmid, M., Jungblut, P. R., Mattow, J., et al. Iterative data analysis is the key for exhaustive analysis of peptide mass fingerprints from proteins separated by two-dimensional electrophoresis [J]. J Am Soc Mass Spectrom, 2003, 14 (9): 943-56.
    [23]Levander, R, Rognvaldsson, T., Samuelsson, J., James, P. Automated methods for improved protein identification by peptide mass fingerprinting [J]. Proteomics, 2004, 4(9): 2594-601.
    [24]Li, Q., Li, L., Rejtar, T., Karger, B. L., et al. Proteome of Methanosarcina acetivorans Part I: an expanded view of the biology of the cell [J]. J Proteome Res, 2005,4(1): 112-28.
    [25]Kamoda, S., Nakano, M., Ishikawa, R., Suzuki, S., et al. Rapid and sensitive screening of N-glycans as 9-fluorenylmethyl derivatives by high-performance liquid chromatography: a method which can recover free oligosaccharides after analysis [J]. J Proteome Res, 2005, 4(1): 146-52.
    [26]Ponamarev, M. V., She, Y M., Zhang, L., Robinson, B. H. Proteomics of bovine mitochondrial RNA-binding proteins: HES1/KNP-I is a new mitochondrial resident protein [J]. J Proteome Res, 2005, 4 (1): 43-52.
    [27] Smith, J. C, Northey, J. G, Garg, J., Pearlman, R. E., et al. Robust method for proteome analysis by MS/MS using an entire translated genome: demonstration on the ciliome of Tetrahymena thermophila [J]. JProteome Res, 2005, 4 (3): 909-19.
    [28]DeGiorgis, J. A., Jaffe, H., Moreira, J. E., Carlotti, C. G, Jr., et al. Phosphoproteomic analysis of synaptosomes from human cerebral cortex [J]. J Proteome Res, 2005, 4 (2): 306-15.
    [29]Zhang, X., Huang, S. Single step on-column frit making for capillary high-performance liquid chromatography using sol-gel technology [J]. J Chromatogr A, 2001,910(1): 13-8.
    [30]Satten, G. A., Datta, S., Moura, H., Woolfitt, A. R., et al. Standardization and denoising algorithms for mass spectra to classify whole-organism bacterial specimens [J]. Bioinformatics, 2004, 20 (17): 3128-36.
    [31]Randolph, T. W., Mitchell, B. L., McLerran, D. R, Lampe, P. D., et al. Quantifying peptide signal in MALDI-TOF mass spectrometry data [J]. Mol Cell Proteomics, 2005,4(12): 1990-9.
    [32]Shadforth, I., Dunkley, T., Lilley, K., Crowther, D., et al. Confident protein identification using the average peptide score method coupled with search-specific, ab initio thresholds [J]. Rapid Commun Mass Spectrom, 2005,19 (22): 3363-8.
    [33]Krah, A., Schmidt, F., Becher, D., Schmid, M., et al. Analysis of automatically generated peptide mass fingerprints of cellular proteins and antigens from Helicobacter pylori 26695 separated by two-dimensional electrophoresis [J]. Mol Cell Proteomics, 2003,2 (12): 1271-83.
    [34]Karty, J. A., Ireland, M. M., Brun, Y. V., Reilly, J. P. Artifacts and unassigned masses encountered in peptide mass mapping [J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2002, 782 (1-2): 363-83.
    [35] Mann, M., Wilm, M. Error-tolerant identification of peptides in sequence databases by peptide sequence tags [J]. Anal Chem, 1994, 66 (24): 4390-9.
    [36]Fenyo, D. Identifying the proteome: software tools [J]. Curr Opin Biotechnol, 2000,11 (4): 391-5.
    [37]Peri, S., Navarro, J. D., Kristiansen, T. Z., Amanchy, R., et al. Human protein reference database as a discovery resource for proteomics [J]. Nucleic Acids Res, 2004, 32 (Database issue): D497-501.
    [38]Bairoch, A., Boeckmann, B., Ferro, S., Gasteiger, E. Swiss-Prot: juggling between evolution and stability [J]. Brief Bioinform, 2004, 5 (1): 39-55.
    [39] Stead, D. A., Preece, A., Brown, A. J. Universal metrics for quality assessment of protein identifications by mass spectrometry [J]. Mol Cell Proteomics, 2006, 5 (7): 1205-11.
    [40]Ulintz, P. J., Zhu, J., Qin, Z. S., Andrews, P. C. Improved classification of mass spectrometry database search results using newer machine learning approaches [J]. Mol Cell Proteomics, 2006, 5 (3): 497-509.
    [1]Domon,B.,Aebersold,R.Mass spectrometry and protein analysis[J].Science,2006,312(5771):212-7.
    [2]Wysocki,V.H.,Resing,K.A.,Zhang,Q.,Cheng,Ct Mass spectrometry of peptides and proteins[J].Methods,2005,35(3):211-22.
    [3]Baldwin,M.A.Protein identification by mass spectrometry:issues to be considered[J].Mol Cell Proteornics,2004,3(1):1-9.
    [4]Nesvizhskii,A.I.,Roos,F.F.,Grossmann,J.,Vogelzang,M.,et al.Dynamic spectrum quality assessment and iterative computational analysis of shotgun proteomic data:toward more efficient identification of post-translational modifications,sequence polymorphisms,and novel peptides[J].Mol Cell Proteomics,2006,5(4):652-70.
    [5]Randolph,T.W.,Mitchell,B.L.,McLerran,D.F.,Lampe,P.D.,et al.Quantifying peptide signal in MALDI-TOF mass spectrometry data[J].Mol Cell Proteomics,2005,4(12):1990-9.
    [6]Bern,M.,Goldberg,D.,McDonald,W.H.,Yates,J.R.3rd.Automatic quality assessment of peptide tandem mass spectra[J].Bioinformatics,2004,20 Suppl 1:i49-54.
    [7]Moore,R.E.,Young,M.K.,Lee,T.D.Method for screening peptide fragment ion mass spectra prior to database searching[J].J Am Soc Mass Spectrom,2000,11(5):422-6.
    [8]Xu,M.,Geer,L.Y.,Bryant,S.H.,Roth,J.S.,et al.Assessing data quality of peptide mass spectra obtained by quadrupole ion trap mass spectrometry[J].J Proteome Res,2005,4(2):300-5.
    [9]Purvine,S.,Kolker,N.,Kolker,E.Spectral quality assessment for high-throughput tandem mass spectrometry proteomics[J].Omics,2004,8(3):255-65.
    [10]Flikka,K.,Martens,L.,Vandekerckhove,J.,Gevaert,K.,et al.Improving the reliability and throughput of mass spectrometry-based proteomics by spectrum quality filtering[J].Proteomics,2006,6(7):2086-94.
    [11]Adamski,M.,Blackwell,T.,Menon,R.,Martens,L.,et al.Data management and preliminary data analysis in the pilot phase of the HUPO Plasma Proteome Project[J].Proteornics,2005,5(13):3246-61.
    [12]Edwards,N.J.Novel peptide identification from tandem mass spectra using ESTs and sequence database compression[J].Mol Syst Biol,2007,3:102.
    [13]Liska,A.J.,Sunyaev,S.,Shilov,I.N.,Schaeffer,D.A.,et al.Error-tolerant EST database searches by tandem mass spectrometry and multiTag software[J].Proteomics,2005,5(16):4118-22.
    [14]He,F.Human liver proteome project:plan,progress,and perspectives[J].Mol CellProteomics,2005,4(12):1841-8.
    [15]Zhang,X.,Huang,S.Single step on-column frit making for capillary high-performance liquid chromatography using sol-gel technology[J].J Chromatogr A,2001,910(1):13-8.
    [16]Mann,M.,Wilm,M.Error-tolerant identification of peptides in sequence databases by peptide sequence tags [J]. Anal Chem, 1994,66 (24): 4390-9.
    [17]Kersey, P. J., Duarte, J., Williams, A., Karavidopoulou, Y., et al. The International Protein Index: an integrated database for proteomics experiments [J]. Proteomics, 2004,4(7): 1985-8.
    [18]Bairoch, A., Boeckmann, B., Ferro, S., Gasteiger, E. Swiss-Prot: juggling between evolution and stability [J]. Brief Bioinform, 2004, 5 (1): 39-55.
    [19]Keller, A., Nesvizhskii, A. I., Kolker, E., Aebersold, R. Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search [J]. Anal Chem, 2002, 74 (20): 5383-92.
    [20] Nesvizhskii, A. I., Aebersold, R. Analysis, statistical validation and dissemination of large-scale proteomics datasets generated by tandem MS [J]. Drug Discov Today, 2004,9(4): 173-81.
    [21]Cargile, B. J., Bundy, J. L., Stephenson, J. L., Jr. Potential for false positive identifications from large databases through tandem mass spectrometry [J]. J Proteome Res, 2004,3 (5): 1082-5.
    [22]Moore, R. E., Young, M. K., Lee, T. D. Qscore: an algorithm for evaluating SEQUEST database search results [J]. J Am Soc Mass Spectrom, 2002, 13 (4): 378-86.
    [23]Ulintz, P. J., Zhu, J., Qin, Z. S., Andrews, P. C. Improved classification of mass spectrometry database search results using newer machine learning approaches [J]. Mol Cell Proteomics, 2006, 5 (3): 497-509.
    [24] Lee, S. M., M. N.; Beckett, R.; Giddings, J. C. . Particle Separation and Characterization by Sedimentation/Cyclical-Field Field-Flow Fractionation [J]. Anal. Chem., 1988,60: 1193-1202.
    [25]Godden, J. W., Bajorath, J. Shannon entropy--a novel concept in molecular descriptor and diversity analysis [J]. J Mol Graph Model, 2000,18 (1): 73-6.
    [26] Ding, Q., Xiao, L., Xiong, S., Jia, Y., et al. Unmatched masses in peptide mass fingerprints caused by cross-contamination: an updated statistical result [J]. Proteomics, 2003, 3 (7): 1313-7.
    [27] Stead, D. A., Preece, A., Brown, A. J. Universal metrics for quality assessment of protein identifications by mass spectrometry [J]. Mol Cell Proteomics, 2006, 5 (7): 1205-11.
    [1]巫协宁.肝脏病学的研究进展[J].国外医学.消化系统疾病分册,1997,17(1):34-36.
    [2]贺福初.中国蛋白质组计划[J].中国科学基金,2002,(5):264-268.
    [3]Kersey,R J.,Duarte,J.,Williams,A.,Karavidopoulou,Y.,et al.The International Protein Index:an integrated database for proteomics experiments[J].Proteomics,2004,4(7):1985-8.
    [4]Bairoch,A.,Boeckmann,B.,Ferro,S.,Gasteiger,E.Swiss-Prot:juggling between evolution and stability[J].BriefBioinform,2004,5(1):39-55.
    [5]Benson,D.A.,Karsch-Mizrachi,I.,Lipman,D.J.,Ostell,J.,et al.GenBank[J].Nucleic Acids Res,2005,33(Database issue):D34-8.
    [6]Hu,Z.Z.,Mani,I.,Hermoso,V.,Liu,H.,et al.iProLINK:an integrated protein resource for literature mining[J].Comput Biol Chem,2004,28(5-6):409-16.
    [7]Hamosh,A.,Scott,A.F.,Amberger,J.S.,Bocchini,C.A.,et al.Online Mendelian Inheritance in Man(OMIM),a knowledgebase of human genes and genetic disorders[J].Nucleic Acids Res,2005,33(Database issue):D514-7.
    [8]Rebhan,M.,Chalifa-Caspi,V.,Prilusky,J.,Lancet,D.GeneCards:integrating information about genes,proteins and diseases[J].Trends Genet,1997,13(4):163.
    [9]Makarova,K.S.,Aravind,L.,Galperin,M.Y.,Grishin,N.V.,et al.Comparative genomics of the Archaea(Euryarchaeota):evolution of conserved protein families,the stable core,and the variable shell[J].Genome Res,1999,9(7):608-28.
    [10]Galperin,M.Y.,Koonin,E.V.Who's your neighbor? New computational approaches for functional genomics[J].Nat Biotechnol,2000,18(6):609-13.
    [11]Li,L.,Stoeckert,C.J.,Jr.,Roos,D.S.OrthoMCL:identification of ortholog groups for eukaryotic genomes[J].Genome Res,2003,13(9):2178-89.
    [12]Chen,F.,Mackey,A.J.,Stoeckert,C.J.,Jr.,Roos,D.S.OrthoMCL-DB:querying a comprehensive multi-species collection of ortholog groups[J].Nucleic Acids Res,2006,34(Database issue):D363-8.
    [13]Anderson,N.L.,Anderson,N.Ct The human plasma proteome:history,character,and diagnostic prospects[J].Mol Cell Proteomics,2002,1(11):845-67.
    [14]Cagney,G.,Park,S.,Chung,C.,Tong,B.,et al.Human tissue profiling with multidimensional protein identification technology[J].J Proteome Res,2005,4(5):1757-67.
    [15]Yan,W.,Lee,H.,Yi,E.C.,Reiss,D.,et al.System-based proteomic analysis of the interferon response in human liver cells[J].Genome Biol,2004,5(8):R54.
    [16]Yan,W.,Lee,H.,Deutsch,E.W.,Lazaro,C.A.,et al.A dataset of human liver proteins identified by protein profiling via isotope-coded affinity tag(ICAT) and tandem mass spectrometry[J].Mol Cell Proteomics,2004,3(10):1039-41.
    [17]Kislinger,T.,Cox,B.,Kannan,A.,Chung,C.,et al.Global survey of organ and organelle protein expression in mouse:combined proteomic and transcriptomic profiling[J].Cell,2006,125(1):173-86.
    [18]Foster,L.J.,de Hoog,C.L.,Zhang,Y.,Zhang,Y.,et al.A mammalian organelle map by protein correlation profiling[J].Cell,2006,125(1):187-99.
    [19]Mootha, V. K., Bunkenborg, J., Olsen, J. V., Hjerrild, M., et al. Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria [J]. Cell, 2003,115 (5): 629-40.
    [20]Schirmer, E. C, Florens, L., Guan, T., Yates, J. R. 3rd, et al. Nuclear membrane proteins with potential disease links found by subtractive proteomics [J]. Science, 2003,301 (5638): 1380-2.
    [21]Kislinger, T., Rahman, K., Radulovic, D., Cox, B., et al. PRISM, a generic large scale proteomic investigation strategy for mammals [J]. Mol Cell Proteomics, 2003, 2 (2): 96-106.
    [22] Da Cruz, S., Xenarios, I., Langridge, J., Vilbois, F., et al. Proteomic analysis of the mouse liver mitochondrial inner membrane [J]. J Biol Chem, 2003, 278 (42): 41566-71.
    [23]States, D. J., Omenn, G. S., Blackwell, T. W., Fermin, D., et al. Challenges in deriving high-confidence protein identifications from data gathered by a HUPO plasma proteome collaborative study [J]. Nat Biotechnol, 2006,24 (3): 333-8.
    [24] Liu, T., Qian, W. J., Gritsenko, M. A., Xiao, W., et al. High dynamic range characterization of the trauma patient plasma proteome [J]. Mol Cell Proteomics, 2006,5(10): 1899-913.
    [25]Shen, Y., Kim, J., Strittmatter, E. F., Jacobs, J. M, et al. Characterization of the human blood plasma proteome [J]. Proteomics, 2005, 5 (15): 4034-45.
    [26]Pieper, R., Gatlin, C. L., Makusky, A. J., Russo, P. S., et al. The human serum proteome: display of nearly 3700 chromatographically separated protein spots on two-dimensional electrophoresis gels and identification of 325 distinct proteins [J]. Proteomics, 2003, 3 (7): 1345-64.
    [27] Adkins, J. N., Varnum, S. M., Auberry, K. J., Moore, R. J., et al. Toward a human blood serum proteome: analysis by multidimensional separation coupled with mass spectrometry [J]. Mol Cell Proteomics, 2002, 1 (12): 947-55.
    [28]Tirumalai, R. S., Chan, K. C., Prieto, D. A., Issaq, H. J., et al. Characterization of the low molecular weight human serum proteome [J]. Mol Cell Proteomics, 2003, 2 (10): 1096-103.
    [29]Westbrook, J. A., Wheeler, J. X., Wait, R., Welson, S. Y, et al. The human heart proteome: Two-dimensional maps using narrow-range immobilised pH gradients [J]. Electrophoresis, 2006, 27 (8): 1547-5 5.
    [30]Gaucher, S. P., Taylor, S. W, Fahy, E., Zhang, B., et al. Expanded coverage of the human heart mitochondrial proteome using multidimensional liquid chromatography coupled with tandem mass spectrometry [J]. J Proteome Res, 2004, 3 (3): 495-505.
    [31]Taylor, S. W, Fahy, E., Zhang, B., Glenn, G. M., et al. Characterization of the human heart mitochondrial proteome [J]. Nat Biotechnol, 2003, 21 (3): 281-6.
    [32]Peri, S., Navarro, J. D., Kristiansen, T. Z., Amanchy, R., et al. Human protein reference database as a discovery resource for proteomics [J]. Nucleic Acids Res, 2004, 32 (Database issue): D497-501.
    [1]Xiao,Z.,Conrads,T.P.,Lucas,D.A.,Janini,G.M.,et al.Direct ampholyte-free liquid-phase isoelectric peptide focusing:application to the human serum proteome [J].Electrophoresis,2004,25(1):128-33.
    [2]Righetti,P.G.,Castagna,A.,Herbert,B.,Reymond,E,et al.Prefractionation techniques in proteome analysis[J].Proteomics,2003,3(8):1397-407.
    [3]Baldwin,M.A.Protein identification by mass spectrometry:issues to be considered[J].Mol CelIProteornics,2004,3(1):1-9.
    [4]Righetti,P.G.,Castagna,A.,Herbert,B.Prefractionation techniques in proteome analysis[J].Anal Chem,2001,73(11):320A-326A.
    [5]Bier,M.Recycling isoelectric focusing and isotachophoresis[J].Electrophoresis,1998,19(7):1057-63.
    [6]Herbert,B.,Righetti,P.G.A turning point in proteome analysis:sample prefractionation via multieompartment electrolyzers with isoelectric membranes[J].Electrophoresis,2000,21(17):3639-48.
    [7]Bae,S.H.,Harris,A.G.,Hains,P.G.,Chen,H.,et al.Strategies for the enrichment and identification of basic proteins in proteome projects[J].Proteomics,2003,3(5):569-79.
    [8]Righetti,P.G.,Wenisch,E.,Jungbauer,A.,Katinger,H.,et al.Preparative purification of human monoclonal antibody isoforms in a multi-compartment electrolyser with immobiline membranes[J].J Chromatogr,1990,500:681-96.
    [9]Zuo,X.,Speicher,D.W.A method for global analysis of complex proteomes using sample prefractionation by solution isoelectrofocusing prior to two-dimensional electrophoresis[J].Anal Bioehem,2000,284(2):266-78.
    [10]Davidsson,P.,Folkesson,S.,Christiansson,M.,Lindbjer,M.,et al.Identification of proteins in human cerebrospinal fluid using liquid-phase isoelectrie focusing as a prefractionation step followed by two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionisation mass spectrometry[J].Rapid Commun Mass Spectrom,2002,16(22):2083-8.
    [11]Wang,H.,Kachman,M.T.,Schwartz,D.R.,Cho,K.R.,et al.A protein molecular weight map of ES2 clear cell ovarian carcinoma cells using a two-dimensional liquid separations/mass mapping technique[J].Eleetrophoresis,2002,23(18):3168-81.
    [12]Shang,T.Q.,Ginter,J.M.,Johnston,M.V.,Larsen,B.S.,et al.Carrier ampholyte-free solution isoelectric focusing as a prefractionation method for the proteomic analysis of complex protein mixtures[J].Electrophoresis,2003,24(14):2359-68.
    [13]Li,R.X.,Zhou,H.,Li,$.J.,Sheng,Q.H.,et aL Prefractionation ofproteome by liquid isoelectric focusing prior to two-dimensional liquid chromatography mass spectrometric identification[J].JProteome Res,2005,4(4):1256-64.
    [14]Righetti,P.G.,Castagna,A.,Antonioli,P.,Boschetti,E.Prefractionation techniques in proteome analysis:the mining tools of the third millennium[J].Eleetrophoresis,2005,26(2):297-319.
    [15]Yuan,X.,Desiderio,D.M.Proteomics analysis of prefractionated human lumbar cerebrospinal fluid[J].Proteornics,2005,5(2):541-50.
    [16]Brobey,R.K.,Soong,L.Establishing a liquid-phase IEF in combination with 2-DE for the analysis of Leishmania proteins[J].Proteomics,2007,7(1):116-20.
    [17]Wall,D.B.,Kachman,M.T.,Gong,S.,Hinderer,R.,et al.Isoelectric focusing nonporous RP HPLC:a two-dimensional liquid-phase separation method for mapping of cellular proteins with identification using MALDI-TOF mass spectrometry[J].Anal Chem,2000,72(6):1099-111.
    [18]Puchades,M.,Westman,A.,Blennow,K.,Davidsson,P.Analysis of intact proteins from cerebrospinal fluid by matrix-assisted laser desorption/ionization mass spectrometry aider two-dimensional liquid-phase electrophoresis[J].Rapid Commun Mass Spectrom,1999,13(24):2450-5.
    [19]Nilsson,C.L.,Puchades,M.,Westman,A.,Blennow,K.,et al.Identification of proteins in a human pleural exudate using two-dimensional preparative liquid-phase electrophoresis and matrix-assisted laser desorption/ionization mass spectrometry[J].Electrophoresis,1999,20(4-5):860-5.
    [20]Foster,L.J.,de Hoog,C.L.,Zhang,Y.,Zhang,Y.,et al.A mammalian organelle map by protein correlation profiling[J].Cell,2006,125(1):187-99.
    [21]Kislinger,T.,Cox,B.,Kannan,A.,Chung,C.,et al.Global survey of organ and organelle protein expression in mouse:combined proteomic and transcriptomic profiling[J].Cell,2006,125(1):173-86.
    [22]Domon,B.,Aebersold,R.Mass spectrometry and protein analysis[J].Science,2006,312(5771):212-7.
    [23]Benson,D.A.,Karsch-Mizrachi,I.,Lipman,D.J.,Ostell,J.,et al.GenBank[J].Nucleic Acids Res,2005,33(Database issue):D34-8.
    [24]钟华,张.,樊惠芝,液相等电聚焦结合双向凝胶电泳分离碱性蛋白[J].高等学校化学学报,2006,27(10):1830-1834.
    [25]Perkins,D.N.,Pappin,D.J.,Creasy,D.M.,Cottrell,J.S.Probability-based protein identification by searching sequence databases using mass spectrometry data [J].Electrophoresis,1999,20(18):3551-67.
    [26]Moore,R.E.,Young,M.K.,Lee,T.D.Qscore:an algorithm for evaluating SEQUEST database search results[J].J Am Soc Mass Spectrom,2002,13(4):378-86.
    [27]Keller,A.,Nesvizhskii,A.I.,Kolker,E.,Aebersold,R.Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search[J].Anal Chem,2002,74(20):5383-92.
    [28]Camon,E.,Magrane,M.,Barrell,D.,Lee,V.,et al.The Gene Ontology Annotation(GOA) Database:sharing knowledge in Uniprot with Gene Ontology[J].Nucleic Acids Res,2004,32(Database issue):D262-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700