用户名: 密码: 验证码:
沉水植物与富营养湖泊水体、沉积物营养盐的相互作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沉水植物是湖泊生态系统的重要组成部分,具有十分重要的生态功能,沉水植物的消失将使湖泊生态系统发生一系列变化。因此,沉水植物的恢复与维持在湖泊生态系统保护与恢复中占有重要的地位。造成沉水植物消失的重要原因之一是由于水体富营养化,而水体富营养化的限制因子主要是氮、磷,因而研究沉水植物与氮、磷营养盐的相互作用具有重要的意义。
     本文选择常见的沉水植物——苦草(Vallisneria natans)和黑藻(Hydrillaverticilla)为实验材料,通过室内模拟试验,首先,研究了沉水植物对水体氮、磷和悬浮物含量的影响,探讨了沉水植物对沉积物中不同赋存形态磷的影响,其后研究了沉水植物对外源性P在生态系统中分配的影响,最后研究了水体营养盐和沉积物营养对沉水植物生长的影响,探讨沉水植物生长所需要的水质条件和沉积物条件。主要结果如下:
     (1)沉水植物对水质有一定的改善作用,能有效降低水体中氮、磷、叶绿素含量以及悬浮物浓度。水质改善的效果与外源负荷的强度以及沉水植物的种类有关。与对照组相比,在低营养盐负荷条件下,苦草组的水体总氮、总磷、叶绿素和悬浮物含量分别下降56.9%、39.1%、17.2%和20.5%;黑藻组的水体总氮、总磷、叶绿素和悬浮物含量分别下降82.4%、93.4%、94.2%和93.5%。在中营养盐负荷条件下,苦草处理的水体总氮、总磷、叶绿素和悬浮物含量分别下降37.1%、28.6%、38.0%和8.6%;黑藻处理的水体总氮、总磷、叶绿素和悬浮物含量分别下降73.2%、93.5%、96.6%和90.2%。在高营养负荷盐条件下的效果最差,苦草处理的水体总氮和叶绿素分别降低了9.7%和14.0%,总磷和悬浮物含量则分别上升了37.1%和1.4%。黑藻处理的水体总氮和叶绿素分别降低了24.8%和75.9%,总磷和悬浮物含量则分别上升了64.5%和5.1%。
     (2)存在外源营养负荷时,沉水植物的生长显著地降低了沉积物中TN、TP的含量,原因可能主要是通过根直接吸收沉积物中的磷作为营养。此外,沉水植物通过改变根区微环境影响磷在沉积物中的赋存形态,与对照相比,沉水植物使沉积物中不同赋存形态的磷均有不同程度的降低。
     (3)沉水植物对外源性P在水生态系统中的分配具有重要作用。在沉水植物生长旺盛的系统中,沉水植物可以很好地吸收外源性P,是系统中重要的营养库。而在没有沉水植物的或沉水植物生长差的系统中,系统中的浮游植物占优势,外源性P主要沉降于沉积物中,同时有很大部分滞留在水体并以颗粒态的形式存在。沉水植物对外源性P在系统中的分配的影响受到营养负荷强度的影响:在低营养负荷强度下,沉水植物生长良好,外源性P主要分配于沉水植物中。当营养负荷增强至一定程度时,沉水植物生长受到抑制,外源性P分配于植物中的比例下降,而分配于沉积物和水体浮游植物中的比例则相应上升。
     (4)水中营养盐含量的增加对沉水植物的生长具有抑制作用,这种抑制作用与外源营养负荷的强度及沉水植物的种类有关。苦草在低营养负荷条件下可以正常生长,在中营养条件下生长开始受到限制,其生物量只有低营养负荷的72.3%,在高营养负荷条件下则完全受到抑制。黑藻在各种营养负荷条件下,开始阶段皆能正常生长,适当的营养负荷还能促进其生长,但随着营养负荷的不断增强,生长逐步受到抑制。
     (5)沉积物营养盐对苦草形态特征、生物量积累及分配格局的具有影响明显。在营养盐较丰富的湖泥中,苦草的生物量、分株数量和匍匐茎总长度等指标显著大于粘土和沙土,也显著大于营养盐和有机质更高的河泥;沙土中生长的苦草根系纤细,根系直径显著小于其他三种基质类型上的苦草;河泥和沙土上生长的苦草叶绿素含量显著地低于湖泥和粘土上的苦草。由此可见,基质条件对苦草的生长和形态有较大的影响,苦草在一定程度上能够适应肥沃的基质条件,但当氮、磷、有机质含量过高时,苦草的生长受到抑制。
Submerged macrophytes are an important components in lake ecosystems,and have an important ecological function.The disappearance of submerged macrophytes would lead to deterioration of lake ecosystems.The restoration and maintaining of submerged vegetation play important roles in lake procection and restoration.The major factor causing disappearance of submerged macrophytes is eutrophication of water,especially the increase of nitrogen(N) and phosphorus(P) in water.It is important to study the interaction of submersed macrophytes and N、P of water environment in lakes.
     In this thesis,based on the experimental approach,effects of growth of submersed macrophytes Hydrilla verticilla and Vallisneria natans on dynamic change of the TN、TP and suspended solids in water body was studied firstly.And then the variation of chemical forms of phosphorous in sediments brought by the submersed macrophytes was analyzed.Thirdly,effect of submerged macrophytes on the allocation of external phosphorus in simulative aquatic ecosystems was studied. Lastly,the responses of submersed macrophytes to external nutrient source and of sediment type were investigated.The main results are summarized as following:
     (1) The results showed that the existing of submerged aquatic plant can improve the water quality obviously when receiving three different nutrient loadings(4 mg·N L~(-1) and 200μg·P L~(-1),1 mg·N L~(-1) and 50μg·P L~(-1),or 0.2 mg·N L~(-1),10μg·P L~(-1) every tow weeks).Effects on water quality differed depending on nutrient loadings and the submerged macrophytes species.Under the low nutrient loading,compared with CK, the concentration of TN,TP,Chl-a and SS in Vallisneria natans tanks were reduced by 56.9%,39.1%,17.2%and 20.5%at the end of the experiments.The concentration of TN,TP,Chl-a and SS in Hydrilla verticilla tanks were reduced by 82.4%,93.4%, 94.2%and 93.5%.Under the medium nutrient loading,compared with CK,the concentration of TN,TP,Chl-a and SS in Vallisneria natans tanks were reduced by 37.1%,28.6%,38.0%and 8.6%at the end of the experiments.The concentration of TN,TP,Chl-a and SS in Hydrilla verticilla tanks were reduced by 73.2%,93.5%, 96.6%and 90.2%.Under the high nutrient loading,compared with CK,the concentration of TN and Chl-a in Vallisneria natans tanks were reduced by 9.7%and 14.0%.The concentration of TN and Chl-a in the waterof Hydrilla verticilla tanks were reduced by 24.8%and 75.9%.
     (2) Submersed macrophytes could effectively decrease the content of total nitrogen(TN),total phosphorus(TP) and different chemical forms of phosphorus in the sediment,especially Vallisneria natans.The two submersed macrophytes can change the phosphorus in the sediment through shoot oxygenation and nutrition allocation or some other mechanisms.Though the mechanism is complicated,the submersed macrophytes really reduce the content of phosphorus to the different extend during their growing period.
     (3) Submerged macrophytes have an important role on the allocation of external phosphorus.In the aquatic ecosystems where submerged macrophytes grew well, submerged macrophytes took up lots of phosphorus.In such ecosystems,submerged macrophytes are a nutrient sink.In the other ecosystems where phytoplankton dominated,sediment were the main sink of external phosphorus,and lots of external phosphorus remained in the water as PP.Effects of submerged macrophytes on the allocation of phosphorus was influenced by the degree of phosphorus loading.When the nutrient loading was low,the phosphorus sunk on the submerged macrophytes mainly.Submerged macrophytes were limited with the increase of nutrient loading. And the exogenous phosphorus sunk on the sediment mostly.
     (4) The results suggested that nutrient loading could have a nagetive effect on the growth of submersed macrophytes,and such effect differs among different species. Vallisneria natans grew well when the nutrient loading was low.The growth of Vallisneria natans got limited under medium nutrient loading,the biomass of Vallisneria natans in medium nutrient loading is 72.3%of which in low nutrient loading.In the high nutrient loading,the growth of Vallisneria natans got most limited.In definite limit concentration,Hydrilla verticilla grew better with the increase of nutrient loading.However,when the nutrient loading was too high,which a nagetive effect on the growth of Hydrilla verticilla was also detected.When the experiment ended,the biomass of Hydrilla verticilla was 11.3 g,18.1 g and 8.9 g under low,medium and high nutrient loading.
     (5) To determine the effect of different sediments on the morphology,biomass accumulation and allocation of Vallisneria natans,plants were planted in four different sediments:lake sediment,bank sediment,sandy loam and river sediment. After growth of 7 weeks,plants were dried,separated into above and below ground parts and weighed.The results showed that among the test sediments,the biomass, ramet number and total stolon length of V.natans grown in the lake sediment was significantly higher than the plants grown in the sandy loam,bank sediment or river sediment.Compared with the plants grown in the other sediments,V.natans grown in sandy loam allocated more biomass to roots and had the highest r:s,0.48.But root diameter of V.natans grown in sandy loam was lowest.Chlorophyll content of V. natans grown in sandy loam and river sediment were significantly lower than the plants grown in the lake sediment and bank sediment.The results suggest that sediment type plays an important role in growth of this submerged macrophyte:to some extent,V.natans is able to grow normally under conditions of the fertile sediments,but the heavily eutrophic sediment as well as sterile sediment poses a negative effect on the growth of V.natans.
引文
1. Asaeda T, Nam L H, Hietz P, et al. Seasonal fluctuations in live and dead biomass of Phragmites australis as described by a growth and decomposition model: implications of duration of aerobic conditions for litter mineralization and sedimentation [J]. Aquatic Botany, 2002,73 (3): 223-239
    2. Barko J W, Gunnison D, Carpenter S R. Sediment Interactions with Submersed Macrophyte Growth and Community Dynamics [J]. Aquatic Botany, 1991,41(11): 41-65
    3. Barko J W, James W F. Effects of submerged aquatic macrophytes on nutrient dynamics, sedimentation, and resuspension. In: Jeppesen E, S(?)ndergaard M, Christoffersen K. (Eds.), The Structuring Role of Submerged Macrophytes in Lakes. Springer, New York, 1998, pp. 197-217
    4. Bayley S E, Prather C M. Do wetland lakes exhibit alternative stable states? Submersed aquatic vegetation and chlorophyll in western boreal shallow lakes [J}. Limnol. Oceanogr, 2003,48(6): 2335-2345
    5. Best E P H, De Vries D, Reins A. The macrophytes in the Loosdrecht Lakes: A story of their decline in the course of eutrophication [J].Verh.Internat.Verein.Limnol., 1984,22:868-875
    6. Blindow I. Decline of charophytes during eutrophication: comparison with angiosperms [J]. Freshwater Biology, 1992, 28: 9-14
    7. Blom G, van Duin E H S & Lijklema L. Sediment resuspension and light conditions in some shallow Dutch lakes [J]. Water Science Technology, 1994,30:243-252
    8. Brett M T & Goldman C R. A meta-analysis of the freshwater trophic cascade [J]. Proc. Natl Acad. Sci. USA, 1996,93: 7723-7726
    9. Cao T, Ni L Y, Xie P. Acute Biochemical Response of a Submersed Macrophyte, Potamogeton crispus L., to High Ammonium in an Aquarium Experiment [J]. Journal of Freshwater Ecology, 2004,19(2): 279-284
    10. Carpenter S R, Lodge D M. Effects of submersed macrophytes on ecosystem processes [J]. Aquatic Botany, 1986,26: 341-370
    11. Carpenter S R, Ludwig D & Brock W A. Management of eutrophication for lakes subject to potentially irreversible change [J]. Ecol. Appl., 1999, 9: 751-771
    12. Carpenter S R. Regime Shifts in Lake Ecosystems: Pattern and Variation. Volume 15 in the Excellence in Ecology Series [M]. Ecology Institute, Oldendorf/Luhe, Germany. 2003
    
    13. DECD (Organization for Economic Cooperation and Development). Eutrophication of Waters: Monitoring, Assessment, and Control [M]. OECD, Paris. 1982
    
    14. Duarte C M, Submerged aquatic vegetation in relation to different nutrient regimes [J]. Ophelia, 1995,41:87-112
    
    15. Gonzales Sagrario M, Jeppesen E, Goma J, et al. Does high nitrogen loading prevent clear-water conditions in shallow lakes at moderately high phosphorus concentrations [J]. Freshwater Biology, 2005, 50:27-41
    16. Horppila J, Nurminen L. Effects of submerged macrophytes on sediment resuspension and internal phosphorus loading in Lake Hiidenvesi (Southern Finland) [J]. Water Research, 2003, 37: 4468-4474
    17. Hosper S H. Biomanipulation, new perspectives for restoration of shallow, eutrophic lakes in The Netherlands [J]. Aquatic Ecology, 1989,23(1): 5-10
    18. Hrbacek J. Demonstration of the effect of the fish stock on the species composition of zooplankton and the intensity of the metabolism of the whole assemblage [J]. Verh Int Ver Theoret Angew Limnol 1961,14:192-5
    19. Irfanullah H M, Moss B. Factors influencing the return of submerged plants to a clear-water, shallow temperate lake [J]. Aquatic Botany, 2004, 80: 177 191
    20. Jackson L J. Macrophyte-dominated and turbid states of shallow lakes: evidence from Alberta lakes [J]. Ecosystems, 2003,6:213-223
    21. Jeppesen E, Jensen J P, Keistensen P, et al. Fish manipulation as a lake restoration tool in shallow, eutrophic, temperate Lake 2: threshold levels, long-term stability and conclusions [J]. Hydrobiologia, 1990,200/201: 219-228
    22. Jeppesen E, S(?)ndergaard M, Christoffersen K. The Structuring Role of Submerged Macrophytes in Lakes [M]. Springer, New York, 1998
    23. Jeppesen E, S(?)ndergaard M, Meerhoff M. Shallow lake restoration by nutrient loading reduction some recent findings and challenges ahead [J]. Hydrobiologia, 2007, 584(1): 239-252
    24. Johnson P T J and Chase J M. Parasites in the food web: linking amphibian malformations and aquatic eutrophication [J]. Ecology Letters, 2004,7:521-526
    25. Kim L H, Choi E, Stenstrom M K. Sediment characteristics, phosphorus types and phosphorus release rates between river and lake sediments [J]. Chemosphere, 2003, 50(11): 53-61
    26. K(?)rner S. Loss of submerged macrophytes in shallow lakes in North-Eastern Germany [J]. International Review of Hydrobiology, 2002,87:375-384
    27. Kutzbach J E, Bonan G, Foley J. Feedbacks between climate and grassland/soils in N. Africa during the Middle Holocene [J]. Nature, 1997,384:623-626
    28. Lau S S S, Lane S N. Nutrient and grazing factors in relation to phytoplankton level in a eutrophic shallow lake: the effect of low macrophyte abundance [J]. Water Research 2002,36 (14): 3593-3601
    29. Lauridsen T L, Peder J. Response of submerged macrophytes in Danish lakes to nutrient loading reductions and bio-manipulation [J]. Hydrobiologia, 2003,506:641-649
    30. Likens G E, Bartsch A F, Lauff G H, et al. Nutrients and Eutrophication, Science, 1971, 172 (3985): 873 - 874
    31. Maberly S C & Spence D H N. Photosynthesis and photorespiration in freshwater plants [J]. Journal of Ecology, 1983,71:705-724
    32. Madsen J D, Chambers P A, James W F, et al. The interaction between water movement, sediment dynamics and submersed macrophytes [J]. Hydrobiologia, 2001,444(11): 71-84
    33. Madsen T V, Sand-Jensen K. The interactive eiTects of light and inorganic carbon on aquatic plant growth [J]. Plant Cell and Environment, 1994,17: 955-962
    34. Marsden M W. Lake restoration by reducing external phosphorus loading: the influence of sediment phosphorus release [J]. Freshwater biology, 1989,21(22): 139-162
    35. Moss B. Further studies on the paleolimnology and changes in phosphorus budget of Barton Broad, Norfolk [J]. Freshwater Biology, 1980,10: 261-279
    36. Nlaberly S C. Diel, episodic and seasonal changes in pH and concentrations of inorganic carbon in a productive lake [J]. Freshwater Biology, 1996,35:579-598
    37. Ozimek T & Kowalczewski A. Long-term changes of the submerged macrophytes in eutrophic lake Mikolajskie (North Poland) [J]. Aquatic Botany, 1984,19:1-11
    38. Phillips G L. A mechanism to account for macrophyte decline in progressively eutrophicated freshwater [J]. Aquatic Botany, 1978,4: 103-126.
    39. Raven J A, Wollenweber B, Handley L L. A comparison of ammonium and nitrate as nitrogen sources for photolithotrophs [J]. The new Phytologist, 1992,121:19-32
    40. Readdy K R, Debusk T A. State-of-the art utilization of aquatic plants in water pollution control [J]. Wat Sic Tech, 1987,19(10): 61-79
    41. Riis T, Sand-Jensen K. Historical changes in species composition and richness accompanying perturbation and eutrophication of Danish lowland streams over 100 years [J]. Freshwater Biology, 2001,46(2): 269-280
    42. Sand-Jensen K, Riis T, Vestergaard O, et al. Macrophyte decline in Danish lakes and streams over the last 100 years [J]. Journal of Ecology, 2000, 88: 1030-1040
    43. Scheffer M. Ecology of Shallow Lakes [M]. Kluwer Academic Publishers, RIZA, Lelystad, The Netherlands, 1998.
    44. Scheffer M. Multiplicity of stable states in freshwater system [J]. Hydrobiologia, 1990, 200/201:475-487
    45. Sculthorpe C D. The Biology of Aquatic Vascular Plants [M]. Edward Arnold, London, 1967, pp. 610-631
    46. Shapiro J, Lamarra V, Lynch M. Biomanipulation: An ecosystem approach to lake restoration, p. 85-96. in Brezonik and Fox J L [eds.], Water quality management through biological control. Univ. Florida. 1975
    47. Smith K. A., Jackson D. R, Withers P. J. A. Nutrient losses by surface run-off following the application of organic manures to arable land [J]. Nitrogen. Environmental Pollution, 2001, 112:41-51
    48. Sondergaard M, Kristensen P, Jeppesen E. Phosphorus Release From Resuspended Sediment in the Shallow and Wind-Exposed Lake Arreso, Denmark [J]. Hydrobiologia, 1992, 228(11): 91-99
    49. Spence D H N, The zonation of plants in freshwater lakes [J]. Advance in Ecological Research. 1981, 12:37-125
    50. Strand J A, Weisner S E. Dynamics of submerged macrophyte populations in response to bio-manipulation [J]. Freshwater Biology, 2001,46: 1397-1408
    51. van Duin E H S, Blom G, Lijklema L, et al. Aspects of modelling sediment transport and light conditions in Lake Marken[J].Hydrobiologia,1992,235/236:167-176
    52.于 丹,种云宵,涂芒辉,等.中国水生高等植物受危种的研究[J].生物多样性,1998,6(1):13-21
    53.余国营,刘永定,丘昌强,等.滇池水生植被演替与水环境的关系[J].湖泊科学,2000,12(1):73-80
    54.倪乐意.大型水生植物[C]//刘建康.高级水生生物学[M].北京:科学出版社,1999
    55.倪乐意.武汉东湖水生植被结构和生物量现状及其长期变化[C]//刘建康主编.东湖生态学研究(二)[M].北京:科学出版社,1995.287-301
    56.刘建康.高级水生生物学[M].北京:科学出版社,1999
    57.刘正文.湖泊生态系统恢复与水质改善[J].中国水利,2006,17:30-33
    58.司友斌,王慎强,陈怀满.农田氮、磷的流失与小体富营养化[J].土壤,2000,32(4):188-193
    59.吴庆龙,王云飞.洱海生物群落历史演变分析[C]//白建坤,尚榆民,奎立新.大理洱海科学研究[M].北京:民族出版社,2003,43-49
    60.吴振斌,邱东如,贺 峰,等.水生植物对富营养化水体水质净化作用研究[J].武汉植物学研究,2001,19(4):299-303
    61.吴振斌,邱东茹.沉水植物重建对富营养化水体氮磷营养水平的影响[J].应用生态学报,2003,14(8):1351-1353
    62.夏天翔,李文朝,熊 飞.抚仙湖不同类型岸带沉水植物分布及水体氮磷特征.生态学杂志,2007,26(6):846-852
    63.彭映辉,简永兴,王建波,等.湖北省五大湖泊水生植物多样性的比较研究[J].水生生物学报,2004,28(5):464-471
    64.戴自福,沙 隽,李 斌,等.洱海水生维管束植物资源种群动态变化调查研究[C]//白建坤,尚榆民,奎立新.大理洱海科学研究[M].北京:民族出版社,2003:97-101.
    65.朱 斌.利用水生植物改善北京动物园水环境的技术研究[D].北京:北京师范大学,2002:1-51
    66.李 伟,钟 扬.水生植被研究的理论和方法[M].武汉:华中师范大学出版社,1992,237-277
    67.杨清心.东太湖水生植被的生态功能及调节机制[J].湖泊科学,1998,10(1):67-72
    68.杨赵平,张 雄,刘爱荣.滇池水生植被调查[J].西南林学院学报,2004,24(1):27-30
    69.栾会妮,黄福祥,姚维志.环境因子对穗状狐尾藻光合作用的影响[J].重庆水产,2005,71(2):31-37
    70.濮培民,王国祥,李正魁,等.健康水生态系统的退化及其修复--理论、技术及应用[J].湖泊科学,2001,13(3):193-203
    71.王学雷,刘兴土,吴宜进.洪湖水环境特征与湖泊湿地净化能力研究[J].武汉大学学报:理学版,2003,49(2):217-220.
    72.白峰青,郑丙辉,田自强.水生植物在水污染控制中的生态效应[J].环境科学与技术,2004,27(4):99-110
    73.种云霄,胡洪营,钱 易.大型水生植物在水污染治理中的应用研究进展[J].环境污染治理技术与设备,2003,4(2):36-40
    74.秦伯强,宋玉芝,高 光.附着生物在浅水富营养化湖泊藻-草型生态系统转化过程中的作用[J].中国科学(C辑),2006,36(3):283-288
    75.秦伯强.我国湖泊富营养化及其水环境安全[J].科学对社会的影响,2007,3:17-23
    76.秦伯强.长江中下游湖泊富营养化发生机制与控制途径初探[J].湖泊科学,2002,14(3):193-202.
    77.简永兴,王建波,何国庆,等.洞庭湖区三个湖泊水生植物多样性的比较研究[J].水生生物学报,2001,26:160-167.
    78.胡小贞,金相灿,杜宝汉,等.云南洱海沉水植被现状及其动态变化[J].环境科学研究,2005,18(1):1-4
    79.舒金华,黄文银,吴延根.中国湖泊营养类型的分类研究[J].1996,8(3):193-2000
    80.苏文华,张光飞,张云孙,等.5种沉水植物的光合特征[J].水生生物学报,2004,28(4):391-395
    81.许 航,陈焕壮,熊启权,等.水生植物塘脱氮除磷的效能及机理研究[J].哈尔滨建筑大学,1999,32(4):69-73
    82.许秋瑾,金相灿,颜昌宙.中国湖泊水生植被退化现状与对策[J].生态环境,2006,15(5):1126-1130
    83.赵 晟,吴学灿,夏 峰.滇池水生植物研究概述[J].云南环境科学,1999,18(3):4-8
    84.郭长城,王国祥,喻国华.利用水生植物净化水体中的悬浮泥沙[J].环境科学,2006,24(6):31-34
    85.金相灿,屠清瑛.湖泊富营养化调查规范[M].北京:中国环境科学出版社,1990
    86.金相灿.中国湖泊环境(第一册)[M].北京:海洋出版社,1995.1-2
    87.颜素珠.中国高等水生植物图说[M].北京:科学出版社,1983
    88.黄文钰,吴延根,舒金华.中国主要湖泊水库的水环境问题与防治建议[J].湖泊科学,1998,10(3):83-90
    1. Allnson G, Stagnitti F, Colville S. Gowth of floating aquatic macrphytes in alkalne industrial wastewaters [J]. J Environ Eng, 2000,12:1103-1107
    2. Arnlg M. Aquatic macrophytes as tools for lake management [J]. Hydrobiologia, 1999, 395/396:181-190
    3. Blindow I, Andersson G, Haregy A, et al. Long term pattern of alternative stable states in two shallow eutrophic lakes [J]. Freshw Biol, 1993,30 (1): 159-167
    4. Carpenter S R, Lodge D M. Effects of submersed macrophytes on ecosystem processes [J]. Aquatic Botany, 1986, 26: 341-370
    5. Hofstra D E, Clayton J, Green J D, Auger M. Competitive performance of Hydrilla verticillata in New Zealand [J]. Aquatic Botany, 1999,63: 305 - 324
    6. Horppila J & Nurminen L. Effects of submerged macrophytes on sediment resuspension and internal phosphorus loading in Lake Hiidenvesi (southern Finland) [J]. Water Research, 2003, 37:4468-4474
    7. James W F, Barko J W. Macrophyte influences on the zonation of sediment accretion and composition in a north-temperate lake [J]. Archiv fur Hydrobiologie, 1990,20:129-142
    8. Joseph B, Hughes J. Transformtion TNT by aqutic plants and plant tissue cultures [J]. J Envion Sci Technol, 1997,31 (1): 266-271
    9. Moss B. Engineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components [J]. Hydrobiologia, 1990,200/201: 367 - 377
    10. Petticrew E L & Kalff J. Water flow and clay retention in submerged macrophyte beds [J]. Canadian Journal of Fisheries and Aquatic Sciences, 1992,49:2483-2489
    11. Pilon-Smits E A H, de Souza M P, Hong G. Voatilization and accumulation by twenty aquatic plant species [J]. J Environ Qual, 1999,128(3): 1011-1018
    12. Pokorny J, Kvet J, Ondok J P. Functioning of the plant component in densely stocked fish ponds [J]. J Bull Ecol, 1990, 21 (3): 44-48
    13. Scheffer M, Van den Berg M, Breukelaar A. Vegetated area with clear water in turbid shallow lakes [J]. J Aqua Bot, 1994,49: 193-196
    14.Scheffer M.Ecology of Shallow Lakes[M].London:Chapmanand Hall,1998:35
    15.Timms R M & Moss B.Prevention of growth of potentially dense phytoplankton populations by zooplankton grazing,in the presence of zooplanktivorous fish in a shallow wetland ecosystem[J].Limnology and Oceanography,1984,29:472-486
    16.Van Donk E,Gulati R D,Iedema A J T.et al.Macrophyte-related shifts in the nitrogen and phosphorus contents of the different trophic levels in a biomanipulated shallow lake[J].Hydrobiologia,1993,251:19-26
    17.Van T K,Wheeler G S,Center T D.Competition between Hydrilla verticillata and Vallisneria americana as influenced by soil fertility[J].Aquatic Botany,1999,62:225 - 233
    18.白秀玲,谷孝鸿,张 钰等.两种常见沉水植物与藻的相互作用[J].生态环境,2006,15(3):465-468
    19.包先明,丁卓丽,祝朋飞,等.不同沉水植物在太湖污染底泥上适应性生长过程及水体氮磷的响应[J].土壤通报,2007,38(6):1191-1195
    20.陈汉春.水库水体富营养化及其控制对策[J].今日科技,2004,(3):9-10
    21.陈学年,郭玉娟.广东肇庆星湖仙女湖区水生植被的演变[J].湖泊科学,2005,17(4):334-339
    22.郭长城,江亭桂,潘国权等.静态条件下水生植物对悬浮颗粒物沉积的影响[J].人民长江,2007,38(1):122-123
    23.郭长城,王国祥,喻国华.利用水生植物净化水体中的悬浮泥沙[J].环境工程,2006,24(6):31-34
    24.何文珊,陆健健.高浓度悬沙对长江河口水域初级生产力的影响[J].中国生态农业学报,2001,9(4):24-27
    25.黄宜凯,濮培民,胡春华,等.湖泊水体中悬浮物降解的实验研究[J].水资源保护,1998,(4)27-31
    26.金相灿,屠清瑛.湖泊富营养化调查规范[M].北京:中国环境科学出版社,1990
    27.金相灿.湖泊富营养化控制和管理技术[M].北京:化学工业出版社,2001,121
    28.李 伟,钟 扬.水生植被研究的理论和方法[M].武汉:华中师范大学出版社,1992,237-277
    29.李锋民,胡洪营.生物化感作用在水处理中的应用[J].中国给水排水,2003(9):38-40
    30.李文朝.浅型富营养湖泊的生态恢复--五里湖水生植被重建实验[J].湖泊科学, 1996,8(增刊):1-10
    31.刘正文.湖泊生态系统恢复与水质改善[J].中国水利,2006,17:30-33
    32.马井泉,周怀东,董哲仁.我国应用生态技术修复富营养化湖泊的研究进展[J].中国水利水电科学研究院学报,2005,3(3):209-215
    33.门玉洁,胡洪营,李锋民.芦苇化感组分对斜生栅藻Scenedesmus obliquus生长特性的影响[J].生态环境,2006,15(5):925-929
    34.乔建荣,任长久,陈艳卿等.常见沉水植物对草海水体总磷去除速率的研究[J].北京大学学报(自然科学版),1996,32(6):785-789
    35.秦伯强,湖泊生态恢复的基本原理与实现[J].生态学报,2007,27(11):4848-4858
    36.宋海亮,吕锡武,稻森悠平.水生植物床预处理富营养化水源水中试研究[J].给水排水,2004,30(8):8-12
    37.苏胜齐,姚维志.沉水植物与环境关系评述[J].农业环境保护,2002(6):570-573
    38.童昌华,杨肖娥,濮培民.水生植物控制湖泊底泥营养盐释放的效果与机理[J].农业环境科学学报,2003,22(6):673-676
    39.王国祥,濮培民,张圣照,等.人工复合生态系统对太湖局部水域水质的净化作用[J].中国环境科学,1998,18(5):410-414
    40.文 明,盛 哲,林亲众.蛋白质新资源-黑藻的研究Ⅰ.黑藻生物学特性及营养成分的分析[J].湖南农学院学报,1994,20(5):457-463
    41.吴振斌,邱东茹,贺 峰等.水生植物对富营养化水质净化作用研究[J].武汉植物学研究,2001,19(4):99-303
    42.鲜啓鸣,陈海东,邹惠仙,等.淡水水生植物化感作用研究进展[J].生态学杂志,2005,24(6):664-669
    43.鲜啟鸣,陈海东,邹惠仙,等.沉水植物中挥发性物质对铜绿微囊藻的化感作用[J].生态学报,2006,26(11):3549-3554
    44.谢贻发,胡耀辉,刘正文,等.沉积物再悬浮对沉水植物生长的影响研究[J].环境科学学报,2007,27(1):18-22
    45.徐德兰,刘正文,雷泽湘,等.大型水生植物对湖泊生态修复的作用机制研究进展[J].长江大学学报(自然科学版),2005,2(2):
    46.许经伟,李 伟,刘贵华等.两种沉水植物黑藻和伊乐藻的种间竞争[J].植物生态学报,2007,31(1):83-92
    47.颜素珠.中国水生高等植物图说[M].北京:科学出版社,1983
    48.杨清心.富营养条件下沉水植物与浮游藻类相互抑制关系的研究[J].湖泊科学,1996,8(增刊):17-24
    49.由文辉,刘淑媛,钱晓燕.水生经济植物净化受污染水体的研究[J].华东师范大学学报(自然科学版),2001,(1):99-102
    50.张 智,林 艳,梁 健.水体富营养化及其治理措施[J].重庆环境科学,2002,24(3):52-54
    51.赵佐成,孙祥钟,王徽勤.华南地区淡水水鳖科植物的生态特征和群落学观察[J].生态学报,1984,4(4):354-363
    52.种云霄,胡洪营,钱 易.大型水生植物在水污染治理中的应用研究进展[J].环境污染治理技术与设备,2003,4(2):36-40
    1. ArnlgMelzer. Aquatic macrophytes as tools for lake management [J]. Eydrohiologia, 1999, 395/396; 181-190
    2. Chambers P A, Prepas E E, Bothwell M L and Hamilton H R. Roots versus shoots in nutrient uptake by aquatic macrophytes in flowing waters [J]. Canadian Journal of Fisheries and Aquatic Sciences, 1989,46:435-439
    3. David L C. The role of phosphorus in the eutrophication of receiving watera review [J]. Journal of Environmental Qaul, 1998,27:261-266
    4. Gonsiorczyk T, Casper P and Koschel R. Mechanisms of phosphorus release from the bottom sediment of the oligotrophic Lake Stechlin: Importance of the permanently oxic sediment surface [J]. Arch. Hydrobiol., 2001,151:203-219
    5. Hupfer M, Gachter R and Giovanoli R. Transformation of phosphorus species in settling seston and during early sediment diagenesis [J]. Aquat. Sci. 1995, 57: 305-324
    6. Kaiserli A, Voutsa D and Samara C. Phosphorus fractionation in lake sediments Lakes Volvi and Koronia, N. Greece [J]. Chemosphere, 2002,46:1147-1155
    7. Morin J, Morse J W. Ammonium release from resuspended sediments in the Laguna Madre estuary [J]. Marine Chemistry, 1999,97-110
    8. Perkins RG and Underwood G J C. The potential for phosphorus release across the sediment-water interface in eutrophic reservoir dosed with ferric sulphate [J]. Water research, 2001, 35: 1399-1406
    9. Pettersson K, Bostrom B and Jacobsen O S. Phosphorus in sediment-speciation and analysis [J]. Hydrobiologia, 1988, 170: 91-101
    10. Psenner R, Puesko R and Sager M. Die Fractionierung Organischer and Anorganischer Phosphorverbindungen von Sedimenten Versuch einer Definition Okologisch Wichtiger Fractionen [J]. Arch. Hydrobiol. 1984, 70: 111-155
    11. Read D J, Koucheki H K and Hodgsom J. Vesicular-arbuscular mycorrhiza in native vegetation system [J]. New Phytolotist, 1976, 77: 641-653
    12. Sundby B, Gobeil C, Silberberg N. The phosphorus cycle in coastal marine sediments [J]. Limnology and Oceanography,1992,37(6):1129-1145
    13.Vincent,W J.Nutrient partitioning in and implications for the upper Canning River,Western Australia,cyanobactedal blooms using salinity[J].Ecological Engineering.2001,16:359-371
    14.Wigand C,Stevenson C J and Cornwell J C.Effects of different submersed macrophytes on sediment biogeochemistry[J].Aqatic Botany,1997,56:233-244
    15.Zhou Q X,Gibson C E and Zhu Y M.Evaluation of phophorus bioavailability in sediments of three contrasting lakes in China and the UK[J].Chemosphere,2001,42:221-225
    16.包先明,陈开宁,范成新.种植沉水植物对富营养化水体沉积物中磷形态的影响[J].土壤通报,2006,37(4):710-715
    17.范成新.塥湖沉积物理化特征及磷释放模拟[J]1 湖泊科学,1995,7(4):341-3481
    18.范国兰,李 伟.穗花狐尾藻(Myriophyllum spicatum L.)在不同程度富营养化水体中的营养积累特点及营养分配对策[J].武汉植物学研究,2005,23(3):267-271
    19.胡 俊,丰民义,吴永红,等.沉水植物对沉积物中磷赋存形态影响的初步研究[J].环境化学,2006,25(1):28-31
    20.金相灿,王圣瑞,姜 霞.湖泊水-沉积物界面三相结构模式的初步研究[J].环境科学研究,2004,17(Z1):1-5
    21.靳宝锋,郭友好.微齿眼子菜繁殖学特性的初步研究[J].水生生物学报,2001,25(5):439-447
    22.刘兵钦,王万贤,宋春雷,等.范草对湖泊沉积物磷状态的影响[J].武汉植物学研究,2004,22(5):394-399
    23.彭近新,陈慧君.水质富营养化与防治[M].北京:中国环境科学出版社,1988,45-621
    24.钱君龙,张连荣,乐美麟.过硫酸盐消化法测定土壤全氮全磷[J].土壤,1990,22(5):258-262
    25.宋 福,陈艳卿,乔建荣,等.常见沉水植物对草海水体(含底泥)总氮去除速率的研究[J].环境科学研究,1997,10(4):47-50
    26.汤鸿霄,环境科学中的化学问题环境水质学中的几个化学前沿问题.[J].化学进展,2000,12(4):415-422
    27.童昌华,杨肖娥,濮培民.水生植物控制湖泊底泥营养盐释放的效果与机理[J].农业 环境科学学报,2003,22(6):673-676
    28.吴振斌,邱东茹,贺 锋,等.沉水植物重建对富营养化水体氮磷营养水平的影响[J].应用生态学报,2003,14(8):1351-1353.
    29.熊秉红,李 伟.我国苦草属(Vallisneria L.)植物的生态研究[J].武汉植物学研究,2000,18(6):500-508
    30.周小宁,王圣瑞,金相灿.沉水植物黑藻对沉积物有机、无机磷形态及潜在可交换性磷的影响[J].环境科学,2006,27(12):2421-2425
    1. Batish D R, Singh H P, Kohli R K et al. Allelopathic effects of parthenin against two weedy species, Avena fatua and Bidens pilosa [J]. Envir Exper Bot, 2002,47:149-155
    2. Best E P H. Effects of nitrogen on the growth and nitrogenous compounds of Ceratophyllum demersum [J]. Aquatic Botany, 1980, 8:197 -206
    3. Bulthuis D A, Axelrad D M, Mickelson M J. Growth of the seagrass Heterozostera tasmanica limited by nitrogen in Port Philip Bay [J]. Marf Ecol Prog Ser, 1992,89:269-275
    4. Chamber P A, Kalff J. Light and nutrients in the control of aquatic plant community structure I. in situ experiments [J]. Journal of Ecology, 1987,75: 611-619
    5. Chamber P A. Light and nutrients in the control of aquatic plant community structure II. in situ observations [J]. Journal of Ecology, 1987,75: 621-628
    6. Duare C M. Seagrass nutrient content [J]. Mar Ecol Prog Ser, 1990,67:201-207
    7. Forsberg C. Nitrogen as a growth factor in fresh water [A].//Conference on Nitrogen as a Water Pollutant [C]. Copenhagen, 1975,1-20
    
    8. Hansson L A, Annadotter H, Bergman E, et al. Biomanipulation as an application of food-chain theory: constraints, synthesis, and recommendations for temperate lakes [J]. Ecosystems, 1998,1:558-574
    9. Harwell M C, Havens K E. Experimental studies on the recovery potential of submerged aquatic vegetation after flooding and desiccation in a large subtropical lake [J]. Aquatic Botany, 2003,77:135-151
    10. Havens K E, East T L, Rodusky A J, et al. Littoral periphyton responses to nitrogen and phosphorus: An experimental study in a subtropical lake [J]. Aquatic Botany, 1999, 63: 267-90
    11. Havens K E, Sharfstein B, Brady M A, et al. Recovery of submerged plants from high water stress in a large subtropical lake in Florida, USA [J]. Aquatic Botany, 2004, 78: 67-82
    12. Horppila J & Nurminen L. Effects of submerged macrophytes on sediment resuspension and internal phosphorus loading in Lake Hiidenvesi (southern Finland) [J]. Water Research, 2003, 37:4468-4474
    13. Irfanullah H M, Moss B. Factors influencing the return of submerged plants to a clear-water, shallow temperate lake [J]. Aquatic Botany, 2004, 80:177-191
    14. Irfanullah H M. Factors influencing the return of submerged plants to a clear-water, shallow temperate lake [J]. Aquatic Botany, 2004, 80:177-191
    15. Jones C, Walti K, Adams M S. Phytoplankton as a factor in the decline of the submerged macrophyte Myriophyllum spicatum .In Lake Wingra, Wisconsin, U.S.A [J]. Hydrobiologia, 1983,107:213-219
    16. Jones J I, Young J O, Eaton J W, et al. The influence of nutrient loading dissolved inorganic carbon and higher tropic levels on the interaction between submerged plants and periphyton [J]. Journal of Ecology, 2002,90:12-24
    17. Jupp B P, Spence D H N. Limitations on macrophytes in a eutrophic lake, Loch Leven I. Effects of phytoplankton [J]. J Ecol, 1977,6S: 175-186
    18. Kim M A, Richardson J S. Effects of light and nutrients on grazer-periphyton interactions// Darling LM, eds. Proceedings of Biology and Management of Species and Habitats at Risk [M]. Kamloops, B C: 1999,497-502
    19. Leu E, Krieger-Liszkay A, Goussias C, et al. Polyphenolic allelochemicals from the aquatic angiosperm Myriophyllum spicatum L.inhibit photosystem II [J]. Plant Physiol, 2002, 130: 2011 -2018
    20. Liboriussen L, Jeppesen E. Temporal dynamics in epipelic, pelagic and epiphytic algal production in a clear and a turbid shallow lake [J]. Freshwater Biology, 2003,48(3):418-431
    21. Liboriussen L. Production, regulation and ecophysiology of periphyton in shallow freshwater lakes. PhD thesis. National Environmental Research Institute. Denmark, 2003
    22. Mantai K E and Newton M E. Root growth of Myriophyllum: sediment or lake water as the source of nitrogen and phosphorus [J]. Ecology, 1978, 59:1075-1080
    23. Mulligan H F, Baranowski A, Johnson R. Nitrogen and phosphorus fertilization of aquatic vascular plants and algae in replicated ponds I . Initial response to fertilization [J]. Hydrobiologia, 1976, 48: 109-116
    24. Ozimek T, van Donk E, Gulati R D. Growth and nutrient uptake by two species of Elodea in experimental conditions and their role in nutrient accumulation in a macrophyte dominant lake [J]. Hydrobiologia, 1993, 251:13-18
    25. Perrow M R , Meijer M L , Dawidowicz P, et al. Biomanipulation in shallow lakes: state of the art [J]. Hydrobiologia, 1997,342/343:355-365
    26. Roberts E, Kroker J, Korner S, et al. The role of periphyton during the re-colonization of a shallow lake with submerged macrophytes [J]. Hydrobiologia, 2003,506-509:525-530
    27. Rooney N, Kalff J. Inter-annual variation in submerged macrophyte community biomass and distribution: the influence of temperature and lake morphometry [J]. Aquatic Botany, 2000, 68:321-335
    
    28. Santamaria L, Hootsmans M J M. The effect of temperature on the photosynthesis growth and reproduction of a Mediterranean submerged macrophyte, Ruppia drepanensis [J]. Aquatic botany, 1998,60:169-188
    29. Scheffer M, Hosper S H, Meijer M L, et al. Alternative equilibria in shallow lakes [J]. Trends in Ecology and Evolution, 1993, 8:275-279
    30. Scheffer M. Ecology of shallow lakes [M]. London: Chapman & Hall. 1998,357
    31. Spence D H N. Factors controlling the distribution of freshwater macrophytes with particular reference to the lochs of Scotland [J]. J Ecol, 1967,55: 147-170
    32. Timms R M & Moss B. Prevention of growth of potentially dense phytoplankton populations by zooplankton grazing, in the presence of zooplanktivorous fish in a shallow wetland ecosystem [J]. Limnology and Oceanography, 1984,29:472-486
    33. Vadeboncoeur Y, Lodge D M, Carpenter S R. Whole-lake fertilization effects on distribution of primary production between benthic and pelagic habitats [J]. Ecology, 2001, 82(4): 1065-1077
    34. Van Donk E, Gulati R D, Iedema A J T. et al. Macrophyte-related shifts in the nitrogen and phosphorus contents of the different trophic levels in a biomanipulated shallow lake [J]. Hydrobiologia, 1993,251: 19-26
    35. Verhoeven J T A. The ecology of Ruppia-dominated communites in Western Europe. III. Aspects of production, consumption and decompositon [J]. Aquat Bot, 1980, 8: 209-253
    36. Vermaat J E. Periphyton removal by freshwater micrograzers. In: van Vierssen et al. eds. Lake Veluwe. Amacrophyte-dominated system under eutrophication stress [J]. Dordrecht: Kluwer Academic Publishers, 1994: 213-249
    37. Weston L A, Nimbal C I, Jeadet P. Allelopathic potential of grain sorghum (Sorghum bicolour (L.) Moench) and related species. In: Inder K, Dakshini M M, Foy C L Eds. Princ Pract Plant Ecol:Allellochimical Interactions[M].Boca Raton:CRC Press,1999:467-477
    38.Yin L Y,Huang J Q,Li D H,et al.Microcystin-RR uptake and its effects on the growth of submerged macrophyte Vallisneria natans(lour.) hara[J].Environmental Toxicology,2005,20(3):308-313
    39.白秀玲,谷孝鸿,张 钰,等.两种常见沉水植物与藻的相互作用[J].生态环境,2006,15(3):465-468
    40.曹 特,倪乐意.金鱼藻抗氧化酶对水体无机氮升高的响应[J].水生生物学报,2004,28(3):299-303
    41.陈开宁,李文朝,吴庆龙,等.滇池蓝藻对沉水植物生长的影响[J].湖泊科学,2003,15(4):364-368
    42.范国兰,李 伟.穗花狐尾藻(Myriophyllum spicatum L.)在不同程度富营养化水体中的营养积累特点及营养分配对策[J].武汉植物学研究,2005,23(3):267-271
    43.古滨河.美国Apopka湖的富营养化及其生态恢复[J].湖泊科学,2005,17(1):1-8
    44.郭长城,江亭桂,潘国权等.静态条件下水生植物对悬浮颗粒物沉积的影响[J].人民长江,2007,38(1):122-123
    45.黄 亮,吴 莹,张 经,等.长江中游若干湖泊水生植物体内C、N、P及δ13C分布[J].地球学报,2003,24(6):515-518
    46.黄贤智,许金钩,蔡 挺.同步荧光分析法同时测定叶绿素a和叶绿素b[J].高等学校化学学报,1987,8(5):418-420
    47.金相灿,屠清瑛.湖泊富营养化调查规范(第二版)[M].北京:中国环境科学出版社,1990
    48.李敦海,李根保,王高鸿,等.水华蓝藻生物质对沉水植物五刺金鱼藻生长的影响[J].水生生物学报,2007,31(5):689-692
    49.李文朝.浅型富营养湖泊的生态恢复[J].湖泊科学,1996,8:1-10
    50.刘春光,邱金泉,王 雯,等.富营养化湖泊治理中的生物操纵理论[J].农业环境科学学报,2004,23(1):198-201
    51.马 凯,蔡庆华,谢志才,等.沉水植物分布格局对湖泊水环境N、P因子影响[J].水生生物学报,2003,27(3):232-237
    52.秦伯强,宋玉芝,高 光.附着生物在浅水富营养化湖藻-草型生态系统转化过程中的作用.中国科学,2006,36(3):283-288
    53.任 南,严国安,马剑敏,等.环境因子对东湖几种沉水植物生理影响的研究[J].武汉大学学报:自然科学版,1996,42(2):213-217
    54.宋玉芝,秦伯强,高 光.氮及氮磷比对附着藻类及浮游藻类的影响[J].湖泊科学,2007a,19(2):125-130
    55.宋玉芝,秦伯强,高 光.附着生物对太湖沉水植物影响的初步研究[J].应用生态学报,2007b,18(4):928-932.
    56.万志刚,沈颂东,顾福根,等.几种水生维管束植物对水中氮、磷吸收率的比较[J].淡水渔业,2004,34(5):6-8
    57.王 斌,李 伟.不同N、P浓度条件下竹叶眼子菜的生理反应[J].生态学报,2002,22(10):1616-1621
    58.王 珺,顾宇飞,朱增银,等.不同营养状态下金鱼藻的生理响应[J].应用生态学报,2005,16(2):337-340.
    59.吴爱平,吴世凯,倪乐意.长江中游浅水湖泊水生植物氮磷含量与水柱营养的关系[J].水生生物学报,2005,29(4):406-412
    60.吴振斌,邱东茹,贺 锋,等.沉水植物重建对富营养水体氮磷营养水平的影响[J].应用生态学报,2003,14(8):1351-1353
    61.颜昌宙,曾阿妍,金相灿,等.不同浓度氨氮对轮叶黑藻的生理影响[J].生态学报,2007,27(3):1050-1055
    62.杨清心.富营养水体中沉水植物与浮游藻类相互竞争的研究[J].湖泊科学,1996,8(增刊):17-24
    63.叶 春,邹国燕,付子轼,等.总氮浓度对3种沉水植物生长的影响[J].环境科学学报,2007,27(5):739-746
    64.尹黎燕,黄家权,李敦海,等.微囊藻毒素对沉水植物苦草生长发育的影响.水生生物学报,2004,28(2):147-150
    65.张圣照,王国祥,濮培民.太湖藻型富营养化对水生高等植物的影响及植被的恢复[J].植物资源与环境,1998,7(4):52-57
    66.张志良,瞿伟菁.植物生理学实验指导[M].北京:高等教育出版社,2003
    67.章宗涉.水生高等植物-浮游植物关系和湖泊营养状态[J].湖泊科学,1998,10(4):83-86
    68.种云霄,胡洪营,钱 易.无机氮化合物及pH值对紫背浮萍生长的影响[J].中国环境科学,2003,23(4):417-421
    1. Barko J W & James W F. Effects of submerged aquatic macroes on nutrient dynamics, sedimentation and resuspension. In: Jeppesen E, S(?)ndergaard M, S(?)ndergaard M & Christoffersen K (eds), The Structuring Role of Submerged Macrophytes in Lakes. Springer, NewYork, 1998, p 197-214
    2. Barko J W, Gunnison D & Carpenter S R. Sediment interactions with submersed macrophyte growth and community dynamics [J]. Aquatic Botany, 1991,41:41-65
    3. Bayley S E, Prather C M. Do wetland lakes exhibit alternative stable states? Submersed aquatic vegetation and chlorophyll in western boreal shallow lakes [J]. Limnol. Oceanogr, 2003, 48(6), 2335-2345
    4. Carpenter S R & Lodge D M. Effects of submersed macrophytes on ecosystem processes [J]. Aquatic Botany, 1986,26: 341-370
    5. Chambers P A, Prepas E E, Bothwell M L, et al. Roots versus shoots in nutrient uptake by aquatic macrophytes in flowing waters [J]. Can. J. Fish. Aquat. Sci., 1989,46:435-439
    6. David L C. The role of phosphorus in the eutrophication of receiving water:a review [J]. Journal of Environmental Qaul, 1998,27:261-266
    7. Gessner M O. Breakdown and nutrient dynamics of submerged Phragmites shoots in the littoral zone of a temperate hardwater lake [J]. Aquatic Botany, 2000,66(1):9-20
    8. Gumbricht T, Nutrient removal processes in freshwater submersed macrophyte systems [J]. Ecological Engineering, 1993.2:1-30
    9. Hosper S H. Biomanipulation: new perspective for restoring shallow eutrophic lakes in the Netherlands [J]. Hydrobiol Bult. 1989,5-11.
    10. Hutchinson G E. A Treatise on limnology (Vol. III) [A]. In: Edmonson Y H, eds. Limnological Botany [C]. New York: John Wiley & Sons, Inc. 1975
    11. Irfanullah H M &Moss B. Factors influencing the return of submerged plants to a clear-water, shallow temperate lake [J]. Aquatic Botany, 2004, 80: 177-191
    12. Kairesalo T, Matilainen T. Phosphorus fluctuation in water and deposition emergent macrophyte stand [J]. Hydrobiologia, 1994,275/276: 285-292
    13. Makela S, Huitu E &Arvola L. Spatial patterns in aquatic vegetation composition and environmental covariates along chains of lakes in the Kokemaenjoki watershed(S.Finland)[J].Aquatic Botany,2004,80:253-269
    14.Marion L,Paillisson J M.A balance assessment of the contribution of floating-leaved macrophytes in nutrient stocks in an eutrophic macrophyte-dominated lake[J].Aquatic Botany,2003,75:249-260
    15.Qiu D R,Wu Z B,Liu B Y,et al.The restoration of aquatic macrophytes for improving water quality in a hypertrophic shallow lake in Hubei Province,China[J].Ecological Engineering,2001,18:147-156
    16.S(?)ndergaard M,Bruun L,Lauridsen T,et al.The impact of grazing waterfowl on submerged macrophytes:in situ experiments in a shallow eutrophic[J].Aquatic Botany,1996,53:73-84
    17.黄 亚,傅以钢,赵建夫.富营养化水体水生植物修复机理的研究进展[J].农业环境科学学报,2005,24(增刊):379-383
    18.刘健康.高级水生生物学[M].北京:科学出版社,1999.
    19.乔建荣,任长久,陈艳卿等.常见沉水植物对草海水体总磷去除速率的研究[J].北京大学学报(自然科学版),1996,32(6):785-789
    20.吴爱平,吴世凯,倪乐意.长江中游浅水湖泊水生植物氮磷含量与水柱营养的关系[J].水生生物学报.2005,29(4):406-412
    21.吴玉树,余国莹.根生沉水植物菹草对滇池水体的净化作用[J].环境科学学报.1991,11(4):411-416
    22.吴振斌,邱东茹,贺 锋等.沉水植物重建对富营养水体氮磷营养水平的影响[J].应用生态学报,2003,14(8):1351-1353
    23.种云霄,胡洪营,钱 易.大型水生植物在水污染治理中的应用研究进展[J].环境污染治理技术与设备,2003,4(2):36-40
    1. Andersen F O, Jensen H S. Regeneration of inorganic phosphorus and nitrogen from decomposition of seston in a freshwater sediment [J]. Hydrobiologia, 1992, 228 (1): 71- 81
    2. Barko J W, Gunnison D G, Carpenter S R. Sediment interactions with submerged macrophytes growth and community dynamics [J]. Aquatic Botany, 1991,41:41-65
    3. Barko J W, Smart R M. Effects of Organic Matter Additions to Sediment on the Growth of Aquatic Plants [J]. Journal of Ecology, 1983,71:161-175
    4. Chen R L, Barko J W. Effects of Freshwater Macrophytes on Sediment Chemistry [J]. Journal of Freshwater Ecology, 1988,4: 33
    5. Grise D, Titus J E, Wagner D J. Environmental pH influences growth and tissue chemistry of the submersed macrophyte Vallisneria americana [J]. Canadian Journal of Botany, 1986, 64: 306-310
    6. Jaynes M L, Carpenter S R. Effects of vascular and nonscular macrophytes on sediment redox and solute dynamics [J]. Ecology, 1986, 67: 875-882
    7. Linkohr B I, Williamson L C, Fitter A H, et al. Nitrogen and phosphorus availability and distribution have different effects on root system architecture of Arabidopsis [J]. Plant Journal, 2002,29: 51-760.
    8. Rattray M R, Howad W, Brown J M A. Sediment and water as sources of nitrogen and phosphorus for submerged rooted aquatic macrophytes[J]. Aquatic Botany, 1991,40: 225-237.
    9. Sanderson P L, Armstrong W. Phytotoxins in periodically waterlogged forest soil [J]. Soil Science Journal, 1980, 31:643 -653
    10. Tarn N F Y, Wong Y S. Spatial variation of heavy metals in surface sediments of Hong Kong mangrove swamps [J]. J. Environmental Pollution, 2000,110: 195-205
    11. Van Wijk C, de Groot C J, Grillas P. The effect of anaerobic sediment on the growth of Potamogeton pectinatus L., the role of organic matter, sulphide and ferrous iron [J]. Aquatic Botany,1992,44:31-49
    12.Xie Y H,An S Q,Yao X,et al.Short-time response in root morphology of Vallisneria natans to sediment type and water-column nutrient[J].Aquatic Botany,2005,81:85-96
    13.Xie Y,Yu D.The significance of lateral roots in phosphorus(P) acquisition of water hyacinth(Eichhornia crassipes)[J].Aquatic Botany,2003,75:311-321.
    14.陈开宁,陈小峰,陈伟民等.不同基质对四种沉水植物生长的影响[J].应用生态学报,2006,17(8):1511-1516
    15.陈开宁,兰策介,史龙新.苦草繁殖生态学研究[J].植物生态学报,2006,30(3):487-495
    16.金 刚.草鱼摄食后苦草恢复生长的初步观察[C].见:梁颜龄,刘伙泉主编.草型湖泊资源、环境与渔业生态学管理[M].北京:科学出版社,1995,227-235
    17.金相灿,屠清瑛.湖泊富营养化调查规范(第二版)[M].北京:中国环境科学出版社.1990,160-164.
    18.雷泽湘,谢贻发,刘正文.太湖梅梁湾不同沉积物对3种沉水植物生长的影响[J].华中师范大学学报(自然科学版),2006:40(2):260-264.
    19.李文朝.五里湖底质条件与水生高等植物的适应性研究[J].湖泊科学,1996,8(增刊):30-36
    20.李亚东,崔艳秋.武汉东湖苦草种子和块茎发芽实验[J].水生生物学报,2000,24(3):298-300
    21.刘秀丽,宋 平,孙成明.植物叶绿素测定方法的再探讨[J].江苏农业研究,1999,20(3):46-47
    22.倪乐意.富营养水体中肥沃底质对沉水植物生长的胁迫[J].水生生物学报,2001,25(4):399-405
    23.钱君龙,张连荣,乐美麟.过硫酸盐消化法测定土壤全氮全磷[J].土壤,1990,22(5):258-262
    24.邱东茹,吴振斌,邓家齐,等.武汉东湖湖水和底泥对黄丝草生长的影响[J].植物资源与环境,1997,6(4):45-49
    25.孙祥钟.中国植物志(第8卷)[M].北京:科学出版社,1992,176-180
    26.吴振斌,邱东茹,贺 锋,等.沉水植物重建对富营养水体氮磷营养水平的影响[J].应用生态学报,2003,14(8):1351-1353
    27.熊秉红,李 伟.我国苦草属(Vallisneria L.)植物的生态学研究[J].武汉植物学研究,2000,18(6):500-508
    28.杨永清,于 丹,耿显华.梁子湖苦草繁殖体的分布及其萌发初步研究[J].水生生物学报,2004,28(4):396-401
    29.由文辉.淀山湖水生维管束植物群落研究[J].湖泊科学,1994,6(4):317-324

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700