用户名: 密码: 验证码:
mTOR信号通路在细胞生长调控中的作用与机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
mTOR(the mammalian target of rapamycin)是一种存在于哺乳动物细胞中的Ser/Thr激酶,可以汇聚和整合来自于营养、生长因子、能量和环境胁迫对细胞的刺激信号,进而调节细胞生长。mTOR信号通路影响胚胎干细胞和早期胚胎的发育,并且与肿瘤、肥胖及代谢紊乱等疾病有关。目前已开展mTOR信号通路研究的有人及小鼠、大鼠、牛等哺乳动物。由于缺乏基本的基因、表达及功能方面的研究数据,mTOR信号通路在羊细胞中的研究尚属空白。本课题选择研究较多的人肿瘤细胞为模式细胞,意图通过对模式细胞的研究为下一步开展绒山羊细胞研究作好技术准备,同时将两种细胞作为比对,相互参照,证明mTOR信号通路在细胞生长调节中的关键性作用。
     一、mTOR信号通路在人肿瘤细胞生长调控中的作用与机制
     1.人食道癌细胞SEG-1和人正常食道上皮细胞KOB-13中mTOR基因和TSC2基因的克隆与表达检测
     mTOR激酶是mTOR信号通路的中心协调器,TSC2是mTOR的上游负调节因子,它们在细胞中的活性与细胞生长调控密切相关。通过RT-PCR从人食道癌细胞SEG-1中和人食道正常上皮细胞KOB-13中分别克隆到了mTOR基因和TSC2基因的cDNA片段并比较了两个基因在两种细胞中的表达情况。结果表明:mTOR基因和TSC2基因在肿瘤细胞SEG-1中高表达。
     2.mTOR抑制对SEG-1细胞生长的影响及机制
     使用mTOR特异性抑制剂RAD001处理SEG-1细胞,结果显示SEG-1细胞对RAD001敏感。mTOR抑制可引起SEG-1细胞周期阻滞,细胞形态发生改变,抑制细胞增殖甚至导致细胞死亡。mTOR被抑制可强烈抑制其下游靶S6的磷酸化,同时还抑制mTOR、S6K1和S6基因的表达,且这些抑制效应都具有剂量依赖关系。结果表明:RAD001抑制mTOR信号通路的活性,通过抑制mTOR及其下游靶S6的磷酸化和相关基因的表达抑制细胞生长。
     3.FAK/IGF-IR与mTOR信号通路的关系
     利用FAK和IGF-IR抑制剂TAE226处理人食道癌细胞SEG-1,结果显示SEG-1细胞对TAE226十分敏感。TAE226对SEG-1细胞具有细胞毒性,可使得细胞形态发生明显改变,抑制增殖并可引起细胞死亡,且具有剂量依赖效应。FAK/IGF-IR被抑制,可导致Akt、mTOR、S6K1和S6磷酸化的强烈抑制,同时抑制相应基因的表达。结果表明:TAE226对FAK和IGF-IR的抑制导致了mTOR信号通路活性的强烈抑制,预示FAK可能是mTOR信号通路的调节因子。
     二、绒山羊细胞中mTOR信号通路的功能与作用机制
     1.内蒙古白绒山羊mTOR信号通路相关蛋白基因的克隆与基本表达模式分析
     克隆了内蒙古白绒山羊mTOR基因约8.6Kb的全长cDNA及S6K1、S6K2、S6和FAK基因的部分cDNA片段,序列分析表明几个基因在进化上都是高度保守的。表达模式分析表明mTOR基因、S6K1基因和S6K2基因在脾、肾、睾丸和肌肉中都有表达,在肾中表达稍强,脾中稍弱;S6基因在脾、睾丸和肌肉中都高表达;FAK基因在脾、睾丸和肌肉中都有表达,在睾丸中稍弱一些。这些基因序列和表达模式数据都是首次获得,为开展进一步的研究奠定了基础。
     2.mTOR信号通路在绒山羊胎儿成纤维细胞生长调控中的作用与机制
     使用mTOR特异性抑制剂CCI-779处理内蒙古白绒山羊胎儿成纤维细胞(GFb),结果表明GFb对CCI-779敏感,CCI-779对GFb具有细胞毒性。CCI-779处理可导致细胞生长抑制,在24小时内引起细胞死亡。mTOR抑制可引起GFb细胞周期阻滞,细胞骨架失去正常组织结构,形态发生明显改变。CCI-779微弱抑制mTOR的磷酸化,强烈抑制S6的磷酸化,同时还抑制mTOR、Akt、S6K1和S6基因的表达,并可引起35KD Caspase-3酶原量减少,且这些抑制均具有剂量依赖效应。结果表明:CCI-779抑制mTOR信号通路的活性,抑制细胞增殖。mTOR被抑制不仅影响其下游S6的磷酸化,而且抑制Akt、S6K1和S6基因的表达,并可能具有诱导绒山羊胎儿成纤维细胞凋亡的作用。
     综上所述,本研究首次对mTOR信号通路在绒山羊细胞生长调节中的作用进行研究,克隆了内蒙古白绒山羊mTOR、S6K1、S6K2、S6和FAK基因并研究其基本表达模式,证明了mTOR信号通路存在于绒山羊胎儿成纤维细胞中并调控细胞生长。通过对人肿瘤细胞和内蒙古白绒山羊胎儿成纤维细胞的研究,并将对两种细胞的研究结果进行综合分析,认为mTOR信号通路调控细胞生长的可能机制为:mTOR蛋白激酶被抑制后,通过调节下游靶S6K1和S6的磷酸化及相关基因的表达调控细胞生长。
The mammalian target of rapamycin (mTOR) is a kind of Ser/Thr kinase in mammalian cells. It can recruit and integrate input signals from nutrients, growth factors, energy and environmental stress to regulate cell growth and proliferation via different cellular processes. The mTOR signaling pathway also affects the development of the embryonic stem cells (ESCs) and early embryo, and involved in cancers and metabolism disease. The mTOR signaling pathway has been investigated extensively in human, mouse, rat and cattle, whereas it is not yet studied in goat due to the lack of basic data about genes, gene expression and function. Thus this study uses the human tumor cells as a model to compare with the results from goat to prove that the mTOR signaling pathway plays a critical role in cell proliferation regulation.
     1 Function and mechanism of mTOR signaling pathway in regulation of human cancer cells growth
     1.1 Cloning and expression of mTOR and TSC2 genes in human esophageal cancer cells and primary normal esophageal epithelial cells
     mTOR and TSC2 are two of the most important protein kinases within mTOR signaling pathway related with regulation of cell growth. mTOR is a central regulator in the pathway, and TSC2 works as a negative regulator to mTOR. mTOR cDNA segment and TSC2 cDNA segment were cloned by RT-PCR from human esophageal cancer cells(SEG-1) and primary normal esophageal epithelial cells (KOB-13). The expression of mRNA and proteins between these two kinds of cells were compared by RT-PCR and Western blot, separately. The results showed that the genes overexpressed in SEG-1 cells.
     1.2 Effect and mechanism of mTOR inhibition on SEG-1 cells growth
     SEG-1 cells were treated with RAD001, a specific inhibitor of mTOR and the results showed that SEG-1 cells are sensitive to RAD001 compared to the control group. RAD001 is cytotoxic to SEG-1 cells, and lead to death of the cells and inhibited cell proliferation. The shape of the cells changed and G1/S cell cycle was arrested by mTOR inhibition. RAD001 weakly inhibited phosphorylation of mTOR, and strongly inhibited phosphorylation of its downstream target S6 while the expression of mTOR、S6K1 and S6 genes were inhibited. The inhibitions depended on dosage of the inhibitor. The results showed that RAD001 inhibits activity of mTOR signal pathway. mTOR inhibition induces mTOR and S6 phosphorylation inhibited, and inhibits the expression of the genes.
     1.3 The relationship between the FAK/IGF-IR and the mTOR signaling pathway
     TAE266, a dual inhibitor for FAK and IGF-IR, was used to treat SEG-1 cells. SEG-1 cells were sensitive to TAE266 and TAE226 had lethal function to SEG-1 cells. The cells shape was changed distinctly and cell proliferation was inhibited by the inhibitor with dose-dependant effect. The phosphorylation of mTOR, Akt and S6 was inhibited strongly by FAK/IGF-IR inhibition, and the expression of corresponding genes was inhibited strongly. Inhibition of FAK and IGF-IR lead to low activity of mTOR signal pathway. These data indicated that the activity of FAK may affect the activity of mTOR signal pathway, and FAK signal pathway is possibly the upstream regulatory factor of mTOR signal pathway.
     2 The function of mTOR signaling pathway in goat fetal fibroblast and its mechanism
     2.1 Cloning of mTOR signaling pathway related genes in Inner Mongolia Cashmere goat and the analysis of their basal expression pattern
     In the present study, the 8.6 Kb full length mTOR gene cDNA of Inner Mongolia Cashmere goat was cloned. The partial cDNA segments of S6K1 gene, S6K2 gene, S6 gene and FAK gene were also cloned in the goat. The sequencing analysis was performed and indicated these genes as a highly conserved gene to be very conservative. mTOR gene, S6K1 gene and S6K2 gene were found to be expressed in spleen, kidney, testicle and muscle, showed stronger expression in kidney than in spleen. S6 gene was overexpressed in spleen, testicle and muscle. FAK gene expressed in spleen, testicle and muscle, and expressed thin in testicle. These genes were first cloned and genes expression pattern were first studied in goat, and has laid a bioinformatics foundation for the further study on structure and function.
     2.2 The function and mechanism of mTOR signaling pathway on regulation of goat fetal fibroblast growth
     Inner Mongolia Cashmere goat fetal fibroblasts (GFb) were treated with CCI-779, a mTOR specific inhibitor. The results indicated that GFb cells were sensitive to CCI-779. CCI-779 inhibits the activity of mTOR signal pathway and cell proliferation, blocks cell cycle, and is cytotoxic to GFb in a dosage dependent manner. GFb cells were treated with CCI-779, cytoskeleton lost normal structure, cell morphology changed. mTOR inhibition leads to the phosphoralation inhibited of S6 while the expression of mTOR、Akt, mTOR, S6kland S6 genes were inhibited. It is possible that CCI-779 can induce apoptosis in GFb cells.
     In summary, mTOR signaling pathway was first studied and mTOR gene、S6K1 gene、S6K2 gene、S6 gene and FAK gene were cloned firstly. mTOR signaling pathway was proved to be functional in GFb cells and acts as a key regulator to regulate cell growth. By comparing the experimental results on the mTOR signaling pathway from human cancer cells and goat cells, the possible mechanism of mTOR signaling pathway on the regulation of the cell growth and proliferation may involves the regulation of the phosphorilation of its down targets S6K1 and S6 and the expression of related genes after the mTOR is inhibited.
引文
[1]Schmelzle T,Hall M N.TOR,a central controller of cell growth.Cell,2000,103:253-262.
    [2]Loewith R,Jacinto E,Wullschleger S,Lorberg A,Crespo JL,Bonenfant D,Oppliger W,Jenoe P,Hall M N.Two TOR Complexes,Only One of which Is Rapamycin Sensitive,Have Distinct Roles in Cell Growth Control.Mol Cell,2002,10:457-468.
    [3]Hansen IA,Attardo GM,Park JH,Peng Q,Raikhel AS.Target of rapamycin-mediated amino acid signaling in mosquito anautogeny. Proc. Natl. Acad. Sci. U S A., 2004,101(29): 10626-31.
    [4] Hay, N, Sonenberg N. Upstream and downstream of mTOR. Genes. Dev., 2004,18:1926-1945
    [5] Wullschleger S, Loewith R, Hall M N. TOR signaling in growth and metabolism. Cell, 2006,124:471-484.
    [6] Shaw R J, CantleyL C. Ras, PI3K and mTOR signalling controls tumour cell growth. Nature, 2006, 441:424-430.
    
    [7] Pende M, Um SH, Mieulet V, Sticker M, Goss VL, Mestan J, Mueller M, Fumagalli S, Kozma SC, Thomas G. S6K1~(-/-)/S6K2~(-/-) mice exhibit perinatal lethality and rapamycin-sensitive 5'-terminal oligopyrimidine mRNA translation and reveal a mitogen-activated protein kinase-dependent S6 kinase pathway. Mol Cell Biol., 2004, 24(8):3112-3124.
    
    [8] Oldham S, Montagne J, Radimerski, T, et al. Genetic and biochemical characterization of dTOR, the Drosophila homolog of the target of rapamycin. Genes Dev., 2000,14: 2689-2694.
    [9] Zhang H, Stallock J P, Ng J C, et al. Regulation of cellular growth by the Drosophila target of rapamycin dTOR. Genes Dev. 2000,14: 2712-2724.
    [10] Fingar D C, Salama S, Tsou C, et al. Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBPl/eIF4E. Genes Dev., 2002,16:1472-1487.
    [11] Avruch J, Hara K, Lin Y, Liu M, Long X, Ortiz-Vega S, Yonezawa K. Insulin and amino-acid regulation of mTOR signaling and kinase activity through the Rheb GTPase. Oncogene, 2006, 25(48);6361-6372
    [12] Liu L, Cash TP, Jones RG, Keith B, Thompson CB, Simon MC. Hypoxia-induced energy stress regulates mRNA translation and cell growth. Mol Cell, 2006,21(4):521-531.
    [13] Bai X, Ma D, Liu A, Shen X, Wang QJ, Liu Y, Jiang Y. Rheb activates mTOR by antagonizing its endogenous inhibitor, FKBP38. Science, 2007, 318(5852):977-980.
    [14] Proud CG.Cell signaling. mTOR, unleashed. Science, 2007, 318(5852):926-927.
    [15] Maeshima Y, Sudhakar A, Lively JC, Ueki K, Kharbanda S, Kahn CR, Sonenberg N, Hynes RO, Kalluri R. Tumstatin, an endothelial cell-specific inhibitor of protein synthesis. Science, 2002. 4;295(5552): 140-3.
    [16] Li Y, Corradetti M N, Inoki K, Guan K L. TSC2: filling the GAP in the mTOR signaling pathway. TRENDS Biochem Sci., 2004, 29 (1): 32-38.
    
    [17] de Boer MD, Selby A, Atherton P, Smith K, Seynnes OR, Maganaris CN, Maffulli N, Movin T, Narici MV, Rennie MJ. The temporal responses of protein synthesis, gene expression and cell signalling in human quadriceps muscle and patellar tendon to disuse. J Physiol., 2007. 15;585(Pt 1):241-51.
    [18] Malik RK, Parsons JT. Integrin-dependent activation of the p70 ribosomal S6 kinase signaling pathway. J Biol Chem., 1996 , 22;271(47):29785-91.
    
    [19] Gan, B, Yoo Y, Guan JL. Association of Focal Adhesion Kinase with Tuberous Sclerosis Complex 2 in the Regulation of S6 Kinase Activation and Cell Growth. J Biol Chem, 2006, 281(49):37321-37329.
    
    [20] Fingar DC, Richardson CJ, Tee AR, Cheatham L, Tsou C, Blenis J. mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BP1/Eukaryotic translation initiation factor 4E. Mol Cell Biol., 2004, 24(1): 200-216.
    [21] Sabatini D M. mTOR and cancer: insights into a complex relationship. Nat Rev Cancer., 2006, 6(9):729-734.
    [22]Murakami M,Ichisaka T,Maeda M,Oshiro N,Hara K,Edenhofer F,Kiyama H,Yonezawa K,Yamanaka S.mTOR is essential for growth and proliferation in early mouse embryos and embryonic stem cells.Mol Cll Biol.,2004,24(15):6710-6718.
    [23]Leone M,Crowell K J,Chen J,Jung D,Chiang GG,Sareth S,Abraham RT,Pellecchia M.The FRB domain of mTOR:NMR solution structure and inhibitor design.Biochemistry,2006,45(34):10294-10302.
    [24]Um S H,D'Alessio D,Thomas G.Nutrient overlaod,insulin resistance,and ribosomal protein S6 kinase 1,S6K1.Cell Metab.,2006,3(6):393-402.
    [25]Cota D,Proulx K,Smith KA,Kozma SC,Thomas G,Woods SC,Seeley RJ.Hypothalamic mTOR signaling regulates food intake.Science,2006,312(5775):927-930.
    [1]Brown,E.J.,Albers,M.W.,Shin,T.B.,Ichikawa,K.,Keith,C.T.,Lane,W.S.and Schreiber,S.L.A mammalian protein targeted by Gl-arresting rapamycin-receptor complex.Nature,1994,369(6483):756-758.
    [2]Hay,N,Sonenberg N.Upstream and downstream of mTOR.Genes.Dev.,2004,18:1926-1945.
    [3]Schmelzle T,Hall M N.TOR,a central controller of cell growth.Cell,2000,103:253-262.
    [4]Tee A R,Fingar D C,Manning B D,et al.Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin(mTOR)-mediated downstream signaling.PNAS,2002,99(21):13571-13576.
    [5]Wullschleger S,Loewith R,Hall M N.TOR signaling in growth and metabolism.Cell,2006,124:471-484.
    [6]Li Y,Corradetti M N,Inoki K,et al.TSC2:filling the GAP in the mTOR signaling pathway.Trends Biochem Sci.,2004,29(1):32-38.
    [7]Cheadle JP,Reeve MP,Sampson JR,Kwiatkowski DJ.Molecular genetic advances in tuberous sclerosis Hum Genet,2000,107:97-114.
    [8]Wan X,Helman LJ.The biology behind mTOR inhibition in sarcoma.Oncologist,2007,12:1007-1018.
    [9]Hou G,Xue L,Lu Z,Fan T,Tian F,Xue Y.An activated mTOR/p70S6K signaling pathway in esophageal squamous cell carcinoma cell lines and inhibition of the pathway by rapamycin and siRNA against mTOR.Cancer Letter,2007,253:236-248.
    [10]Tsang CK,Qi H,Liu LF,Zheng XFS.Targeting mammalian target of rapamycin(mTOR) for health and diseases.Drug Discov Today,2007;12(3-4):112-124.
    [11]Vega F,Medeiros LJ,Leventaki V,Atwell C,Cho-Vega JH,Tian L,Claret FX,Rassidakis GZ.Activation of mammalian target of rapamycin signaling pathway contributes to tumor cell survival in anaplastic lymphoma kinase-positive anaplastic large cell lymphoma.Cancer Res,2006,66(13):6589-6597.
    [12]Sahin F,Kannangai R,Adegbola O,Wang J,Su G,Torbenson M.mTOR and p70 S6 kinase expression in primary liver neoplasms.Clin Cancer Res,2004,10:8421-8425.
    [13]Jiang H,Coleman J,Miskimins R,Miskimins WK.Expression of constitutively active 4EBP-Ⅰ enhances p27Kip Ⅰ expression and inhibits proliferation of MCF7breast cancer cells.Cancer cell Int,2003,3:2.
    [14]Shaw R J,CantleyL C.Ras,PI3K and Mtor signalling controls tumour cell growth.Nature,2006,441:424-430.
    [15]Carrera A C.TOR signaling in mammals.J Cell Sci.,2004,117:4615-4616.
    [16]Avruch J,Hara K,Lin Y,et al.Insulin and amino-acid regulation of mTOR signaling and kinase activity through the Rheb GTPase.Oncogene,2006,25(48);6361-6372.
    [17]Kimura N,Tokunaga C,Dalai S,et al.A possible linkage between AMP-activated protein kinase(AMPK)and mammalian target of rapamycin(mTOR) signalling pathway.Genes Cells,2003,8(1):65-79.
    [18]Tokunaga C,Yoshino K,Yonezawa k.mTOR integrates amino acid and energy-sensing pathway.BiochemMiophys Res Commun.,2004,313(2):443-446.
    [19]王志钢,吴应积,旭日干mTOR信号通路与细胞生长调控 生物物理学报,2007,23(5):333-342.
    [1] Lambert R, Hainaut P. Esophageal cancer: Cases and causes (Part I). Endoscopy 2007; 39:550-555.
    
    [2] Lambert R, Hainaut P. Esophageal cancer: The precursors (Part 11). Endoscopy, 2007, 39:659-664.
    
    [3] Wu X, Chen VW, Andrews PA, Ruiz B, Correa P. Incidence of esophageal and gastric cancer among Hispanics, non-Hispanic whites and non-Hispanic blacks in the United States: subsite and histology differences. Cancer Causes Control, 2007, 18:585-593.
    [4] Wu X, Chen VW, Ruiz B, Andrews P, Su LJ, Correa P. Incidence of esophageal and gastric carcinomas among American Asians/Pacific Islanders, Whites, and Blacks: subsite and histology differences. Cancer, 2006, 106:683-692.
    [5] Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ. Cancer statistics, 2007. CA cancer J Clin. 2007, 57:43-66.
    [6] Bosetti C, Levi F, Ferlay J, Garavello W, Lucchini F, Bertuccio P, Negri E, Vecchia CL. Trends in oesophageal cancer incidence and mortality in Europe. Int J Cancer., 2008, 122(5):1118-29.
    [7] Parkin DM, Bray F, Ferlay J.Pisani P. Global cancer statistics, 2002. Ca Cancer J Clin, 2005, 55:74-108.
    [8] Wan X, Helman LJ. The biology behind mTOR inhibition in sarcoma. Oncologist, 2007;, 12:1007-1018.
    [9] Hou G, Xue L, Lu Z, Fan T, Tian F, Xue Y. An activated mTOR/p70S6K signaling pathway in esophageal squamous cell carcinoma cell lines and inhibition of the pathway by rapamycin and siRNA against mTOR. Cancer Letter, 2007, 253:236-248.
    [10] Tsang CK, Qi H, Liu LF, Zheng XFS. Targeting mammalian target of rapamycin (mTOR) for health and d iseases. Drug Discov Today, 2007, 12(3-4):112-124.
    
    [11] Vega F, Medeiros LJ, Leventaki V, Atwell C, Cho-Vega JH, Tian L, Claret FX, Rassidakis GZ. Activation of mammalian target of rapamycin signaling pathway contributes to tumor cell survival in anaplastic lymphoma kinase-positive anaplastic large cell lymphoma. Cancer Res, 2006, 66(13):6589-6597.
    
    [12] Sahin F, Kannangai R, Adegbola O, Wang J, Su G, Torbenson M. mTOR and p70 S6 kinase expression in primary liver neoplasms. Clin Cancer Res, 2004, 10:8421-8425.
    
    [13] Jiang H, Coleman J, Miskimins R, Miskimins WK. Expression of constitutively active 4EBP-1 enhances p27Kip 1 expression and inhibits proliferation of MCF7 breast cancer cells. Cancer cell Int., 2003, 3(1):2.
    
    [14] Mabuchi S, Altomare DA, Connolly DC, Klein-Szanto A, Litwin S, Hoelzle MK, Hensley HH, Hamilton TC, Testa JR. RAD001 (Everolimus) delays tumor onset and progression in a transgenic mouse model of ovarian cancer. Cancer Res., 2007; 67(6):2408-2413.
    
    [15] Haritunians T, Mori A, O'Kelly J, Luong QT, Giles FJ, Koeffler HP. Antiproliferative activity of RAD001 (everolimus) as a single agent and combined with other agents in mantle cell lymphoma. Leukemia, 2007, 21:333-339.
    [16] Vignot S, Faivre S, Aguirre D, Raymond E. mTOR-targeted therapy of cancer with rapamycin derivatives. Annals Oncology, 2005, 16:525-537.
    [17] Boulay A, Zumstein-Mecker S, Stephan C, Beuvink I, Zilbermann F, Haller R, Tobler S, Heusser C, O'Reilly T, Stolz B, Marti A, Thomas G, Lane HA. Antitumor efficacy of intermittent treatment schedules with the rapamycin derivative RAD001 correlates with prolonged inactivation of ribosomal protein S6 kinase 1 in peripheral blood mononuclear cells. Cancer Res, 2004, 64:252-261.
    [18] Jundt F, Raetzel N, Muller C, Calkhoven CF, Kley K, Mathas S, Lietz A, Dorken B. A rapamycin derivative (everolimus) controls proliferation though down-regulation of truncated CCAAT enhancer binding protein Band NF-κB activity in Hodgkin and anaplastic large cell lymphomas. Blood, 2005, 106(5):1801-1807.
    [19] Zitzmann K, De Toni EN, Brand S, Goke B, Meinecke J, Spottl G, Meyer HHD, Auernhammer CI. The novel mTOR inhibitor RAD001 (everolimus) induces antiproliferative effects in human pancreatic neuroendocrine tumor cells. Neuroendocrinology, 2007, 85(1):54-60.
    [20] Wanner K, Hipp S, Oelsner M, Ringshausen 1, Bogner C, Peschel C, Decker T. Mammalian target of rapamycin inhibition induces cell cycle arrest in diffuse large B cell lymphoma (DLBCL) cells and sensitizes DLBCL cells to rituximab. Bri J Haematology, 2006, 134:474-484.
    [21] Treeck O, Wackwitz B, Haus U, Ortmann O. Effects of a combined treatment with mTOR inhibitor RAD001 and tamoxifen in vitro on growth and apoptosis of human cancer cells. Gynecologic Oncology, 2006, 102:292-299.
    [22] Beuvink I, Boulay A, Fumagalli S, Zilbermann F, Ruetz S, O'Reilly T, Natt F, Hall J, Lane HA, Thomas G. The mTOR inhibitor RAD001 sensitizes tumor cells to DNA-Damaged induced apoptosis through inhibition ofp21 translation. Cell, 2005, 120:747-759.
    [23] Sarkar FH, Li Y. Targeting multiple signal pathways by chemopreventive agents for cancer prevention and therapy. Acta Pharmacol Sin, 2007, 28:1305-1315.
    
    [24 ] Boulay A, Rudloff J, Ye J, Zumstein-Mecker S, O'Reilly T, Evans DB, Chen S, Lane HA. Dual inhibition of mTOR and estrogen receptor signaling in vitro induces cell death in models of breast cancer. Clin Cancer Res, 2005, 11(14):5319-5328.
    [25] Wu L, Birle DC, Tannock IF. Effects of the mammalian target of rapamycin inhibitor CCI-779 used alone or with chemotherapy on human prostate cancer cells and xenografts. Cancer Res 2005; 65(7):2825-2831.
    [26] Panwalkar A, Verstovsek S, Giles FJ. Mammalian target of rapamycin inhibition as therapy for hematologic malignancies. Cancer, 2004, 100:657-666.
    [27] Albert JM, Kim KW, Cao C, Lu B. Targeting the Akt/mammalian target of rapamycin pathway for radiosensitization of breast cancer. Mol Cancer Ther, 2006, 5(5):1183-1189.
    
    [28] Cao C, Subhawong T, Albert JM, Kim KW Geng L, Sekhar KR, Gi YJ, Lu B. Inhibition of mammalian target of rapamycin or apoptotic pathway induces autophagy and radiosensitizes PTEN null prostate cancer cells. Cancer Res, 2006, 66(20):10040-10047.
    [29] Mabuchi S, Altomare DA, Cheung M, Zhang L, Poulikakos PI, Hensley HH, Schilder RJ, Ozols RF, Testa JR. RAD001 inhibits human cancer cell proliferation, enhances cisplatin-induced apoptosis, and prolongs survival in an cancer model. Clin Cancer Res, 2007, 13(14):4261-4270.
    [30] Goudar RK, Shi Q, Hielmeland MD, Wikstrand CJ, Reese ED, Conrad CA, Traxler P, Lane HA, Reardon DA, Cavenee WK, Wang XF, Bigner DD, Friedman HS, Rich JN. Combination therapy of inhibitors of epidermal growth factor receptor/vascular endothelial growth factor receptor 2 (AEE788) and the mammalian target of rapamycin (RAD001) offers improved glioblastoma tumor growth inhibition. Mol Cancer Ther, 2005, 4(1):101-112.
    [31] Homicsko K, Lukashev A, Iggo RD. RAD001 (Everolimus) improves the efficacy of replicating adenoviruses that target colon cancer. Cancer Res, 2005, 65(15):6882-6890.
    [32] Yee KWL, Zeng Z, Konopleva M, Verstovsek S, Ravandi F, Ferrajoli A, Thomas D, Wierda W, Apostolidou E, Albitar M, O'Brien S, Andreeff M, Giles FJ. PhaseI/II study of the Mammalian target of rapamycin inhibitor everolimus (RAD001) in patients with relapsed or refractory hematologic malignancies. Clin Cancer Res, 2006, 12(17):5165-5173.
    
    [33] Schmelzle T, Hall MN. TOR, a central controller of cell growth. Cell, 2000, 103: 253-262.
    [34] Wang ZG, Wu YJ, Shorgen. The mTOR signaling pathway and the regulation of cell growth. [in Chinese] Acta Biophysica Sinaca [SHENGWUWULI XUEBAO], 2007, 22(5):333-342.
    [35] Albanell J, Dalmases A, Rovira A, Rojo F. mTOR signaling in human cancer. Clin Transl Oncol, 2007, 9(8):484-493.
    [36] Hidalgo M, Rowinsky EK. The rapamycin-sensitive signal transduction pathway as a target for cancer therapy. Oncogene, 2000, 19:6680-6686.
    [37] Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell, 2006, 124: 471-484.
    [38] Shaw RJ, Cantley LC. Ras, P13K and mTOR signaling controls tumour cell growth. Nature, 2006, 441: 424-430.
    [39] Shah OJ, Hunter T. Turnover of the active fraction of IRS1 involves raptor-mTOR and S6K1-dependent serine phosphorylation in cell culture models of Tuberous Sclerosis. Mol Cell Bio, 2006, 26(17):6425-6434.
    [40] O'Reilly KE, Rojo F, She QB, Solit D, Mills GB, Smith D, Lane H, Hofmann F, Hicklin DJ, Ludwig DL, Baselga J, Rosen N. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res, 2006, 66(3):1500-1508.
    [41] Wan X, Harkavy B, Shen N, Grohar P, Helman LJ. Rapamycin induces feedback activation of Akt signaling through an IGF-1R-dependent mechanism. Oncogene, 2007, 26(13): 1932-40.
    [42] Shi Y, Yan H, Frost P, Gera J, Lichtenstein A. Mammalian target of rapamycin inhibitors activate the AKT kinase in multiple myeloma cells by up-regulating the insulin-like groth factor receptor/insulin receptor substrate-1/phosphatidylinositol 3-kinase cascade. Mol Cancer Ther, 2005, 4(10): 1533-1540.
    [43] Sun SY, Rosenberg LM, Wang X, Zhou Z, Yue P, Fu H, Khuri FR. Activation of Akt and eIF4E survival pathways by rapamycin-mediated mammalian target of rapamycin inhibition. Cancer Res, 2005. 65(16):7052-7058.
    [44] Failly M, Korur S, Egler V, Boulay JL, Lino MM, Imber R, Merlo A. Combination of sublethal concentrations of epidermal growth factor receptor inhibitor and microtubule stabilizer induces apoptosis of glioblastoma cells. Mol Cancer Ther, 2007, 6(2):773-781.
    [45] Ikezoe T, Nishioka C, Tasaka T, Yang Y, Komatsu N, Togitani K, Koeffler HP, Taguchi H. The antitumor effects of sunitinib (formerly SU11248) against a variety of human hematologic malignancies: enhancement of growth inhibition via inhibition of mammalian target of rapamycin signaling. Mol Cancer Ther, 2006, 5(10):2522-2530.
    
    [46] Kim KW, Mutter RW, Cao C, Albert JM, Freeman MF, Hallahan DE, Lu B. Autophagy for cancer therapy through inhibition of pro-apoptotic proteins and mammalian target of rapamycin signaling. J Bio Chem, 281(48):36883-36890.
    [47] Bai X, Ma D, Liu A, Shen X, Wang QJ, Liu Y, Jiang Y. Rheb activates mTOR by antagonizing its endogenous inhibitor, FKBP38. Science , 2007, 318(5852):977-980.
    [48] Proud CG. Cell signaling. mTOR, unleashed. Science, 2007, 318(5852):926-927.
    [1]Lambert R,Hainaut P.Esophageal cancer:Cases and causes(Part Ⅰ).Endoscopy,2007,39:550-555.
    [2]Lambert R,Hainaut P.Esophageal cancer:The precursors(Part Ⅱ).Endoscopy,2007,39:659-664.
    [3]Wu X,Chen VW,Andrews PA,Ruiz B,Correa P.Incidence of esophageal and gastric cancer among Hispanics,non-Hispanic whites and non-Hispanic blacks in the United States:subsite and histology differences.Cancer Causes Control,2007,18:585-593.
    [4]Wu X,Chen VW,Ruiz B,Andrews P,Su I.J,Correa P.Incidence of esophageal and gastric carcinomas among American Asians/Pacific Islanders,Whites,and Blacks:subsite and histology differences.Cancer,2006,106:683-692.
    [5]Basson MD,Sanders MA,Gomez R,Hatfield J,VanderHeide R,Thamilselvan V,Zhang J,Walsh MF.Focal adhesion kinase protein levels in gut epithelial motility.Am J Physiol Gastrointest Liver Physiol,2006,291:G491-G499.
    [6]Sood AK,Coffin JE,Schneider GB,Fletcher MS,DeYoung BR,Gruman LM,Gershenson DM,Schaller MD,Hendrix MJC.Biological significance of focal adhesion kinase in ovarian cancer:role in migration and invasion.Am J Pathol,2004,165:1087-1095.
    [7]Slack-Davis JK,Martin KH,Tilghman RW,lwanicki M,Ung El,Autry C,Luzzio MJ,Cooper B,Kath JC,Roberts WG,Parsons JT.Cellular characterization of a novel focal adhesion kinase inhibitor.J Biol Chem, 2007, 282:14845-14852.
    
    [8] Miyazaki T, Kato H, Nakajima M, Sohda M, Fukai Y, Masuda N, Manda R, Fukuchi M, Tsukada K, Kuwano H. FAK overexperession is correlated with tumour invasiveness and lymph node metastasis in oesophageal squamous cell carcinoma. Br J Cancer, 2003, 89: 140-145.
    
    [9] Schaller MD, Hildebrand JD, Shannon JD, Fox JW, Vines RR, Parsons T. Autophosphorylation of the focal adhesion kinase, pp125FAK, directs SH2-dependent binding of pp60~(s(?)) . Mol Cell Biol, 1994, 14: 1680-1688.
    [10] alalb MB, Polte TR, Hanks SK. Tyrosine phosphorylation of facal adhesion kinase at sites in the catalytic domain regulates kinase activity: a role for Src Family kinase. Mol Cell Bio, 1995, 15:954-963.
    [11] Parsons JT. Focal adhesion kinase: the first ten years. J Cell Sci, 2003, 116: 1409-1416.12640026
    [12] Larsson O, Girnita A, Girnita L. Role of insulin-like growth factor I receptor signaling in cancer. Br J Cancer, 2005, 92:2097-2101.
    
    [13] McCampbell AS, Broaddus RR, Loose DS, Davies PJ. Overexpression of the insulin-like growth factor I receptor and activation of the AKT pathway in hyperplastic endometrium. Clin Cancer Res, 2006, 12: 6373-6378.
    [14] Fottner C, Minnemann T, Kalmbach S, Weber MM. Overexpression of the insulin-like growth factor I receptor in human pheochromocytomas. J Mol Endocrinol, 2006, 36: 279-287.
    
    [15] Shi Q, Hjelmeland AB, Keir ST, Song L, Wickman S, Jackson D, Ohmori O, Bigner DD, Friedman HS, Rich JN. A novel low-molecular weight inhibitor of focal adhesion kinase, TAE226, inhibits Glioma growth. Mol Carcinog, 2007, 46:488-496.
    
    [16] Liu TJ, LaFortune T, Honda T, Ohmori O, Hatakeyama S, Meyer T, Jackson D, Groot J, Yung WK. Inhibition of both focal adhesion kinase and insulin-like growth factor-I receptor kinase suppresses glioma proliferation in vitro and in vivo. Mol Cancer Ther, 2007, 6:1357-1367.
    
    [17] Xia H, Nho RS, Kahm J, Kleidon J, Henke CA. Focal adhesion kinase is upstream of phosphatidylinositol3-kinase/Akt in regulation fibroblast survival in response to contraction of type I collagen matrices via a β1 integrin viability signaling pathway. J Biol Chem, 2004, 279:33024-33034.
    [18] Reif, S, Lang A, Lindquist JN, Yata Yutaka, Gabele E, Scanga A, Brenner DA, Rippe RA. The role of focal adhesion kinase-phosphatidylinositol 3-kinase-Akt Sugnaling in hepatic stellate cell proliferation and type I collagen expression. J Biol Chem, 2003, 278:8083-8090.
    
    [19] Tang CH, Yang RS, Huang TH, Lu DY, Chang WJ, Huang TF, Fu WM. Ultrasound stimulates cyclooxygenase-2 expression and increases bone formation through integrin, focal adhesion kinase, phosphatidylinositol 3-kinase, and Akt pathway in osteoblasts. Mol Pharmacol, 2006, 69:2047-2057.
    
    [20] Akagi T, Murata K, Shishido T, Hanafusa H. v-Crk activates the phosphoinositide 3-kinase/AKT pathway by utilizing focal adhesion kinase and H-Ras. Mol Cell Biol 2002; 22: 7015-7023.
    [21] Sarkar FH, Li Y. Targeting multiple signal pathways by chemopreventive agents for cancer prevention and therapy. Acta Pharmacol Sin, 2007,28:1305-1315.
    [22] Wan X, Helman LJ. The biology behind mTOR inhibition in sarcoma. Oncologist, 2007, 12:1007-1018.
    [23] Morgillo F, Woo JK, Kim ES, Hong WK, Lee HY. Heterodimerization of insulin-like growth factor/epidermal growth factor receptor and induction of surviving expression counteract the antitumor action of erlotinib. Cancer Res, 2006, 66:10100-10111.
    [24] Jerome L, Alami N, Belanger S, Page V, Yu O, Paterson J, Laura S, Pegram M, Leyland-Jones B. Recombinant human insulin-like growth factor binding protein 3 inhibits growth of human epidermal growth factor receptor-2-overexpressing breast tumors and potentiates herceptin activity in vivo. Cancer Res, 2006, 66:7245-7252.
    [25] Haider J, Kamat AA, Landen CN Jr, Han LY, Lugendorf SK, Lin YG, Merritt WM, Jennings NB, Chavez-Reyes A, Coleman RL, Gershenson DM, Schmandt R, Cole SW, Lopez-Berestein G, Sood AK. Focal adhesion kinase targeting using in vivo short interfering RNA delivery in Neutral liposomes for ovarian carcinoma therapy. Clin Cancer Res, 2006, 12:4916-4924.
    
    [26] Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev, 2004, 18:1926-1945.
    [27] Inoki K, Ouyang H, Li Y, Guan KL. Signaling by target of rapamycin proteins in cell growth control. Microbiol Mol Biol Rev, 2005, 69:79-100.
    [1]Schmelzle T,Hall M N.TOR,a central controller of cell growth.Cell,2000,103:253-262.
    [2]Hay,N,Sonenberg N.Upstream and downstream of mTOR.Genes.Dev.,2004,18:1926-1945.
    [3]Grove J R,Banerjee P,Balasubramanyam A,et al.Cloning and Expression of two human p70S6 kinase polypeptides differing only at their amino termini.Mol Cell Biol.,1991,11(11):5541-5550.
    [4]Reinhard C,Thomas G,Kozma S C.A singal gene encodes two isoforms of the p70S6 kinase:activation upon mitogenic stimulation.Proc.Natl Acad Sci.,1992,89:4052-4056.
    [5]Proud C G.Regulation of mammalian translation factors by nutrients.Eur J Biochem.,2002,269:5338-5349.
    [6]Phin S,Kupferwasser D,Lam J,et al.Mutational analysis of ribosomal S6 kinase 2 shows differential regulation of its kinase activity from that of ribosomal D6 kinasel.Biochem J.,2003,373:583-591.
    [7]Grout I,Minami T,Hara K,et al.Molecular cloning and characterization of a novel p70S6 kinase βcontaining a praline-rich region.J Biol Chem.,1998,273(46):30061-30064.
    [8]Sood AK,Coffin JE,Schneider GB,Fletcher MS,DeYoung BR,Gruman LM,Gershenson DM,Schaller MD,Hendrix MJC.Biological significance of focal adhesion kinase ih ovarian cancer:role in migration and invasion.Am J Pathol,2004,165:1087-1095.
    [9]Slack-Davis JK,Martin KH,Tilghman RW,Iwanicki M,Ung EJ,Autry C,Luzzio M J,Cooper B,Kath JC,Roberts WG,Parsons JT.Cellular characterization of a novel focal adhesion kinase inhibitor.J Biol Chem,2007,282:14845-14852.
    [10] Miyazaki T, Kato H, Nakajima M, Sohda M, Fukai Y, Masuda N, Manda R, Fukuchi M, Tsukada K, Kuwano H. FAK overexperession is correlated with tumour invasiveness and lymph node metastasis in oesophageal squamous cell carcinoma. Br J Cancer, 2003, 89:140-145.
    [11] Schaller MD, Hildebrand JD, Shannon JD, Fox JW, Vines RR, Parsons T. Autophosphorylation of the focal adhesion kinase, ppl25FAK, directs SH2-dependent binding of pp60~(s(?)). Mol Cell Biol, 1994,14:1680-1688.
    [12] Calalb MB, Polte TR, Hanks SK. Tyrosine phosphorylation of facal adhesion kinase at sites in the catalytic domain regulates kinase activity: a role for Src Family kinase. Mol Cell Bio, 1995,15:954-963.
    [13] Parsons JT. Focal adhesion kinase: the first ten years. J Cell Sci, 2003,116:1409-1416.12640026.
    [14] Murakami M, Ichisaka T, Maeda M, Oshiro N, Hara K, Edenhofer F, Kiyama H, Yonezawa K, Yamanaka S. mTOR is essential for growth and proliferation in early mouse embryos and embryonic stem cells. Mol Cell Bio., 2004, 24 (15): 6710-6718.
    [15] Murakami M, Ichisaka T, Maeda M, Oshiro N, Hara K, Edenhofer F, Kiyama H, Yonezawa K, Yamanaka S. mTOR is essential for growth and proliferation in early mouse embryos and embryonic stem cells. Mol Cell Bio., 2004, 24 (15): 6710-6718.
    
    [16] Grout I, Minami T, Hara K, et al. Molecular cloning and characterization of a novel p70S6 kinase B containing a praline-rich region. J Biol Chem., 1998, 273(46):30061-30064.
    [1]Shaw R J,CantleyL C.Ras,PI3K and mTOR signalling controls tumour cell growth.Nature,2006,441:424-430.
    [2]Wullschleger S,Loewith R,Hall M N.TOR signaling in growth and metabolism.Cell,2006,124:471-484.
    [3]Schmelzle T,Hall M N.TOR,a central controller of cell growth.Cell,2000,103:253-262.
    [4]Gangloff Y G,Mueller M,Dann S G,et al.Disruption of the mouse mTOR gene leads to early postimplantation lethality and prohibits embryonic stem cell development.Mol Cell Biol.,2004,24(21):9508-9516.
    [5]Pende M,Um S H,Mieulet V,et al.S6K1~(-/-)/S6K2~(-/-) mice exhibit perinatal lethality and rapamycin-sensitive 5'-terminal oligopyrimidine mRNA translation and reveal a mitogen-activated protein kinase-dependent S6kinase pathway.Mol Cell Biol.,2004,24(8):3112-3124.
    [6]Murakami M,Tomoko I,Maeda M,et al.mTOR is essential for growth and proliferation in early mouse embryos and embryonid stem cells.Mol Cll Biol.,2004,24(15):6710-6718.
    [7]Cota D,Proulx K,Smith K A,et al.Hypothalamic mTOR signaling regulates food intake.Science,2006,312(5775):927-930.
    [8]Kahn B B,Myers M G Jr.mTOR tells the brain that the body is hungry.Nat Med.,2006,12(6):615-617.
    [9]Fingar DC,Richardson CJ,Tee AR,Cheatham L,Tsou C,Blenis J.mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BP1/Eukaryotic translation initiation factor 4E.Mol Cell Biol.,2004,24(1):200-216.
    [10]刘奕,SujutaHIDAYAT,米泽一仁,于乘治 mTOR及其底物住HeLa细胞的细胞周期不同时相中的表达 中国生物化学与分子生物学报2004,20(3):358-362.
    [11]Hou G,Xue L,Lu Z,Fan T,Tian F,Xue Y.An activated mTOR/p70S6K signaling pathway in esophageal squamous cell carcinoma cell lines and inhibition of the pathway by rapamycin and siRNA against mTOR.Cancer Letter 2007;253:236-248.
    [12]Elit L.CCI-779 Wyeth.Curr Opin Investig Drugs,2002,3(8):1249-1253.
    [13]Ma W W,Jimeno A.Temsirolimus.2007,43(10):659-669.
    [14]Axelson J,Lindell M,Horlin K,Ohlsson B.Inhibition of different intracellular signal cascades in human pancreatic cancer cells.Pancreatology,2005,5:251-258.
    [15]Yu K,Toral-Barza L,Discafani C,et al.mTOR,a novel target in breast cancer:the effect of CCI-779,an mTOR inhibitor,in preclinical models of breast cancer.Endocrine-Related Cancer,2001,8:249-258.
    [16]Frost P,Moatamed F,Hoang B,et al.In vivo antitumor effects of the mTOR inhibitor CCI-779 against human multiple myeloma cells in a xenograft modle.Bllod,2004,104:4181-4187.
    [17]Teachey DT,Obzut DA,Cooperman J,et al.The mTOR inhibitor CCI-779 induces apoptosis and inhibits growth in preclinical models of primary adult human ALL.Blood,2006,107(3):1149-1155.
    [18]Ghobrial I M,Witzig T E,Adjei A A.Targeting apoptosis pathways in cancer therapy.CA Cancer J Clin,2005,55:178-194.
    [19]deGraffenried L A,Friedrichs W E,Russell D H,et al.Inhibition of mTOR activity restores tamoxifen response in breast cancer cells with aberrant Akt activity.Clin Cancer Res,2004,10:8059-8-67.
    [20] Sadie T M, Gavriil M, Annable T, et al. Combination therapy for treating breast cancer using antiestroogen, ERA-923, and the mammalian target of rapamycin inhibitor, temsirolimus. Endocrine-Related Cancer, 2006,13:863-873.
    
    [21] Shah O J, Hunter T. Turnover of the active fraction of IRS1 involves raptor-mTOR- and S6K1-dependent serine phosphorylation in cell culture models of tuberous sclerosis. Mol Cell Biol., 2006, 26(17):6425-6434.
    [1]Schmelzle T,Hall M N.TOR,a central controller of cell growth.Cell,2000,103:253-262.
    [2]Hay,N,Sonenberg N.Upstream and downstream of mTOR.Genes.Dev.,2004,18:1926-1945.
    [3]Abraham R T,Wiederrecht G J.Immunopharmacology of rapamycin.Annu.Rev.Immunol.,1996,14:483-510.
    [4]Oldham S,Montagne J,Radimerski,T,et al.Genetic and biochemical characterization of dTOR,the Drosophila homolog of the target of rapamycin.Genes Dev.,2000,14:2689-2694.
    [5]Zhang H,Stallock J P,Ng J C,et al.Regulation of cellular growth by the Drosophila target of rapamycin dTOR.Genes Dev.2000,14:2712-2724.
    [6]Fingar D C,Salama S,Tsou C,et al.Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E.Genes Dev.,2002,16:1472-1487
    [7]Wullschleger S,Loewith R,Hall M N.TOR signaling in growth and metabolism.Cell,2006,124:471-484.
    [8]Helliwell S B,Wanger P,Kunz J,et al.TOR1 and TOR2 are structurally and functionally simila but not identical phosphatidylinositol kinase homologues in yeast.Mol Biol Cell,1994,5(1):105-118.
    [9]Loewith R,Jacinto E,Wullschleger S,et al.Two TOR complexes,only one of which is Rapamycin sensitive,have distinct roles in cell growth control.Mol Cell,2002,10:457-468.
    [10]Chiu MI,Katz H,Berlin V.RAPT1,a mammalian homolog of yeast Tor,interacts with the FKBP12/rapamycin complex.Proc Natl Acad Sci,1994,91(26):12574-12578.
    [11]Sabatini DM,Erdjument-Bromage H,Lui M,et al.RAFT1:a mammalian protein that binds to FKBP12in a rapamycin-dependent fashion and is homologous to yeast TORs.Cell,1994,78(1):35-43.
    [12]Hentges K E,Sitry B,Gingeras A C,et al.FRAP/mTOR is required for proliferation and patterning duringembryonic development in the mouse.Proc.Natl.Acad.Sci.,2001,98(24):13796-13801.
    [13]Strausberg R L,Feingold E A,Grouse L H,et al.Generation and initial analysis of more than 15,000full-length human and mouse cDNA sequences.Proc.Natl.Acad.Sci.,2002,99(26):16899-16903.
    [14]Shaw R J,CantleyL C.Ras,PI3K and Mtor signalling controls tumour cell growth.Nature,2006,441:424-430.
    [15]Hara K,Maruki Y,Long X,et al.Raptor,a binding partner of target of Rapamycin(TOR),mediates TOR action.Cell,2002,110:177-189.
    [16] Kim D H, Sarbassov D D, Ali S M, et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell, 2002,110:163-175.
    [17] Sarbassov D D, Ali S M, Kim D H, et al. Rictor, anovel binding partner of mTOR, defines a Rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Cur. Biol., 2004, 14:1296-1302.
    [18] Chen E J, Kaiser C A. LST8 negatively regulates amino acid biosynthesis as a component of the TOR pathway. J. Cell. Biol., 2003,161(2):333-347.
    [19] Kim D H, Sarbassov D D, Ali S M, et al. GβL, a positive regulator of the Rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol. Cell, 2003, 11:895-904.
    [20] Patel P H, Thapar N, Guo L, et al. Drosophila Rheb GTPase is required for cell cycle progression and cell growth. J Cell Sci., 2003,116(Pt17):3601-3610.
    [21] Patel P H, Tamanoi F. Increased Rheb-TOR signaling enhances sensitivity of the whole organism to oxidative stress. J Cell Sci., 2006,119(Pt20):4285-4292.
    
    [22] Tee A R, Fingar D C, Manning B D, et al. Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin(mTOR)-mediated downstream signaling. PNAS, 2002, 99(21):13571-13576.
    [23] Li Y, Corradetti M N, Inoki K, et al. TSC2: filling the GAP in the mTOR signaling pathway. Trends Biochem Sci., 2004, 29(1):32-38.
    [24] Gingras A C, Raught B, Sonenberg N. Regulation of translation initiation by FRAP/mTOR. Genes Dev., 2001,15(7): 807-826.
    [25] Fingar D C, Richardson C J,Tee A R, et al. mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BP1/Eukaryotic translation initiation factor 4E. Mol Cell Biol., 2004, 24(1): 200-216.
    [26] Proud C G. Regulation of mammalian translation factors by nutrients. Eur J Biochem., 2002, 269: 5338-5349.
    [27] Eguchi S, Tokunaga C, Hidayat S, et al. Different roles for the TOS and RA1P motifs of the translation regulator protein 4E-BP1 in the association with raptor and phosphorylation by mTOR in the regulation of cell size. Genes Cells, 2006,11:757-766.
    
    [28] Shen W H, Boyle D W, Wisniowski P, et al. Insulin and IGF-I stimulate the formation of the eukaryotic initiation factor 4F complex and protein synthesis in C2C12 myotubes independent of availability of external amino acides. J Endocrinol., 2005,185(2):275-289.
    [29] Grove J R, Banerjee P, Balasubramanyam A, et al. Cloning and Expression of two human p70S6 kinase polypeptides differing only at their amino termini. Mol Cell Biol., 1991, 11(11):5541-5550.
    [30] Reinhard C, Thomas G, Kozma SC. A singal gene encodes two isoforms of the p70S6 kinase: activation upon mitogenic stimulation. Proc. Natl Acad Sci., 1992, 89:4052-4056.
    [31] Grout I, Minami T, Hara K, et al. Molecular cloning and characterization of a novel p70S6 kinase βcontaining a praline-rich region. J Biol Chem., 1998, 273(46):30061-30064.
    [32] Phin S, Kupferwasser D, Lam J, et al. Mutational analysis of ribosomal S6 kinase 2 shows differential regulation of its kinase activity from that of ribosomal S6 kinasel. Biochem J., 2003,373:583-591.
    [33] Rebholz H, Panasyuk G, Fenton T, et al. Receptor association and tyrosine phosphorylation of S6 kinases. FEBS J.,2006,273:2023-2036.
    [34]Pende M,Um S H,Mieulet V,et al.S6K1~(-/-)/S6K2~(-/-) mice exhibit perinatal lethality and rapamycin-sensitive 5'-terminal oligopyrimidine mRNA translation and reveal a mitogen-activated protein kinase-dependent S6kinase pathway.Mol Cell Biol.,2004,24(8):3112-3124.
    [35]Ruvinsky I,Meyuhas O.Ribosomal protein S6 phosphorylation:from protein synthesis to cell size.TRENS Biochem Sci.,2006,31(6):342-348.
    [36]CarreraAC.TOR signaling in mammals.J Cell Sci.,2004,117:4615-4616.
    [37]Harrington L S,Findlay G M,Lamb R F.Restraining PI3K:mTOR signaling goes back to the membrane.TRENDS Biochem Sci.,2005,30(1):35-42.
    [38]Inoki K,Guan K L.Complexity of the TOR signaling network.TRENDS Cell Biol.,2006,16(4):206-212.
    [39]Ma L,Chen Z,Erdjument-Bromage H,Tempst P,et al.Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis.Cell,2005,121(2):179-193.
    [40]Roux P P,Ballif B A,Anjum R,et al.Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerous tumor suppressor complex via p90 ribosomal S6 kinase.PNAS,2004,101(37):13489-13494.
    [41]Sarbassov D D,Ali S M,Sabatini D M.Growing roles for the mTOR pathway.Curr Opin Cell Biol.,2005,17:595-603.
    [42]Caldarola S,Amaldi F,Proud C G,et al.Translational regulation of terminal oligopyrimidine mRNAs induced by serum and amino acide involves distinct signaling events.J Biol.Chem.,2004,279(14):13522-13531.
    [43]Long X,Ortiz-Vega S,Lin Y,et al.Rheb binding to mammalian target of rapamycin(mTOR) is regulated by amino acid sufficiency.J Biol Chem.,2005,280(25):23433-23436.
    [44]Avruch J,Hara K,Lin Y,et al.Insulin and amino-acid regulation of mTOR signaling and kinase activity through the Rheb GTPase.Oncogene,2006,25(48);6361-6372.
    [45]Smith E M,Finn S G,Tee A R,et al.The tuberous sclerosis protein TSC2 is not required for the regulation of the mammalian target of rapamycin by amino acids and cellular stresses.J Biol Chem.,2005,280(19):18717-18727.
    [46]Wang X,Beugnet A,Murakami M,et al.Distinct signaling events downstream of mTOR cooperate to mediate the effects of amino acids and insulin on initiation factor 4E-binding proteins.Mol Cell Biol.,2005,25(7):2558-2572.
    [47]Kimura N,Tokunaga C,Dalai S,et al.A possible linkage between AMP-activated protein kinase(AMPK)and mammalian target of rapamycin(mTOR) signalling pathway.Genes Cells,2003,8(1):65-79.
    [48]Tokunaga C,Yoshino K,Yonezawa k.mTOR integrates amino acid and energy-sensing pathway.Biochem Miophys Res Commun.,2004,313(2):443-446.
    [49]Klann E,Antion M D,Banko J L,et al.Synaptic plasticity and translation initiation.Learn Mem.,2004,11(4):365-372.
    [50]Tang X,Wang L,Proud C G,et al.Muscarinic receptor-mediated activation of p70S6 kinase 1(S6K1) in 1321N1 astrocytoma cells:permissive role of phosphoinositide 3-kinase.Biochem J.,2003,374:137-143.
    [51]Ballou L M,Jiang Y P,Du G,et al.Ca~(2+) and phospholipase D-dependent and independent pathways activate mTOR signaling.FEBS Letters,2003,550:51-56.
    [52] Lenz g, Avruch J. glutamatergic regulation of the p70S6 kinase in primary mouse neurons. J Biol Chem., 2005, 280(46):38121-38124.
    
    [53] Montcouquiol M, Corwin J T. Intraccellular signals that control cell proliferation in mammalian balance epithelia S6 kinase in preference to calcium, protein kinase C, and mitogen-activated protein kinase. J Neur., 2001,21(2): 570-580.
    [54] Wing L Y C, Chen H M, Chuang P C, et al. The mT0R-S6Kl but not PI3K-Akt signaling is responsible for fibroblast groeth factor-9-induced cell proliferation. J Biol Chem., 2005, 280(20): 19937-19947.
    [55] Wang L, Rolfe M, Proud CG. Ca(2+)-independent protein kinase C activity is required for alpha1-adrenergic-receptor-mediated regulation of ribosomal protein S6 kinases in adult cardiomyocytes. Biochem J., 2003 , 373(Pt 2):603-611.
    
    [56] Zhang W G, Shor B, Yu k. Identification and characterization of a constitutively T-loop phosphorylated and active recombinant S6K1: Expression, purification, and enzymatic studies in a high capacity non-radioactive TR-FRET Lance assay. Protein Expr Purif., 2006,46:414-420.
    [57] Valvka T, Verdier F, Cramer R, et al. Protein kinase C phosphorylates ribosomal protein S6 kinase betaII and regulates its subcellular localization. Mol Cell Biol., 2003,23(3): 852-863.
    
    [58] Gao N, Flynn D C, Zhang Z, et al. G1 cell cycle progression and the expression of G1 cyclins are r egulated by PI3K/AKT/mTOR/p70S6K1 signaling in human ovarian cancer cells. Am J Physiol Cell Physiol., 2004,287(2):C281-291.
    
    [59] Eguchi S, Tokunaga C, Hidayat S, et al. Different roles for the TOS and RAIP motifs of the translational regulator protein 4E-BP1 in the association with raptor and phosphorylation by mTOR in the regulation of cell size. Genes Cells, 2006,11(7):757-766.
    [60] Liu L, Cash T P, Jones RG, et al. Hypoxia-induced energy stress regulates mRNA translation and cell growth. Mol Cell, 2006,21(4):521-531.
    
    [61] Jankiewicz M, groner B, Desrivieres S. Mammalian target of rapamycin regulates the growth of mammary epithelial cells through the inhibitor of deoxyribonucleic acid binding Id1 and their functional differentiation through Id2. Mol Endocrinol., 2006,20(10):2369-2381.
    
    [62] Gangloff Y G, Mueller M, Dann S G, et al. Disruption oof the mouse mTOR gene leads to early postimplantation lethality and prohibits embryonic stem cell development. Mol Cell Biol., 2004, 24(21):9508-9516.
    [63] Murakami M, Tomoko I, Maeda M, et al. mTOR is essential for growth and proliferation in early mouse embryos and embryonid stem cells. Mol Cll Biol., 2004,24(15):6710-6718.
    [64] Sabatini D M. mTOR and cancer: insights into a complex relationship. Nat Rev Cancer., 2006, 6(9):729-734.
    [65] Um S H, D'Alessio D, Thomas G. Nutrient overlaod, insulin resistance, and ribosomal protein S6 kinase 1, S6K1. Cell Metab., 2006,3(6):393-402.
    [66] Cota D, Proulx K, Smith K A, et al. Hypothalamic mTOR signaling regulates food intake. Science, 2006, 312(5775):927-930.
    [67] Kahn B B, Myers M G Jr. mTOR tells the brain that the body is hungry. Nat Med., 2006, 12(6):615-617.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700