用户名: 密码: 验证码:
蛋白质组学和分子生物学在HCMV感染致病机制的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     1.应用SELDI-TOF-MS技术检测人巨细胞病毒(HCMV)感染导致临床个体致肝炎综合征血清学和HCMV感染相关细胞的神经瘤细胞内、外液蛋白质组学差异表达,建立与HCMV致病相关的蛋白标志物筛选方法;
     2.建立可调控的针对HCMV即刻早期基因的细胞表达系统,并检测即刻早期基因对细胞抗凋亡的影响,以此探讨可能的机理。
     材料和方法:
     1.取临床HCMV引起的先天性婴儿肝炎综合征(Congenital humancytomegalovirus hepatitis)患儿20例作为实验组,三个对照组25例血清标本(肝功能情况检测、CMV特异性IgM抗体及尿CMV基因定量检测),分离并制备蛋白,与WCX2蛋白质芯片相互作用,利用SELDI-TOF-MS技术检测细胞内液中分子量在5000~20000Da范围内蛋白质的表达情况,绘制出蛋白飞行质谱,在BiomarkerWizard软件的辅助下,分析差异蛋白。根据蛋白质的分子量和等电点,在Swiss蛋白数据库中对差异蛋白进行初步鉴定。
     2.选择人星型胶质瘤细胞(U251细胞)和人神经母细胞瘤细胞(SH-SY5Y),按细胞数量之比为10:1的比例将两种细胞混合培养,感染HCMVAD169株。病毒感染神经瘤细胞6h后,RT-PCR的方法检测HCMV IE基因的表达水平。流式细胞仪检测,观察HCMV感染对神经瘤细胞凋亡的影响;体外培养U251细胞,细胞感染病毒后不同时间段收获细胞为实验组,同时收获正常细胞为对照组,使用基于SELDI技术的时间-飞行质谱仪和WCX2芯片,检测各组之间细胞内、外液蛋白表达谱的差异。将各组蛋白质图谱进行比较,并将相关蛋白峰在Swiss蛋白数据库中检索,寻找与病毒的感染及发病相关的蛋白分子。
     3.利用已有质粒pIE72,设计人巨细胞病毒HCMV即刻早期基因IE1的特异性引物,进行IE1基因的扩增、提纯、鉴定,构建重组的可调控真核表达载体pTRE2-hyg/IE1,纯化质粒。
     4.常规培养Tet-On HeLa细胞,以阳离子高效转染试剂HifectinⅡ转染细胞。首先在培养的HeLa细胞中转染增强型绿色荧光蛋白(Enhanced green fluorescentprotein,EGFP)报道基因,在普通荧光显微镜下观察显示绿色荧光的HeLa细胞,确定转染效率;在转染EGFP基因的基础上,体外常规培养Tet-On HeLa细胞,转染pTRE2-hyg/IE1重组质粒,经G418和潮霉素双重筛选,RT-PCR和Western Blot和免疫组织化学方法鉴定IE1的表达。
     5.终浓度为100ng/mL的肿瘤坏死因子a作用于HeLa细胞,建立HeLa细胞的凋亡曲线;不同终浓度的Doxcycline(0.1μg/mL、1μg/mL和10μg/mL)作用转染pTRE2-hyg/IE1的HeLa细胞,诱导IE1表达,RT-PCR方法检测IE1基因的产生,Western blot检测IE1蛋白的产生水平,MTT法检测HeLa细胞的细胞增值率。
     结果:
     1.HCMV引起的先天性婴儿肝炎综合征组与各对照组比较,血清中有4个蛋白质表达水平发生明显变化,在Swiss蛋白数据库中检索到分子量为5811.6Da、7935.6Da和8899.3Da的蛋白峰分别与β-防御素8、巨噬细胞源性趋化因子和血小板碱性蛋白在分子量和等电点上非常接近。
     2.HCMV感染的两个组与无HCMV感染的两组婴儿比较,血清中共有5个蛋白质表达水平发生明显变化,其中5639.0Da、5909.6Da、7776.5Da和15833.2Da的蛋白峰分别与促胸腺生成素、β淀粉样前体蛋白A4、血小板因子4和白细胞介素-25在分子量和等电点上非常接近。
     3.HCMV隐性感染组与其他组比较,血清中有2个蛋白质表达水平发生明显变化,5710.7Da的蛋白峰与β-防御素31非常接近。
     4.两个先天性婴儿肝炎综合征组与肝功能正常的另两组婴儿比较,血清中有4个蛋白质表达水平发生明显变化,其中7567.6Da、13744.1Da、15092.8Da、15931.6Da的蛋白峰分别与巨噬细胞炎性蛋白4、前白蛋白、肝再生增强因子和结合珠蛋白非常接近。
     5.RT-PCR的方法检测HCMV IE基因的表达用于证实HCMV感染,成功建立了神经瘤细胞的HCMV感染模型。病毒感染1天后细胞无明显变化,感染3天后细胞在G1峰左侧出现一个亚二倍体细胞群的峰(亚G1峰,即凋亡峰),感染5天后细胞凋亡峰明显。
     6.病毒感染后细胞发生凋亡,且随病毒感染时间的延长,细胞凋亡明显增加。感染后3天和6天的细胞凋亡率分别为4.1%和42.6%。与正常对照组比较,分子量为2631.6Da、12027Da和13536.3Da的蛋白峰在病毒感染后表达持续上调,HCMV感染后4h略有增高,病毒感染后48h明显升高。通过在Swiss数据库中检索发现其蛋白峰的分子量和等电点分别与Caspase-1、TNF-a、β淀粉样前体蛋白非常接近。
     7.构建的真核表达载体pTRE2-hyg/IE1序列测定正确。Dox调控的重组表达载体pTRE2-hyg/IE1体外转染HeLa细胞后,经G418和潮霉素B双重筛选,获得一株稳定表达IE1的HeLa细胞株。梯度浓度的Doxcycline(0.1μg/mL、1μg/mL和10μg/mL)作用pTRE2-hyg/IE1-HeLa细胞48h,RT-PCR检测Dox诱导表达的mRNA比值IE1/β-actin分别为0.733,0.917和1.768,western blot检测IE1蛋白,IE1/β-actin分别为1.32,5.83和7.07。
     8.终浓度为100ng/mL的TNF-a和25ng/mL的ACTD联合作用于转染IE1质粒的HeLa细胞后,MTT检测HeLa细胞增值率显示转染IE1的细胞在8h之内细胞活性大于未转染细胞组,caspACE检测caspase-3表达量分别为0.6±0.029、1.6±0.041和1.85±0.065,而未转染IE1的HeLa细胞caspase-3表达量分别为0.85±0.061、2.6±0.058和4.5±0.065。统计学分析各组比值差异有显著意义(P<0.01),从而证明转染后的IE1-HeLa细胞具有显著抗凋亡功能,细胞学观察也证实这一点。
     结论:
     1.建立了HCMV感染引起的先天性婴儿肝炎综合征人群的血清蛋白质组学数据库和HCMV感染神经瘤细胞的细胞内、外液差异蛋白质组学数据库,并发现了HCMV临床个体及细胞学改变的有意义的蛋白质组学指标。
     2.HCMV感染过程持续增高的细胞蛋白因子,可能与HCMV感染所产生的细胞凋亡有关。
     3.可调控表达外源基因的Tet-On质粒,可以在Dox诱导下,表达与Dox剂量依赖的外源插入基因编码蛋白HCMV IE1,可抑制细胞凋亡。
Objective:
     1.To identify serum protein biomarkers in infants with hepatitis syndrome resulting from congenital human cytomegalovirus(HCMV) infection and intracellular and extracellular of HCMV infected glioma cells using surface-enhanced laser desorption/ionization time-of-flight mass spectrometry(SELDI-TOF-MS).
     2.To apply immediate early protein into Tet-On cell line with regulatory system and to study its protection of injury and to supply new method and means in exploring HCMV IE protein anti-apoptisis and its possible mechanism.
     Materials and Methods:
     1.Serum samples were collected from 20 HCMV-infected infants with hepatitis and 25 controls.Of the 25 infants in the control group,5 were infected with HCMV but without hepatitis,10 had hepatitis but no HCMV infection,and 10 were healthy.Protcomic expression in the serum was detected by WCX2 chips and SELDI-TOF-MS.Differential protein analysis and identificaion by Biomarker Wizard software and Swiss Protein Database.
     2.Human glioma cell line(U251) and human neuroblastoma cell line(SH-SY5Y) mixed culture with cell population of 10 to 1 and after 6 hours,the level of HCMV infection was detected by HCMV IE.Using flow cytometer and SELDI- TOF-MS to detect differential expressionof intracellular and extracellular of HCMV infected cells.HCMV infection and the initial analysis and identification of related protein moleculars were performed by Swiss protein database.
     3.Specific primers were designed to amplify IE1 gene by pIE72 and to construct regulary eukaryotic expression vector pTRE2-hyg/IE1 before its purification and identification.
     4.Tet-On HeLa cell line was cultured with conventional culture.Cells were transfected with cation transfection reagent.Enhanced green fluorecentprotin report gene were transfected firstly to decide the transfection efficiency;Tet-On HeLa cells were culture in vitro and were transfected with pTRE2-hyg/IE1.After double screening by G418 and hygromycin B,IE1 expression was identified by RT-PCR and Western Blot,as well as immunohistochemistry.
     5.HeLa cell line was induced into apoptosis by the final concentration of TNF-alpha(100 ng/mL) and thus the HeLa cell apoptosis curve was set up;Different final concentration Doxcycline(0.1μg/mL、1μg/mL and 10μg/mL) acted transfected pTRE2-hyg/IE1 HeLa cell line to induce IE1 expression.RT-PCR and western blot were used to detect the expression of IE1 gene and protein,respectively.MTT method was used to assay the increasement of HeLa cells.
     Results:
     1.Comparing with control groups,fifteen protein peaks were distinctly different among the four groups in the mass range from 2,000 to 20,000 Da.Of these 15 peaks,four at 4,349.8, 5,808.7,7,935.6 and 8,885.9 Da were significantly different between the congenital HCMV-infected infants with hepatitis and the controls.Five peaks were distinctly up-regulated in the infants with HCMV infection(3,266.8,5,638.5,5,909.1,7,771.4 and 15,835.6 Da) compared to those in infants without HCMV infection.Two proteins at 4,600.1 and 5,704.3 were up-regulated in infants with HMCV infection but no hepatitis. Four protein peaks were markedly different(7,567.0,13,744.8,15,100.7 and 15,915.0 Da) between the infants with hepatitis and the other controls.
     2.Conmparted with non-infected group,the two HCMV infected infants' sera show five protein with marked changes,among which peaks at 5639.0Da,5909.6Da,7776.5Da and 15833.2Da were very close with TP,beta-amyloid precusor A4,platelet factor 4 and IL-25.
     3.Compared with other groups,HCMV inapparent infection group shows two changes, among which the protein peak at 5710.7 Da was close with beta-defensin.
     4.Compared with normal hepatic function group of infants,four proteins in serum show marked changes,among which the peaks at 7567.6Da,13744.1Da,15092.8Da and 15931.6Da were very close with MIP4,PA,ALR and Hp.
     5.RT-PCR was applied to detect HCMV IE gene expression to confirm the infection of HCMV and the HCMV-infected-neuroma cells model was constructed successfully.No clear changes were found in the 1 day of infection while in the 3 day of infection,the G1 peak left side showed hypodiploid cell pear which appeared more marked apoptosis in the 5th day of infection.
     6.SH-SY5Y cells showed apoptosis after infection and according to the infection time,the apoptosis increased.The apoptotic rates were 4.1%and 42.6%.Comparing with non-infected group,the protein peaks at 2631.6Da,12027Da and 13536.3Da up-regulated after HCMV infection.At 48 hours,the inceasing was more obvious than that of at 4 hours.Searching in Swiss data base found that they were very close with Capspase-1, TNF-alpha and beta-amyloid precusor protein.
     7.Eukaryotic expression vector pTRE2-hyg/IE1 was constructed successfully with sequencing.A stable expression HeLa cell line was set up with Dox induction named pTRE2-hyg/IE1 HeLa cell line after G418 and hygromycin B.Gradient concentration (0.1μg/mL、1μg/mL and 10μg/mL) can induced pTRE2-hyg/IE1-HeLa for 48h, mRNA was detected by RT-PCR with results of IE1/β-actin were 0.733,0.917 and 1.768,while IE1 proteins were detected by western blot with results of IE1/β-actin were 1.32,5.83 and 7.07.
     8.TNF-a and ACTD with final concentrations of 100ng/mL and 25ng/mL respectively were combinded and added onto HeLa cells transfected by IE1 plasmind.Activity of HeLa showed that in 8 hours of infection,transfected IE1 HeLa cell group activity have marked difference comparing with the non-transfected group.Caspase-3 expressoin was detected by CaspACE kit as 0.6±0.029,1.6±0.041 and 1.85±0.065,while non-infected HeLa cells,the caspase-3 expression were 0.85±0.061,2.6±0.058 and 4.5±0.065. Significance of difference in statistics analysis were shown with p<0.01.All the data proved that IE1-HeLa have functions of anti-apoptosis with confirm of cytology.
     Conclusion:
     1.Protein database in sera and intra-extra cellular proteins in both hepatitis syndrome resulting from congenital HCMV infection and HCMV infected neuroma cells was constructed and proteomics indexes were found in HCMV infection individuals and cytology changes.
     2.Up-regulated cell protein factors in procession of HCMV infection may play certain role in apoptosis.
     3.Regulatory Tet-On plasmid could produce dose-dependent interesting protein and play cytological functions by the induction of Dox.
引文
1. Boppanan SB, Rivera LB, Fowler KB, et al. Intrauterine transmission of cytomegalovirus to infants of women with preconceptional immunity. N Engl J Med. 2001, (344):1366-71.
    2. Gaytant MA, E Steegers BA et al. Congenital cytomegalovirus infection: review of the epidemiology and outcome. Obstet. Gynecol. Surv. 2002, (57) :245-256.
    3. Revello, MG, and G Gerna. Diagnosis and management of human cytomegalovirus infection in the mother, fetus and newborn Infant. Clin. Microbiol. 2002, (15) :680-715
    4. Azam AZ, Vial Y, Fawer CL, et al. Prenatal diagnosis of congenital cytomegalovirus infection. Obstet Gynecol. 2001, (97) :443-8.
    5. Peng J, Gygi SP, Proteomics: The move to mixtures. J Mass Spectrom 2001 (36) :1083-1091
    6. Salih E. Phosphoproteomics by mass spectrometry and classical protein chemistry approaches.Mass Spectrom Rev.2005,24(6):828-46.
    7. Ho E, Hayen A, Wilkins MR. Characterisation of organellar proteomes: a guide to Subcellular proteomic fractionation and analysis. Proteomics. 2006,6(21):5746-57.
    8. Almeras L, Briolant S, Orlandi-Pradines E et al. Proteomic analysis and parasitosis: principles and applications Med Trop (Mars). 2007, 67(2):188-96.
    9. Schleiss MR. Nonprimate models of congenital cytomegalovirus (CMV) infection: gaining insight into pathogenesis and prevention of disease in newboms. ILAR J. 2006,47(1):65-72.
    10. Poon TC.Opportunities and limitations of SELDI-TOF-MS in biomedical research: practical advices. Expert Rev Proteomics. 2007, 4(1):51-65.
    11. Krieg RC, Gaisa NT, Paweletz CP, et al. Proteomic analysis of human bladder tissue using SELDI approach following microdissection techniques. Methods Mol Biol. 2005;293:255-67.
    12. Wu GJ, Chen SZ, Chen LY. Study on molecular epidemiology of HCMV infection in mothers and their newboms in Changsha. Hunan Yi Ke Da Xue Xue Bao. 2001 Feb 28;26(1):23-5.
    13. Halwachs-Baumann G. The congenital cytomegalovirus infection: virus-host interaction for defense and transmission. Curr Pharm Biotechnol. 2006, 7(4):303-12.
    14. Schleiss MR. Nonprimate models of congenital cytomegalovirus (CMV) infection: gaining insight into pathogenesis and prevention of disease in newborns. ILAR J. 2006,47(1):65-72.
    15. Linqi Zhang, Wenjie Yu, Tian He et al. Contribution of Human Defensin 1,2,and 3 to the Anti-HTV-1 Activity of CD8 Antiviral Factor. SCIENCE. 2002(1): 995-1000.
    16. Tury A, Mairet-Coello G, Lisowsky T et al. Expression of the sulfhydryl oxidase ALR (Augmenter of Liver Regeneration) in adult rat brain. Brain Res. 2005,1048(1-2):87-97.
    17. Thasler WE, Schlott T, Thelen P et al. Expression of augmenter of liver regeneration (ALR) in human liver cirrhosis and carcinoma. Histopathology. 2005, 47(1):57-66.
    1. Trincado DE, Rawlinson WD. Congenital and perinatal infections with cytomegalovirus. J Paediatr Child Health 2001, (2): 187-192.
    2. Revello MG, Zavattoni M, Furione M, Fabbri E, Gerna G. Preconceptional primary human cytomegalovirus infection and risk of congenital infection. J Infect Dis 2006, (6): 783-787.
    3. Baskin HJ, Hedlund GNeuroimaging of herpesvirus infections in children. Pediatr Radiol. 2007, 37(10):949-963.
    4. Lenschow DJ, Lai C, Frias-Staheli N et al. IFN-stimulated gene 15 functions as a critical antiviral molecule against influenza, herpes, and Sindbis viruses. Proc Natl Acad Sci U S A. 2007,104(4): 1371-6.
    5. Osiak A, Utermohlen O, Niendorf S, et al.ISG15, an interferon-stimulated ubiquitin-like protein, is not essential for STAT1 signaling and responses against vesicular stomatitis and lymphocytic choriomeningitis virus. Mol Cell Biol. 2005, 25 (15):6338-45.
    6. Lenschow DJ, Giannakopoulos NV, Gunn LJ, et al. Identification of interferon-stimulated gene 15 as an antiviral molecule during Sindbis virus infection in vivo. J Virol. 2005, 79(22):13974-83.
    7. Hall SH, Yenugu S, Radhakrishnan Y, et al. Characterization and functions of beta defensins in the epididymis.Asian J Androl. 2007, 9(4):453-62.
    8. El-Rifai W, Moskaluk CA, Abdrabbo MK et al. Gastric cancers overexpress S100A calcium-binding proteins. Cancer Res. 2002, 62 (23):6823-6.
    9. Bonini P, Cicconi S, Cardinale A, et al. Oxidative stress induces p53-mediated apoptosis in glia: p53 transcription-independent way to die. J Neurosci Res. 2004,75(1):83-95.
    10. Tang X, Metzger D, Leeman S, Amar S. LPS-induced TNF-alpha factor (LITAF)-deficient mice express reduced LPS-induced cytokine: Evidence for LITAF-dependent LPS signaling pathways. Proc Natl Acad Sci USA 2006; 103 (37): 13777-13782.
    11. Cui LY, Liu SL, Ding Y, et al. IL-1beta sensitizes rat intervertebral disc cells to Fas ligand mediated apoptosis in vitro. Acta Pharmacol Sin. 2007,28(10):1671-6.
    12. Kajkowski EM, Lo CF, Ning X, Walker S, Sofia HJ, Wang W, et al. Beta-Amyloid peptide-induced apoptosis regulated by a novel protein containing a g protein activation module. J Biol Chem 2001; 276 (22): 18748-18756.
    1. Tschopp J, Thome M, Hofmann K, et al. The fight of viruses against apoptosis. Curr Opin Genet Dev, 1998,8(1):82-7.
    2. Nevels M, PaμLus C, Shenk T. Human cytomegalovirus immediate-early 1 protein facilitates viral replication by antagonizing histone deacetylation. Proc Natl Acad Sci U S A., 2004, 101(49): 17234-9.
    3. McCormick AL, Meiering CD, Smith GB, et al. Mitochondrial cell death suppressors carried by human and murine cytomegalovirus confer resistance to proteasome inhibitor-induced apoptosis. J Virol, 2005,79(19):12205-17.
    4. Chan G, Stinski MF, Guilbert LJ. Human cytomegalovirus-induced upregμlation of intercellμLar cell adhesion molecμLe-1 on villous syncytiotrophoblasts. Biol Reprod, 2004,71(3):797-803.
    5. Sun Y, Chen X, Xiao D. Tetracycline-inducible expression systems: new strategies and practices in the transgenic mouse modeling. Acta Biochim Biophys Sin (Shanghai), 2007, 39(4):235-46.
    6. Zhou X, Vink M, Berkhout B, et al. Modification of the Tet-On regμLatory system prevents the conditional-live HIV-1 variant from losing doxycycline-control. Retrovirology, 2006,9(3):82.
    7. Zhou X, Vink M, Berkhout B, et al. Modification of the Tet-On regμLatory system prevents the conditional-live HIV-1 variant from losing doxycycline-control. Retrovirology. 2006, 3:82.
    8. Sun Y, Chen X, Xiao D. Tetracycline-inducible expression systems: new strategies and practices in the transgenic mouse modeling. Acta Biochim Biophys Sin (Shanghai). 2007, 39(4):235-46.
    9. Sipo I, Hurtado Pico A, Wang X et al. An improved Tet-On regμLatable FasL-adenovirus vector system for lung cancer therapy. J Mol Med. 2006, 84(3):215-25.
    10. Duque G, El Abdaimi K, Henderson JE et al. Vitamin D inhibits Fas ligand-induced apoptosis in human osteoblasts by regulating components of both the mitochondrial and Fas-related pathways. Bone. 2004,35(1):57-64.
    11. White E. Mechanisms of apoptosis regulation by viral oncogenes in infection and tumorigenesis. Cell Death Differ. 2006, 13(8):1371-7.
    12. Pimentel-Muinos FX, Seed B. Regulated commitment of TNF receptor signaling: a molecular switch for death or activation. Immunity. 1999, 11(6):783-93.
    13. Hua B, Tamamori-Adachi M, Luo Y et al. A splice variant of stress response gene ATF3 counteracts NF-kappaB-dependent anti-apoptosis through inhibiting recruitment of CREB-binding protein/p300 coactivator. J Biol Chem. 2006 ,281(3):1620-9.
    14. Choi BM, Pae HO, Jang SI. et al. Nitric oxide as a pro-apoptotic as well as anti-apoptotic modulator. J Biochem Mol Biol. 2002, 35(1):116-26.
    15. Gossen M, Freundlieb S, Bender G et al. Transcriptional activation by tetracyclines in mammalian cells.Science.1995, 268(5218):1766-9.
    16. Freundlieb S, Schirra-Muller C, Bujard H. A tetracycline controlled activation/repression system with increased potential for gene transfer into mammalian cells. J Gene Med. 1999,1(1):4-12.
    17. Urlinger S, Baron U, Thellmann M. et al. Exploring the sequence space for tetracycline-dependent transcriptional activators: novel mutations yield expanded range and sensitivity. Proc Natl Acad Sci U S A. 2000,97(14):7963-8.
    18. Mizμguchi H, Hayakawa T. Characteristics of adenovirus-mediated tetracycline controllable expression system. Biochim Biophys Acta, 2001,1568(1):21.
    19. Spector DH. Activation and regμLation of human cytomegalovirus early genes. Intervirology. 1996;39(5-6):361-77.
    20. Castillo JP, Kowalik TF.Human cytomegalovirus immediate early proteins and cell growth control. Gene. 2002 May 15;290(1-2): 19-34.
    21. McElroy AK, Dwarakanath RS, Spector DH. et al. DysregμLation of Cyclin E gene expression in human cytomegalovirus-infected cells requires viral early gene expression and is associated with changes in the Rb-related protein pl30.J Virol. 2000 May;74(9):4192-206.
    22. Hummel M, Zhang Z, Yan S et al. Allogeneic transplantation induces expression of cytomegalovirus immediate-early genes in vivo: a model for reactivation from latency J Virol. 2001 May;75(10):4814-22.
    23. Liu Y, Biegalke BJ. The human cytomegalovirus ML35 gene encodes two proteins with different functions. J Virol. 2002 Mar;76(5):2460-8.
    24. Reddehase MJ, Podlech J, Grzimek NK. Mouse models of cytomegalovirus latency: overview. J Clin Virol. 2002, 25 Suppl 2:S23-36.
    25. Song YJ, Stinski MF. Inhibition of cell division by the human cytomegalovirus IE86 protein: role of the p53 pathway or cyclin-dependent kinase 1/cyclin B1. J Virol. 2005, 79(4):2597-603.
    26. Yee LF, Lin PL, Stinski MF. Ectopic expression of HCMV IE72 and IE86 proteins is sufficient to induce early gene expression but not production of infectious virus in undifferentiated promonocytic THP-1 cells. Virology. 2007, 363(1): 174-88.
    27. Zhen H, Fang F, Liu ZF et al.Effects of allitridin on the expression of human cytomegalovirus immediate early antigens-IE72 and IE86 in human embryonic lung cells. Zhongguo Zhong Yao Za Zhi. 2005, 30(1):47-9.
    28. Tichy A. Apoptotic machinery: the Bcl-2 family proteins in the role of inspectors and superintendents. Acta Medica . 2006, 49(1):13-8.
    29. Er E, Oliver L, Cartron PF et al. Mitochondria as the target of the pro-apoptotic protein Bax. Biochim Biophys Acta. 2006,1757(9-10):1301-11.
    30. Brown J, Higo H, McKalip A, et al. Human papillomavirus (HPV) 16 E6 sensitizes cells to atractyloside-induced apoptosis: role of p53, ICE-like proteases and the mitochondrial permeability transition. J Cell Biochem. 1997,66(2):245-55.
    31. Jung YK, Yuan J. Suppression of interleukin-1beta converting enzyme (ICE)-induced apoptosis by SV40 large T antigen. Oncogene. 1997,14(10):1207-14.
    32. Kalejta, RF, T Shenk. Manipulation of the cell cycle by human cytomegalovirus. Front. Biosci. 2002;7:295-306.
    33. Castillo JP, Frame FM, Rogoff HA, et al. Human cytomegalovirus IE1-72 activates ataxia telangiectasia mutated kinase and a p53/p21-mediated growth arrest response. J Virol. 2005,79(17):11467-75.
    34. Apoptosis in the retina during MCMV retinitis in immunosuppressed BALB/c mice. J Clin Virol. 2002,25 Suppl 2:S137-47.
    35. Zhang M, Atherton SS. Apoptosis in the retina during MCMV retinitis in immunosuppressed BALB/c mice. J Clin Virol. 2002,25 Suppl 2:S137-47.
    36. Yu Y, Alwine JC. Human cytomegalovirus major immediate-early proteins and simian virus 40 large T antigen can inhibit apoptosis through activation of the phosphatidylinositide 3'-OH kinase pathway and the cellular kinase Akt. J Virol. 2002, 76(8):3731-8.
    1.Tsutsui Y,Kawasaki H,Kosugi I.Reactivation of latent cytomegalovirus infection in mouse brain cells detected after transfer to brain slice cultures.J Virol,2002(14):7247-7254
    2.黄桢祥,洪涛,刘崇柏.医学病毒学基础及实验.第一版.技术科学出版社,1990年830页
    3.de la Hoz RE,Stephens G,Sherlock C.Diagnosis and treatment approaches of CMV infections in adult patients.J Clin Virol.2002 Suppl(2):S1-12.
    4.闻玉梅,陆德源,何丽芳,现代医学微生物学.第1版.上海:上海医科大学出版社1999年925-926页.
    5.闻玉梅,陆德源,何丽芳,现代医学微生物学.第1版.上海:上海医科大学出版社1999年927-931页.
    6.Azam AZ,Vial Y,Fawer CL,Zufferey J,Hohlfeld P.Prenatal diagnosis of congenital cytomegalovirus infection.Obstet Gynecol 2001(97):443-8.
    7.Revello MG,Gerna G.Diagnosis and management of human cytomegalovirus infection in the mother,fetus,and newborn infant.Clin Microbiol Rev 2002(15):680-715.
    8.姜宏,闻良珍.人巨细胞病毒感染对宿主细胞周期的影响 国外医学流行病学传染病学分册1999(3):122-5.
    9.Bulavin DV,Tararova ND,Brichkina AI et al.Transfection with the EIA and EIB-19kDa oncogenes does not prevent rat embryo fibroblasts from cell cycle arrest after gamma-radiation]Mol Biol(Mosk).2002,36(1):58-65.
    10.Chuang TD,Guh JY,Chiou SJ,et al.Phosphoinositide 3-kinase is required for high glucose-induced hypertrophy and p21WAF1 expression in LLC-PK1 cells.Kidney Int.2007,(9):867-74.
    11.Lin SC,Chueh SC,Hsiao CJ,et al.Prazosin displays anticancer activity against human prostate cancers:targeting DNA and cell cycle.Neoplasia.2007,9(10):830-9.
    12.Xiong Y,Harmon GJ,Zhang H,Casso D,Kobayashi R,Beach D.p21 is a universal inhibitor of cyclin kinases.Nature 1993(6456):701-4.
    13.Polyak K,Lee MH,Erdjument-Bromage H,Koff A,Roberts JM,Tempst P,Massagne J Cloning of p27Kip1,a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals.Cell 1994(1):59-66.
    14.Salvant BS,Fortunato EA,Spector DH.Cell cycle dysregulation by human cytomegalovirus:influence of the cell cycle phase at the time of infection and effects on cyclin transcription.J Virol 1998(5):3729-3741.
    15.Sinclair J,Baillie J,Bryant L,Caswell R.Human cytomegalovirus mediates cell cycle progression through G(1) into early S phase in terminally differentiated cells.J Gen Virol 2000(Pt 6):1553-1565.
    16.Castillo JP,Yurochko AD,Kowalik TF.Role of human cytomegalovirus immediate-early proteins in cell growth control.J Virol 2000(17):8028-37.
    17.Bresnahan WA,Albrecht T,Thompson EA.The cyclin E promoter is activated by human cytomegalovirus 86-kDa immediate early protein.J Biol Chem.1998(34):22075-82.
    18.刘志峰,方峰.巨细胞病毒对细胞周期的影响及其机制 国外医学病毒学分册 2002(4):104-7.
    19.Bresnahan WA,Boldogh I,Chi P,Thompson EA,Albrecht T.Inhibition of cellular Cdk2 activity blocks human cytomegalovirus replication.Virology.1997(2):239-247.
    20.Tsutusmi A,Shiota G,Yamazaki H,Kunisada T,Terada T,Kawasaki H.Accelerated growth of hepatocytes in association with Up-regulation of cyclin E in transgenic mice expressing the dominant negative form of retinoic acid receptor.Biochem Biophys Res Commun.2000(1):229-35.
    21.Song YJ,Stinski ME Effect of the human cytomegalovirus IE86 protein on expression of E2F-responsive genes:a DNA microarray analysis.Proc Natl Acad Sci U S A.2002(5):2836-41.
    22.Chen Z,Knutson E,Kurosky A,Albrecht T.Degradation of p21cip1 in cells productively infected with human cytomegalovirus.J Virol.2001(8):3613-25.
    23.Liu K,Li L,Cohen SN.Antisense RNA-mediated deficiency of the calpain protease,nCL-4,in NIH3T3 cells is associated with neoplastic transformation and tumorigenesis.J Biol Chem.2000(40):31093-8.
    24.周玉峰 方峰 HCMV免疫逃避分子机制研究进展 国外医学病毒学分册2004(2):43-6.
    25.Bullock GC,Lashmit PE,Stinski MF.Effect of the R1 element on expression of the US3 and US6immune evasion genes of human cytomegalovirus.Virology.2001(1):164-74.
    26.Zhao Y,Biegalke BJ.Functional analysis of the human cytomegalovirus immune evasion protein,pUS3(22kDa).Virology.2003(2):353-61.
    27.Gewurz BE,Gaudet R,Tortorella D,Wang EW,Ploegh HL,Wiley DC.Antigen presentation subverted:Structure of the human cytomegalovirus protein US2 bound to the class Ⅰ molecule HLA-A2.Proc Natl Acad Sci U S A.2001(12):6794-9.
    28.Barel MT,Pizzato N,van Leeuwen D,Bouteiller PL,Wiertz EJ,Lenfant F.Amino acid composition of alpha1/alpha2 domains and cytoplasmic tail of MHC class Ⅰ molecules determine their susceptibility to human cytomegalovirus US11-mediated down-regulation.Eur J Immunol.2003(6):1707-16.
    29.Lehner PJ,Karttunen JT,Wilkinson GW,Cresswell P.The human cytomegalovirus US6glycoprotein inhibits transporter associated with antigen processing-dependent peptide translocation.Proc Natl Acad Sci U S A.1997(13):6904-9.
    30.谢妮,陈利玉。人类巨细胞病毒抑制自然杀伤细胞的作用机制 国外医学生理、病理科学与临床分册 2004(1):90-1.
    31.Chapman TL,Bjorkman PJ,Characterization of a murine cytomegalovirus class Ⅰ major histocompatibility complex(MHC) homolog:comparison to MHC molecules and to the human cytomegalovims MHC homolog.J Virol.1998(1):460-6.
    32.张红春,安云庆NK细胞MHC-1类分子受体及其信号传导首都医科大学学报 2001(4):367-9.
    33.Reybum HT,Mandelboim O,Vales-Gomez M et al.The class Ⅰ MHC homologue of human cytomegalovims inhibits attack by natural killer cells.Nature.1997(6624):514-7.
    34.Odeberg J,Cerboni C,Browne H,Karre K,Moller E,Carbone E,Soderberg-Naucler C.Human cytomegalovims(HCMV)-infected endothelial cells and macrophages are less susceptible to natural killer lysis independent of the downregulation of classical HLA class Ⅰ molecules or expression of the HCMV class Ⅰ homologue,UL18.Scand J Immunol.2002(2):149-161.
    35.Rouas-Freiss N,Khalil-Daher I,Riteau B,Menier C,Paul P,Dausset J,Carosella ED.The immunotolerance role of HLA-G.Semin Cancer Biol.1999(1):3-12.
    36.Schust DJ,Tortorella D,Seebach J,Phan C,Ploegh HL.Trophoblast class Ⅰ major histocompatibility complex(MHC) products are resistant to rapid degradation imposed by the human cytomegalovirus(HCMV) gene products US2 and US11.J Exp Med.1998(3):497-503.
    37.Jun Y,Kim E,Jin M,Sung HC,Han H,Geraghty DE,Ahn K.Human cytomegalovirus gene products US3 and US6 down-regulate trophoblast class Ⅰ MHC molecules.J Immunol.2000(2):805-811.
    38.Huard B,Fruh K.A role for MHC class Ⅰ down-regulation in NK cell lysis of herpes virus-infected cells.Eur J Immunol.2000(2):509-515.Wang EC,McSharry B,Retiere C,et al.UL40-mediated NK evasion during productive infection with human cytomegalovirus.Proc Natl Acad Sci U S A.2002(11):7570-5.
    39.Ulbrecht M,Martinozzi S,Grzeschik M,Hengel H,Ellwart JW,Pla M,Weiss EH.Cutting edge:the human cytomegalovirus UL40 gene product contains a ligand for HLA-E and prevents NK cell-mediated lysis.J Immunol.2000(10):5019-22.
    40.McQueen KL,Parham P.Variable receptors controlling activation and inhibition of NK cells.Curr Opin Immunol.2002(5):615-21.
    41.Moser JM,Byers AM,Lukacher AE.NK cell receptors in antiviral immunity.Curr Opin Immunol.2002(4):509-16.
    42.Hegde NR,Tomazin RA,Wisher TW,Dunn C,Boname JM,Lewinsohn DM,Johnson DC.Inhibition of HLA-DR assembly,transport,and loading by human cytomegalovirus glycoprotein US3:a novel mechanism for evading major histocompatibility complex class Ⅱ antigen presentation.J Virol.2002(21):10929-41.
    43.刘志峰,方峰 巨细胞病毒感染与细胞凋亡的研究进展.国外医学病毒学分册,2002(6):173-6.
    44. Arrode G, Boccaccio C, Lule J, Allart S, Moinard N, Abastado JP, Alam A, Davrinche C. Incoming human cytomegalovirus pp65 (UL83) contained in apoptotic infected fibroblasts is cross-presented to CD8(+) T cells by dendritic cells. J Virol. 2000(21):10018-24.
    45. Erlach KC, Podlech J, Rojan A, Reddehase MJ. Tumor control in a model of bone marrow transplantation and acute liver-infiltrating B-cell lymphoma: an unpredicted novel function of cytomegalovirus. J Virol. 2002(6):2857-70.
    46. Buggage RR, Chan CC, Matteson DM, Reed GF, Whitcup SM. Apoptosis in cytomegalovirus retinitis associated with AIDS. Curr Eye Res. 2000(3):721-9.
    47. Cinatl J Jr, Blaheta R, Bittoova M, Scholz M, Margraf S, Vogel JU, Cinatl J, Doerr HW. Decreased neutrophil adhesion to human cytomegalovirus-infected retinal pigment epithelial cells is mediated by virus-induced up-regulation of Fas ligand independent of neutrophil apoptosis. J Immunol. 2000(8):4405-13.
    48. Wang J, Marker PH, Belcher JD, Wilcken DE, Burns LJ, Vercellotti GM, Wang XL. Human cytomegalovirus immediate early proteins upregulate endothelial p53 function. FEBS Lett. 2000(2-3):213-6.
    49. Chiou SH, Liu JH, Hsu WM, Chen SS, Chang SY, Juan LJ, Lin JC, Yang YT, Wong WW, Liu CY, Lin YS, Liu WT, Wu CW. Up-regulation of Fas ligand expression by human cytomegalovirus immediate-early gene product 2: a novel mechanism in cytomegalovirus-induced apoptosis in human retina. J Immunol. 2001(7):4098-103.
    50. Kosugi I, Kawasaki H, Arai Y, Tsutsui Y. Innate immune responses to cytomegalovirus infection in the developing mouse brain and their evasion by virus-infected neurons. Am J Pathol. 2002(3):919-928.
    51. Zhu H, Shen Y, Shenk T. Human cytomegalovirus IE1 and IE2 proteins block apoptosis. J Virol. 1995(12):7960-70.
    52. Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev. 2001(2):807-869.
    53. Hayajneh WA, Colberg-Poley AM, Skaletskaya A, Bartle LM, Lesperance MM, Contopoulos-Ioannidis DG, Kedersha NL, Goldmacher VS. The sequence and antiapoptotic functional domains of the human cytomegalovirus UL37 exon 1 immediate early protein are conserved in multiple primary strains. Virology. 2001(1):233-40.
    54. Goldmacher VS, Bartle LM, Skaletskaya A, Dionne CA, Kedersha NL, Vater CA, Han JW, Lutz RJ, Watanabe S, Cahir McFarland ED, Kieff ED, Mocarski ES, Chittenden T. A cytomegalovirus-encoded mitochondria-localized inhibitor of apoptosis structurally unrelated to Bcl-2. Proc Natl Acad Sci U S A. 1999(22):12536-41.
    55. Wang J, Belcher JD, Marker PH, Wilcken DE, Vercellotti GM, Wang XL. Cytomegalovirus inhibits p53 nuclear localization signal function. J Mol Med. 2001(11):642-7.
    56. Skaletskaya A, Bartle LM, Chittenden T, McCormick AL, Mocarski ES, Goldmacher VS. A cytomegalovirus-encoded inhibitor of apoptosis that suppresses caspase-8 activation. Proc Natl Acad Sci U S A. 2001(14):7829-34.
    57. Lu B, Wang L, Medan D, Toledo D, Huang C, Chen F, Shi X, Rojanasakul Y. Regulation of Fas (CD95)-induced apoptosis by nuclear factor-kappaB and tumor necrosis factor-alpha in macrophages. Am J Physiol Cell Physiol. 2002(3):C831-8.
    58. Cinatl J Jr, Margraf S, Vogel JU, Scholz M, Cinatl J, Doerr HW. Human cytomegalovirus circumvents NF-kappa B dependence in retinal pigment epithelial cells. J Immunol. 2001(4):1900-8.
    59. John F,Carliquist, Linda E , et al. Cytomegalovirus induction of interleukin-6 in lung fibroblasts occurs independently of active infection and involves a G protein and the transcription factor NF-kB. J Infect Dis. 1999 (179) .1094-1100.
    60. Hamar A , Louis ST , Mazzil T , et al. Elevated Serum cytokines are associated with cytomegalovirus infection and disease in bone marrow transplant recipients. J Infect Dis. 1999 (179) :484-8.
    61. Redman TK, Britt WJ , Wilcox CM. et al. Human cytomegalovirus enhances Chemokine production by Lipopoly saccharide-sfimulated lamina propria macrophages. J Infect Dis.2002(5):584-90.
    62. Cheeran MC , Hu S , Yager SL , et al. Cytomegalovirus induces cytokine and chemokine production differentially in microglia and astrocgtes : antiviral implications. J Neurovivol.2001(2):135-147.
    63. Saederup N , Mocarski ESJ r. Fatal attraction: cytomegalovirus-encode chemokine homologes. Curr Top Mirobiol Immunol.2002 (1269) :235-56.
    64. Tornatore KM , Garey KW, Saigal N , et al,Ganciclovir pharmaco-kinetices and cytokine dynamics in renal transplant recipients with cytomegalovirus infection. Clin Transplant. 2001(5):297-308.
    65. Geist Lj, DaiLy. Cytomegalovirus modulates interleukin-6 gene expression. Transplantation. 1996 (62) :653-8.
    66. Yashida Y, Iwaki Y, Phan S , et al. Benefits of post-transplantation monitoring of interleukin-6 in lung transplantation. Ann Thorac Surg. 1993 (55) :89-93.
    67. Tong CYW, Bakran A , Willams H. et al. Association of tumor necrosis factor alpha and interleukin-6 levels with cytomegalovirus DNA detection and disease after renal transplantation. J Med Virol. 2001 (64) :29-34.
    68. Ingvild N , Fredrik M , Knut P , et al. Immunologic parameters as predictive factors of cytomegalovirus disease in renal allograft recipients. J Infelt Dis , 1999 (180) :195-8.
    69. Grundy J E. Lawson KM , Maccormal L P , et al. Cytomegalovirus-infected endothelial cell recruit neutrophils by the secretion of C-X-C chemokines and transmit virus by direct neutrophic-endothelial cell contact and during Neutrophit transendothelial migration. J Infect Dis. 1998(177) :1465-74.
    70. Penford ME , Dairaghi DJ , Duke GM , et al. Cytomegalovirus encodes a potent alpha chemokine. Proc Natl Sci USA. 1999(17):9839-44.
    71. Fiezte E , Prosch S , Reinke P , et al. Cytomegalovirus infection in transplant recipients. Transplantation. 1994 (58) :675-80.
    72. Walker CM, van Burik JA, De For TE, et al. Cytomegalovirus infection after allogeneic transplantation: comparison of cord blood with peripheral blood and marrow graft sources.Biol Blood Marrow Transplant. 2007,13(9):1106-15.
    73. Essa S , Raghupathy R , Pacsa As , et al . Th1-type cytokin production is Decreased in kidney transplant ricipients with active cytomegalovirus infection. J Med Virol. 2000(2):223-9.
    74. Jennifer L , Craigen ND , Jane E. Grundy Cytomegalovirus induced up-regulation of L FA3 (CD58) and ICAM (CD54) is a direct viral effect , that is mot prevented by ganciclovir or foscarnet treatment. Transplantation , 1996(8) : 1102-8.
    75. Barrasa MI, Harel N, Yu Y, et al. Strain variations in single amino acids of the 86-kilodalton human cytomegalovirus major immediate-early protein (IE2) affect its functional and biochemical properties: implications of dynamic protein conformation. J Virol, 2003(8):4760-72.
    76. Tachedjian M, Boyle JS, Lew AM, et al.Gene gun immunization in a preclinical model is enhanced by B7 targeting. Vaccine. 2003,20(21-22):2900-5.
    77. Dechanet J, Merville P, Lim A, Retiere C, Pitard V, Lafarge X, Michelson S, Meric C, Hallet MM, Kourilsky P, Potaux L, Bonneville M, Moreau JF.Implication of gammadelta T cells in the human immune response to cytomegalovirus. J Clin Invest. 1999, 103(10): 1437-49.
    78. LinksWu J, O'Neill J, Barbosa MS. Transcription factor Sp1 mediates cell-specific trans-activation of the human cytomegalovirus DNA polymerase gene promoter by immediate-early protein IE86 in glioblastoma U373MG cells. J Virol. 1998, 72(1):236-44.
    79. Oberg KC, Pira CU, Revelli JP, et al. Efficient ectopic gene expression targeting chick mesoderm.Dev Dyn. 2002 ,224(3):291-302.
    80. Kidd IM, Clark DA, Sabin CA et al.Prospective study of human betaherpesviruses after renal transplantation: association of human herpesvirus 7 and cytomegalovirus co-infection with cytomegalovirus disease and increased rejection.Transplantation.2000,69(11):2400-4.
    1. Wilkns MR,Sanchez JC,Gppley A ,et al.Progress with proteome projects: Why all proteins expressed by genome should be identified and how to do it. Biotech Genet Eng Rev, 1995,13:19-50
    2. Peng J, Gygi SP. Proteomics: The move to mixtures. J Mass Spectrom 2001; 36:1083-1091
    3. Abbott, A. A post-genomic challenge: learning to read patterns of protein synthesis. Nature ,1999,402: 715-20.
    4. Haynes PA, Gygi SP, Figeys D , et al .Proteome analysis:biological assay or data archive? Electrophoresis ,1998,19:1862-71.
    5. 李伯良. 功能蛋白质组学. 生命的化学. 1998, 18(6): 1-4.
    6. Arrell DK ,Neverova I, Van Eyk JE. Cardiovascular Proteomics :Evolution and Potential. Circ Res,2001,88:763-73.
    7. Macri J, Rapundalo ST. Application of proteomics to the study of cardiovascular biology. Trends Cardiovasc Med. 2001,ll(2):66-75.
    8. Arrell DK, Neverova I, Van Eyk JE. Cardiovascular proteomics: evolution and potential. Circ Res. 2001 Apr 27;88(8):763-73.
    9. Freeman WM, Hemby SE. Proteomics for protein expression profiling in neuroscience. Neurochem Res. 2004,29(6):1065-81.
    10. Grant SG, Blackstock WP. Proteomics in neuroscience: from protein to network. J Neurosci. 2001 Nov 1;21(21):8315-8.
    11. Raczniak G, Ibba M, Soll D.Genomics-based identification of targets in pathogenic bacteria for potential therapeutic and diagnostic use .Toxicology ,2001,160:181-9.
    12. Cash P. Proteomics in medical microbiology . Electrophoresis , 2000,21:1187-1201
    13. Yoshida M,Loo JA, Lepleya RA .Proteomics as a tool in the pharmaceutical drug design process .Curr Pharm Des ,2001,7:291-310.
    14. Page MJ ,Amess B, Rohiff C,et al . Proteomics :a major new technology for the drug discovery process. Drug Dev Therpeutics ,1999,2:55-62.
    15. O'Farrel PH. High resolution two-dimensional electrophoresis of proteins. J Biol Chem ,1975,250:4007-21.
    16. Bjellqvist B,Righetti P G ,Gianazza E .Isoelectric focusing in immobilized pH gradient : principle ,methodology and some applications . J Biochem Biophys Methods ,1982,6:317-39.
    17. Michel Rossignol. Analysis of the plant proteome. Current Opinion in Biotechnology, 2001,12 :131-4.
    18. Humphery SL, Cordwell SJ, Blackstock WP. Proteome research: Complementarity and limitation with respect to the RNA and DNA worids . J. Electrophoresis ,1997;18(8):1217.
    19.Akhilesh P,Mathias M.Proteomics to study genes and genomes.J.Nature,2000;405(15):837-846
    20.Fields S.Proteomics in genomeland.J.Science,2001;291:1221-4.
    21.Opiteck GJ,Ramirez SM,Jorgenson JW,et al.Comprehensive two-dimensional high performance liquid chromatography for the isolation of overexpressed proteins and proteome mapping.J.Aalytical Biochem,1998;258:349-61.
    22.倪晓光,赵平,刘煜,等.蛋白质组学在实体瘤肿瘤标志物研究中的应用.癌症,2003,22(6):664-7.
    23.Paweletz CP,Liotta LA,Petricoin EF 3rd.New technologies for biomarker analysis of prostate cancer progression:Laser capture microdissection and tissue proteomics.Urology,2001,57(4Suppl 1):160-3.
    24.Michael J,Simon J.Advances in mass spectrometry for proteome analysis.Current Opinion in Biotechnology,2000,11:384-390.
    25.Henzel WJ,Billeci TM,Stults JT,et al.Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases.Proc Natl Acad Sci USA 1993;90:5011-5.
    26.Mann M,Wilm M.Error-tolerant identification of peptides in sequence databases by peptide sequence tags.Anal Chem 1994;66:4390-9.
    27.Yates J R,Eng JK,McCormack AL.Mining genomes:correlating tandem mass spectra of modified and unmodified peptides to sequences in nucleotide databases.Anal Chem 1995;67:3202-10.
    28.Persidsky Y,Gendelman HE.Mononuclear phagocyte immunity and the neuropathogenesis of HIV-1 infection.J Leukoc Biol.2003 Nov;74(5):691-701
    29.Feras ER,Stephens DJ,Waiters CE,et al.The role of cholesterol in the biosynthesis of β-amyloid.Neuroreport 1999;10:1699-1705.
    30.Yip TT,Van de Water J,Gerswin ME,et al.Cryptic antigenic determinants on the extracellular pyruvate dehydrogenase complex/mimeotope found in primary biliary cirrhosis.J Biol Chem 1996;271:32825-33.
    31.Merchant M,Weinherger SR.Recent advancements in surface enhanced laser desorption/ionization time of flight mass spectrometry.Electrophoresis,2000,21(6):1164-77.
    32.Li J,Zhang Z,Rosenzweig J,et al.Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer.Clin Chem,2002,48(8):1296-1304.
    33.Cazares LH,Adam BL,Ward MD,et al.Normal,benign,preneoplastic and malignant prostate cells have distinct protein expression profiles resolved by surface enhanced laser desorption/ionization mass spectrometry.Clin Cancer Res,2002,8(8):2541-52.
    34. Vlahou A, Schellhammer PF, Mendrinos S, et al. Development of a novel proteomic approach for the detection of transitional cell carcinoma of the bladder in urine. Am J Pathol, 2001, 158(4): 1491-1502.
    35. Alaiya AA, Franzen B , Auer G,et al. Cancer proteomics : from identification of novel markers to creation of artificial learning models for tumor classification. Electrophoresis , 2000 , 21 (6) : 1210-7.
    36. Rosenkrands I, Weldingh K, Jacobsen S, et al. Mapping and identification of Mycobacterium tuberculosis proteins by two-dimensional gel electrophoresis, microsequencing and immunodetection.. Electrophoresis ,2000 ,21 (5) :935-48
    37. Hendrickson RC, Douglass JF, Reynolds LD, et al. Mass spectrometric identification of mtb81, a novel serological marker for tuberculosis. J Clin Microbiol, 2000 , 38 ( 6) :2354 -61
    38. McAtee CP, Lim MY, Fung K, et al. Identification of potential diagnostic and vaccine candidates of Helicobacter pylori by two-dimensional gel electrophoresis, sequence analysis, and serum profiling. Clin Diagn Lab Immunol ,1998 ,5(4) :537-42
    39. McAtee CP, Lim MY, Fung K, et al. Characterization of a Helicobacter pylori vaccine candidate by proteome techniques. J Chromatogr B Biomed Sci Appl, 1998 ,714(2) :325-33
    40. O'Connor CD, Farris M, Fowler R, et al. The proteome of Salmonella enterica serovar typhimurium: current progress on its determination and some applications. Elect rophoresis ,1997 ,18 (8) :1483 -90
    41. Cash P, Argo E, Ford L, et al. A proteomic analysis of erythromycin resistance in Streptococcus pneumoniae. Electrophoresis. Elect rophoresis ,1999 ,20 (11) :2259-68.
    42. Mcatee CD , Hoffman PS , Berg DE. Identification of differentially regulated protein in metronidozole resistant Helicobacter Pylori by proteome techniques. Proteomics , 2001 , 1 (4) :516-21.
    43. Chiosis G, Boneca IC. Selective cleavage of D-Ala-D-Iac by small molecules re2sensitizing resistant bacteria to vancomycui. Science , 2001,293(5534) .1487-9.
    44. Geissler S, Sokolowska-Kohler W, Bollmann R, et al. Toxoplasma gondii infection: analysis of serological response by 2-DE immunoblotting. FEMS Immunol Med Microbiol. FEMS Immunol Med Microbiol, 1999 ,25(3) :299-311
    45. Ragno S, Romano M, Howell S, et al. Changes in gene expression in macrophages infected with Mycobacterium tuberculosis: a combined transcriptomic and proteomic approach. Immunology. 2001 Sep;104(1):99-108.
    46. Kulwant S. Aulak, Masaru Miyagi, Lin Yan, et al. Proteomic method identifies proteins nitrated in vivo during inflammatory challenge. Proc. Natl. Acad. Sci. USA. 2001 October 9; 98 (21): 12056-61.
    47. Gadgil HS, Pabst KM, Giorgianni F,et al. Proteome of monocytes primed with lipopolysaccharide: analysis of the abundant proteins. Proteomics. 2003 Sep;3(9): 1767-80.
    48. Fessler MB, Malcolm KC, Duncan MW,et al. A genomic and proteomic analysis of activation of the human neutrophil by lipopolysaccharide and its mediation by p38 mitogen-activated protein kinase. J Biol Chem. 2002 Aug 30;277(35):31291-302.
    49. Chan HL. Changing scene in hepatitis B serology interpretation. Hosp Med. 2002 Jan;63(1):16-9.
    50. He QY, Lau GK, Zhou Y ,et al. Serum biomarkers of hepatitis B virus infected liver inflammation: a proteomic study. Proteomics. 2003,3(5):666-74.
    51. Steel LF, Shumpert D, Trotter M,et al. A strategy for the comparative analysis of serum proteomes for the discovery of biomarkers for hepatocellular carcinoma. Proteomics. 2003,(5):601-9.
    52. Weekes J, Watson RR, Dunn MJ. Murine retrovirus infection and the effect of chronic alcohol consumption: proteomic analysis of cardiac protein expression. Alcohol Alcohol. 2003 ,38(2): 103-8.
    53. 张艳红. 基因芯片技术在临床微生物学中的应用. 河北医药. 2005, 27(5):376-8.
    54. Zhu XD, Zhang WH, Li CL et al. New serum biomarkers for detection of HBV-induced liver cirrhosis using SELDI protein chip technology. World J Gastroenterol. 2004,10(16):2327-9.
    55. Zhang L, Yu W, He T, et al. Contribution of human alpha-defensinl,2 and 3 to the anti-HIV-1 activity of CD8 antiviral factor. Science, 2002, 298(5595):995-1000.
    56. Schmid O, Ball G, Lancashire L, et al. New approaches to identification of bacterial pathogens by surface enhanced laser desorption/ionization time of flight mass spectrometry in concert with artificial neural networks, with special reference to Neisseria gonorrhoeae. Med Microbiol. 2005,54(Pt 12):1205-11.
    57. Persidsky Y, Gendelman HE. Mononuclear phagocyte immunity and the neuropathogenesis of HIV-1 infection. J Leukoc Biol. 2003, (5):691-701.
    58. Luo X, Carlson KA, Wojna V, et al. Macrophage proteomic fingerprinting predicts HIV-1-associated cognitive impairment. NEUROLOGY 2003, (2 of 2):1931-37
    59. Wanger K ,Miliotis T, Marko Varga G ,et al.An automated online multidimensional HPLC system for protein and peptide mapping with integrated samp preparation .Anal Chem ,2002,74:809-820
    60. Humphery-Smith I, Blackstock W. Proteome analysis: genomics via the output rather than the unput code . J. Prot. Chem, 1997, 16 (5) : 537- 44.
    61. Wilkins MR, Sanchez JC, Williams KL,et al. Hoch st rasserDF. Current challenges and future applications for protein maps and post-translational vector maps in proteome projects . E lectrop horesis, 1996; 17: 830- 8.
    62. Conrads TP, Zhou M,Petricion EF 3rd,et al. Cancer diagnosis using proteomic patterns. Expert Rev Mol Diagn ,2003,3(4):411-20

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700