用户名: 密码: 验证码:
αENaC基因四个单核苷酸多态性与新疆哈萨克族人原发性高血压及血电解质的相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:研究αENaC基因第2内含子区T3593C、第13外显子区T663A、启动子区G2139A和G3091A四个位点单核苷酸多态性(Single nucleotide polymorphisms;SNPs)、T3593C与T663A两个位点SNPs组成的联合基因型以及上述四个位点SNPs构成的单体型在新疆哈萨克族人群中的分布特点,探讨αENaC基因四个位点SNPs及T3593C与T663A两个位点SNPs组成的联合基因型、四个位点单体型与新疆哈萨克族人原发性高血压(Essential hypertension;EH)及血电解质水平的相关性。方法:采用整群抽样随机抽取的方式,以生活在新疆塔城地区和丰县、伊犁地区新源县、阿勒泰地区福海县和富蕴县30岁以上的500余名哈萨克族牧民为研究对象,进行标准化的问卷调查、体格检查。按照2005年中国高血压防治指南的高血压诊断标准,以收缩压(Systolic blood pressure;SBP)均值≥140mmHg和/或舒张压(Diastolicblood pressure;DBP)均值≥90mmHg及正在服用降压药物者为高血压组(EH组),以SBP<140mmHg和DBP<90mmHg者为血压正常(Normotensive)的对照组(NT组)。采用基因组DNA提取试剂盒提取外周血白细胞基因组DNA,应用聚合酶链反应0限制性片断长度多态性(Polymerase chain reaction-Restriction fragment lengthpolymorphism;PCR-RFLP)方法,检测研究对象的αENaC基因T3593C、T663A、G2139A、G3091A多态位点的基因型。通过SPSS15.0统计学软件和SNPalyze软件分析新疆哈萨克族人EH组和NT组中上述多态位点各基因型、等位基因、T3593C与T663A两个位点联合基因型、四个多态位点单体型的频率分布特点,比较上述四个SNPs各基因型及不同联合基因型与新疆哈萨克族人EH和血电解质的关系,比较上述单体型中的不同组合与新疆哈萨克族人EH的相关性。结果:1)新疆哈萨克族人存在αENaC基因第2内含子区T3593C位点多态性,有TT、TC、CC三种基因型和T、C两种等位基因。三种基因型的分布频率分别为88.39%、10.63%、0.98%,两种等位基因的分布频率分别为93.7%、6.3%,基因型的分布符合Hardy-Weinberg平衡(x~2=5.03,P=0.08)。在EH组和NH组中,三种基因型的分布频率分别为89.33%、9.88%、0.79%和87.45%、11.37%、1.18%,两种等位基因的分布频率分别为94.36%、5.64%和93.14%、6.86%,三种基因型和两种等位基因在两组间的分布频率均无统计学差异(x~2=0.51,P=0.78;x~2=0.55,P=0.46)。进一步按照性别(男性与女性)、体重指数(体重正常:BMI<24Kg/m~2;超重肥胖:BMI≥24Kg/m~2)、年龄(≤39岁,40~49岁,≥50岁)分层分析后,发现不同性别、不同体重指数、不同年龄阶段研究对象的三种基因型和两种等位基因在EH组NH组间的分布频率均无统计学差异(P>0.05)。携带TT与TC+CC基因型研究对象的血压及血电解质各水平间的差异均无统计学意义(P>0.05)。多元Logistic回归分析在控制了年龄、性别、BMI等混杂因素后显示T3593C多态性仍不是新疆哈萨克族人EH的独立危险因素,且与该民族的血电解质水平不相关。2)新疆哈萨克族人存在αENaC基因第13外显子区T663A位点多态性,有AA、AG、GG三种基因型和A、G两种等位基因。三种基因型的分布频率分别为15.7%、50.2%、34.1%,两种等位基因的分布频率分别为40.8%、59.2%,基因型的分布符合Hardy-Weinberg定律(x~2=0.79,P=0.67)。在EH组和NT组中,三种基因型的分布频率分别为16.3%、49.1%、34.6%和15.1%、51.4%、33.5%,两种等位基因的分布频率分别为40.9%、59.1%和41%、59%,三种基因型与两种等位基因在两组间的分布频率均无统计学差异(x~2=0.315,P=0.854;x~2=0.002,P=1.0)。进一步按照性别(男性与女性)、体重指数(体重正常:BMI<24Kg/m~2;超重肥胖:BMI≥24Kg/m~2)、年龄(≤39岁,40~49岁,≥50岁)分层分析后,发现不同性别、不同体重指数、不同年龄阶段研究对象的三种基因型和两种等位基因在EH组NH组间的分布频率均无统计学差异(P>0.05)。携带T663A位点AA基因型研究对象的血Na~+水平高于基因型AG、GG的(P=0.032),但三种基因型间研究对象的血压及K~+水平间不存在统计学差异(P>0.05)。多元Logistic回归分析在控制了年龄、性别、BMI等混杂因素后认为T663A多态性不是新疆哈萨克族人EH的独立危险因素。3)新疆哈萨克族人存在αENaC基因启动子区G2139A位点多态性,有AA、AG、GG三种基因型及A、G两种等位基因。三种基因型的分布频率分别为25.88%、51.95%、22.17%,两种等位基因的分布频率分别为51.85%、48.15%,基因型的分布符合Hardy-Weinberg平衡(x~2=0.84,P=0.66)。在EH组和NT组中,三种基因型的分布频率分别为25.1%、52.1%、22.8%和26.70%、51.8%、21.6%,A、G两种等位基因的分布频率分别为51.16%、48.84%和52.55%、47.45%,三种基因型和两种等位基因在两组间的分布频率均不存在统计学差异(x~2=0.211,P=0.900;x~2=0.199,P=0.663)。进一步按照性别(男性与女性)、体重指数(体重正常:BMI<24Kg/m~2;超重肥胖:BMI≥24Kg/m~2)、年龄(≤39岁,40~49岁,≥50岁)分层分析后,发现不同性别、不同体重指数、不同年龄阶段研究对象的三种基因型和两种等位基因在EH组NH组间的分布频率均无统计学差异(P>0.05)。三种基因型间、进一步将基因型进行合并及在较年轻人群中(年龄≤55岁),未发现G2139A多态位点各基因型携带者间的血压及血电解质水平存在统计学差异(P>0.05)。多元Logistic回归分析在控制了年龄、性别、BMI等混杂因素后显示G2139A多态性仍不是新疆哈萨克族人EH的独立危险因素,且与该民族的血电解质水平不相关。4)新疆哈萨克族人存在αENaC基因启动子区G3091A位点多态性,有AA、AG、GG三种基因型及A、G两种等位基因。三种基因型的分布频率分别为19.4%、51.3%、28%,两种等位基因的分布频率分别为45.6%、54.4%,基因型的分布符合Hardy-Weinberg平衡(x~2=1.21,P=0.55)。在EH组和NT组中,三种基因型的分布频率分别为19.7%、52.1%、28.2%和19.5%、51.9%、28.6%,两种等位基因的分布频率分别为45.8%、54.2%和45.5%、54.5%,三种基因型和两种等位基因在两组间的分布频率均不存在统计学差异(x~2=0.01,P=0.99;x~2=0.007,P=0.93)。进一步按照性别(男与女)、体重指数(体重正常:BMI<24Kg/m~2;超重肥胖:BMI≥24Kg/m~2)、年龄(≤39岁,40~49岁,≥50岁)分层分析后,发现不同性别、不同体重指数、不同年龄阶段研究对象的三种基因型和两种等位基因在EH组NH组间的分布频率均无统计学差异(P>0.05)。该多态位点三种基因型携带者间在血压及血电解质各水平差异均无统计学意义(P>0.05)。多元Logistic回归分析在控制了年龄、性别、BMI等混杂因素后显示G3091A多态性仍不是新疆哈萨克族人EH的独立危险因素,且与该民族的血电解质水平不相关。5)本研究第一部分的资料显示新疆哈萨克族人αENaC基因T3593C、T663A、G2139A和G3091A位点EH组研究对象的K~+、Na~+水平均显著高于NT组,而Na~+/K~+水平则均较NT组研究对象显著降低(P<0.05)。6)T663A与T3593C 2个位点多态性共组成9种联合基因型,未发现在NT组和EH组间9种联合基因型的分布频率存在统计学差异(x~2=6.449,P=0.597)。携带T663A GG与T3593C TT联合基因型研究对象的Na~+水平低于其他各联合基因型(P=0.03)。不同组合联合基因型研究对象间的血压水平不存在统计学差异(P>0.05)。多元Logistic回归分析在控制了年龄、性别、BMI等混杂因素后,认为T663A与T3593C位点多态性组成的联合基因型不是新疆哈萨克族人EH的独立危险因素,但T663A GG与T3593C TT联合基因型与该民族血Na~+水平的变化有关。7)新疆哈萨克族人群αENaC基因G2139A、G3091A、T663A和T3593C四个SNPs之间不存在连锁不平衡关系,共构成数十种单体型。单体型分析发现2139G、3091A、663G、3593T等位基因构成的H1单体型的分布频率在EH组中明显升高,与NT组相比差异有统计学意义(在EH组,NT组中的分布频率分别为82.5%,71%;x~2=7.41,P=6.482E-3),2139A、3091A、663A、3593C等位基因构成的H2单体型的分布频率在EH组中明显降低,与NT组相比差异有显著性(在EH组与NT组中的分布频率分别为8.5%,16%,x~2=5.23,P=0.022)。结论:1)本研究资料显示在四个SNPs中,EH组研究对象的K~+、Na~+水平均显著高于NT组,而Na~+/K~+水平则均较NT组研究对象显著降低。2)新疆哈萨克族人群αENaC基因存在T3593C、T663A、G2139A、G3091A位点多态性。T663A位点、G2139A位点、G3091A位点均存在AA、AG、GG三种基因型和A、G两种等位基因;T3593C位点存在TT、TC、CC三种基因型和T、C两种等位基因。3)除T663A基因型AA可能与该民族血Na~+水平升高相关外,新疆哈萨克族人αENaC基因T3593C、G2139A、G3091A三个SNPs可能与该民族EH的发生及血电解质水平均不相关。4)T663A GG与T3593C TT联合基因型可能影响新疆哈萨克族人的血Na~+水平。而T663A与T3593C位点多态组成的9种联合基因型可能与该民族EH的发生不相关。5)G2139A、G3091A、T663A和T3593C四个SNPs构成的数十种单体型结果分析提示2139G、3091A、663G、3593T等位基因构成的H1单体型可能与新疆哈萨克族人EH的发生相关,而2139A、3091A、663A、3593C等位基因构成的H2单体型可能可降低该民族EH的患病风险。6)通过αENaC基因四个SNPs与EH及血电解质的相关性研究发现ENaC基因作为盐敏感基因是新疆哈萨克族人EH易感的重要的候选基因之一。
Objective: To investigate distributed characteristic of the T3593C, T663A, G2139A, G3091A single nucleotide polymorphisms (SNPs) ofαENaC gene which located at the second intron, the 13th exon region and the promoter region in a subunit gene of epithelial sodium channel (ENaC), respectively, the united genotypes of T3593C and T663A and the haplotypes composed by the G2139A, T663A, G3091A T3593C in Xinjiang Kazakhs. And to research the relationship between four SNPs and the united genotypes with essential hypertension (EH) and serum electrolytes and the association between the haplotypes with EH of Xinjiang Kazakhs. Methods: More than 500 Xinjiang Kazakhs aged more than 30 years old were recruited in this population based on case-control study by cluster sampling who lived in pasture area of Hefen, Xinyuan, Fuhai and Fuyun county in Xinjiang. After questionnaire and physical examination, they were divided into hypertensives (EH group) whose systolic blood pressure (SBP) were≥140mmHg and/or diastolic blood pressure (DBP) were≥90mmHg and normotensives (NT group) whose blood pressure were < 140/90mmHg according to the guideline of the hypertensive prevention and treatment of China in 2005. We extracted the genome DNA of peripheral leucocyte by kits and measured their gene polymorphisms of T3593C, T663A, G2139A, G3091A by Polymerase chain reaction-Restriction fragment length polymorphism (PCR-RFLP) method. We studied the relationship of the polymorphisms and the united genotypes with EH and serum electrolytes and researched the association of the haplotypes with EH by SPSS 15.0 statistic software and SNPalyze software.
     Results:1) Three kinds of genotypes and two kinds of alleles of aENaC gene T3593C polymorphism were detected in Xinjiang Kazakhs. In this population, the frequencies of the genotypes TT, TC, CC were 88.39%, 10.63%, 0.98% and the frequencies of alleles T, C were 93.7%, 6.3%, respectively. The genotypic frequencies were in Hardy-Weinberg equilibrium (x~2=5.03, P=0.08). The distributed genotypic frequencies of TT, TC, CC were 89.33%, 9.88%, 0.79% in EH group and 87.45%, 11.37%, 1.18% in NT group, respectively. The distributed allelic frequencies of T, C were 94.36%, 5.64% in EH group and 93.14%, 6.86% in NT group, respectively. The distribution of genotypic and allelic frequencies had no significant difference between EH group and NH group (x~2=0.51, P=0.78; x~2=0.55, P=0.46). Through to analyze the data stratified with gender (male and female), BMI (normoweight: BMI<24Kg/m~2; overweight: BMI≥24Kg/m~2), different age groups (≤39 years old, 40-49 years old,≥50 years old), the distribution of genotypic and allelic frequencies had no significant difference between two groups (P> 0.05). There was no significant difference in levels of blood pressure and serum electrolytes between subjects with the TT and TC+CC genotypes (P>0.05). The genotypes of the T3593C polymorphism were excluded as independent variables which related to the blood pressure and serum electrolytes of subjects after controlling the confounding factors like age, gender, BMI by multiple logistic analysis. 2) We detected three kinds of genotypes and two kinds of alleles of aENaC gene T663 A polymorphism in Xinjiang Kazakhs. The genotypic frequencies of the AA, AG, GG were 15.7%, 50.2%, 34.1% and the allelic frequencies of A, G were 40.8%, 59.2%, respectively. The distributed genotypic frequencies were in Hardy-Weinberg equilibrium ( x~2 =0.79, P=0.67). The distributed genotypic frequencies of AA, AG, GG were 16.3%, 49.1%, 34.6% in EH group and 15.1%, 51.4%, 33.5% in NT group, respectively. The distributed allelic frequencies of A, G were 40.9%, 59.1% in EH group and 41%, 59% in NT group, respectively. Both of genotypic and allelic frequencies had no significant difference between EH group and NH group (x~2 =0.315, P=0.854; x~2 =0.002, P=1.0). Through to analyze the data stratified with gender (male and female), BMI (normoweight: BMK 24Kg/m~2 ; overweight: BMI≥24Kg/m~2), different age groups (≤39 years old, 40-49 years old,≥50 years old), the distribution of genotypic and allelic frequencies had no significant difference between two groups (P>0.05). There was no significant difference in level of blood pressure among subjects with the three kinds of genotypes (P>0.05). But the serum Na~+ of the subjects with AA genotype was higher than those subjects with AG and GG genotypes (P=0.032). The genotypes of the T663A polymorphism were excluded as independent variables relating to EH after controlling the mixed factors of age, gender, BMI by multiple logistic analysis. 3) We detected three kinds of genotypes and two kinds of alleles of G2139A polymorphism in Xinjiang Kazakhs. The genotypic frequencies of AA, AG, GG were 25.88%, 51.95%, 22.17% and the allelic frequencies of A, G were 51.85%, 48.15%, respectively. The genotypic frequencies were in Hardy-Weinberg equilibrium (x~2 =0.84, P=0.66). The distributed genotypic frequencies of AA, AG, GG were 25.1%, 52.1%, 22.8% in EH group and 26.70%, 51.8%, 21.6% in NT group, respectively. The distributed allelic frequencies of A, G were 51.16%, 48.84% in EH group and 52.55%, 47.45% in NT group, respectively. The distribution of genotypic and allelic frequencies had no significant difference between these two groups (x~2 =0.211, P=0.900; x~2 =0.199, P=0.663) ). Through to analyze the data stratified with gender (male and female ), BMI (normoweight: BMK24Kg/m2; overweight: BMI≥24Kg/m~2), different age groups (≤39 years old, 40-49 years old,≥50 years old), the distribution of genotypic and allelic frequencies had no significant difference between these two groups (P>0.05). The genotypes of the G2139A polymorphism were excluded as independent variables which related to the blood pressure and serum electrolytes among subjects after controlling the confounding factors like age, gender, BMI by multiple logistic analysis. 4) We detected three kinds of genotypes and two kinds of alleles of G3091A polymorphism in Xinjiang Kazakhs. The frequencies of the genotypes AA, AG, GG were 19.4%, 51.3%, 28% and the frequencies of alleles A, G were 45.6%, 54.4%, respectively, the genotypic frequencies were in Hardy-Weinberg equilibrium (x~2=1.21, P=0.55). The distributed genotypic frequencies of AA, AG, GG were 19.7%, 52.1%, 28.2% in EH group and 19.5%, 51.9%, 28.6% in NT group, respectively. The distributed allelic frequencies of A , G were 45.8%, 54.2% in EH group and 45.5%, 54.5% in NT group, respectively. The distribution of genotypic and allelic frequencies had no significant difference between these two groups (x~2=0.01, P=0.99; x~2 =0.007, P=0.93). Through to analyze the data stratified with gender (male and female ), BMI (normoweight: BMI<24Kg/m~2; overweight: BMI≥24Kg/m~2), different age groups (≤39 years old, 40-49 years old,≥50 years old), the distribution of genotypic and allelic frequencies had no significant difference between these two groups (P>0.05). The genotypes of G3091A polymorphism were excluded as independent variables which related to the blood pressure and serum electrolytes of subjects after controlling the confounding factors like age, gender, BMI by multiple logistic analysis. 4) Nine kinds of united genotypes were composed by T3593C and T663A polymorphisms. The distribution of the united genotypic frequencies had no significant difference between EH group and NT group (x~2 =6.449, P=0.597). There was no significant difference in level of blood pressure among subjects with the different united genotypes (P>0.05). But the serum Na~+ of the subjects with the united genotype composed by T663A AA and T3593C TT was lower than those subjects with the other united genotypes (P=0.03). And the genotypes of the united genotypes were excluded as independent variables which related to the blood pressure among subjects after controlling the confounding factors like age, gender, BMI by multiple logistic analysis. 5) The results of the first parts showed the serum K~+, Na~+ in EH group were higher but the Na~+/K~+ were lower than those in the NT group (P<0.05). 6)There were no linkage disequilibrium among G2139A, G3091A, T663A, T3593C. There were more than ten kinds of haplotypes were constituted by these four SNPs in Xinjiang Kazakhs. There were significant difference in distributed frequencies of two kinds of haplotypes between EH group and NT group. The frequency of H1 haplotype consituted by 2139G, 3091A, 663G and 3593T in EH group was significant higher than that m NT group(x~2 =7.41,P=6.482E-3), wheras the frequency of H2 haplotype composed by 2139A, 3091 A, 663A and 3593C in EH group was significant lower than that in NT group(x~2=5.23, P=0.022). Conclusions: 1) The levels of the serum K~+, Na~+ in EH group were higher but the levels of Na~+/K~+ were lower than those in NT group. 2) There existed T3593C, T663A, G2139A, G3091A polymorphisms of aENaC gene in Xinjiang Kazakhs. There were three kinds of genotypes AA, AG, GG and two kinds of alleles A, G in T663A , G2139A, G3091A polymorphisms, respectively. There were three kinds of genotypes TT, TC, CC and two kinds of alleles T, C in T3593C polymorphism. 3) Our study indicated that T3593C, G2139A and G3091A polymorphisms might not be associated with EH and serum electrolytes of Xinjiang Kazakhs except that the AA genotype of T663A polymorphisms might be associated with the higher level of the serum Na~+of Xinjiang Kazakhs. 4) The nine united genotypes composed by T663A and G3091A polymorphisms might not be associated with EH in Xinjiang Kazakhs. But the united genotypes composed by T663A GG and T3593C TT might be associated with the lower level of the serum Na~+in Xinjiang Kazakhs. 5) There were more than ten kinds of haplotypes constituted by G2139A, G3091A, T663A and T3593C. The H1 haplotype composed by the alleles with 2139G, 3091A, 663G and 3593T might be associated with EH in Xinjiang Kazakhs, however, the H2 haplotype composed by the alleles with 2139A, 3091A, 663A and 3593C might decreased the risk of EH in Xinjiang Kazakhs. 6) The salt sensitive gene --- ENaC gene are still one of the important candidate genes related to EH in Xinjiang Kazakhs.
引文
[1] WHO MONICA Project (Monitoring Trends and Determinants in cardiovascular disease): A major international collaboration[J]. J clin Epideiol. 1988,41:105-114
    
    [2]耿贯一主编.流行病学(第三卷)第二版.人民卫生出版社,北京.996,15-23
    
    [3]国家卫生部,中国高血压联盟.《中国高血压防治指南》.1999年10月
    
    [4]李立明,饶克勤,孔灵芝等.中国居民2002年营养与健康状况调查[J].中华流行 病学杂志.2005,26:478-484.
    
    [5]刘力生,龚兰生,方圻,等.中国高血压防治指南[J].高血压杂志.2000,8:94
    
    [6] Burt VL, Whelton P, Roccella EJ, et al. Prevalence of hypertension in the US adult population[J]. Hypertension. 1995,25: 305
    
    [7]钱方毅,李壹石.加强抗高血压药物的研究[J].中国循环杂.1998,13:321
    
    [8] Ward RH. Familial aggregation and genetic epidemiology of blood pressurehypertension: Pathophysiology, Diagnosis and Management[J]. New York, NY:Raven Press. 1990,81-100
    
    [9] Willams RR. Are there interaction and relations between genetic and environmentalfactors predisposing to a high blood pressure?[J]. J Hypertens. 1991,18:1-29
    
    [10]Hamet P, Pauova Z, Adarichev V, et al. Genes and environment[J]. Hypertens. 1998,16:397-418
    
    [11]Fuentes RM, Notkolaa JL, Shemeikka S, et al. Familial aggregation of bloodpressure[J]. J Hum Hypertens. 2000, 14: 441-445
    
    [12]Oshaughnessy KM. The Genetics of Essential Hypertension[J]. Br J Clin Pharmaco.2001,151:5-11
    
    [13]Tanira MOM, Balushi KA Al. Genetic variations related to hypertension: a review[J].Journal of Human Hypertension. 2005,19: 7-19
    
    [14]Dominiczak AF, Negrin DC, Clark JS, et al. Genes and Hypertension[J].Hypertension. 2000, 35:164-172
    
    [15]余振球,马长生,赵连友,等.实用高血压学.科学出版社,北京.1996:13
    
    [16]董承琅,陶寿淇,陈灏珠.实用心脏病学(第三版).上海科学技术出版社,上海. 1996:851
    
    [17]唐敏,戴勇,涂植光.原发性高血压基因机制研究进展[J].国际检验医学杂志. 2006,27(1):61-64。
    
    [18]王克志,杜贻萌,路方红.EH的候选基因研究[J].中国慢性病预防与控制. 2001;9:239-241
    
    [19]Jeunemaitre X, Soubrier F, Kotelevtsev YV, et al. Molecular basis of humanhypertension: role of angiotensinogen[J]. Cell. 1992, 71: 169-180
    
    [20]Rieder MJ, Taylor SL, Clark AG, et al. Sequence variation in the human angiotensinconverting enzyme gene[J]. Nat Genet. 1999,22: 59-62
    
    [21]Levy D, DeStefano AL, Larson MG, et al. Evidence for a gene influencing bloodpressure on chromosome 17 Genome scan linkage results for longitudinal bloodpressure phenotypes in subjects from the framingham heart study[J]. Hypertension.2000, 36: 477-483
    
    [22]Persu A, Barbry P, Bassilana F, et al. Genetic analysis of the beta subunit oftheepithelial Na~+ channel in essential hypertension[J]. Hypertension. 1998, 32:29-137
    
    [23]朱鼎良.我国高血压基因研究十年回顾和几点建议[J].中华心血管病杂志.2005, 33:585-587
    
    [24]Collins FS, Brooks LD, Chakravarti A. A DNA polymorphism discovery resource for research on human genetic variation[J]. Genome Res. 1998, 8:1229-31
    
    [25]Cargill M, Altshuler D, Ireland J, et al. Characterization of single-nucleotide polymorphisms in coding regions of human genes[J]. Nat Genet. 1999,22: 231-38
    
    [26]张思仲.人类基因组的单核苷酸多态性及其医学应用[J].中华医学遗传学杂志. 1999,16:29-31
    
    [27]Brookes AJ. The essence of SNPs[J]. Gene. 2001, 34:177-186
    
    [28]Chasman D, Adams RM. Predicting the functional consequences of non-synonymoussingle nucleotide polymorphisms: structure-based assessment of amino acidvariation[J]. J Mol Biol. 2001, 307: 683-706
    
    [29]Kruglyak L. The use of a genetic map of biallelic markers in linkage studies[J]. NatGenet. 1997,17: 21-24
    
    [30]Cabriel SB, Schaffner SF, Nguyen H, et al. The structure of haplotype blocks in thehuman genome[J]. Science. 2002, 296 :2225-29
    
    [31]Mooser V, Waterworth DM, Isenhour T, et al. Cardiovascular pharmacogenetics in theSNP era[J]. J Thramb Hacmost. 2003,1:1398-1402
    
    [32]Becker N, Meters A, Rittgen W. Single nucleotide polymorphism diseaseRelationship: statistical issues for the performance of association studies[J]. MutatRes. 2003, 15:11-18
    
    [33]Salisbury BA, Pungliya M, Choi JY, et al. SNP and haplotype variation in the humangenome[J]. Mutat Res. 2003,15:53-61
    
    [34]王颖,褚迅,黄薇.单核苷酸多态性研究及其对人类医学的影响[J].基础医学与 临床.2004,24:615-618
    
    [35]侯嵘,刘治全,刘杰,等.盐敏感者盐负荷期间交感神经活性研究[J].中华心血 管病杂志.1997,272:676-680
    
    [36]李玉明.盐敏感性高血压:历史、现状、展望[J].中华心血管杂志.2003,31:955-957
    
    [37]De Wardener HE, MacGregor GA. Sodium and blood pressure[J]. Curt Opin Cardiol. 2002,17:360-367
    
    [38]林善琰.当代肾脏病学.上海科技教育出版社.2001:684-694
    
    [39]Giuseppe Bianchi. Genetic variations of tubular sodium reabsorption leading toprimary hypertension: from gene polymorphism to clinical symptoms[J]. Am JPhysiol Regulatory Integrative Comp Physiol. 2005,289: R1536 - R1549.
    
    [40] Su YR, Menon AG. Epithelial sodium channels and hypertension[J]. Drugemetabolism and disposition 2001,29:553-556
    
    [41]Canessa CM, Schild L, Bueu G, et al. Amiloride-sensitive epithelial Na~+channel ismade of three homologus subunits[J]. Nature. 1994, 367:463-467
    
    [42]Linguelia E, Voilley N, Waldmann R, et al. Expression cloning of an epithelialamiloride-sensitive Na~+ channel. A new channel type with homologies tocaenorhabitis elegans degenerins[J]. FEBS Lett. 1993,318:95-99
    
    [43]Canessa CM, Horisberger JD, Rossier BC. Epithelial sodium channel related toproteins involved in neurodegeration[J]. Nature. 1993, 361:467-470
    
    [44]Horisberge J-D, Cannessa C, Rossier BC. The epithelial sodium channel:recentdevelopments[J]. Cell Physiol Biochem. 1993, 3:283-294
    
    [45]Barbry P, Homfman P. Molecular biology of Na~+absorption[J]. Am J Physiol. 1997,273:G571-G585
    
    [46]Masilamani S, Kim GH, Mitchell C, et al. Aldosterone-mediated regulation of ENaCα,β and γ subunit proteins in rat kidney[J]. J Clin Invest. 1999,104:19-25
    
    [47]Epple HJ, Amasheh S, Mankertz J, et al. Early aldosterone effect in distal colon bytranscriptional regulation of ENaC subunits[J]. Am J Physiol Gastrointest LiverPhysiol. 2000,278:G718-G724
    
    [48]Escoubet B, Coureau C, Bonvalet JP, et al. Noncoordinate regulation of epithelial Nachannel and Na pump subunit mRNA in kidney and colon by aldosterone[J]. Am JPhysiol. 1997,272:C1482-C1491
    
    [49]Nicco C, Wittner M, DiStefano A, et al. Chronic exposure to vasopressin upregulatesENaC and sodium transport in the rat renal collecting duct and Lung[J]. Hypertension.??2001,38:1143-1152
    
    [50]Peter M, Snyder MD. The epithelial Na~+ channel: cell surface insertion and retrievalin Na~+ Hoomeostasis and hypertension[J]. Endocrine Reviews. 2002,23:258-275
    
    [51]Howard Pratt J. Central role for ENaC in development of hypertension[J]. J Am SocNephrol. 2005,16:3154-3159
    
    [52]Thomas Cp, Auerbach S, Stokes JB, et al. 5'heterogenity in epithelial sodium channelalpha-subunit mRNA leads to distinct NH-terminal variant proteins[J]. Am J physiol.1998, 274x1312-c1323
    
    [53]Iwai N, Baba S, Mannami t, et al. Association of sodium channel alpha subunitpromoter variant with blood pressure[J]. J Am Soc Nephrol. 2002,13:80-5
    
    [54]张丽,李南方,李涛等.αENaC基因G(2139)A多态性与新疆哈萨克族原发性高 血压的关联分析[J].新疆医科大学学报.2007,30:469-71
    
    [55]Ambrosius WT, Bloe m LJ, Zhou L, et al. Genetic variants in the epithelial sodiumchannel in relation to aldosterone and potassium excretion and risk forhypertension[J]. Hypertension. 1999,34:631-37
    
    [56]Sugiyama T, Kato N, Ishinagaa Y, et al. Evaluation of selected polymorphisms of theMendelian hypertensive disease genes in the Japanese population[J]. Hypertens Res.2001,24:515-21
    
    [57]Samaha FF, Rubenstein RC, Yan W, et al. Functional polymorphism in the carboxylterminus of the alpha-subunit of the human epithelial sodium channel[J]. J Biol chem.2004,279:900-07
    
    [58]Vasan RS, Beiser A, Seshadri S, et al. Residual lifetime risk for developinghypertension hypertension in middle-aged women and men: The Framingham Heartstudy[J]. JAMA. 2002,287:1003-1010
    
    [59]Dzida G, et al. Polymorphisms of angiotensin-converting enzyme and angiotensin Ⅱreceptor type lgenes in essential hypertension in a Polish population[J]. J Med SciMonit. 2001, 7:1236-41
    
    [60]Mein CA, Caulfield, Dobson RJ, et al. Genetic of essential hypertension[J]. HumanMolecular Genetics. 2004, 13.R169-75
    
    [61]抽样调查协作组.中国各民族高血压患病情况调查[J].高血压杂志.1995, 3:24-29
    
    [62]李南方,周玲,张德莲等.新疆和丰牧区高血压患病现状及相关因素分析[J].心 血管康复医学杂志.2002,3:137-39
    
    [63]李南方,周玲,曹梅等.新疆和丰牧区高血压流行病学调查报告[J].现代预防医??学.2003,30:141-143
    
    [64]张月明,徐臻荣,贝仁礼.新疆不同民族膳食特点与高血压的关系[J].营养学报. 1982,4:315-321
    
    [65]汪师贞,马依彤,程祖亨等.限制哈萨克族高血压患者盐摄入量的降压效应观察 [J].中国慢性病预防与控制论.1994,2:167-169
    
    [66]Mcdonald FJ, Price MP, Snyder PM, et al. Cloning and expression of the β- and γ-subunits of the human epithelial sodium channel[J]. Am J Physiol. 1995, 268: cll57-cll63
    
    [67]中国肥胖问题工作组数据汇总分析协作组.我国成人体重指数和腰围对相关疾 病危险因素异常的预测价值:适宜体重指数和腰围切点的研究[J].中华流行病学 杂志.2002,23:5-10
    
    [68]Strazzullo P, Galletti F, Barba G Altered renal handling of sodium in human hypertension. Short review of the evidence[J]. Hypertension. 2003,41:1000-1005
    
    [69]Furuhashi M, Kitamura K, Mdachi M, et al. Liddle's syndrome caured by a noval mutation in the praline-rich PY motif of the epithelial sodium channel beta-subunit[J]. J Clin Endocrinol Metab. 2005,90:340-344
    
    [70]Edelheit D, Hanukoglu I, Gizewska M, et al. Noval mutations in epithelial sodium channel (ENaC) subunit genes and phenotypic expression of multisystem pseudohypoaldosteronism[J]. Clin Endocrinol (Oxf). 2005,62:547-553
    
    [71]赵光胜等.微量、常量元素和高血压的研究-多因子逐步分析.中华心血管病杂 志.1980;8(4):211
    
    [72]黄大显等.钠、钾、钙、镁与血压调节机制的流行病学.中国人民解放军军医进修 学院学报.1987;8(3):203
    
    [73]Iwai N, Tago N, Yasui N, et al. Genetic analysis of 22 candidate genes for hypertension in the Japanese population[J]. J Hypertens. 2004, 22:1119-26
    
    [74]Ian Philips M. Is gene therapy for hypertension possible?[J]Hypertension. 1999, 33:8-13
    
    [75]杨晓莉,牟建军,王曼等.盐阈、盐摄入量与血压盐敏感性的关系研究.中国 心血管病研究杂志.2006;4(6):450-452
    
    [76]Kamynina E, Staub, O. Concerted action of ENaC, Nedd4-2, and Sgkl in transepithelial Na~+ transport[J]. Am J Physiol Renal Physiol. 2002,283: 377-387
    
    [77]Luft FC. Mendelian Forms of Human Hypertension and Mechanisms of Disease[J]. Clin Med Res. 2003,1:291-300
    
    [78]Kim SW, Wang W, Kwon HT, et al. Increased expression of ENaC subunits and??increased apical targeting Of AQP_2 in the kidneys of spontaneously hypertensiverats[J]. Am j Physiol Renal Physiol 2005,289:F957-F968
    
    [79]Nicco C, Bankir L, Boubv N. Effect of salt and water intake on epithelial sodiumchannel mRNA abundance intha kidney of salt-sensitive Sabra rats[J]. Clin ExpPharmacol Physiol 2003,30:963-965
    
    [80]Alvarez de la Rosa D, Canessa CM, Fyfe GK, et al. Structure and regulation ofamiloride-sensitive sodium channels[J]. Annu Rev Physiol. 2000, 62:573-94
    [1] Peter M. Snyder. Minireview: Regulation of Epithelial Na+ Channel Trafficking[J]. Endocrinology. 2005,146(12):5079-5085
    
    [2] Peter M. Snyder. The Epithelial Na+ Channel: Cell Surface Insertion and Retrieval in Na+ Homeostasis and Hypertension[J]. Endocrine Reviews. 2002, 3(2):258-275
    [3] Oleh Pochynyuk, Qiusheng Tong, Alexander Staruschenko, et al. Binding and direct activation of the epithelial Na~+ channel (ENaC) by phosphatidylinositides[J]. J Physiol. 2007, 580:365 - 372
    [4] Naoharu Iwai, Shunroku Baba, Toshifumi Mannami, et al. Association of a Sodium Channel αSubunit Promoter Variant with Blood Pressure[J]. J Am Soc Nephrol. 2002, 13:80-85
    [5] Yan Ru Su, Anil G. Menon. Epithelial Sodium Channels and Hypertension[J]. Drug metabolism and disposition. 2001,29(42) :553-556
    [6] Firsov D, Gautschi I, Merillat AM, et al. The heterotetrameric architecture of the epithelial sodium channel (ENaC) [J]. EMBO J. 1998,17:344-352
    [7] Kosari F, Sheng S, Li J, et al. Subunit stoichiometry of the epithelial sodium channel[J]. J Biol Chem. 1998,273:13469-13474
    [8] Snyder PM, Cheng C, Prince LS, et al. Electrophysiological and biochemical evidence that DEG/ENaC cation channels are composed of nine subunits[J]. J Biol Chem. 1998,273:681-684
    [9] Eskandari S, Snyder PM, Kreman M, et al. Number of subunits comprising the epithelial sodium channel[J]. J Biol Chem. 1999,274:27281-27286
    [10] Duc C, Farman N, Canessa CM, et al. Cell-specific expression of epithelial sodium channel alpha, beta, and gamma subunits in aldosterone-responsive epithelia from the rat: Localization by in situ hybridization and immunocytochemistry[J]. J Cell Biol 1994, 127: 1907-1921
    
    [11] Renard S, Lingueglia E, Voilley N, et al. Biochemical analysis of the membrane topology of the amiloride-sensitive Na~+channel[J]. J Biol Chem. 1994, 269:12981- 12986
    
    [12] Snyder PM, McDonald FJ, Stokes JB, et al. Membrane topology of the amiloride-sensitive epithelial sodium channel[J]. J Biol Chem. 1994,269:24379-24383
    
    [13] Canessa CM, Merillat AM, Rossier BC. Membrane topology of the epithelial sodium channel in intact cells[J]. Am J Physiol. 1994,267:C1682-C1690
    [14] Ji HL, Bishop LR, Anderson SJ, et al. The role of pre-H_2 domain of alpha and delta epithelial Na~+ channels in ion permeation, conduction, and amilorde sensitive[J]. J biol Chem. 2004,279: 8428-8440
    [15] Kellenberger S, Auberson M, Gautschi I, et al. Permeability properties of ENaC selectivity filter mutants[J]. J Gen Physiol. 2001, 118:679-692
    [16] Firsov D, Robert-Nicoud M, Gruender S, et al. Mutational analysis of cysteines essential for channel expression at the cell surface[J]. J Biol Chem. 1999, 274:2743- 2749
    [17] Ismailor II, Kieber-Emmons T, Lin C, et al. Identification of an amiloride binding domain within the alpha-subunit of the epithelial Na~+ channel[J]. J Biol Chem. 1997, 274:21075-21083
    [18] Grunder S, Firsov D, Chand SS, et al. A mutation causing pseudohypoaldosteronism type I identifies a conserved glycine that is involved in gating of the epithelial sodium channel[J]. EMBO J. 1997,16:899-909
    [19] Grander S, Jaeger NF, Gautshi I, et al. Identification of a highly conserved sequence at the N-terminal of the epithelial Na~+ channel alpha subunit involved in gating[J]. Eur J Physiol. 1999,438:709-715
    [20] Staub O, Gautshi I, Ishikawa T, et al. Regulation of stability and function of the epithelial Na~+ channel(ENaC) by ubiquitination[J]. EMBO J. 1997,16:6325-6336
    [21] Langloh Al, Berdiev B, Ji HL, et al. Charged residues in the M_2 region of lpha-hENaC play a role in channel conduction[J]. Am J Physiol Cell Physiol. 2000, 278: c277-291
    [22] Thomas Cp, Auerbach S, Stokes JB, et al. 5'heterogenity in epithelial sodium channel alpha-subunit mRNA leads to distinct NH-terminal variant proteins[J]. Am J Physiol. 1998,274x1312-1323
    [23] Rotin D, Bar-Sagi O, O'Brodorich H, et al. An SH3 binding region in the epithelial Na~+ channel(alpha ENaC) mediates its locatization at the apical membrane [J]. EMBO JB. 1994,13:4440-4450
    [24] Volk KA, Snyder PM, Stokes JB. Regulation of epithelial sodium channel activity through a region of the carboxyl terminus of the alpha-subunit. Evidence for intracellular kinase-mediated reaction[J]. J Biol Chem. 2001,276:43887-43893
    [25] Sheng S, Li J, Manalty KA, et al. Characterization of the selectivity filter of the epithelial sodium channel[J]. J Biol Chem. 2000,275:8572-8581
    [26] Furuhashi M, Kitamura K, Mdachi M, et al. Liddle's syndrome caured by a noval mutation in the praline-rich PY motif of the epithelial sodium channel beta-subunit[J]. J Clin Endocrinol Metab. 2005,90:340-344
    [27] Yamashita Y, Koga M, Tokeda Y, et al. Two sporadic case of Liddle's syndrome caused by De novo ENaC mutations[J]. Am J Kidney Dis. 2001, 37:499-504
    [28] Rotin D, Kanelis V, Schild L. Trafficking and cell surface stability of ENaC[J]. Am J Physiol. 2001,281:F391-F399
    [29] Konatas AA, Korbmacher C. The gamma-subunit of ENaC is more important for channel surface expression than the beta-subunit[J]. Am J Physiol Cell Physiol. 2003, 284:c447-c456
    [30] Booth RE, Tong Q, Medina J, et al. A region directly following the second transmembrane domain in gamma ENaC is required for normal channel gating[J]. J Biol Chem. 2003,278:41367-41379
    [31] Peter M, Snyder MD. The epithelial Na~+ channel: cell surface insertion and retrieval in Na~+ Hoomeostasis and hypertension[J]. Endocrine Reviews. 2002, 23(2):258-275
    [32] Kellenberger S, Hoffmann-Pochon N, Gautschi I, et al. On the molecular basis of ion permeation in the epithelial Na~+ channel[J]. J Gen Physiol. 1999 114:13-30
    [33] Sheng S, Li J, McNulty KA, et al. Characterization of the selectivity filter of the epithelial sodium channel[J]. J Biol Chem. 2000,275:8572-8581
    [34] Langloh AL, Berdiev B, Ji HL, et al. Charged residues in the M2 region of α-hENaC play a role in channel conductance[J]. Am J Physiol Cell Physiol. 2000, 278:277-291
    [35] Ismailov, II, Kieber-Emmons T, Lin C, et al. Identification of an amiloride binding domain within the α-subunit of the epithelial Na~+ channel[J]. J Biol Chem. 1997, 272:21075-21083
    [36] Schild L, Schneeberger E, Gautschi I, et al. Identification of amino acid residues in the α, β, and γsubunits of the epithelial sodium channel (ENaC) involved in amiloride block and ion permeation[J]. J Gen Physiol. 1997,109:15-26
    [37] Grunder S, Jaeger NF, Gautschi I, et al. Identification of a highly conserved sequence at the N-terminus of the epithelial Na~+ channel αsubunit involved in gating[J]. Pflugers Arch. 1999,438:709-715
    [38] Snyder PM, Bueher DB, Olson DR. Gating induces a conformational change in the outer vestibule of ENaC[J]. J Gen Physiol. 2000,116:781-790
    [39] Sheng S, Li J, McNulty KA, et al. Epithelial sodium channel pore region. Structure and role in gating[J]. J Biol Chem. 2001,276:1326-1334
    
    [40] Canessa CM, Schild L, Buell G, et al. Amiloride-sensitive epithelial Na+ channel ismade of three homologous subunits[J]. Nature. 1994, 367:463-467
    
    [41] McDonald FJ, Price MP, Snyder PM, et al. Cloning and expression of the β- and γ-subunits of the human epithelial sodium channel[J]. Am J Physiol. 1995,268:C1157-C1163
    
    [42] Kellenberger S, Schild L. Epithelial sodium channel/degenerin family of ion channel:a variety of functions for shared structure[J]. Physiol Rev. 2002, 82:735-767
    
    [43] Firsov D, Schild L, Gautshi I, et al. Cell surface expression of the epithelial Nachannel and a mutant causing Liddle syndrome: a quantitative approach[J]. ProcNatl Acad Sci USA. 1996, 93:15370-15375
    
    [44] Adams CM, Snyder PM, Welsh MJ. Interactions between subunits of the humanepithelial sodium channel[J]. J Biol Chem. 1997,272:27295-27300
    
    [45] Due C, Farman N, Canessa CM, et al. Cell-specific expression of epithelial sodiumchannel α,β andγsubunits in aldosterone-responsive epithelia from the rat:Localization by in situ hybridization and irnmunocytochemistry[J]. J Cell Biol. 1994,127:1907-1921
    
    [46] Hager H, Kwon TH, Vinnikova AK, et al. Immunocytochemical and immunoelectronmicroscopic localization of alpha-, beta-, and gamma-ENaC in rat kidney[J]. AM JPhysiol Renal Physiol. 2001, 280:F1093-F1106
    
    [47] Lofting J, Lofting-Cueni D, Macher A, et al. Localization of epithelial sodiumchannel and aquqporin-2 in rabbit kidney cortex[J]. Am J Physiol Renal Physiol.2000, 278: F530-F339
    
    [48] Waldmann R, Champing G, Bassilina F, et al. Molecular cloning and functionalexpression of a novel amiloride-sensitive Na~+channel[J]. J Biol Chem. 1995, 270:27411-27414
    
    [49] Snyder PM, Price MP, Mcdonald FJ, et al. Mechanism by which Liddle's syndromemutations increase activity of human epithelial Na~+ channel[J]. Cell. 1995, 89:969-978
    
    [50] Furuhashi M, Kitamura K, Mdachi M, et al. Liddle's syndrome caured by a novalmutation in the praline-rich PY motif of the epithelial sodium channelbeta-subunit[J]. J Clin Endocrinol Metab. 2005,90:340-344
    
    [51] Saxena A, Hanukoglu I, Saxena D, et al. Novel mutations responsible for autosomalrecessive multisystem pseudohypoaldosteronism and sequence variants in epithelialsodium channel alpha, beta, and gamma-subunit genes[J]. J Clin Endocrinol Metab.??2002, 87:3344-3350
    
    [52] Talbot CL, Bosworth DJ, Briley EL, et al. Quantitation and localization of ENaCsubunit expression in fetal, newborn, and adult mouse lung[J]. Am J Respir CellMolBiol. 1999,20:398-406
    
    [53] Burch LH, Talbot CR, Knowles MR, et al. Relative erpression of the humanepithelial Na~+ channel subunits in normal and cystic fibrosis airways[J]. Am JPhysiol Cell Physiol. 1995,269:c511-c518
    
    [54] Farman N, Talbot CR, Boucher R, et al. Noncoordinated expression of a, p, andysubunits mRNAs[J]. Am J Physiol Cell Physiol. 1997, 272:C131-C141
    
    [55] Hummler E, Barker P, Gatzy J, et al. Early death due to defective neonatal lungliquid clearance in aENaC deficent mice[J]. Nature Genet. 1996,12:325-328
    
    [56] Kerena E, Bistritzer T, Hanukoglu A, et al. Pulmonary epithelial sodium channeldysfunction and excess airway liquid in pesudohypoaldosteronism[J]. N Engl J Med.1999,341:156-162
    
    [57] Linguelia E, Voilley N, Waldmann R, et al. Expression cloning of an epithelialamiloride-sensitive Na~+ channel. A new channel type with homologies tocaenorhabitis elegans degenerins[J]. FEBS Lett. 1993, 318:95-99
    
    [58] Drummond HA, Price MP, Welsh MJ, et al. A molecular component of the arterialbaroreceptor mechanatransducer[J]. Neuron. 1998,21:1435-1441
    
    [59] Drummond HA, Abboud FM, Welsh MJ. Localization of beta and gamma subunitsof ENaC in sensory nerve ending in the rat food pad[J]. Brain Res. 2000, 884:1-12
    
    [60] Drumnond HA, Gebremedhin D, Horder DR, et al. Degenerin/Epithelial Na~+ channelproteins: components of a vascular mechanosensor[J]. Hypertension. 2004, 44:643-648
    
    [61] Mauro T, Guitard M, Belane M, et al. The ENaC channel is required for normalepidermal differentiation[J]. J Invest/Dematol. 2002,118:589-594
    
    [62] International Human Genome Sequencing Consortium: Initial sequencing andanalysis of the human genome[J]. Nature (Lond). 2001,409: 860-921
    
    [63] Ludwing M, Bolkenius V, Wickert L, et al. Structural organisation of the geneencoding the alpha-subunitof the human amiloride-sensitive epithelial sodiumchannel[J]. Hum Genet. 1998,102:576-581
    
    [64] Tomas CP, Loftus RW, Liu KZ, et al. Genomic organization of the 5' end of humanβENaC and preliminary characterization of its promoter [J]. Am J Physiol Renal Physiol. 2002,282 :F898-F909
    [65] Ludwing M, Bolkenius V, Wickert L, et al. Structural organisation of the gene encoding the alpha-subunitof the human amiloride-sensitive epithelial sodium channel[J]. Hum Genet. 1998,102:576-581
    [66] Voilley IV, Bassilana F, Mignon C, et al. Cloning, Chromosomal localization and physical linkage of the betaand gamma subunits (SCNN1B and SCNN1G) of the human amiloride-sensitive epithelial sodium channel[J]. Genomics. 1995, 28:560-565
    [67] Thomas CP, Doggett NA, Fisher R, et al. Genomic organization and 5' flanking region of the gamma subunit of human amiloride-sensitive epithelial sodium channel[J]. Genomic. 1996,271:26062-26066
    [68] Auerbach SD, Loftus RW, Itani OA, et al. Human amiloride-sensitive Epithelial Na~+ channel gamma subunit promoter:functional anaiysis and identification of a polypurine-polypyrimidine tract with the potential for triplex DNA formation[J]. Biochem J. 2000, 347(pt1):105-114
    [69] Liddle GW, Bledsoe T, Coppage WS, et al. A familiar renal disorder simulating primary aldosteronism but with negligible abdosterone secretion[J]. Trans assoc Am Physicians. 1963,76:199-213
    [70] Snyder PM, Price MP, McDonald FJ, et al. Mechanism by which Liddle's syndrome mutations increase activity of a human epithelial Na~+ channel[J]. Cell. 1995, 83:969-978
    [71] Schild L, Lu Y, Gautschi I, Schneeberger E, et al. Identification of a PY motif in the epithelial Na~+ channel subunits as a target sequence for mutations causing channel activation found in Liddle syndrome[J]. EMBO J. 1996,15:2381-2387
    [72] Staub O, Dho S, Henry P, et al. WW domains of Nedd4 bind to the proline-rich PY motifs in the epithelial Na+ channel deleted in Liddle's syndrome[J]. EMBO J. 1996, 15:2371-2380
    [73] Hansson JH, Schild L, Lu Y, Wilson Ta, et al. A de novo missense mutation of the βsubunit of the epithelial sodium channel causes hypertension and Liddle syndrome, identifying a proline-rich segment critical for regulation of channel activity[J]. Proc Natl Acad Sci USA. 1995,92: 11495-11499
    [74] Masato Furuhashi, Kenichiro Kitamura, Masataka Adachi, et al. Liddle's Syndrome Caused by a Novel Mutation in the Proline-Rich PY Motif of the Epithelial Sodium Channel β-Subunit[J]. The Journal of Clinical Endocrinology & Metabolism. 2004, 90(1):340-344
    
    
    [75] Rayner BL, Owen EP, King JA, et al. A new mutation,R563Q, of the 6 subunit of theepithelial sodium channel associated with low-renin, low-aldosteronehypertension[J].J Hypertens. 2003,21:921-926
    
    [76] Nakano Y, Ishida T, Ozono R, et al. A frameshift mutation of 6 subunit of epithelialsodium channel in a case of isolated Liddle syndrome[J]. J Hypertens. 2002, 20:2379-2382
    
    [77] Hiltunen TP, Hannila-Handelberg T, Petajaniemi N, et al. Liddle's syndromeassociated with a point mutation in the extracellular domain of the epithelial sodiumchannel γsubunit[J]. J Hypertens. 2002,20:2383-2390
    
    [78] Yamashita Y, Koga M, Tokeda Y, et al. Two sporadic case of Liddle's syndromecaused by De novo ENaC mutations[J]. Am J Kidney Dis. 2001, 37:499-504
    
    [79] Inoue J, Iwaoka T, Tokunaga H, et al. A family with Liddle's syndrome caused by anew missense mutation in the 6 subunit of the epithelial sodium channel [J]. J ClinEndocrinol Metab. 1998, 83:2210-2213
    
    [80] Cao PJ, Zhang KX, Zhu DL, et al. Doagnosis of Liddle syndrome by genoticanalysis of beta and gamma subunits of epithelial sodium channel - a report of fiveaffected family members[J]. J Hypertens. 2001,19:885-889
    
    [81] Kyuma M, Ura N, Torri T, et al. A family with Liddle's syndrome caused by amutation in the beta subunit of the epithelial channei[J]. Clin Exp Hypertens. 2001,23:471-478
    
    [82] Tamura H, Schild L, Enomoto N, et al. Liddle disease caused by a missense mutationof β subunit of the epithelial sodium channel gene[J]. J Clin Invest. 1996,97:1780-1784
    
    [83] Uehara Y, Sasaguri M, Kinoshita A, et al. Genetic analysis of the epithelial sodiumchannel in Liddle's syndrome[J]. J Hypertens. 1998,16:1131-1135
    
    [84] Masato Furuhashi, Kenichiro Kitamura, Masataka Adachi, et al. Liddle's Syndromecaused by a novel mutation in the proline-rich PY motif of the Epithelial SodiumChannel β-Subunit[J]. The Journal of Clinical Endocrinology & Metabolism. 2005,90(1):340-344
    
    [85] Pradervanel S, Vandewalle A, Bens M, et al. Dysfunction of the epithelial sodiumchannel expressed in the kidney of a mouse model for Liddle Syndrome[J]. J AmSoc Nephrol. 2003,14:2219-2228
    
    [86] Sehild L, Canessa CM, Shimkets RA, et al. A mutation in the epithelial sodiumchannel causing Liddle disease increases channel activity in the Xenopus laevis??oocyte expression system[J]. Proc Natl Acad Sci USA. 1995,92:5699-5703
    
    [87] Bubien JK, Watson B, Khan MA, et al. Expression and regulation of normal andpolymorphic epithelial sodium channel by human lymphocytes[J]. J Biolchem. 2001,276:8557-8566
    
    [88] Hiltunen TP, Hannila-Handelberg T, Petajaniemi N, et al. Liddle's syndromeassociated with a point mutation in the extracellular domain of the epithelial sodiumchannel gamma subunit[J]. J Hypertens. 2002,20:2331-2333
    
    [89] Volk KA, Husted RF, Snyder PM, et al. Kinase regulation of hENaC mediatedthrough a region in the COOH-terminal portion of the α-subunit[J]. Am J Physiol.2000,278: c1047-c1054
    
    [90]马晓伟,田亚男,高妍,等.对一个Liddle综合征家系临床和上皮细胞钠通道 基因突变的研究[J].中华内科杂志.2001,40(6):390-393
    
    [91]陈庆荣,储谦,王翔羽,等.Liddle综合征(遗传性假性醛固酮增多症)2例同胞 兄弟报告[J].中华肾脏病杂志.1987,3:277-288.
    
    [92] Chang SS, Grander S, Hanukoglu A, et al. Mutations in subunits of the epithelialsodium channel cause salt wasting with hyperkalaemic acidosis, pseudohypoaldosteronism type 1 [J]. Nat Genet. 1996,12:248-253
    
    [93] Strautnieks SS, Thompson RJ, Gardiner RM, et al. A novel splice-site mutation in theγ subunit of the epithelial sodium channel gene in three pseudohypoaldosteronismtype 1 families[J]. Nat Genet. 1996,13:248-250
    
    [94] Saxena A, Hanukoglu I, Saxena D, et al. Novel mutations responsible for autosomalrecessive multisystem pseudohypoaldosteronism and sequence variants in epithelialsodium channel alpha, beta, and gamma-subunit genes[J]. J Clin Endocrinol Metab.2002, 87:3344-3350
    
    [95] Bonny O, Hummler E. Dysfunction of epithelial sodium transport from human tomouse[J]. Kidney Int. 2002, 57:1313-1318
    
    [96] Staub O, Yeger H, Plant PJ, et al. Immunolocalization of the ubiquitin-protein ligaseNedd4 in tissues expressing the epithelial Na+ channel (ENaC) [J]. Am J Physiol.1997,272:C1871-C1880
    
    [97] Bonny O, Chraibi A, Loffing J, et al. Functional expression of a pseudohypoaldosteronism type I mutated epithelial Na~+ channel lacking the pore-formingregion of its αsubunit[J]. J Clin Invest. 1999,104:967-974
    
    [98] Thomas CP, Zhou J, Liu KZ, et al. Systemic pseudohypoaldosteronism from deletionof the promoter region of the human Beta epithelial Na (+) channel subunit[J]. Am J??Respir Cell Mol Biol. 2002, 27:314-319
    
    [99] Edelheit D, Hanukoglu I, Gizewska M, et al. Noval mutations in epithelial sodiumchannel (ENaC) subunit genes and phenotypic expression of multisystempseudohypoaldosteronism[J]. Clin Endocrinol (Oxf). 2005, 62:547-553
    
    [100]Adachim M, Tachibana K, Asakura Y, et al. Compound heterozygous mutations inthe gamma subunit gene of ENaC (1627 de 1G and 1570 -1G-A) in one sporadicJapanese patient with a systemic form of pseudohypoaldosteronism type I[J]. J ClinEndocrMetab. 2001,86:9-12
    
    [101]Saxena A, Hanukoglu I, Saxena D, et al. Novel mutations responsible for autosomalrecessive multisystem pseudohypoaldosteronism and sequence variants in epithelialsodium channel alpha, beta, and gamma-subunit genes[J]. J Clin Endocrinol Metab.2002, 87:3344-3350
    
    [102]Takao Sugiyama, Norihrio Koto, Yuji Ishinaga, et al. Evaluation of selectedpolymorphisms of the Mendelian Hypersive Disease Genes in the Japanesepopulation. Hypertens Res. 2001,24: 515-521
    
    [103]Iwai N, Baba S, Mannami t, et al. Association of sodium channel alpha subunitpromoter variant with blood pressure[J]. J Am Soc Nephrol. 2002,13:80-85
    
    [104]Ambrosius WT, Bloe m LJ, Zhou L, et al. Genetic variants in the epithelial sodiumchannel in relation to aldosterone and potassium excretion and risk forhypertension[J]. Hypertension. 1999, 36:631-637
    
    [105]Sugiyama T, Kato N, Ishinagaa Y, et al. Evaluation of selected polymorphisms of theMendelian hypertensive disease genes in the Japanese population[J]. Hypertens Res.2001,24:515-521
    
    [106]Samaha FF, Rubenstein RC, Yan W, et al. Functional polymorphism in the carboxylterminus of the alpha-subunit of the human epithelial sodium channel[J]. J Biolchem. 2004,279: 23900-23907
    
    [107]Qiusheng Tong, Anil G Menon, James D. Stockand. Functional polymorphisms inthe α-subunit of the human epithelial Na+ channel increase activity[J]. Am J PhysiolRenal Physiol. 2006,90: F821-F827
    
    [108]Pratt JH. Erratum to genetic variants in the epithelial sodium channel in relation toaldosterone and potassium excretion and risk for hypertension[J]. Hypertension.2003,41:el
    
    [109]Su YR, Menon AG Epithelial sodium channels and hypertension[J]. Drug MetabDispos. 2001,29:553-556
    
    [110]Sugiyama T, Kato N, Ishinaga Y, et al. Evaluation of selected polymorphisms of theMendelian hypertensive disease genes in the Japanese population[J]. Hypertens Res.2001,24:515-521
    
    [111]Hannila-Handelberg T, Kontula K, TIkkanen I, et al. Common variants of the betaand gamma subunits of the epithelial channel and their relation to plasma renin andaldosterone levels in essential hypertention[J]. BMC Med Genet. 2005,6:4
    
    [112]Persu A, Barbry P, Bassilana F, et al. Genetic analysis of thePsubunit of the epithelialNa~+ channel in essential hypertension[J]. Hypertension. 1998,32:129-137
    
    [113]Su YR, Rutkowski MP, Klanke CA, et al. A noval variant of thePsubunit of theamiloride-sensitive sodium channel in African Americans[J]. J Am Sol Nephrol.1996,7:2543-2549
    
    [114]Baker EH, Dong YB, Sagella GA, et al. Association of hypertension with T594Mmutation in βsubunit of epithelial sodium channel in black people resident inLondon[J]. Lancet. 1998,351:1388-1392
    
    [115]Baker E, Dugglal A, Dong Y, et al. Amiloride, a specific drug for hypertension inblack people with T594M variant? [J]. Hypertension. 2002,40:13-17
    
    [116]Cui Y, Su YR, Rutkowski M, et al. Loss of protein kinase C inhibition in theβ-T594M variant of the amiloride-sensitive Na~+ channel[J]. Proc Natl Acad SciUSA. 1997, 94:9962-9966
    
    [117]Dong YB, Plange-Phule J, Owusu I, et al. T594M mutation of the beta subunit of theepithelial sodium channel in Ghanaian populations from Kumasi and London and apossible association[J]. Genet Test. 2002, 6:63-65
    
    [118]Nkeh B, Samani NJ, Baclenhorst D, et al. T594M variant of the epithelial sodiumchannel beta-subunit gene and hypertension in individual of African ancestry insouth Africa[J]. Am J Hypertens. 2003,16:847-852
    
    [119]Rayner BL, Owen FP, King JA, et al. A new mutation, R563Q, of the beta subunit ofthe epithelial sodium channel associated with low rennin, low aldosteronehypertension[J]. J Hypertens. 2003,21:921 -926
    
    [120]Roch E, Gonzalez D, La Sierra A et al. Genetic variant of the gamma subunit of theepithelial Na~+ channel and essential hypertension and relationship withsaltsensitity[J]. Am J Hypertens. 2000,13(6pt1):648-653
    
    [121]Iwai N, Baba S, Mannami t, et al. Association of sodium channel γ-subunit promotervariant with blood pressure[J]. Hypertension. 2001, 38:86-89
    
    [122]Vivek Bhalla, Nicholas M. Oyster Adam C, et al. AMP-activated Kinase Inhibits the??Epithelial Na+ Channel through Functional Regulation of the Ubiquitin LigaseNedd4-2[J].J Biol Chem. 2006,281(36), 26159-26169
    
    [123]Pacha J, Frindt G, Antonian L, et al. Regulation of Na channels of the rat corticalcollecting tubule by aldosterone[J]. J Gen Physiol. 1993,102: 25-42
    
    [124]Staub O, Kamynina E. Concerted action of ENaC, Nedd-2, and Sgkl intransepithelial Na transport. Am J Physiol Renal Physiol. 2002, 283:F377-F387
    
    [125]Palmer LG, Antonian L, Frindt G Regulation of apical K and Na channels and Na/Kpumps in rat cortical collecting tubule by dietary K[J]. J Gen Physiol. 1994,104:693-710
    
    [126]Bonny O, Rossier, BC. Disturbances of Na/K balance: pseudohypoaldosteronismrevisited[J]. J am Soc Nephrol. 2002,13:2399-2414
    
    [127]Chen SY, Bhargava A, Mastroberardino L, et al. Epithelial sodium channel regulatedby aldosterone-induced protein sgk[J]. Proc Nat Acad Sci USA. 1999,96:2514-2519
    
    [128]Naray-Fejes-Toth A, Canessa C, Cleaveland ES, et al. Sgk is an aldosterone-inducedkinase in the renal collecting duct. Effects on epithelial Na~+ channels[J]. J BiolChem. 1999,274:16973-16978
    
    [129]Firestone GL, Pearce D. SGK integrates insulin and mineralocorticoid regulation ofepithelial sodium transport[J]. Am J Physiol Renal Physiol. 2001. 280:F303-F313
    
    [130] Aaron M. Ring, Sam X. Cheng, Qiang Leng, et al. WNK4 regulates activity of theepithelial Na+ channel in vitro and in vivo[J]. PNAS. 2007, 104(10): 4020-4024
    
    [131]Debonneville, C, Flores, SY, Kamynina, E, et al. A novel mouse Nedd4 proteinsuppresses the activity of the epithelial Na+ channel[J]. EMBO J. 2001,15:204
    
    [132]Aditi Bhargava, Mery J Fullerton, Kathy Myles, et al. The Serum- andGlucocorticoid- Induced Kinase Is a Physiological Mediator of AldosteroneAction[J]. Endocrinology. 2001,142: 1587
    
    [133]Snyder PM, Olsom DR, Thomas BC. The serum and glucocorticoid regulatedkinasemodulates Nedd4-2-mediated inhibition of the epithelial Na~+ channels[J]. JBiol Chem. 2002,277:5-8
    
    [134]Hirpshi Tokumitsu, Naoya Hatano, Hiroyuki Inuzuka, et al. Phosphorylation ofNumb Family Proteins:possible involvement of CaVcalmodulin-dependent proteinkinasea[J]. J Biol Chem. 2005,280: 35108-35118
    
    [135]Vivek Bhalla, Dorothee Daidie, Hongyan Li, et al. Serum- and Glucocorticoid-Regulated Kinase 1 Regulates Ubiquitin Ligase Neural Precursor Cell-Expressed,??Developmentally Down-Regulated Protein 4-2 by Inducing Interaction with14-3-3[J]. Mol Endocrinol. 2005,19: 3073-3084
    
    [136]Spindler B, Verrey F. Aldosterone action: induction of p21(ras) and fra-2 andtranscription-independent decrease in myc, jun, and fos[J]. Am J Physiol. 1999276x1154-c1161
    
    [137]Stockand JD, Spier BJ, Worrell RT, et al. Regulation of Na~+ reabsorption by thealdosterone-induced small G protein K-Ras2A[J]. J Biol Chem. 1999, 274:35449-35454
    
    [138]Weisz OA, Wang JM, Edinger RS, et al. Non-coordinate regulation of endogenousepithelial sodium channel (ENaC) subunit expression at the apical membrane of A6cells in response to various transporting conditions[J]. J Biol Chem. 2000,275:39886-39893
    
    [139]Masilamani S, Kim GH, Mitchell C, et al. Aldosterone-mediated regulation of ENaCα, βand γsubunit proteins in rat kidney[J]. J Clin Invest. 1999,104:R19-R23
    
    [140]Volk KA, Husted RF, Sigmund RD, et al. Overexpression of the epithelial Na~+channel Isubunit in collecting duct cells: interactions of Liddle's mutations andsteroids on expression and function[J]. J Biol Chem. 2005,280:18348-18354
    
    [141]Stokes JB, Sigmund RD. Regulation of rENaC mRNA by dietary NaCl and steroids:organ, tissue, and steroid heterogeneity[J]. Am J Physiol. 1998,274:cl699-cl707
    
    [142]Snyder PM, Olson DR, Kabra R, et al. cAMP and serum and glucocorticoidinduciblekinase (SGK) regulate the epithelial Na~+ channel through convergentphosphorylation of Nedd4-2[J]. J Biol Chem. 2004,279:45753-45758
    
    [143]Butterworth MB, Edinger RS, Johnson JP, et al. Acute ENaC stimulation by cAMPin a kidney cell line is mediated by exocytic insertion from a recycling channelpool[J]. J Gen Physiol. 2005,125:81-101
    
    [144]Snyder PM. Liddle's syndrome mutations disrupt cAMP-mediated translocation ofthe epithelial Na~+ channel to the cell surface[J]. J Clin Invest. 2000,105:45-53
    
    [145]Awayda MS, Ismailov II, Berdiev BK, et al. Protein kinase regulation of a clonedepithelial Na~+ channel[J]. J Gen Physiol. 1996,108:49-65
    
    [146]Stutts MJ, Rossier BC, Boucher RC. Cystic fibrosis transmembrane conductanceregulator inverts protein kinase A-mediated regulation of epithelial sodium channelsingle channel kinetics[J]. J Biol Chem. 1997,272:14037-14040
    
    [147]Stutts MJ, Canessa CM, Olsen JC, et al. CFTR as a cAMP-dependent regulator ofsodium channels[J]. Science. 1995,269:847-850
    [148]Niao C, wittner M, Distefuno A, et al. Chronic exprosure to vasopressin upregulate ENaC and sodium transport in the rat renal collecting duct and lung[J]. Hypertension. 2001, 38:1143-1146
    [149]Arun Anantharam, Yuan Tian, Lawrence G, et al. Open probability of the epithelial sodium channel is regulated by intracellular sodium[J]. J Physiol. 2006, 574:333 - 347
    [150]Awayda MS. Regulation of the epithelial Na~+ channel by intracellular Na~+[J]. Am J Physiol. 1999, 277:c216-c224
    [151]Snyder PM, Steines JC, Olson DR. Relative contribution of Nedd4 and Nedd4-2 to ENaC regulation in epithelia determined by RNA interference[J]. J Biol Chem. 2004, 279:5042-5046
    [152]Kellenberger S, Gautschi I, Rossier BC, et al. Mutations causing Liddle syndrome reduce sodium-dependent downregulation of the epithelial sodium channel in the Xenopus oocyte expression system[J]. J Clin Invest. 1998, 101:2741-2750
    [153]Fotia AB, Dinudom A, Shearwin KE, et al. The role of individual Nedd4-2 (KIAA0439) WW domains in binding and regulating epithelial sodium channels[J], FASEB J. 2003,17:70-72
    [154]Dinudom A, Fotia AB, Lefkowitz RJ, et al. The kinase Grk2 regulates Nedd4/Nedd4-2-dependent control of epithelial Na+ channels[J]. Proc Natl Acad Sci USA. 2004,101:11886-11890
    [155]Babini E, Geisler HS, Siba M, et al. A new subunit of the epithelial Na~+ channel identifies region involved in Na~+ self-inhibition[J]. J Biol Chem. 2003, 273: 28418-28426
    [156]Abderrahmane Bengrine, Jinging Li, L. Lee Hamm, et al. Indirect activation of the epithelial Na~+ channel by trypsin. J Biol Chem. 2007,10. 1074/jbc:M611829200
    [157]Itani OA, Auerbach SD, Husted RF, et al. Glucocorticoid-stimulated lung epithelial Na~+ transports is associated with regulated ENaC and sgk1 expression[J]. Am J Physiol Lung Cell Mol Physiol. 2002,282:2631-2641
    [158]Staub O, Kamynina E. Concerted action of ENaC, Nedd-2, and Sgkl in transepithelial Na transport[J]. Am J Physiol Renal Physiol. 2002,283:F377-F387
    [159]Malik B, Schlanger L, Al-Khalili O, et al. ENac degradation in A6 cells by the ubiquitin-proteosome proteolytic pathway[J]. J Biol Chem. 2001,276:12903-12910
    [160]Rea S, Martin LB, McIntosh S, et al. Syndet, an adipocyte target SNARE involved in the insulin-induced translocation of GLUT4 to the cell surface[J]. J Biol Chem.??1998,273:18784-18792
    
    [161]Sheng S, Li J, McNulty KA, et al. Epithelial sodium channel pore region. Structureand role in gating[J]. J Biol Chem. 2001,276:1326-1334
    
    [162]Condliffe SB, Zhang H, Frizzell RA. Syntaxin 1A regulates ENaC channelactivity[J]. J Biol Chem. 2004,279:10085-10092
    
    [163]Rea S, Martin LB, Mclntosh S, et al. an adipocyte target SNARE involved in theinsulin-induced translocation of GLUT4 to the cell surface[J]. J Biol Chem. 1998,273:18784-18792
    
    [164]Snyder PM, Olson DR, Thomas BC. Serum and glucocorticoid-regulated kinasemodulates Nedd4-2-mediated inhibition of the epithelial Na~+ channel[J]. J BiolChem. 2002,277:5-8
    
    [165]Kanelis V, Rotin D, Forman-Kay JD. Solution structure of a Nedd4 WWdomain-ENaC peptide complex[J]. Nat Struct Biol. 2001, 8:407-412
    
    [166]Aaron M. Ring, Sam X. Cheng, Qiang Leng et al. WNK4 regulates activity of theepithelial Na+ channel in vitro and in vivo[J]. PNAS. 2007,104 (10): 4020-4024
    
    [167]Snyder PM, Olson DR, McDonald FJ, et al. Multiple WW domains, but notthe C2 domain, are required for the inhibition of ENaC by human Nedd4[J]. J BiolChem 2001,276:28321-28326
    
    [168]Asher C, Chigaev A, Garty H. Characterization of interactions between Nedd4 and βand (?)ENaC using surface plasmon resonance[J]. Biochem Biophys Res Commun.2001,286:1228-231
    
    [169]Kanelis V, Rotin D, Forman-Kay JD. Solution structure of a Nedd4 WWdomain-ENaC peptide complex[J]. Nat Struct Biol. 2001, 8:407-412
    
    [170]Lott JS, Coddington-Lawson SJ, Teesdale-Spittle PH, et al. A single WW domain isthe predominant mediator of the interaction between the human ubiquitin-proteinligase Nedd4 and the human epithelial sodium channel[J]. Biochem J. 2002,361:481-488
    
    [171]Fotia AB, Dinudom A, Shearwin KE, et al. The role of individual Nedd4-2(KIAA0439) WW domains in binding and regulating epithelial sodium channels[J].FASEB J. 2003,17:70-72
    
    [172]McDonald FJ, Western AH, McNeil JD, et al. Ubiquitin-protein ligase WWP2 bindsto and downregulates the epithelial Na~+ channel[J]. Am J Physiol Renal Physiol.2002,283:F431-F436
    
    [173]Malik B, Schlanger L, Al-Khalili O, et al. ENac degradation in A6 cells by the ubiquitin-proteosome proteolytic pathway[J]. J Biol Chem. 2001,276:12903-12910
    [174]Peter M. Snyder, Diane R. Olson, Rajesh Kabra, et al. cAMP and Serum and Glucocorticoid-inducible Kinase (SGK) Regulate the Epithelial Na+ Channel through Convergent Phosphorylation of Nedd4-2[J]. J Biol Chem. 2004, 279:45753 -45758
    [175]Haikun Shi, Carol Asher, Alexander Chigaev, et al. Interactions of βand γENaC with Nedd4 Can Be Facilitated by an ERK-mediated Phosphorylation[J]. J Biol Chem. 2002,277:13539-13547
    [176]Ma HP, Saxena S, Warnock DG. Anionic phosphoinositides regulate native and expressed epithelial sodium channel (ENaC) [J]. J Biol Chem. 2002,277:7641-7644
    [177]Kunzelmann K, Bachhuber T, Regeer R, et al. Purinergic inhibition of the epithelial Na+ transport via hydrolysis of PIP2[J]. FASEB J. 2005,19:142-143
    [178]Tong Q, Stockand JD. Receptor tyrosine kinases mediate epithelial Na+ channel inhibition by epidermal growth factor[J]. Am J Physiol Renal Physiol. 2005, 288:F150-F161
    [179]Pochynyuk O, Staruschenko A, Tong Q, et al. Identification of a functional phosphatidylinositol 3, 4, 5-trisphosphate binding site in the epithelial Na~+ channel[J]. JBiol Chem. 2005,280:37565-37571
    [180]Huamin Wang, Linton M. Traub, Kelly M. Weixe 1 Clathrin-mediated Endocytosis of the Epithelial Sodium Channel role of epsin[J]. J Biol Chem, 2006, 281(20): 14129-14135
    [181]Hicke L, Dunn R. Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins[J]. Annu Rev Cell Dev Biol. 2003,19:141-72. 2
    [182]Wendland B. Epsins: adaptors in endocytosis? [J]. Nat Rev Mol Cell Biol. 2002, 3:971-7
    [183] Ford MG, Mills IG, Peter BJ, et a. Curvature, of clathrin-coated pits driven by epsin. Nature. 2002,26:419
    [184]Staruschenko A, Pochynyuk OM, Tong Q, et al. Ras couples phosphoinositide Ras couples phosphoinositide 3-OH kinase to the epithelial Na+ channel[J]. Biochim Bipphys Acta. 2005,1669:108-15
    [185]Vivek Bhalla, Nicholas M. Oyster, Adam C. Fitch, et al. AMP-activated Kinase Inhibits the Epithelial Na~+ Channel through Functional Regulation of the Ubiquitin Ligase Nedd4-2[J]. J Biol Chem. 2006,281:26159-26169
    [186]Tohru Ichimura, Hisao Yamamura, Kaname Sasamoto, et al. 14-3-3 Proteins
    ??Modulate the Expression of Epithelial Na~+ Channels by Phosphorylation-dependentInteraction with Nedd4-2 Ubiquitin Ligase[J]. J Biol Chem. 2005, 280:13187 -13194
    
    [187]Joungmok Kim, Moon-Young Yoon, Sang-Lim Choi, et al. Effects of Stimulation ofAMP-activated Protein Kinase on Insulin-like Growth Factor 1- and EpidermalGrowth Factor-dependent Extracellular Signal-regulated Kinase Pathway [J]. J BiolChem. 2001,276: 19102-19110
    
    [188]Kathleen Lemieux, Daniel Korad, Amira Klip, et al. The AMP-activated proteinkinase activator AICAR does not induce GLUT4 translocation to transverse tubulesbut stimulates glucose uptake and p38 mitogen-activated protein kinases αand β inskeletal muscle[J]. FASEB J. 2003,17:1658
    
    [189]Marcelo D. Carattino, Robert S. Edinger, Heather J. Grieser, et al. Epithelial SodiumChannel Inhibition by AMP-activated Protein Kinase in Oocytes and PolarizedRenal Epithelial Cells[J]. J Biol Chem. 2005,280:17608-17616
    
    [190]Alison M Woollhead, John W Scott, D Grahame Hardie, et al. Phenformin and5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) activation ofAMP-activated protein kinase inhibits transepithelial Na~+ transport across H441lung cells[J]. J Physiol. 2005, 566: 781-792
    
    [191]Carattino MD, Hill WG, Kleyman TR. Arachidonic acid regulates surface expressionof epithelial sodium channels[J]. J Biol Chem. 2003,278:36202-36213
    
    [192]Carattino MD, Edinger RS, Grieser HJ, et al. Epithelial sodium channel inhibitionby AMP-activated protein kinase in oocytes and polarized renal epithelial cells[J]. JBiol Chem. 2005,280:17608-17616
    
    [193]Booth RE, Stockand JD. Targeted degradation of ENaC in response to PKCactivation of the ERK1/2 cascade[J]. Am J Physiol Renal Physiol. 2003,284: F938-F947
    
    [194]Staruschenko A, Nichols A, Medina JL, et al. Rho small GTPases activate theepithelial Na~+ channel[J]. J Biol Chem. 2004,279:49989-49994
    
    [195]Lebowitz J, Edinger RS, An B, Perry CJ, et al. (?)b kinase-β (ikkβ) modulation ofepithelial sodium channel activity[J]. J Biol Chem. 2004,279:41985-41990
    
    [196]Stephan Kellenberger, Ivan Gautschi, Yvan Pfister, et al. Intracellular ThiolmediatedModulation of Epithelial Sodium Channel Activity [J]. J BiolChem. 2005,280: 7739-7747

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700