用户名: 密码: 验证码:
雌激素抗衰老的SIRT1蛋白机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分雌激素抗衰老的SIRT1蛋白机制研究
     研究目的:衰老被认为是随时间而逐渐出现的机体器官功能和应激反应衰退并伴有发病率和死亡率增加的一个现象。衰老也被认为是心脑血管疾病等重要疾病的独立危险因素。目前认为衰老的病理机制主要是随年龄增长机体损伤的积累所致。如细胞内蛋白质、脂类和DNA等大分子不断受到外源性或内源性刺激而导致损伤。外源性的损伤包括紫外线的照射及环境中有毒物质的损害,而内源性的刺激主要是反应氧族(reactive oxygen species,ROS)诱发的氧化应激的损伤作用。除了氧化应激在衰老机制中得到普遍共识外,还存在其他多种学说,如细胞凋亡率增加、染色体末端端粒逐渐变短、线粒体DNA突变率增加和累积、DNA甲基化水平的降低、免疫系统功能失调、体内干细胞数量的减少和功能的减退及女性更年期后雌激素分泌水平的降低等等。虽然目前存在多种学说解释衰老的发生,但是对于确切的机制及衰老是否受基因调控等问题,目前还不清楚。近年来,很多学者注意到当热量限制后,从真菌、线虫、果蝇甚至小鼠等动物的寿命均可明显延长,并且这种作用和组蛋白去乙酰化酶-sirtuin蛋白家族有关。Sir2是一种依赖NAD~+的组蛋白去乙酰化酶。最先引发研究者兴趣的是,当过表达Sir2蛋白后,细胞组蛋白乙酰化的水平降低并且在酵母和多细胞生物还发现寿命延长的现象。另外,用Sir2的激动剂如白藜芦醇刺激酵母后,酵母的寿命也能明显延长,而且在线虫和果蝇甚至小鼠也能观察到这一现象。如果将Sir2基因突变或者用药物阻断Sir2后发现酵母的衰老过程是加速的。Sir2家族蛋白不仅调节组蛋白乙酰化的水平,还可调节多种转录调节蛋白、基因沉默、DNA修复以及细胞周期等因素以调控衰老的过程。Sir2在哺乳动物中被称为SIRT1。SIRT1能够将p53、Ku70及FOXO(forkhead box class O)去乙酰化从而抑制细胞凋亡;SIRT1还可通过增加hTERT的表达抑制端粒缩短;在白色脂肪细胞中SIRT1可阻断核受体PPAR-γ达到抑制脂肪蓄积的作用。可见SIRT1能够通过多种途径发挥抗衰老的作用。
     哺乳动物中雌性的寿命长于雄性已达到共识。雌性Wistar大鼠平均寿命比雄性Wistar大鼠寿命长14%。在人类中,男性的平均寿命也比女性的平均寿命短。这个现象也告诉我们,性别之间寿命的差异不仅是社会背景的区别,更重要的是由性别之间生物学的差异造成的。进一步对Wistar大鼠的研究发现,雌性Wistar大鼠产生的ROS要比雄性产生的量少。研究者认为雌激素可能通过减少氧化应激增加抗氧化功能进而发挥抗衰老作用。表明雌激素在女性抗衰老中起到非常重要的作用。但雌激素是否也调节SIRT1的活动,雌激素和热量限制之间有何关系,目前还未发现相关的研究报道。
     研究方法:本课题利用体外培养的血管平滑肌细胞、大鼠去卵巢模型、Western Blot、免疫细胞化学、放射免疫学检测、大鼠全基因组分析等方法进一步研究雌激素的抗衰老作用机制。
     实验结果:
     1.体外培养大鼠胸主动脉平滑肌细胞,用17β-estradiol(10~(-9)-10~(-6)M)刺激细胞24h,提取细胞核蛋白,发现SIRT1蛋白表达明显增高,并与雌二醇的加样量呈剂量依赖效应。雌激素受体ERa的阻断剂能够明显抑制雌激素的效应。雌激素受体ERa的激动剂也能促进SIRT1蛋白的表达,ERβ的激动剂对SIRT1蛋白的表达无明显作用。
     2.制备大鼠卵巢切除动物模型组,假手术和卵巢切除后补充外源性的17β-estradiol的模型组。动物饲养4个月。提取脑、左心室、主动脉、肝脏、肾脏和后肢骨骼肌的蛋白。发现卵巢切除的大鼠各组织器官的SIRT1蛋白表达均比假手术组表达低,而卵巢切除的大鼠经雌二醇替代治疗后SIRT1蛋白表达几乎和假手术组表达相同。
     3.制备大鼠卵巢切除加限食模型:(1)假手术组;(2)假手术组+60%限食;(3)大鼠卵巢切除动物模型组;(4)大鼠卵巢切除动物模型组+60%限食。动物饲养4个月。限食后大鼠血清胰岛素的含量均比正常饮食组低,而动物组织器官的SIRT1蛋白表达比正常饮食组表达高。在假手术组中,限食对动物血清中雌激素的水平无明显影响;在卵巢切除组,限食后动物雌激素和孕酮在血清中的含量明显增高。并且多种组织中SIRT1蛋白和ERa的表达也明显增加。
     4.取卵巢切除和假手术组动物血清刺激平滑肌细胞48h,卵巢切除动物血清刺激后的细胞SIRT1蛋白表达明显降低。进一步用27K Rat Genome Array共有约26962条的全基因组基因芯片,研究这两种血清对细胞刺激48h后基因表达的差异。结果显示共有397点差异表达的基因,其中已知功能的187个基因中,大致可分为5大类:代谢相关的酶;细胞应激相关的信号分子;氧化还原反应相关的分子;钙钾离子通道;细胞凋亡相关分子等分子。实验结果进一步表明卵巢切除后细胞应激性抵抗减弱可能与细胞能量水平降低、氧化应激水平增高、细胞内离子梯度失调及细胞凋亡增加等因素相关。
     结论:
     1.雌激素能够明显促进SIRT1蛋白的表达,并且雌激素的这一作用是通过ERa介导的。
     2.雌性大鼠中SIRT1蛋白的表达可能很大程度上依赖于雌激素的作用,尤其是在心血管系统。
     3.雌性动物中限食的部分保护作用可能是通过雌激素的活动实现的,当卵巢切除后,机体在雌激素水平减少的情况下,能够增加卵巢外的激素合成的代偿途径及雌激素受体的表达,来加强雌激素介导的限食保护作用。
     4.基因芯片结果提示,抑制平滑肌细胞内脂类和胆固醇过度合成、保持线粒体功能的稳定、完善细胞抗氧化能力、增强细胞修复功能及维护细胞内离子稳态等是可能女性抗衰老的重要机制。
     第二部分丹参酮ⅡA磺酸钠保护缺血性心肌损伤的机制研究
     心肌细胞凋亡是心血管疾病的独立危险因素。研究表明反应氧族(reactive oxygenspecies,ROS)能够诱发心肌细胞凋亡,并可激活促进细胞凋亡的因子,如参与应激反应的丝裂原激活蛋白激酶(mitogen-activated protein kinases,MAPKs),其中JNK/SAPK(c-Jun N-terminal kinases/stress-activated protein kinases)和p38 MAPK在诱发心肌细胞凋亡中起重要作用。丹参酮ⅡA磺酸钠(Sodium tanshinoneⅡAsulfonate,STS)是丹参酮ⅡA经磺化后得到的一种水溶性钠盐。丹参是中国传统中药广泛用于治疗心血管疾病的药品。研究显示STS能够抑制线粒体内氧自由基的形成从而改善缺血再灌注损伤。但对于STS由氧化应激诱发的心肌细胞凋亡的研究还很少。本课题应用大鼠心肌梗死模型和体外培养的心肌细胞氧化应激模型来研究STS对心肌的保护作用。研究发现,STS能够明显减少大鼠心肌梗死模型的心肌梗死区比例,并且降低血清乳酸脱氢酶的水平。进一步发现STS可减少心脏梗死区凋亡的心肌细胞数量。在体外培养心肌细胞实验中,发现STS能显著提高过氧化氢刺激导致的细胞活力的降低。用TUNEL标记法显示过氧化氢能明显增加心肌细胞凋亡数量,而STS能抑制过氧化氢的这一损伤作用。进一步机制研究发现过氧化氢刺激心肌细胞后,JNK和p38 MAPK被激活,这可能与诱发细胞凋亡有关。而STS能够明显抑制由过氧化氢导致的JNK的激活作用,但对p38 MAPK的激活无明显作用。我们认为STS对氧化应激诱发的心肌细胞损伤有保护作用,并能减少心肌细胞凋亡的发生率,这一作用可能和阻断氧化应激诱发的JNK的激活作用有关。
The role of SIRT1 protein in anti-aging effects of estrogen
     Aging is defined by the loss of functional reserve over time, leading to a decreased capacity to maintain homeostasis under stress and increased risk of morbidity and mortality. Aging is extremely heterogenerous between individuals and even between tissues within an organism, making it challenging to identify the molecular basis of ageing. Many studies revealed not only causes of aging, but also signaling mechanisms that both promote and protect against ageing. In all cases, the signaling pathways that influence life span are familiar mechanisms that regulate cellular metabolism, growth, proliferation, differentiation and survival. Aging is associated with a progressive imbalance between antioxidant defenses and intracellular concentrations of reactive oxygen species (ROS) as exemplified by increases in products of lipid peroxidation, protein oxidation, and DNA oxidation. Evidence shows that lifespan extension in laboratory yeast, flies and rats maintained on a caloric restriction (CR) diet. CR reduces metabolic rate and oxidative damage. In yeast, reduction in glucose levels in the media, mimicking CR, results in a substantial extension in lifespan, which is Sir2p- and NAD~+-dependent, since mutants for Sir2p and nicotinate phosphoribosyl transferase , an enzyme required for NAD~+ formation, failed to reproduce this effect. Sir2 belongs to the third class of histone deacetylases. Most interesting was the fact that overexpression of the gene encoding the Sir2 protein leads to a decrease in histone acetylation and an increase in life span in yeast, in the menatode Caenorhabditis elegans and in metazoans. Likewise, Sir2-activating compounds such as resveratrol promote longevity in yeast and other organisms ranging from the worm and drosophila to the mouse. On the other hand, both mutations of the Sir2 gene and pharmacological inhibition of Sir2 protein by nicotinamide induce an acceleration of aging in yeast. Since the Sir2 family of proteins are also able to exert their enzymatic activity not only on histones but also on numerous other proteins, such as the transcriptional regulators, they are involved in many cellular processes, ranging from gene silencing, DNA repair, progression of the cell cycle, to the control of aging. SIRT1, the mammalian Sir2 ortholog, controls lifespan extension under CR conditions.
     Females live longer than males in many mammalian species. Female Wistar rat median life span is 29 months, 14% more than in male Wistar rats. In Europe, the average life span is 73.7 years for males and 83.8 years for females. The fact that this differences occurs in animals as well as in humans, indicated that the difference cannot be attributed to sociological differences but rather to specific biological characteristics of both genders. Mitochondria from females produce approximately half the amount of hydrogen peroxide than males. Females behave as double transgenics overexpressing both superoxide dismutase and glutathione peroxidase. This is due to estrogen that acts by binding to the estrogen receptors and subsequently activating the mitogen activated protein kinase and nuclear factor kappa B signaling pathways. In addition, estrogen increases antiapoptotic proteins, which prevents activation of the permeability transition pore protection against estrogen-induced increase in mitochondrial Ca~(2+) sequestration. However, little is known about the relationship belong estrogen, SIRT1 and CR. To further understand the role of SIRT1 in anti-aging effects mediated by estrogen in cardiovascular system. In this project, we used primary vascular smooth muscle cells, ovary ectomized rats, CR rats and rat genome microarrays to investigate this mechanism.
     The main results of this project are as follows:
     1. Primary vascular smooth muscle cells were isolated from aortic arteries in female SD rats. Exposure cells to different concentration of 178-estradiol (10~(-9)-10~(-5)M), we found that 178-estradiol increased the SIRT1 protein expression, which was dosage-dependent. Antagonists of ERa and ERβblocked the increasing effects induced by 176-estradiol. We further used agonists of ERa and ERβto stimulated cultured cells. Results shown that agonist of ERa enhanced SIRT1 protein expression but agonist of ERβhad no this effect.
     2. We used ovary ectomized rats to study effects of 17B-estradiol on SIRT1. Three groups rats in this experiment including Sham group, ovary ectomized rats and ovary ectomized rats with exogenous 17β-estradiol treatment. All rats were kept for 4 months. Then we isolated brains, hearts, aortic arteries, livers, kidney and skeletal muscles, which were quickly put in liquid nitrogen. We detected SIRT1 in these tissues and found that protein expression of SIRT1 decreased in ovary ectomized rats in comparison with Sham group. Exogenous 17B-estradiol treatment reversed the decreased SIRT1 protein expression.
     3. We further used 4 groups in this branch experiments. (1) Sham group; (2) Sham group+CR; (3) ovary ectomized rats; (4) ovary ectomized rats+CR. Totally insulin levels in serum decreased and SIRT1 protein in tissues increased in CR groups. No differences of serum estradiol were found between Sham group and Sham group+CR group. The serum estradiol and progesterone levels significantly increased in ovary ectomized rats+CR compared with ovary ectomized rats. The protein expression of SIRT1 and ERa significantly increased in CR groups.
     4. Exposure cultured VSMC to serum from Sham rats and ovary ectomized rats for 48h. We found that SIRT1 protein decreased in cells stimulated by serum from ovary ectomized rats in comparison with Sham rats. We further used rat genome microarrays to identify different gene expression in cells stimulated different serum from Sham rats and ovary ectomized rats for 48h. Our data indicated that 400 genes changed between two groups including metabolic enzymes, stress-related proteins, signal transduction proteins, calcium and potassium ion channels and apoptotic related genes.
     The cardioprotective effects of sodium tanshinoneⅡA sulfonate against ischemia-induced injury in rat hearts
     Sodium tanshinoneⅡA sulfonate (STS) is a water soluble derivative of tanshinoneⅡA, a well-known Chinese medicine for treating cardiovascular disorders. Cardiomyocyte apoptosis plays a major role in the development of cardiovascular diseases. The present study was designed to investigate the effects of STS on cardiomyocyte apoptosis induced both by in vivo acute myocardial infarction (MI) in adult rats and by in vitro H_2O_2-treated neonatal rat ventricular myocytes. In MI rats, STS significantly reduced the infarct sizes, the blood lactate dehydrogenase (LDH) level and the number of apoptotic cardiomyocytes in the infarcted hearts. In the in vitro study, STS reversed the decreased effect of cell viability induced by H_2O_2. In addition, STS also markedly inhibited H_2O_2-induced cardiomyocyte apoptosis. C-Jun N-terminal kinases/stress-activated protein kinases (JNKs/SAPKs) and p38 MAPK are classic oxidative stress-activated protein kinases. Our further mechanistic study revealed that increased JNK phosphorylation stimulated by H_2O_2 was abolished by STS treatment. In conclusion, inhibition of JNK activation plays a significant role in cardioprotective effects of STS.
引文
[1]. Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature 2000;408:239-47.
    
    [2]. Marnett LJ, Plastaras JR Endogenous DNA damage and mutation. Trends Genet 2001;17:214-21.
    [3]. Nelson HD. Menopause. Lancet 2008;371(9614):760-70.
    [4]. Rossi DJ, Jamieson CH, Weissman IL. Stems cells and the pathways to aging and cancer. Cell 2008;132(4):681-96.
    [5]. Guarente L. Mitochondria-a nexus for aging, calorie restriction, and sirtuins? Cell. 2008; 132(2): 171-6.
    [6]. Gorbunova V, Seluanov A, Mao Z, Hine C. Changes in DNA repair during aging. Nucleic Acids Res 2007;35(22):7466-74.
    
    [7]. Gauldie J. Inflammation and the aging process: devil or angel. Nutr Rev 2007;65(12 Pt 2):S167-9.
    [8]. Kennedy BK. The genetics of ageing: insight from genome-wide approaches in invertebrate model organisms. J Intern Med 2008;263(2):142-52.
    [9]. Dali-Youcef N, Lagouge M, Froelich S, Koehl C, Schoonjans K, Auwerx J. Sirtuins: the 'magnificent seven', function, metabolism and longevity. Ann Med 2007;39(5):335-45.
    [10]. Lee GD, Wilson MA, Zhu M, Wolkow CA, de Cabo R, Ingram DK, Zou S. Dietary deprivation extends lifespan in Caenorhabditis elegans. Aging Cell 2006;5(6):515-24.
    [11].Dilova I, Easlon E, Lin SJ. Calorie restriction and the nutrient sensing signaling pathways. Cell Mol Life Sci 2007;64(6):752-67.
    [12].Landry J, Sutton A, Tafrov ST, et al. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylase. Proc Natl Acad Sci USA 2000;97(11):5807-11.
    [13]. Smith JS, Brachmann CB, Celic I, et al. A phylogenetically conserved NAD+-dependent protein deacetylases activity in the Sir2 family. Proc Natl Acad Sci USA 2000;97(12):6658-63.
    [14]. Chen H, Lin RJ, Xie W, Wilpitz D, Evans RM. Regulation of hormone-induced histone hyperacetylation and gene activation via acetylation of an acetylase. Cell 1999;98:675-86.
    [15]. Lin SJ, Guarente L. Nicotinamide adenine dinucleotide, a metabolic regulator of transcription, longevity and disease. Curr Opin Cell Biol 2003; 15:241-6
    [16].Braunstein M, Rose AB, Holmes SG, Allis CD, Broach JR. Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes Dev 1993;7:592-604.
    [17].Kaeberlein M, McVey M, Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 1999;13:2570-80.
    [18].Tissenbaum HA, Guarente L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 2001;410:227-30.
    [19].Rogina B, Helfand SL. Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci USA 2004; 101:15998-6003.
    [20].Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 2003;425:191-6.
    [21]. Wood JG, Rogina B, Lavu S, Howitz K, Helfand SL, Tatar M, et al. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 2004;430:686-9.
    [22].Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 2006;444:337-42.
    [23]. Bitterman KJ, Anderson RM, Cohen HY, Latorre-Esteves M, Sinclair DA. Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. J Biol Chem 2002;277:45099-107.
    [24].Bordone L, Guarente L. Calorie restriction, SIRT1 and metabolism: understanding longevity. Nat Rev Mol Cell Biol 2005;6:298-305.
    [25]. Lin SJ, Defossez PA, Guarente L. Requirement of NAD and S1R2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 2000;289:2126-8.
    [26].Sinclair DA, Guarente L. Extrachromosomal rDNA circles a cause of aging in yeast. Cell 1997;91:1033-42.
    [27].Longo VD. The Ras and Sch9 pathways regulate stress resistance and longevity. Exp Gerontol 2003;38:807-ll.
    [28].Kaeberlein M, Andalis AA, Fink GR, Guarente L. High osmolarity extends life span in Saccharomyces cerevisiae by a mechanism related to calorie restriction. Mol Cell Biol 2002;22:8056-66.
    [29].Rogina B, Helfand SL, Frankel S. Longevity regulation by Drosophila Rpd3 deacetylase and caloric restriction. Science 2002;298:1745.
    [30].Clancy DJ, Gems D, Harshman LG, Oldham S, Stocker H, Hafen E, et al. Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science 2001;292:104-6.
    [31].Hwangbo DS, Gershman B, Tu MP, Palmer M, Tatar M. Drosophila dFOXO controls lifespan and regulated insulin signaling in brain and fat body. Nature 2004;429:562-6.
    [32].Giannakou ME, Goss M, Junger MA, Hafen E, Leevers SJ, Partridge L. Long-lived Drosophila with overexpressed dFOXO in adult fat body. Science 2004;305:361.
    [33]. North BJ, Schwer B, Ahuja N, Marshall B, Verdin E. Preparation of enzymatically active recombinant class III protein deacetylases. Methods 2005;36(4):338-45.
    [34].Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 2005;434:113-8.
    [35].Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-alpha. Cell 2006;127:1109-22.
    [36].Picard F, Auwerx J. PPAR (gamma) and glucose homeostasis. Annu Rev Nutr 2002;22:167-97.
    [37].Nisoli E, Tonello C, Cardile A, Cozzi V, Bracale R, Tedesco L, et al. Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 2005;310:314-7.
    [38].Araki T, Sasaki Y, Milbrandt J. Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneratioin. Science 2004;305:1010-3.
    [39]. Chen J, Zhou Y, Mueller-Steiner S, Chen LF, Kwon H, Yi S, et al. SIRT1 protects against microglia-dependent amyloid-beta toxicity through inhibiting NF-kappa B signaling. J Biol Chem 2005;280:40364-74.
    [40]. Qin W, Chachich M, Lane M, Roth G, Bryant M, de Cabo R, et al. Calorie restriction attenuates Alzheimaer's disease type brain amyloidosis in Squirrel monkeys (Saimiri sciureus). J Alzheimers Dis 2006;10:417-22.
    [41].Kim EJ, Kho JH, Kang MR, Urn SJ. Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity. Mol Cell 2007;28(2):277-90.
    [42].Bordone L, Guarente L. Calorie restriction, SIRT1 and metabolism: understanding longevity. Nat Rev Mol Cell Biol 2005;6(4):298-305.
    [43].Fernandez Ballesteros R, Diez Nicolas J, Ruiz Torres A. Aging in Europe (Schroots J, Fernandez Ballesteros R, Rudinger G, Eds). 1999;pp.107-21,IOS Press.
    [44].Borras C, Sastre J, Garcia-Sala D, Lloret A, Pallardo FV, Vina J. Mitochondria from females exhibit higher antioxidant gene expression and lower oxidative damage than males. Free Radic Biol Med 2003;34:546-52.
    [45].Jang YM, Kendaia S, Drew B, Phillips T, Selman C, Julian D, Leeuwenburgh C. Doxorubicin treatment in vivo activates caspase-12 mediated cardiac apoptosis in both male and female rats. FEBS Lett 2004;577:483-90.
    [46].Vina J, Borras C, Gambini J, Sastre J, Pallardo FV. Why females live longer than males? Importance of the upregulation of longevity-associated genes by oestrogenic compounds. FEBS Lett 2005;579:2541-5.
    [47].Garcia-Segura LM, Azcoitia I, DonCarlos LL. Neuroprotection by estradiol. Prog Neurobiol 2001;63:29-60.
    [48].Stirone C, Duckies SP, Krause DN, Procaccio V. Estrogen increases mitochondrial efficiency and reduces oxidatice stress in cerebral blood vessels. Mol Pharmacol 2005;68:959-65.
    [49].Chen JQ, Eshete M, Alworth WL, Yager JD. Binding of MCF-7 cell mitochondrial proteins and recombinant human estrogen receptors alpha and beta to human mitochondrial DNA estrogen response elements. J Cell Biochem 2004;93:358-73.
    [50].Demonacos CV, Karayanni N, Hatzoglou E, Tsiriyiotis C, Spandidos DA, Sekeris CE. Mitochondrial genes as sites of primary action of steroid hormones. Steroid 1996;61:226-32.
    [51].Numakawa Y, Matsumoto T, Yokomaku D, Taguchi T, Niki E, Hatanaka H, Kunugi H, Numakawa T. 17beta-estradiol protects cortical neurons against oxidative stress-induced cell death through reduction in the activity of mitogen-activated protein kinase and in the accumulation of intracellular calcium. Endocrinology 2007;148(2):627-37.
    [52].Faraci FM, Didion SP. Vascular protection: superoxide dismutase isoforms in the vessel wall. Arterioscler Thromb Vasc Biol 2004;24:1367-73.
    [53].Strehlow K, Rotter S, Wassmann S, Adam O, Grohe C, Laufs K, Bohm M, Nickenig G. Modulation of antioxidant enzyme expression and function by estrogen. Circ Res 2003;93:170-7.
    [54].Lakatta EG, Levy D. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises. Part I: Aging arteries: a "set up" for vascular disease. Circulation 2003;107:139-46.
    [55]. Barrett-Connor E. Sex differences in coronary heart disease. Why are women so superior? The 1995 Ancel Keys Lecture. Circulation 1997;95:252-64.
    [56].Crabbe DL, Dipla K, Ambati S, Zafeiridis A, Gaughan JP, Houser SR, Margulies KB. Gender differences in post-infarction hypertrophy in end-stage failing hearts. J Am Coll Cardiol 2003;41:300-6.
    [57].Hayward CS, Kelly RP, Collins P. The roles of gender, the menopause and hormone replacement function. Cardiovasc Res 2000;46:28-49.
    [58]. Mendelsohn ME, Karas RH. The protective effects of estrogen on the cardiovascular system. N Engl J Med 1999;340:1801-11.
    [59].Mendelsohn ME, Karas RH. Molecular and cellular basis of cardiovascular gender differences. Science 2005;308(5728): 1583-7.
    [60].Jayachandran M, Okano H, Chatrath R, Owen WG, McConnell JP, Miller VM. Sex-specific changes in platelet aggregation and secretion with sexual maturity in pigs. J Appl Physiol 2004;97(4):1445-52.
    [61]. Sakamoto J, Miura T, Shimamoto K, Horio Y. Predominant expression of Sir2alpha, an NAD-dependent histone deacetylase, in the embryonic mouse heart and brain. FEBS Lett 2004;556:281-6.
    [62].Cheng HL, Mostoslavsky R, Saito S, Manis JP, Gu Y, Patel P, Branson R, Appella E, Alt FW, Chua KF. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT)-deficient mice. Proc Natl Acad Sci USA 2003;100:10794-9.
    [63].Alcendor RR, Kirshenbaum LA, Imai S, Vatner SF, Sadoshima J. Silent information regulator 2alpha, a longevity factor and class III histone deacetylase, is an essential engogenous apoptosis inhibitor in cardiac myocytes. Circ Res 2004;95:971-80.
    [64].Crow MT. Sir-viving cardiac stress: cardioprotection mediated by a longevity gene. Circ Res 2004;95:953-6.
    [65].Lindberg MK, Moverare S, Skrtic S, Gao H, Dahlman-Wright K, Gustafsson JA, Ohlsson C. Estrogen receptor (ER)-beta reduces ERalpha-regulated gene transcription, supporting a "ying yang"relationship between ERalpha and ERbeta in mice. Mol Endocrinol 2003;17:203-8.
    [66].Wang JM, Irwin RW, Brinton RD. Activation of estrogen receptor alpha increases and estrogen receptor beta decreases apolipoprotein E expression in hippocampus in vitro and in vivo. Proc Natl Acad Sci USA 2006;103:16983-8.
    [67]. Mendelsohn ME. Nongenomic, ER-mediated activation of endothelial nitric oxide synthase: how does it work? What does it mean? Circ Res 2000;87:956-60.
    [68].Sun J, Picht E, Ginsburg KS, Bers DM, Steenbergen C, Murphy E. Hypercontractile female hearts exhibit increased S-nitrosylation of the L-type Ca2+ channel alpha subunit and reduced ischemia/reperfusion injury. Circ Res 2006;98:403-11.
    [69]. Chen J, Petranka J, Yamamura K, London RE, Steenbergen C, Murphy E. Gender differences in sarcoplasmic reticulum calcium loading after isoproterenol. Am J Physiol Heart Circ Physiol 2003;285:H2657-62.
    [70].Jone SP, Bolli R. The ubiquitous role of nitric oxide in cardioprotection. J Mol Cell Cardiol 2006;40:16-23.
    [71].Potente M, Ghaeni L, Baldessari D, Mostoslavsky R, Rossig L, Dequiedt F, Haendeler J, Mione M, Dejana E, Alt FW, Zeiher AM, Dimmeler S. SIRT1 controls endothelial angiogenic functions during vascular growth. Genes Dev 2007;21(20):2644-58.
    [72].Ota H, Akishita M, Eto M, Iijima K, Kaneki M, Ouchi Y. Sirt1 modulates premature senescence-like phenotype in human endothelial cells. J Mol Cell Cardiol 2007;43(5):571-9.
    [73].Dong F, Ren J. Fidarestat improves cardiomyocyte contractile function in db/db diabetic obese mice through a histone deacetylase Sir2-dependent mechanism. J Hypertens 2007;25(10):2138-47.
    [74].Everitt AV, Le Couteur DG. Life extension by calorie restriction in humans. Ann N Y Acad Sci 2007;1114:428-33.
    [75].Hyun DH, Emerson SS, Jo DG, Mattson MP, de Cabo R. Calorie restriction up-regulates the plasma membrane redox system in brain cells and suppressed oxidative stress during aging. Proc Natl Acad Sci USA 2006;103:19908-12.
    [76].Raitakari M, Ilvonen T, Ahotupa M, Lehtimaki T, Harmoinen A, Suominen P, Elo J, Hartiala J, Raitakari OT. Weight reduction with very-low-caloric diet and endothelial function in overweight adults: role of plasm glucose. Arterioscler Thromb Vasc Biol 2004;24:124-8.
    [77].Csiszar A, Ungvari Z, Edwards JG, Kaminski PM, Wolin MS, Koller A, Kaley G. Aging-induced phenotypic changes and oxidative stress impair coronary arteriolar function. Circ Res 2002;90:1159-66.
    [78].Csiszar A, Ungvari Z, Koller A, Edwards JG, Kaley G. Proinflammatory phenotype of coronary arteries promotes endothelial apoptosis in aging. Physiol Genomics 2004; 17:21-30.
    [79]. Ungvari ZI, Orosz Z, Labinskyy N, Rivera A, Xiangmin Z, Smith KE, Csiszar A. Increased mitochondrial H2O2 production promotes endothelial NF-kB activation in aged rat arteries. Am J Physiol Heart Circ Physiol 2007;293:H37-H47.
    [80].Spaulding CC, Walford RL, Effros RB. Calorie restriction inhibits the age-related dysregulation of the cytokines TNF-alpha and IL-6 in C3B10RF1 mice. Mech Ageing Dev 1997;93:87-94.
    [81].Kalani R, Judge S, Carter C, Pahor M, Leeuwenburgh C. Effects of caloric restriction and exercise on age-related, chronic inflammation assessd by C-reactive protein and interleukin-6. J Gerontol 2006;61:211-7.
    [82].Perls TT, Wilmoth J, Levenson R, Drinkwater M, Cohen M, Bogan H, Joyce E, Brewster S, Kunkel L, Puca A. Life-long sustained mortality advantage of siblings of centenarians. Proc Natl Acad Sci USA 2002;99:8442-7.
    [83].Hjelmborg J, Iachine I, Skytthe A, Vaupel JW, McGue M, Koskenvuo M, Kaprio J, Pedersen NL, Christensen K. Genetic influence on human lifespan and longevity. Hum Genet 2006;119:312-21.
    [84].Melov S, Schneider JA, Day BJ, Hinerfeld D, Coskun P, Mirra SS, Crapo JD, Wallace DC. A novel neurological phenotype in mice lacking mitochondrial manganese superoxide dismutase. Nat Genet 1998;18:159-63.
    [85].Hu D, Cao P, Thiels E, Chu CT, Wu GY, Oury TD, Klann E. Hippocampal long-term potentiation, memory, and longevity in mice that overexpress mitochondrial superoxide dismutase. Neurobiol Learn Mem 2007;87:372-84.
    [86].Symphorien S, Woodruff RC. Effect of DNA repair on aging of transgenic Drosophila melanogaster. I. mei-41 locus. J Gerontol A Biol Sci Med Sci 2003;58:B782-7.
    [87].Chavous DA, Jackson FR, O'Connor CM. Extension of the Drosophila lifespan by overexpression of a protein repair methyltransferase. Proc Natl Acad Sci USA 2001;98:14814-8.
    [88].Lowenson JD, Kim E, Young SG, Clarke S. Limited accumulation of damaged proteins in 1-isoaspartyl (D-aspartyl) O-methyltransferase-deficient mice. J Biol Chem 2001;276:20695-702.
    [89]. Brown EJ, Baltimore D. ATR disruption leads to chromosomal fragmentation and early embryonic lethality. Genes Dev 2000; 14:397-402.
    [90]. Casper AM, Durkin SG, Arlt MF, Glover TW. Chromosomal instability at common fragile sites in Seckel syndrome. Am J Hum Genet 2004;75:654-60.
    [91].Hasty P, Campisi J, Hoeijmakers J, van Steeg H, Vijg J. Aging and genome maintenance: lessons from the mouse? Science 2003;299:1355-9.
    [92].Jacobson J, Duchen MR. Mitochondrial oxidative stress and cell death in astrocytes-requirement for stored Ca2+ and sustained opening of the permeability transition pore. J Cell Sci 2002;115:1175-88.
    [93].Bindokas VP, Jordan J, Lee CC. Superoxide production in rat hippocampal neurons: selective imaging with hydroethidine. J Neurosci 1996;16:1324-36.
    [94].Starkov AA, Chinopoulos C, Fiskum G. Mitochondrial calcium and oxidative stress as mediators of ischemic brain injury. Cell Calcium 2004;36:257-64.
    [95].Ocorr K, Perrin L, Lim HY, Qian L, Wu X, Bodmer R. Genetic control of heart function and aging in Drosophila. Trends Cardiovasc Med 2007; 17(5): 177-82.
    
    [96].Jovanovic A. Ageing, gender and cardiac sarcolemmal K(ATP) channels. J Pharm Pharmacol 2006;58(12):1585-9.
    [97].Sastre J, Pallardo FV, Vina J. The role of mitochondrial oxidative stress in aging. Free Radic Biol Med 2003;35:1-8.
    [98]. Navarro A, Boveris A. Rat brain and liver mitochondria develop oxidative stress and lose enzymatic activities on aging. Am J Physiol Regul Integr Comp Physiol 2004;287:R1244-9.
    [99].Schipper HM. Brain iron deposition and the free radical-mitochondrial theory of ageing. Ageing Res Rev 2004;3:265-301.
    
    [100]. Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell 2005;120:483-95.
    [101]. Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev 1979;59:527-605.
    [102]. Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 2006;443:787-95.
    [1]. MacLellan WR, Schneider MD. Death by design. Programmed cell death in cardiovascular biology and disease. Circ Res 1997; 81:137-144.
    [2]. Haunstetter A, Izumo S. Apoptosis: basic mechanisms and implications for cardiovascular disease. Circ Res 1998; 82:1111-1129.
    [3]. Webster KA. Programmed death as a therapeutic target to reduce myocardial infarction. Trends Pharmacol Sci 2007; 28:492-499.
    [4]. Sia YT, Parker TG, Liu P, et al. Improved post-myocardial infarction survival with probucol in rats: effects on left ventricular function, morphology, cardiac oxidative stress and cytokine expression. J Am Coll Cardiol 2002; 39:148-156.
    [5]. Sirker A, Zhang M, Murdoch C, et al. Involvement of NADPH Oxidases in Cardiac Remodelling and Heart Failure. Am J Nephrol 2007; 27: 649-660.
    [6]. Choi H, Kim SH, Chun YS, et al. In vivo hyperoxic preconditioning prevents myocardial infarction by expressing bcl-2. Exp Biol Med (Maywood) 2006; 231: 463-472.
    [7]. Gao YG, Tan JX. Pharmacology of tanshinone. Acta Pharm Sin 1979; 14: 75.
    [8]. Hu GJ, Zhang JG, Jiang WD, et al. Effects of intracoronary injections of sodium tanshinone II-A sulfonate and dipyridamole on myocardial infarct size in acute ischemic dogs. Acta Pharm Sin 1981; 2:34-35.
    [9]. Li XH, Tang RY. Relationship between inhibitory action of tanshinone on neutrophil function and its prophylactic effects on myocardial infarction. Acta Pharm Sin 1991; 12:269-272.
    [10].Shanghai Cooperative Group for the Study of Tanshinone II A. Therapeutic effect of sodium tanshinone II A sulfonate in patients with coronary heart diseases: a double blind study. J TRAD Clin Med 1984;4:20-24.
    [11].Zhou G, Jiang W, Zhao Y, et al. Sodium tanshinone IIA sulfonate mediates electron transfer reaction in rat heart mitochondria. Biochem Pharmacol 2003; 65:51-57.
    [12].Xu CQ, Cang JS, He XM. Inhibition effect of tanshinone II A on electron current of L-calcium in rat heart cell. Acta Pharmacol Toxicol Sin 1996;12:85-88.
    [13].Wang YL, Chen NH, Ding JH. Inhibitory effects of sodium tanshinone IIA sulfonate on microsomal Na~+, K~+-ATPase in rat heart and brain. Acta Pharmacol Toxicol Sin 1994;8:19-23.
    [14].Zuo YJ, Li YQ, Wang G. Effect of tanshinone IIA sulfonic acid natrium injection on angina pectoris and hemorrheology in patients with coronary artery disease. Progress in modern biomedicine 2007;7:732-734.
    [15]. Connolly EP, Thuillier V, Rouy D, et al. Inhibition of Cap-initiation complexes linked to a novel mechanism of eIF4G depletion in acute myocardial ischemia. Cell Death Differ 2006; 13:1586-1594.
    [16].Zacharowski K, Olbrich A, Otto M, et al. Effects of the prostanoid EP3-receptor agonists M&B 28767 and GR 63799X on infarct size caused by regional myocardial ischaemia in the anaesthetized rat. Br J Pharmacol 1999; 126:849-858.
    [17].Fiedler B, Feil R, Hofmann F, et al. cGMP-dependent protein kinase type I inhibits TABl-p38 mitogen-activated protein kinase apoptosis signaling in cardiac myocytes. J Biol Chem 2006; 281:32831-32840.
    
    [18].Hearse DJ. Ischemia at the crossroads? Cardiovasc Drugs Ther 1988; 2:9-15.
    [19].Hearse DJ. Reperfusion-induced injury: a possible role for oxidant stress and its manipulation. Cardiovasc Drugs Ther 1991; 5:225-235.
    [20].Ferrari R, Pepi P, Ferrari F, et al. Metabolic derangement in ischemic heart disease and its therapeutic control. Am J Cardiol 1998; 82:2K-13K.
    [21]. Sun Y. Oxidative stress and cardiac repair/remodeling following infarction. Am J Med Sci 2007; 334: 197-205.
    [22].Yada T, Kaji S, Akasaka T, et al. Changes of asymmetric dimethylarginine, nitric oxide, tetrahydrobiopterin, and oxidative stress in patients with acute myocardial infarction by medical treatments. Clin Hemorheol Microcirc 2007; 37:269-276.
    [23].Hill MF, Singal PK. Antioxidant and oxidative stress changes during heart failure subsequent to myocardial infarction in rats. Am J Pathol 1996; 148: 291-300.
    [24].Khaper N, Kaur K, Li T, et al. Antioxidant enzyme gene expression in congestive heart failure following myocardial infarction. Mol Cell Biochem 2003; 251:9-15.
    
    [25].Hare JM. Oxidative stress and apoptosis in heart failure progression. Circ Res 2001; 89:198-200.
    [26].Poli G, Parola M. Oxidative damage and fibrogenesis. Free Radic Biol Med 1997; 22:287-305.
    [27].Nakagami H, Takemoto M, Liao JK. NADPH oxidase-derived superoxide anion mediates angiotensin II-induced cardiac hypertrophy. J Mol Cell Cardiol 2003; 35:851-859.
    [28]. Veinot JP, Gattinger DA, Hiss H. Early apoptosis in human myocardial infarcts. Hum Pathol 1997; 28:485-492.
    [29].Zhou GY, Zhao BL, Hou JW, et al. Protective effects of sodium tanshinone IIA sulfonate against adriamycin-induced lipid peroxidation in mice hearts in vivo and in vitro. Pharmacol Res 1999; 40:487-492.
    [30].He WA, Zeng QT. The protective effects of sodium tanshinone IIA sulfonate preconditioning on ischemia-reperfusion injury of heart in rats. Chinese Journal of the Practical Chinese with Modern Medicine 2005; 18:1890-1892.
    [31]. Ji ZN, Liu GQ. Inhibition of serum deprivation-induced PC12 cell apoptosis by tanshinone II A. Acta Pharmacol Sin 2001;22:459-462.
    [32].Garlid KD, Paucek P, Yarov-Yarovoy V, et al. Cardioprotective effect of diazoxide and its interaction with mitochondrial ATP-sensitive K+ channels. Possible mechanism of cardioprotection. Circ Res 1997; 81:1072-1082.
    [33].Mackay K, Mochly-Rosen D. An inhibitor of p38 mitogen-activated protein kinase protects neonatal cardiac myocytes from ischemia. J Biol Chem 1999; 274:6272-6279.
    [34].Osone S, Hosoi H, Kuwahara Y, et al. Fenretinide induces sustained-activation of JNK/p38 MAPK and apoptosis in a reactive oxygen species-dependent manner in neuroblastoma cells. Int J Cancer 2004; 112:219-224.
    [35]. Lee MW, Park SC, Yang YG, et al. The involvement of reactive oxygen species (ROS) and p38 mitogen-activated protein (MAP) kinase in TRAIL/Apo2L-induced apoptosis. FEBS Lett 2002; 512:313-318.
    [36].Nagy N, Shiroto K, Malik G, et al. Ischemic preconditioning involves dual cardio-protective axes with p38MAPK as upstream target. J Mol Cell Cardiol 2007; 42:981-990.
    [37].Krishnamurthy P, Subramanian V, Singh M, et al. Beta1 integrins modulate beta-adrenergic receptor-stimulated cardiac myocyte apoptosis and myocardial remodeling. Hypertension 2007; 49:865-872.
    [38].Duplain H. Salvage of ischemic myocardium: a focus on JNK. Adv Exp Med Biol 2006; 588:157-164.
    [39]. Yang DD, Kuan CY, Whitmarsh AJ, et al. Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the Jnk3 gene. Nature 1997;389:865-870.
    [40].Tournier C, Hess P, Yang DD, et al. Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 2000; 288:870-874.
    [41]. Yamamoto K, Ichijo H, Korsmeyer SJ. BCL-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G (2)/M. Mol Cell Biol 1999; 19:8469-8478.
    [42]. Viola HM, Arthur PG, Hool LC. Transient exposure to hydrogen peroxide causes an increase in mitochondria-derived superoxide as a result of sustained alteration in L-type Ca2+ channel function in the absence of apoptosis in ventricular myocytes. Circ Res 2007; 100:1036-1044.
    [43]. Nakayama H, Chen X, Baines CP, et al. Ca2+- and mitochondrial-dependent cardiomyocyte necrosis as a primary mediator of heart failure. J Clin Invest 2007;117: 2431-2444.
    [44].Kim J, Sharma RP. Calcium-mediated activation of c-Jun NH2-terminal kinase (JNK) and apoptosis in response to cadmium in murine macrophages. Toxicol Sci 2004; 81:518-527.
    [1]. Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol 1956;11:298-300.
    [2]. Barja G and Herrero A. Oxidative damage to mitochondrial DNA is inversely related to maximum life span in the heart and brain of mammals. FASEB J 2000;14:312-8.
    [3]. Harman D. Free radical theory of aging: role of free radicals in the origination and evolution of life, aging and disease processes. In: Free Radicals, Aging and Degenerative Diseases, edited by Johnson JE Jr, Walford R, Harman D, and Miquel J. New York: Alan R. Liss, 1986;pp.3-49.
    [4]. Sohal RS and Weindruch R. Oxidative stress, caloric restriction and aging. Science 1996;273:59-63.
    [5]. Orr WC and Sohal R. Extension of life-span by overexpression of superoxide dismutase and Catalase in Drosophila melanogaster. Science 1994;263:1128-30.
    [6]. Miquel J, Economos AC, Fleming J, Johnson Jr, JE. Mitochondrial role in cell aging. Exp Gerontol 1980;15:575-91.
    [7]. Boveris A, Chance B. The mitochondrial generation of hydrogen peroxide. Biochem J 1973;134:707-16.
    [8]. Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev 1979;59:527-604.
    [9]. Forman HJ, Azzi A. On the virtual existence of superoxide anions in mitochondria: thoughts regarding its role in pathophysiology. FASEB J 1997;11:374-5.
    [10].Ku H, Brunk UT, Sohal RS. Relationship between mitochondrial superoxide and hydroperoxide production and longevity of mammalian species. Free Radic Biol Med 1993; 15:621-7.
    [11]. Sohal RS, Svensson I, Brunk UT. Hydrogen peroxide production by liver mitochondria in different species. Mech Ageing Dev 1990;53:209-15.
    [12].Sastre J, Pallardo VC, Pla R, Juan G, OConnor E, Estrela JM, Miquel J, Vina J. Aging of the liver: age-associated mitochondrial damage in intact hepatocytes. Hepatology 1996;24:1199-205.
    [13].Benzi G, Moretti A. Age- and peroxidative stress-related modifications of the cerebral enzymatic activities linked to mitochondria and the glutathione system. Free Radic Biol Med 1995;19:77-101.
    [14]. Garcia de la Asuncion J, Millan A, Pla R, Bruseghini L, Esteras A, Pallardo FV, Sastre J, Vina J. Mitochondrial glutathione oxidation correlates with age-associated oxidative damage to mitochondrial DNA. FASEB J 1996;10:333-8.
    [15].Fernandez Ballesteros R, Diez Nicolas J, Ruiz Torres A. Aging in Europe (Schroots J, Fernandez Ballesteros R, Rudinger G, Eds). 1999;pp.107-21,IOS Press.
    [16].Borras C, Sastre J, Garcia-Sala D, Lloret A, Pallardo FV, Vina J. Mitochondria from females exhibit higher antioxidant gene expression and lower oxidative damage than males. Free Radic Biol Med 2003;34:546-52.
    [17].Jang YM, Kendaia S, Drew B, Phillips T, Selman C, Julian D, Leeuwenburgh C. Doxorubicin treatment in vivo activates caspase-12 mediated cardiac apoptosis in both male and female rats. FEBS Lett 2004;577:483-90.
    [18].Vina J, Borras C, Gambini J, Sastre J, Pallardo FV. Why females live longer than males? Importance of the upregulation of longevity-associated genes by oestrogenic compounds. FEBS Lett 2005;579:2541-5.
    [19].Barja G. Mitochondrial oxygen radical generation and leak: sites of production in states 4 and 3, organ specificity and relation to against and longevity. J Bioenerg Biomembr 1999;31:347-66.
    [20].Kiray M, Ergur BU, Bagriyanik A, Pekcetin C, Aksu I, Buldan Z. Suppression of apoptosis and oxidative stress by deprenyl and estradiol in aged rat liver. Acta Histochem 2007;109(6):480-5.
    [21].Razmara A, Duckies SP, Krause DN, Procaccio V. Estrogen suppresses brain mitochondrial oxidative stress in female and male rats. Brain Res 2007;1176:71-81.
    [22]. Lai JCK, Clark JB. Preparation of synaptic and nonsynaptic mitochondria from mammalian brain. Methods Enzymol 1979;55:51-60.
    [23]. Vina J, Hems R, Krebs HA. Maintenance of glutathione content in isolated hepatocytes. Biochem J 1978; 170:627-30.
    [24].Jocelyn PC, Kamminga A. The non-protein thiol in rat liver mitochondria. Biochem Biophys Acta 1974;343:356-62.
    [25].Hazelton GA, Lang CA. Glutathione levels during the mosquito life span with emphasis on senescence. Proc Soc Exp Biol Med 1984;176:249-56.
    [26].Sastre J, Pallardo FV and Vina J. Mitochondrial oxidative stress plays a key role in aging and apoptosis. IUBMB Life 2000;49:427-35.
    [27]. Ruiz Larrea MB, Leal AM, Martin C, Martinez R, Lacort M. Antioxidant action of estrogens in rat hepatocytes. J Physiol Biochem 1997;53:225-30.
    
    [28].Camhi SL, Lee P, Choi AM. The oxidative stress response. New Horiz 1995;3(2):170-82.
    [29]. Suzuki YJ, Forman HJ, Sevanian A. Oxidants as stimulators of signal transduction. Free Radic Biol Med 1997;22(1-2):269-85.
    [30].Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature 2000;408(6809):239-47.
    [31].Gridley KE, Green PS, Simpkins JW. A novel, synergistic interaction between 17 beta-estradiol and glutathione in the protection of neurons against beta-amyloid 25-35-induced toxicity in vitro. Mol Pharmacol 1998;54(5):874-80.
    [32].Romer W, Oettel M, Menzenbach B, Droescher P, Schwarz S. Novel estrogens and their radical scavenging effects, iron-chelating, and total antioxidative activities: 17 alpha-substituted analogs of delta 9(11)-dehydro-17 beta-estradiol. Steroids 1997;62(11):688-94.
    [33].Green PS, Gridley KE, Simpkins JW. Nuclear estrogen receptor-independent neuroprotection by estratrienes: a novel interaction with glutathione. Neuroscience 1998;84(1):7-10.
    [34].Guo GW, Liang YX. Aluminum-induced apoptosis in cultured astrocytes and its effect on calcium homeostasis. Brain Res 2001;888(2):221-226.
    [35].Prokai L, Prokai-Tatrai K, Perjesi P, Zharikova AD, Perez EJ, Liu R, Simpkins JW. Quinol-based cyclic antioxidant mechanism in estrogen neuroprotection. Proc Natl Acad Sci U S A 2003;100(20):11741-6.
    [36].Prokai-Tatrai K, Prokai L. Modifying peptide properties by prodrug design for enhanced transport into the CNS. Prog Drug Res 2003;61:155-88.
    [37].Calleja M, Pena P, Ugalde C, Ferreiro C, Marco R, Garesse R. Mitochondrial DNA remains intact during Drosophila aging, but the levels of mitochondrial transcripts are significantly reduced. J Biol Chem 1993;268:18891-7.
    [38]. Crawford DR, Luaazon RJ, Wang Y, Mazurkiewicz JE, Schools GP, Davies KJA. 16S mitochondrial ribosomal RNA degradation is associated with apoptosis. Free Rad Biol Med 1997;22:1295-30.
    [39]. Wallace DC, A mitochondrial paradigm of metabolic and degenerative diseases, aging and cancer: A dawn for evolutionary medicine. Annu Rev Genet 2005;39:359-407.
    [40].Lesnefsky EJ, Moghaddas S, Tandler B, Kerner J, Hoppel CL. Mitochondrial dysfunction in cardiac disease: Ischemia-reperfusion, aging, and heart failure. J Mol Cell Cardiol 2001;33:1065-89.
    [41].Madamanchi N, Vendrov A, Runge M. Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol 2005;25:29-38.
    [42].Ballinger SW, Patterson C, Yan CN, Doan R, Burow DL, Young CG, Yakes FM, Van Houten B, Ballinger CA, Freeman BA, Runge MS. Hydrogen peroxide- and peroxynitrite-induced mitochondrial DNA damage and dysfunction in vascular endothelial and smooth muscle cells. Circ Res 2000;86(9):960-6.
    [43].del Zoppo GJ, Hallenbeck JM. Advances in the vascular pathophysiology of ischemic stroke. Thromb Res. 2000;98:73-81.
    [44].del Zoppo GJ, Mabuchi T. Cerebral microvessel responses to focal ischemia. J Cereb Blood Flow Metab 2003;23:879-94.
    [45].Chen JQ, Eshete M, Alworth WL, Yager JD. Binding of MCF-7 cell mitochondrial proteins and recombinant human estrogen receptors alpha and beta to human mitochondria] DNA estrogen response elements. J Cell Biochem 2004;93:358-73.
    [46].Stirone C, Duckies SP, Krause DN, Procaccio V. Estrogen increases mitochondrial efficiency and reduces oxidative stress in cerebral blood vessels. Mol Pharmacol 2005;68:959-65.
    [47].Strehlow K, Rotter S, Wassmann S, Adam O, Grohe C, Laufs K, Bohm M, Nickenig G. Modulation of antioxidant enzyme expression and function by estrogen. Circ Res 2003;93(2): 170-7.
    [48]. Nag S. The Blood-Brain Barrier. Humana Press, Totowa. 2003.
    
    [49].Parker WH, Broder MS, Liu Z, Shoupe D, Farquhar C, Berek JS. Ovarian conservation at the time of hysterectomy for benigh disease. Obstet Gynecol 2005;106:219-26.
    [50].Behl C. Oestrogen as a neuroprotective hormone. Nat Rev Neurosci 2002;3:433-42.
    [51].Hurn PD, Macrae IM. Estrogen as neuroprotectant in stroke. J Cereb Blood Flow Metab 2000;20:631-52.
    [52]. Dluzen DE, McDermott JL. Gender differences in neurotoxicity of the nigrostriatal dopaminergic system: implications for Parkinson's disease. J Gend Specif Med 2000;3:36-42.
    [53].Henderson VW. Estrogen-containing hormone therapy and Alzheimer's disease risk: understanding discrepant inferences from observational and experimental research. Neuroscience 2006;138:1031-9.
    [54]. Behl C, Skutella T, Lezoualch F, Post A, Widmann M, Newton CJ, Holsboer F. Neuroprotection against oxidative stress by estrogens: structure-activity relationship. Mol Pharmacol 1997;51:535-41.
    [55].Numakawa Y, Matsumoto T, Yokomaku D, Taguchi T, Niki E, Hatanaka H, Kunugi H, Numakawa T. 17beta-estradiol protects cortical neurons against oxidative stress-induced cell death through reduction in the activity of mitogen-activated protein kinase and in the accumulation of intracellular calcium. Endocrinology 2007;148(2):627-37.
    [1]Shah M,Akar FG,Tomaselli GF.Molecular basis of arrhythmias[J].Circulation 2005,112(16):2517.
    [2]孙学刚,贾玉华,张丽华.丹参酮ⅡA对大鼠缺氧及正常心肌细胞内钙膜电位和线粒体膜电位的影响[J].中国中医药信息杂志,2002,9(9):21.
    [3]于海波,徐长度,单宏丽,等.丹参酮Ⅱ A对大鼠心室肌细胞膜钾电流的影响[J].哈尔滨医科大学学报,2002,36(2):112.
    [4]朱利民,冯义柏,曾秋棠.丹参酮Ⅱ A磺酸钠对家兔心房动作电位及快速起搏所致心房电重构的影响[J].中国药理学通报,2005,21(11):1381.
    [5]Daoud EG,Knight BP,Weiss R,et al.Effect of verapamil and procainamide on atrial fibrillation-induced electrical remodeling in humans[J].Circulation 1997,96(5):1542.
    [6]孙学刚,贾玉华,陈余尧.定心方及丹参酮防治大鼠缺血再灌注性心律失常的NO机制研究[J].山东中医杂志,2000,19(6):358.
    [7]Dynnik VV,Grushin KS,Korystova AF,et al.Stabilizing role of arginine and NO in the regulation of voltage-sensitive L-type Ca2+ current in cardiocytes[J].Dokl Biochem Biophys 2005,404:353.
    [8]Wajima T,Shimizu S,Hiroi T,et al.Reduction of myocardial infarct size by tetrahydrobiopterin:possible involvement of mitochondrial KATP channels activation through nitric oxide production[J].J Cardiovasc Pharmacol 2006,47(2):243.
    [9]Aukrust P,Gullestad L,Ueland T,et al.Inflammatory and anti-inflammatory cytokines in chronic heart failure:potential therapeutic implications[J].Ann Med 2005,37(2):74.
    [10]Galiuto L,Lotrionte M,Crea F,et al.Impaired coronary and myocardial flow in severe aortic stenosis is associated with increased apoptosis:a transthoracic Doppler and myocardial contrast echocardiography study[J].Heart 2006,92(2):208.
    [11]Huggins CE,Domenighetti AA,Pedrazzini T,et al.Elevated intracardiac angiotensin Ⅱ leads to cardiac hypertrophy and mechanical dysfunction in normotensive mice[J].J Renin Angiotensin Aldosterone Syst 2003,4(3):186.
    [12]Ostrom RS,Naugle JE,Hase M,et al.Angiotensin Ⅱ enhances adenylyl cyclase signaling via Ca2+/calmodulin.Gq-Gs cross-talk regulates collagen production in cardiac fibroblasts[J].J Biol Chem 2003,278(27):24461.
    [13]Ballard C,Schaffer S.Stimulation of the Na+/Ca2+ exchanger by phenylephrine,angiotensin Ⅱand endothelin 1[J].J Mol Cell Cardiol 1996,28(1):11.
    [14]Jalili T,Takeishi Y,Walsh RA.Signal transduction during cardiac hypertrophy:the role of G alpha q,PLC beta I,and PKC[J].Cardiovasc Res 1999,44(1):5.
    [15]冯俊,李树生.丹参酮ⅡA抑制血管紧张素Ⅱ诱导大鼠心肌肥大的机制[J].高血压杂志,2005,13(8):488.
    [16]孙联平,郑智.丹参酮ⅡA对肥厚心肌细胞核因子-κB的影响[J].实用老年医学,2004,18(1):25.
    [17]龚丽娅,郑智,熊玮,等.丹参酮ⅡA抑制血管紧张素Ⅱ诱导的火鼠心肌细胞肥大[J].华西药学杂志,2004,19(1):24.
    [18]王照华,梁黔生,郑智.丹参酮对肥厚心肌中血管活性肽的干预[J].上海中医药杂志,2006,40(3):56.
    [19]张冬梅,秦英,杨君,等.丹参酮ⅡA对心衰心室重构Ⅰ型胶原基因启动子活性的影响[J].北京中医药大学学报,2006,29(4):258.
    [20]Brilla CG.Aldosterone and myocardial fibrosis in heart failure[J].Herz 2000,25(3):299.
    [21]Kornel L,Smoszna-Konaszewska B.Aldosterone(ALDO) increases transmembrane influx of Na+ in vascular smooth muscle(VSM) cells through increased synthesis of Na+ channels[J].Steroids 1995,60(1):114.
    [22]夏艳,占成业,韩少杰,等.丹参酮ⅡA抑制醛固酮生物合成的作用[J].中国临床康复,2005,9(27):218.
    [23]Goga LM,Vasiliu OM,Ionescu CR.Molecular mechanisms of apoptosis.Fas and TNF systems.ICE protease system.Bcl-2 family[J].Rev Med Chit Soc Med Nat Iasi 2001,105(1):23.
    [24]Kukhta VK,Marozkina NV,Sokolchik IG,et al.Molecular mechanisms of apoptosis[J].Ukr Biokhim Zh 2003,75(6):5.
    [25]Dlamini Z,Mbita Z,Zungu M.Genealogy,expression,and molecular mechanisms in apoptosis[J].Pharmacol Ther 2004,101(1):1.
    [26]江凤林,冯俊,郑智,等.丹参酮ⅡA对自发性高血压大鼠左心室肥厚心肌细胞凋亡蛋白的作用[J].中国临床康复,2006,10(7):58.
    [27]冯俊,郑智.丹参酮ⅡA对心肌细胞肥人及凋亡的影响[J].中国临床康复,2006,10(3):69.
    [28]Savage MP,Fischman DL,Rake R,et al.Efficacy of coronary stenting versus balloon angioplasty in small coronary arteries.Stent Restenosis Study(STRESS) Investigators[J].J Am Coll Cardiol 1998,31(2):307.
    [29]陈怀生,龙波,梁玉佳,等.丹参酮ⅡA对兔髂动脉球囊损伤后胶原生成抑制的效应观察[J].中药材,2005,28(10):903.
    [30]李欣,杜俊蓉,张蓉,等.丹参酮防治动脉再狭窄作用的实验研究[J].中国中药杂志,2004,29(3):255.
    [31]Wang H,Gao X,Zhang B.Tanshinone:an inhibitor of proliferation of vascular smooth muscle cells[J].J Ethnopharmacol 2005,99(1):93.
    [32]吴焕明,尹为华.丹参酮ⅡA硫酸钠对低氧诱导肺血管平滑肌细胞增殖的影响[J].同济医科大学学报,2001,30(2):106.
    [33]Colombo PC,Banchs JE,Celaj S,et al.Endothelial cell activation in patients with decompensated heart failure[J].Circulation 2005,111(1):58.
    [34]郭利平,张萌,杜嵘,等.丹酚酸B/丹参酮ⅡA不同配比对缺氧损伤CMEC影响[J].中国中医基础医学杂志,2004,10(4):35.
    [35]张萌,张伯礼,高秀梅,等.丹酚酸B和丹参酮ⅡA不同配比对肿瘤坏死因子a损伤大鼠心脏微血管内皮细胞的影响[J].中草药,2004,35(1):63.
    [36]王维蓉,林蓉,彭宁,等.丹参酮Ⅱ A对过氧化氢损伤人血管内皮细胞的保护作用[J].中药材,2006,29(1):49.
    [37]Gelband GH,McCullough JR.Modulation of rabbit aortic Ca(2+)-activated K+ channels by pinacidil,cromakalim,and glibenclamide[J].Am J Physiol 1993,264(5):C1119.
    [38]张洁,曾晓荣,杨艳,等.丹参酮ⅡA磺酸钠和丹参素对猪冠状动脉平滑肌细胞钙激活钾通道的激活机制[J].中国药理学与毒理学杂志,2005,19(4):270.
    [39]占成业,陶秀良,田橙,等.高血压左室肥厚发病中细胞间黏附分子1的表达及丹参酮ⅡA 的抑制效应[J].中国临床康复,2005,9(19):254.
    [40]吕炳强,范英昌,孙连胜.丹酚酸B、丹参酮ⅡA对动脉粥样硬化家兔血清一氧化氮及甘油三酯的影响[J].天津中医学院学报,2006,25(1):32.
    [41]贾钰华,孙学刚,陈育晓.定心方和丹参酮ⅡA对心律失常大鼠血小板膜粘附分子表达的影响[J].中医杂志,2002,43(2):140.
    [42]陶钦洪,贾连旺.丹参酮ⅡA磺酸钠注射液对冠心病心肌缺血的治疗作用[J].现代中西医结合杂志,2005,14(19):2507.
    [43]易远明.丹参酮ⅡA磺酸钠注射液治疗46例冠心病心绞痛的疗效观察[J].医药世界,2005,8:64.
    [44]李艳,郝宝林.丹参酮ⅡA磺酸钠注射液与刺五加注射液治疗不稳定型心绞痛的比较[J].菏泽医专学报,2004,16(1):64.
    [45]许春萱.丹参酮ⅡA磺酸钠注射液治疗不稳定型心绞痛临床疗效观察[J].中国医刊,2006,41(5):44.
    [46]方强,陈晓龙,贾连旺.丹参酮ⅡA磺酸钠注射液辅助治疗老年肺心病37例[J].医药导报,2006,25(2):121.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700