用户名: 密码: 验证码:
复方甘草酸苷片的研制及体外代谢研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复方甘草酸苷片(compound glycyrrhizin tablets)是由甘草酸单铵盐(glycyrrhizin,GL),甘氨酸(glycine,GLY),DL-蛋氨酸(DL-methionine,MET)组方的复方制剂,疗效确切,临床应用广泛,在肝病领域主要用于治疗慢性肝病,改善肝功能,在非肝病领域用于过敏性反应(如皮疹、荨麻疹、药物疹)、小儿异位性皮炎、扁平苔藓、系统性红斑狼疮、肾综合征出血热及传染性非典型肺炎(SAS)等。本课题临床前研究已完成复方甘草酸苷片的处方工艺研究,质量标准研究,稳定性考察及家兔体内生物等效性评价等工作,并获得国家食品药品监督管理局的临床批件(批件号:2006L01472)。在此基础上,拟进行复方甘草酸苷片工业化生产的处方工艺优化和质量标准修订,试生产和质量评价,人体生物等效性评价,以及GL的体外代谢研究等。以期通过本复方制剂的开发成功,为慢性肝炎的临床治疗提供国产新制剂;同时,从代谢途径研究复方制剂减毒增效的作用机理,为GL的体内代谢研究和临床安全用药评价奠定实验基础。
     第一部分、复方甘草酸苷片工业化生产的处方工艺参数优化和质量评价。首次建立了在同一色谱条件下检测三个成分的含量,溶出度和有关物质的HPLC法(PDA检测器),该法简便、灵敏、专属性强,重复性好,可将各破坏条件下的降解产物与主成分峰完全分离;优化了复方甘草酸苷片工业化生产的处方工艺参数,完成了试生产;深入进行了有关物质研究,三批试生产产品中的有关物质与原料药,加速试验放置6个月样品以及市售产品美能进行对比,经统计学分析,均有P>0.05,说明制剂过程中和加速放置6个月过程中没有使药物间、药物与辅料间产生明显的未知物,与美能相比也未增加新的有关物质,为有关物质限度的确定提供了翔实的依据;按临床批件要求和2005版《中国药典》规范修订质量标准,与日本进口产品美能(Stronger Neo-minophagen C,SNMC)的质量标准相比,分析方法更具先进性和可靠性,提升了质量标准,可有效控制复方甘草酸苷片的质量;对试生产产品进行了质量评价和稳定性考察,结果表明,复方甘草酸苷片工业化生产的处方合理,工艺稳定。
     第二部分、按《药品注册管理办法》和临床研究规范的有关要求,评价复方甘草酸苷片在健康人体的生物等效性。采用液相色谱-串联质谱法(LC/MS/MS)测定血浆中GL的代谢产物甘草次酸(Glycyrrhetinic Acid; GA)的浓度,美能为参比制剂,22名健康男性受试者自身交叉单剂量口服治疗剂量试验制剂与参比制剂,血浆样品经液-液萃取,内标为人参皂苷Rh2,经方法确证表明建立的检测方法快速,灵敏、重现性好、专属性强,内源性物质不干扰待测物的测定,样品前处理简便。采用DAS2.0药动学统计软件计算药动学参数,受试制剂和参比制剂的主要药动学参数为:AUC0-∞分别为(5794±3129)ng·h·ml-1和(5621±2752)ng·h·ml-1,AUC0-t分别为(5084±2191)ng·h·ml-1和(5187±2367)ng·h·ml-1,Cmax分别为(288±249)ng·ml-1和(287±160)ng·ml-1,tmax分别为(13.5±6.0)h和(16.7±7.2)h,t1/2分别为(13.1±8.5)h和(10.3±5.65)h,受试制剂相对生物利用度为(95.8±20.8)%。主要药动学参数AUC0-∞、AUC0-t、Cmax对数转换后进行方差分析,双单侧t检验和(1-2α)置信区间法进行生物等效性评价,其中tmax采用非参数检验法,结果均显示试验制剂与参比制剂间无统计学意义(P>0.05),试验制剂与参比制剂AUC0-t,Cmax比值的90%可信区间分别为85.4%~122.3%,80.9%~106.0%,均在AUC0-t,Cmax90%可信区间的80%~125%,70~143%范围之内。结果表明试验制剂与参比制剂具有人体生物等效性。
     第三部分、GL和GA在大鼠肝微粒体的体外代谢研究。本文建立了Sprague-Dawley大鼠肝微粒体体外代谢模型,苯巴比妥为诱导剂,按80mg·kg-1剂量腹腔注射3天,超速离心法制备肝微粒体,Bradford法测定蛋白浓度,分别以Phenacetin,Clivorine,Propofol作为探针底物进行肝微粒体的CYP450酶,酯酶和肝微粒体II相酶(UGT)的活性表征,证实了肝微粒体代谢模型和酶活性的有效性;本文首次建立了超高效液相色谱-质谱联用技术(UPLC/MS)同时测定GL,GA及其代谢产物,该法快速,灵敏、重现性好、专属性强,并通过质谱峰对代谢产物峰进行了定性和结构推证;在肝微粒体CYP450酶,酯酶和肝微粒体II相酶(UGT)孵育体系中以GL为底物进行温孵,没有检测到3-单葡萄糖醛酸甘草次酸(18β-glycyrrheticacid-3-O-β-D-monoglucuronide,GAMG)或其它任何代谢产物,即β-NADPH,UDPGA对GL代谢没有催化作用,该结果首次提供了CYP450酶,酯酶和肝微粒体II相酶(UGT)对GL无代谢的直接证据,国内外未见报道;在肝微粒体酯酶孵育体系中以GA为底物进行温孵,发现酯酶对GA无代谢;在肝微粒体CYP450酶孵育体系中以GA为底物进行温孵,检测到GA的五个羟化代谢产物(M1,M2,M3,M4,M5,m/z487,485)和一个未知代谢产物(M6,m/z501),NADPH对GA的代谢有催化作用,为NADPH依赖性的氧化代谢机理,该结果发现了在CYP450酶孵育体系中GA代谢生成M1,M2,M3,M4,M5,M6的代谢途径,比现有文献报道的两个羟化代谢产物有更深入的发现;在大鼠肝微粒体II相酶(UGT)孵育体系中以GA为底物进行温孵,发现GA与葡萄糖醛酸结合后生成GAMG和GL,即UGPDA对GA的代谢有催化作用,为UGPDA依赖性的代谢机理,首次发现GA在大鼠肝微粒体温孵体系中与葡萄糖醛酸结合,此现象国内外尚未见报道;同时,在研究中还观察到UGT能使GA经过CYP450代谢的代谢产物进行II相酶代谢,产生3个结合产物M1',M2',M3'(m/z 664)的新代谢途径;在肝微粒体孵育体系中加CYP450酶化学抑制剂以鉴定参与GA代谢的CYP450亚酶,选择在药物代谢中起主要作用的CYP1A2(Furafylline)、CYP3A4(Ketoconazole)、CYP2C19(Ticlopidine)、CYP2D6(Quinidin)、CYP2E(4-Methlpyrazole)五种CYP450亚酶和黄素单氧化酶(FMO,Methimazole)为研究对象,本研究发现,GA的代谢主要由CYP3A参与,对M1,M2,M3,M4和M6的生成均有明显影响,代谢产物的抑制与Ketoconazole呈剂量依赖性,比现有文献报道的CYP3A1/2只参与了GA的C-22α羟化代谢,有更深入的发现,同时,首次观察到FMO参与了GA的部分羟化代谢(M1,M2,M3),而CYP1A2、CYP2C19、CYP2D6、CYP2E1对GA的代谢没有影响;在大鼠肝微粒体CYP450孵育体系中以各拆方组作为底物进行孵育,考察对GA代谢的影响,发现GLY增加了GA的转化,同时,羟化产物M1,M2,M3的生成量减少,未知代谢产物M6的生成量增加,而GLY,MET与GA共同孵育时对GA的转化和羟化代谢物的生成影响不大;在大鼠肝微粒体II相酶(UGT)孵育体系中以各拆方组作为底物进行孵育,考察对GA代谢的影响,各拆方组均发现GA的剩余量以及GAMG和GL的生成量增加的现象,其中,GLY,MET与GA共同孵育时可使GA的剩余量增加约90%,即活性产物量的增加,推测对GA有一定的增效作用,GAMG和GL的生成量增加约30%,对代谢产物的排泄可能有促进作用。
     本文进行了复方甘草酸苷片工业化生产的处方工艺优化和质量标准修订,完成了试生产及其质量评价,完成了人体生物等效性评价,采用UPLC/MS法,在Sprague-Dawley大鼠肝微粒体孵育液中系统的研究了GL,GA的体外代谢过程,通过拆方试验研究了复方甘草酸苷片中GLY和MET对GA代谢的影响,为GL类制剂的临床安全用药评价、进一步进行体内代谢研究奠定了实验基础,并为其他复方制剂的代谢研究提供了思路和方法。
Compound glycyrrhizin tablets is compose of glycyrrhizinate (GL), glycine (GLY) and DL-methionine (MET). It is used clinically for the treatment of allergic disorder, inflammation and several virus diseases including chronic hepatitis, anaphylactic reaction,systemic lupus erythematosus,hemorrhagic fever with renal syndrome and atypical pneumonia (SAS) and so on. Preclinical studies finished the study of prescription and preparation technology, quality criterion studies, stability and bioequivalence evaluation in rabbits. As well as we obtained the clinical ratify document from the State Food and Drug Administration (No: 2006 L01472). On the basis of preclinical studies, the aim of this work was, therefore, to development of compound glycyrrhizin tablets for industrial production, revise the quality criterion, evaluate the bioequivalence of self-made compound glycyrrhizin tablets and SNMC in healthy Chinese male volunteers and studies on in vitro metabolism in rat liver microsomes. This study was divided into three parts:
     Part one The purpose of the research is to obtain optimizing parameters of prescription and technology for industrial production and quality evaluation. A HPLC (PDA dectator) method was developed to simultaneously determinate content, related substances and dissolution of the three principal compositions in compound glycyrrhizin tablet at the first. After method investigation and destroyed test by acid, alkali, oxidation, high temperature showed that the method was sensitive, accurate, reproducible, simple and specificity. It can be used as a reliable, effective method for the quality control of compound glycyrrhizin tablet. The analysis method is more advanced and reliable than the analysis method of SNMC (Stronger Neo-Minophagen C tablet, SNMC), which is imported from Janpan as market product. Trial production of compound glycyrrhizin tablets were finished and optimizing parameters of prescription and technology, which is suitable for industrialized production, were be obtained. According to requirements of clinical ratify document and Chinese Pharmacopoeia (2005 version) to revise quality criterion, quality and stability of three batch sample of trial production were investigated and compared with SNMC. The results shows that the prescription and technology of industrial production are reasonable and stable.
     Part two According to the formulation of requirements of“Drug Registration and Management Method”and GCP (good clinical practice), to evaluate the bioequivalence of self-made compound glycyrrhizin tablets and SNMC in healthy Chinese male volunteers. The concentration of glycyrrhetic acid (GA) in plasma was determined by LC/MS/MS. SNMC as reference preparation, twenty two volunteers were randomly divided into two groups (test and reference), with double cross-over design and single-dose oral administration. The sample was prepared for injection using a liquid-liquid extraction method, with ginsenoside Rh2 as the internal standard (IS). The method was proved to be suitable for clinical investigation and bioequivalence evaluation of different formulations containing GL, which offered advantages of convenience, accurate, sensitivity and specificity. The main pharmacokinetic parameters were calculated and the bioequivalence was evaluated with DAS2.0 practical pharmacokinetic program. The main pharmacokinetic parameters of test and reference were as follows: AUC0-∞(5794±3129)ng·h·ml-1and (5621±2752)ng·h·ml-1, AUC0-t (5084±2191) ng·h·ml-1 and (5187±2367)ng·h·ml-1, Cmax (288±249)ng·ml-1and (287±160)ng·ml-1, tmax (13.5±6.0) h and (16.7±7.2) h, t1/2 (13.1±8.5)h and (10.3±5.65)h, respectively. The two-one side t-test analysis showed that the confidence intervals of Cmax, AUC0-t and AUC0-∞were (80.9%-106.0%), (85.4%-122.3%) and (86.8%-127.3%), respectively. The relative bioavailahilitv of the test preparation was (95.8±20.8)%. Results of variance analysis and two one-side t-test showed that there were no statistical significant difference between the two preparations in the AUC and Cmax. The two-one side t-test analysis showed that the confidence intervals of Cmax, AUC0-t and AUC0-∞were (80.9%~106.0%), (85.4%~122.3%) and (86.8%~127.3%), respectively. In the case of Tmax was carried out by the Wiloxon-ranked sign test for the matched pairs, and the statistical result showed that there was no significant difference between the two preparations. The test and reference preparations were bioequivalent
     Part three Studies on in vitro mtabolism of GL and GA in rat liver microsomes. The Sprague-Dawley rats were induced for 3d with Phenobarbital (ip, 80mg/kg) and sacrificed after fast 12h. The liver microsomes were prepared by applying ultracentrifuga- tion approach. The protein concentration was determined by Bradford method. The in vitro metabolism study model of liver microsomes was established for the investigation of the enzyme activites. Phenacetin, Clivorine and Propofol as probe substrate of Cytochrome p450 (CYP450) isozymes, esterase and phase II transferase (UGT), respectively. The results verified the in vitro metabolism study model of Sprague-Dawley rat liver microsomes and enzyme activites are available. A UPLC/MS method was developed and validated for the simultaneous determination of GL, GA and its metabolites for the first time. The method is convenience, accurate, sensitivity and specificity. Metabolites were identified by UPLC/MS spectrum in rat liver microsomes incubates. GL, as probe substrate is in incubation with rat liver microsomes. The results showed that no metabolites of GL, such as 18β-glycyrrhetic acid-3-O-β-D- monoglucuronide (GAMG, 3-MGA), were detected in rat liver microsomes incubations. CYP450, esterase and phase II transferase (UGT ) had no effect on the metabolism of GL. The results provided direct evidence for the metabolic pathway of GL in liver microsomes at first time. GA as probe substrate is in incubation with rat liver microsomes. It was found that no metabolites of GA were detected in rat liver microsomes esterase incubations. NADPH as cofactor had catalytic effect on the metabolism of GA. Six metabolites (M1, M2, M3, M4, M5 were hyhroxy-GA, m/z 487; M6 was unknown metabolite, m/z 501) of GA were detected in rat liver microsomes CYP450 incubations inβ-NADPH presence at first time. It was shown that GA metabolism and M1, M2, M3 formation exhibited NADPH-dependent oxidation mechanism. GAMG and GL were detected in rat liver microsomes phase II transferase incubations in UGT presence at first time. It was shown that GAMG formation exhibited UGT-oxidation mechanism.At the same time, Three metabolites (M1', M2', M3') of hydroxy-GA were detected in rat liver microsomes phase II transferase incubations in UGT presence at first time. Selective chemical inhibitors to various CYP450 isoforms (CYP1A2?CYP3A?CYP2C19?CYP2D6?CYP2E1 and FMO ) were employed to conduct inhibition experiments. Ketoconazole reduced hydroxylation of GA in a dose-dependent manner. The kinetic behaviors of M1, M2, M3 were described well by a single-enzyme Michaelis-Menten equation, respectively. Methimazole, as FMO inhibitors, displayed partly inhibition for hydroxylation of GA.Inhibition experiments showed that Furafylline, Ticlopidine, Quinidine and 4-Methlpyrazole Methimazole, which were inhibitors as CYP1A2?CYP2C19?CYP2D6 and CYP2E1, respectively, did not display significant inhibition. The present study indicates that hydroxylation of GA in rat liver microsomes is mediated by CYP3A. To observe the effects of GLY and MET on the metabolism of GA. GA combine with GLY or MET as substrate is in incubation with rat liver microsomes, respectively. GLY can enhance metabolism of GA.The formation of M1, M2, M3 were decrease, while The formation of unknomn metabolite M6 were increase. GLY and MET on the metabolism of GA in CYP450 incubation had no significant effects. At same time, GLY and MET can both increase active component GA 90% and increase formation of GAMG and GL 35% in II transferase incubation. The present study indicates that GLY and MET probably enhance the effects of GA and accelerate the excrete of metabolites of GA.
     In this thesis, the prescription and technology of compound glycyrrhizin tablet for industrial production was optimized. We finished three batch trial production and revised quality criterion to investigate production quality. The study of bioequivalence evaluation in heathy volunteers was finished and the result showed the test and reference preparations were bioequivalence. In vitro mtabolism of GL and GA in Sprague-Dawley rat liver microsomes was systemic studied. To observe the effects of GLY and MET on the metabolism pathway of GA. The metabolism studies of the GL and GA in vitro will laid a experiments foundation for safety evaluation and in vivo metabolism studies of GA and GL in further. Meanwhile, it will provide some ideas and methods to investigate metabolism of other compound preparation.
引文
1、张继,姚健,丁兰等.甘草的利用研究进展[J].草原与草坪, 2000, 2:12-16.
    2、董文宾,赵旭博,王顺民等,甘草的研究及应用现状[J].陕西科技大学学报, 2003, 21(4):43-46.
    3、秦怀茂,对新疆南疆地区甘草资源利用现状的调查[J].新疆财经, 2002, 05:63-64
    4、张慧臻,新疆兵团农三师甘草产业化关键技术与对策研究[D].北京:中国农业大学硕士论文, 2005年.
    5、Yamamoto S, Maekawa Y, Imamura H, et al. Treatment of hepatitis with antiallergic drug, Stronger Neo-Minophagen C [J]. Clin Med Pediatr.1958,13:73.
    6、Suzuki H, Ota Y, Takino T. et al. Therapeutic effects of Stronger Neo-Minophagen (SNMC)in chronic hepatitis:Double blind trial[J]. Igaku-No-Ayumi. 1977, 102: 562 -578.
    7、Suzuki H, Ohta Y, Takino T, et al. Effects of glycyrrhizin on biochemical tests in patients with chronic hepathis.-Double blind trial[J]. Asian Med . 1983, 26: 423-38.
    8、Sato H, Goto W, Yamamura J. Therapeutic basis of glycyrrhizin on chronic hepatitis B [J]. Antivir RES. 1996, 30:171.
    9、Arase Y, Ikeda K, Murashima N et al. The long term efficacy of glycyrrhizin in chronic hepatitis C patients[J]. Cancer, 1997,79:1494–500.
    10、Hiromitsu Kumada. Long- term treatment of chronic hepatitis C with glycyrrhizin [stronger neo-minophagenc ( SNMC ) ]for preventing liver cirrhosis and hepatocellular carcinoma[ J]. Oncology, 2002, 62(1):94.
    11、Iino S, Tango T, Matsushima T, et al. Therapeutic effects of stronger neo- minophagen C at different doses on chronic hepatitis and liver cirrhosis[J]. Hepatol Res. 2001, 19:31-40.
    12、Van Rossum TG, Vulto AG, Hop WC, et al. Intravenous glycyrrhizin for the treatment of chronic hepatitis C:A double-blind, randomized, placebo-controlled phase I/II trial[J]. Gastroenterol Hepatol, 1999,14:1093-9.
    13、BART J, VELD T, BETTINA E, et al. Long-term clinical hepatitis C patients outcome and effect of glycyrrhizin in 1093 chronic with non-response or relapse to interferon[J]. Scandinavian Journal of Gastroenterology, 2006, 41:1087-1094.
    14、宋方闻,李学俊,江元森复方甘草甜素((SNMC)对肝病理学改变观察[J].中国现代医学杂志, 2001, 11(11):24.
    15、Xianshi S, Huiming C, Lizhuang W, et al. , Clinical and laboratory observation on theeffect of glycyrrhizin in acute and chronic viral hepatitis[J]. Tradit Chin Med. 1984, 4:127-32.
    16、Shiro Iino, Toshiro Tango, Takashi Matsushima, et al. , Therapeutic effects of stronger neo-minophagen C at different doses on chronic hepatitis and liver cirrhosis [J]. Hepatology Research , 2001,19: 31-40.
    17、王俊韬,于少军,肖炜等,复方甘草甜素在肝病领域的临床应用[J].中国药房, 2003, 13(8):500
    18、Zhang L, Cui Z, Wang B. Therapeutic effects of Stronger neo-minophagen C(SNMC) in patients with chronic liver disease[J]. Hepatol Res. 2000,16:145-54.
    19、Van Rossum TG, Vulto AG, Hop WC, et al. Glycyrrhizin-induced reduction of ALT in European patients with chronic hepatitis C[J]. Am J Gastroenterol 2001, 96:2432-7.
    20、袁勇谋,复方甘草酸苷治疗泛发性湿疹的疗效评价和作用机制的探讨[D],武汉:湖北中医学院硕士学位论文, 2005年.
    21、林能兴,刘斌,于春润,等.复方甘草甜昔治疗系统性红斑狼疮的疗效观察[J],中国药房, 2004, 15:173.
    22、孙屹峰,孙立华,高海丽,甘草酸两种异构体治疗肾综合征出血热的疗效观察[J],中国药房, 2003, 14(11):677-678.
    23、Cinatl J, Morgensten B, Bauer G, et al. Glycyrrhizin, an activecomponent of liquorice roots and replication of SARS associated coronavirus[J]. Lancet, 2003, 361:2046.
    24、陆海英,霍娜,王广发,等,复方甘草酸苷治疗传染性非典型肺炎的临床研究[J],中国药房, 2003, 14(10):610.
    25、van Rossum TG, Vulto AG, de Man RA, et al. Review article:glycyrrhizin as a potential treatment for chronic hepatitis C [J]. Aliment Pharmacol Ther. 1998, 12(3):199-205.
    26、中药大辞典,江苏新医学院编[M],上海人民出版社, 2000, 567-573.
    27、韩德五,赵龙凤,肠源性内毒素血症在肝炎慢性化中的作用[J].基础医学与临床, 1999. 19(6):2-7.
    28、游海波,甘氨酸对内毒素性肝损害保护作用及机制的实验研究[D].重庆医科大学, 2005年.
    29、黄彤,甘氨酸治疗慢性肝炎临床疗效观察及其机制研究[D],山西医科大学硕士论文, 2002.
    30、Matilla B, Mauriz JL, Culebras JM, et al. Glycine:a cell-protecting anti- oxidantnutrient[J]. Nutr Hosp, 2002, 17(1):2-9.
    31、Schemmer P, Bradford BU, Rose ML, et al. Intravenous gIycine improves survival inrat liver transplantion[J]. Am JPhsiol, 1999, 276(4Pt1):6924-932.
    32、潘寿华,甘氨酸对肾缺血再灌注损伤的保护作用及iNOS表达影响的研究[D].浙江大学医学院, 2000年.
    33、秦杰,谢立平,氨基酸在肾功能保护中的作用研究进展[J].国外医学泌尿系统分册, 2003, 23(4):374-377.
    34、Carini R, Bellomo G, Grazia M, et a1. At Glycine protects against hepatocyte killing by KCN or hypoxia by preverting Na+ overload in the rat [J]. Hepatology, 1997, 26:107-112.
    35、余志良, S-腺苷甲硫氨酸研究进展[J].中国医药工业杂志, 2003, 34(1):49-52.
    36、Frieclel HA, Goa KL, Benfield P. Focus on S-adenosvl-L-methionine Drugs[J]. 1989.38:389- 416.
    37、Almasio P, Pagliaro L. Ademetionineahe state of the art and future prospects[J]. Ann Ital Med Int, 1993, 8(1Supp1):52S.
    38、高景玉,蛋氨酸代谢异常在酒精性脂肪肝发病中的作用机制研究[D],上海:第二军医大学博士学位论文, 2005年.
    39、Varela MoreirasqAlonso Aperte E, Rubio M, et a1. Carbon tetrachloride induced hepatic injury is associated with global DNA hypomethylation and homocy steinemia:effect of S-adenosylmethionine treatment[J]. Hepatology, 1995, 22(4Pt1):1310.
    40、Holecek M, Skopec F, Sprongl L. In fuence of buthionine sulfoximine, Sadeno- sylmethionine and glutathione on liver regeneration following partial hepatectomy [J]. Araneimittelforschung, 2000, 50(12):1093.
    41、Mato JM, Corrales FJ, Lu SC, et a1. S-adenosylmethionine:a control switch that regulates liver function[J]. FASEBJ, 2002, 16(1):15. Cohen GM. Caspasesahe executioners of apoptosis[J]. Biochem J, 1997, 326:1-16
    42、BortoliniM, Ahnasio P, Bray G, et al. M ulticentre survey of the prevalence of introhepatic cholestasis in 2520 consecutive patients with newly diagnosecl chronic liverdisease[J]. Drugs Invest, 1992;4(Sup4):83-89.
    43、侯世荣,唐保元,林厚基,等.腺苷蛋氦酸治疗黄疽型病毒性肝炎111例[J].中华传染病杂志1999;17(2):129- 130.
    44、Wang Z, Nishioka M, Kurosaki Y, et al. Gastrointestinal absorption characteristics of glycyrrhizin from glycyrrhiza extract[J]. Biol Pharm Bull, 1995;18:1238-1241.
    45、包元武,小柴胡汤中柴胡皂昔类化合物的分析方法学研究和甘草酸及其代谢产物的药代动力学研究[D],上海:中国科学院研究生院, 2005年.
    46、Akao T, Hayashi T, Kobashi K, et al. Intestinal bacterial hydrolysis is indispensable to absorption of 18β-glycyrrhetic acid after oral administration of glycyrrhizin in rats [J]. Pharm Pharmacol, 1994, 46:135 -137.
    47、Ozaki Y, Noguchi M, Kamakura H, et al. Studies on concentration of glycyrrhizin in plasma and its absorption after oral administration of licorice extract and glycyrrhizin, an antiinflammation drug [J]. Acta Medica Okayama, 1990, 37(5):385-391.
    48、赤尾泰子,甘草酸代谢酶在大鼠消化道内的分布[J],国外医学中医中药分册, 1995, 17:40-41.
    49、Hattori M. Metabolism of glycyrrhizin by human intestinal flora II. Isolation and characterization of human intestinal bacteria capable of metabolizing glycyrrhizin and related compounds[J]. Chem Pharm Bull, 1985, 33:210-17.
    50、Tsai TH;Liao JF;Shum AY. et al. Pharmacokinetics of glycyrrhizin after intravenous administration to rats[J]. Journal Of Pharmaceutical Sciences. 1992, 81(9):961-3.
    51、Dong-Hyun KiM, Seung-Won LEE, Myung Joo Ham, Biotransformation of Glycyrrhizin to 18β- Glycyrrhetinic Acid-3-O-β-D-glucuronide by Streptococcus LJ-22, a Human Intestinal[J]. Bacterium Biol. Pharm. Bull. 1999, 22(3):320-322
    52、Teruaki A, Taiko A, Masao H, et al. Hydrolysis of glycyrrhizin to 18β-glycyrrhetyl monoglucuronide by lysosomalβ-D-glucuronidase of animal livers[J]. Biochemical Pharmacology, 1991, 41(6/7):1025-1029.
    53、Taiko AKao, Differences in the Metabolism of Glycyrrhizin, Glycyrrhetic Acid and Glycyrrhetic Acid Monoglucuronide by Human Intestinal Flora[J]. Biol. Pharm. Bill[J]. 2000, 23(12):1418—1423.
    54、Taiko AKAO, Effect of pH on Metabolism of Glycyrrhizin, Glycyrrhetic Acid and Glycyrrhetic Acid Monoglucuronide by Collected Human Intestinal Flora[J]. Biol. Pharm. Bull. 2001, 24(10):1108—1112.
    55、Akao T, Aoyama M, Akao T, et al. Metabolism of glycyrrhetic acid by rat liver microsomes-II. 22alpha- and 24-hydroxylation[J]. Biochem Pharmaco1, 1990, 40(2):291-6.
    56、杨静,甘草有效成分18α-甘草酸对肝药酶表达的调控及其代谢特征[D].武汉大学博士学位论文, 2001年.
    57、Shiro ISHIDA, Yoko SAKIYA, Tsutomu ICHIKAWA, et al. Pharmacokinetics of Glycyrrhetic Acid, a Major Metabolite of Glycyrrhizin, in Rats[J]. Chem. Pharm. Bull. 1989, 37(9):2509-2413.
    58、Yamamura Y, Kawakami J, Santa T, et al. Pharmacokinetic profile of glycyrrhizin in healthy volunteers by a new high-performance liquid chromatographic method[J]. Pharm Sci, 1992, 81:1042-1046 
    59、Cantelli-Forti G, Maffei F, Hreli. a P, et al. Interaction of liquorice on glycyrrhizin pharmacokinetics[J]. Environ Health perspect, 1994, 102:65-68
    60、Corm JW, Rovner DR, Cohen EL. Licorice-induced pseudoaldosteronism[J]. Am Med Assoc.1968, 205:492-6.
    61、Cantelli-Forti G, Raggi MA, Bugamelli F, et al. Toxicological assessment of liquorice:biliary excretion in rats[J]. Phamacol Res, 1997, 35:463-470.
    62、杜旭摘译,日本甘草诱发假醛固酮症的现状[J].药学实践杂志, 1995, 13(1):24-26.
    63、Van Rossum TG, DeJong FH, Hop WC, et al. Pseudoaldosteronism induced by intravenous glycyrrhizin treatment of chronic hepatitis C patients[J]. Gastroen-terol Hepatol, 2001, 16(7):789.
    64、何飞燕,α-GA对豚鼠肾11β-OHSO2活性抑制作用的研究[J].浙江中西医结合杂志, 2003, 10: 622-623.
    65、俞进,楼宜嘉.α-甘草酸对肾11β-羟基类固醇脱氢酶的抑制作用[J].浙江医学, 2005, 27(4):263-265.
    66、Kato H, IkanaokaM, Yam S, et al. 3-Monoglucuronyl- glycyrrhetinic acid is a major metabolite that causes licorice-induced pseudoaldosteronism[J]. Clin Endocrinol Metab, 1995, 80(6):1929.
    67、Nobuhiro Ohtake, Akiko Kido, Kunitsugu Kubota, et al. A possible involvement of 3-monoglucuronyl-glycyrrhetinic acid, a metabolite of glycyrrhizin(GL), in GL-induced pseudoaldosteronism[J]. Life Sciences 2007, 80: 1545– 1552.
    68、田静,吕坚, 18α-甘草酸和18β-甘草酸抗大鼠肝纤维化作用比较研究[J].中国现代应用药学, 2006, 2:102-104.
    69、Rossi T, Fano RA, Castelli M, et al. Correlation between high intake of glycyrrhizin and myolysis of the papillary muscles:an experimental in vivo study[J]. Pharmacol Toxicol, 1999, 85(5):221.
    70、楚瑞琦,王咏梅,三种甘草酸类注射液不良反应分析[J].中国皮肤性病学杂志, 2006, 1:33-34.
    71、Gibson GG, Skett P. Introduction to drug metabolism, second edition, Blackie Academic & Professional, an imprint of Chapman & Hall. New York. 1996, 35.
    72、曾苏主编,药物代谢学[M],浙江大学出版社, 2004.
    73、Nebert DW, Gonzalez FJ. P450 genes:structure, evolution, and regulation[J]. AnnuRev Biochem, 1987, 56:945-993.
    74、Gonzalez FJ, The molecular biology of cytochrome P450s[J]. Pharmacol Rev, 1989, 40:243-288.
    75、柳晓泉,王广基,钱之玉,细胞色素P450酶在药物代谢及开发研究中的应用[J].药学进展, 2000, 24(6):334-338.
    76、Shapiro LE, Shear NH. Drug interactions:proteins, pumps and P-450s[J]. Am Acad Dermatol, 2002, 47:467-484.
    77、Lin JH, Yamazaki M. Role of P-glycoprotein in pharmacokinetis:clinical implications [J]. Clin Pharmacokinet, 2003, 42:59-98.
    78、Lin JH, Chiba M, Baillie TA. Is the role of the small intestine in first-pass metabolism over emphasizide? [J]. Pharmacol Rev ,1999;51:135-157.
    79、Rendic S. Summary of information on human CYP enzymes:human P450 metabolism data[J]. Drug Metab Rev, 2002, 34(1-2):834-48.
    80、Ekins S. Past, present, and future applications of precision-cut liver slices for in vitro xenobiotic metabolism. Drug Metab Rev. 1996, 28:591-623.
    81、Birkett DJ, Mackenzie PI, Veronese ME, et al. In vitro approaches can predict human drug metabolism[J]. Trends Pharmacol Sci. 1993, 14:292-294.
    82、Rodrigues AD. Use of in vitro human metabolism studies in drug development [J]. Biochem Pharmacol. 1994, 48:2147-2156.
    83、Wrighton SA, Ring BJ, VandenBranden M. The use of in vitro metabolism techniques in the planning and interpretation of drug safety studies[J]. Toxicol Pathol. 1995, 23:199-208.
    84、Guillouzo A. Acquisition and use of human in vitro liver preparations[J]. Cell Biol Toxicol. 1995, 11:141-145.
    85、Bader A, Zech K, Crome O, et al. Use of organotypical cultures of primary hepatocytes to analyse drug biotransformation in man and animals[J]. Xenobiotica, 1994, 24(7):623-633.
    86、Lee MS, Kern EH. LC/MS application in drug development[J]. Mass Spectrom Rev, 1999, 18:187-279.
    87、胡蓓,江骥.串联质谱在药品及其代谢产物分析中的应用,现代药理实验方法[M].张均田主编,北京医科大学中国协和医科大学联合出版社, 1998:1637-1642?
    88、刘荔,刘嵘,吴畅,等.乳酸卡德沙星对大鼠肝P450酶活性的影响[J].中国药科大学学报, 2007, 38(2):144- 148.
    89、de Kanel J, Vickery WE, Diamond FX. Simultaneous analysis of 14 non-steroidal anti-inflammatory drugs in human serum by electrospray ionization-tandem mass spectrometry without chromatography[J]. Am Soc Mass Spectrom. 1998, 9(3):255-7.
    90、平其能.现代药剂学[M].中国医药科技出版社, 1998
    91、方晓玲,杨敏,穆尼拉.几种新型辅料在速释片剂中的应用[J].中国医药工业杂志, 2000, 31(6):257-259
    92、国家药典委员会,中华人民共和国药典(二部)[S].北京化学工业出版社, 2005.
    93、阳长明,侯世祥,药物溶出度研究进展[J].中成药, 2000, 22(7):511-515.
    94、徐新军.浅谈自身对照法计算溶出度[J].华西药学杂志, 2001, (03):221-223.
    95、王庆全,匡佩琳,李绍吉.试论溶出度测定中的自身对照法[J].中国药师, 2001,(04):273-274.
    96、姜红,金少鸿.固体药物制剂的溶出度比较[J].中国药事, 2000, (05)326-328.
    97、夏锦辉,刘昌孝,固体药物制剂的体外溶出度的统计学评价分析[J],中国药学杂志, 2000, 35(2):130-131.
    98、Center for Drug Evaluation and Research, FDA. Guidance for industry bioavailability and bioequivalences studies for orally administered drug products:General considerations [S]. 1999:10-14.
    99、马春燕. HPLC在有关物质检查中的应用探讨[J].中国药事, 2003, (01):46.
    100、凌大奎,有关物质及其高效液相色谱测定法[J],中国药学杂志, 2000, 35(8):567-569.
    101、孔英梅,杨伯群,新药有关物质检查中的一些问题[J],中国新药杂志, 2000, 9(7):462-464.
    102、田莉,高晓黎,云琦,反相高效液相色谱法测定复方甘草甜素片三组分的含量[J].新疆医科大学学报, 2005, 28(1):27-29.
    103、张震,张玉琥,复方制剂中有关物质的定性归属方法(20071123),国家食品药品监督管理局审评四部, CDE电子刊物. http://www.cde.org.cn/page/BookInfo.cbs?ResName=dzkw&order=907
    104、复方甘草酸苷片(商品名:美能)的质量标准[S].
    105、常碧影等,氨基酸分析技术研究进展[J].分析化学,. 1993, 21(10):1220.
    106、张孝松,储著银,黄龙,等.柱前衍生反相高效液相色谱法分析复方氨基酸注射液[J].药物分析杂志, 1996, 16(1):8.
    107、李芳. 2, 4-二硝基氟苯衍生化反相高效液相色谱法在测定氨基酸中的应用研究[J].色谱, 1995, 13:200.
    108、陈娅兰,付宜和,王国林,等.十八种氨基酸注射液的HPLC2, 4-二硝基氟苯柱前衍生化法含量测定[J].药物分析杂志,1990, 10(3), 149~151.
    109、WS-10001-(HD-1269)2002,国家药品标准·甘草酸单铵盐S[S].
    110、王鹏,关于甘草酸二铵类产品药学研发工作的几点建议,国家食品药品监督管理局审评五部, CDE电子刊物. http://www.cde.org.cn/page/BookInfo.cbs?ResName=dzkw&order=907
    111、李志万,卓宏,张敏娟.复方甘草酸苷注射剂药学研究中几个问题,国家食品药品监督管理局审评五部, CDE电子刊物. http://www.cde.org.cn/page/BookInfo.cbs?ResName=dzkw&order=907
    112、王德凤,王晖,顾一珠,注射用复方甘草酸单铵含量及有关物质的HPLC测定[J],齐鲁药事, 2006, 25(12):93-95.
    113、国家药典委员会. (中华人民共和国药典, 2005年版,二部)[S],北京:化学工业出版社,附录XIX B(药物制剂人体生物利用度和生物等效性试验指导原则)
    114、国家药品监督管理局,药品临床试验管理规范[S], 1999年.
    115、Shah VP, Midha KK, Findlay JW, et al. Bioanalytical method validation-A revisit with a decade of progress. Pharm Res. 2000;17(12):1551-1557.
    116、钟大放以加权最小二乘法建立生物分析标准曲线若干问题[J].药物分析杂志, 1996;16:343-346.
    117、Grizzle TE. The analysis of cross-over design. Biometrics 1965, 21:467-472.
    118、王瑞莲,新药临床研究实用手册(设计,执行和分析)[M],北京:化学工业出版社, 2003.
    119、魏树理,生物药剂学与药代动力学[M].北京:北京医科大学/中国协和医科大学联合出版社, 1997.
    120、梁文权,生物药剂学与药物动力学[M],北京:人民卫生出版社, 2003.
    121、韩可勤,黄圣凯.生物等效性评价中数据对数变换的一些统计学问题[J].中国临床药理学杂志. 1994, 10(2):124~128.
    122、Guidance for industry-statistical approaches to establishing bioequivalence U. S. Department of Health and Human services Food and Drug Administration fo Drug Evaluation and Research(CDER) 2001. httn://www. fda. gov/cder/guidance/index. Htm.
    123、柳再华,陈汇,刘建华.等效性研究的常用统计分析方法及其评价[J].数理医药学杂志, 2003, 5:391-394.
    124、Chow SC, Liu JP, Design and analysis of bioavailability and bioequivalence studies. 2nd ed, Revised and Expanded, Maecel Dekker, INC. 1997:152-160.
    125、黄圣凯、韩可勤.生物等效性评价中数据对数变换后的一些统计问题.中国临床药理学杂志1994:10(2):124-128
    126、徐君辉,甘草酸的药代动力学研究及对安替比林代谢的影响[D],杭州:浙江大学, 2005年.
    127、Yamamura Y, Kawakami J, Santa T, et al. Pharmacokinetic profile of glycyrrhizin in healthy volunteers by a new High-Performance Liquid Chromatographic Method[J]. Pharm Sci. 1992, 81(10):1042~1046.
    128、Koga K, Ohmachi K, Kawashima S, et al. Determination of 18alpha-glycyrrhizin and 18beta- glycyrrhizin in dog plasma by high-performance liquid chromatography. Journal Of Chromatography[J]. Chromatogr B Biomed Sci Appl, 2000, 738(1):165-8.
    129、Okamura N, Maki T, Miyauchi H, et al. Simultaneous determination of glycyrrhizin, glycyrrhetic acid and glycyrrhetic acid mono-glucuronide in Shakuyaku-kanzo-to incubated with rat feces by semi-micro high-performance liquid chromatography[J]. Biol Pharm Bull, 2001, 24(10):1161-4.
    130、RAGGI MA, MAFFEI F, BUGAMELLI, et al. Bioavailability of glycyrrhizin and licorice extract in rat and human plasma as detected by a HPLC method[J]. Pharmazie, 1994, 49(4):269~272.
    131、Ishiwata S, Nakashita K, Niizeki M, et al. Determination of serum concentrations of glycyrrhizin in humans by semi-micro high-performance liquid chromatography after administration of a therapeutic dose[J]. Biol. Pharm. Bull, 2000, 23(8):904-5.
    132、张和平,贺平,李琳方等,血液中微量甘草酸的HPLC测定[J].中国医药工业杂志, 1997, 28(8):373-375.
    133、王骊丽,任平,黄熙等, RP-HPLC法同时测定大鼠血中甘草甜素和甘草次酸[J].第四军医大学学报, 2001, 22(12):1111-1113.
    134、项琪,程刚,陈济民,芍药甘草汤在大鼠体内药代动力学研究[J].中国药学杂志, 2000, 35(9):615-618.
    135、李晓光,翟所迪,甘草酸单铵脂质体体内外药剂学研究[J].中国新药杂志, 2003, 12(11):915-918.
    136、曾春香,杨晴,胡琴,异甘草酸镁与复方甘草酸苷在大鼠体内分布和代谢的比较研究[J].中国药房, 2006, 17, (20):1543-1645.
    137、沈金芳,逢晓云,孙黎,异甘草酸镁注射液人体内药动学研究[J].中国药学杂志, 2005, 40(10):769-771.
    138、袁琼英,刘厚钰,周康等,甘草甜素脂质体和甘草甜素的药动学比较[J].中国新药杂志, 2005, 14(7), 904-905.
    139、吴琳华,吴伟航,刘红梅等,高效液相色谱法测定人血浆中甘草次酸浓度[J].中国中医药信息杂志, 2005, 12(6):9-11.
    140、Li Ding, Xin Huang, Jin Yang, et al. Determination of glycyrrhetic acid in human plasma by LC–ESI–MS [J]. Journal of Pharmaceutical and Biomedical Analysis. 2006, 40 :758–762.
    141、Lin ZJ, Qiu SX, Wufuer A, et al. Simultaneous determination of glycyrrhizin, a marker component in radix Glycyrrhizae, and its major metabolite glycyrrhetic acid in human plasma by LC-MS/MS [J]. Chromatogr. B. 2005, 814:201-7.
    142、Gibson GG ,Skett P. Introduction to drug metabolism, second edition, Blackie Academic & Professional, an imprint of Chapman & Hall, New York. 1996, 35.
    143、谭毓治,陈锦英,兰小平等.甘草对小鼠肝药酶的影响[J].中药通报, 1986, 11(10):55.
    144、刁亚英,贺平,甘草酸在小鼠体内的代谢自诱导作用[J].中国中药杂志, 1999, 24(9):564-565.
    145、Paolini M, Pozzetti L, Sapone A, et al. Effect of licorice and glycyrrhizin on marine liver CYP-dependent monooxygenases [J]. Life Sci, 1998, 62(6):571-582.
    146、高凯,余伟,杨静,等大鼠肝微粒体CYP3A1/ 2和CYP2 C9/10参与甘草次酸羟化代谢[J].中国国临床药理学与治疗学, 2007, 12(1I):1255- 1260.
    147、Taiko Akao, Differences in the Metabolism of Glycyrrhizin, Glycyrrhetic Acid and Glycyrrhetic Acid Monoglucuronide by Human Intestinal Flora[J]. Biol. Pharm. Bill. 2000, 23(12):1418-1423.
    148、章元沛,苏怀德,药理学试验[M],人民卫生出版社, 1996:18.
    149、Sidelmann UG, Cornett C, Tjornelund J, et al. A comparative study of precision cut liver slices, hepatocytes and liver microsomes from the Wistar rat using metronidazole as a model substance[J]. Xenobiotica. 1996, 26:709–722.
    150、徐叔云.药理实验方法学.第3版.北京.人民卫生出版社, 2001:511.
    151、梁丽云,肝微粒体制备与细胞色素P450含量测定[J].长治医学院学学报1996, 10,(2):113-114.
    152、唐跃年,张顺国,李岚,张宛陵.肝细胞微粒体的制备和细胞色素P450氧化酶活性测定[J].中国医院药学杂志, 1998,(12):535-537.
    153、Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Anal Biochem. 1976, 72:248-54.
    154、颜子颖,王海林译.精编分子生物学实验指南[M],北京,科学出版社, 1998:332.
    155、王军, Isoline、Clivorine、Monocrotaline三种吡咯里西啶生物碱的体外肝脏代谢研究[D].上海中医药大学博士学位论文, 2007年.
    156、刘艳,韩毓博,滕宇宏,等, HPLC/MS/MS法测定大鼠肝微粒体系统中非那西丁及其代谢物的浓度[J].中国药房2007, 18(7):500-503.
    157、高志伟,施孝金,余琛,等,混合探针底物法同时预测细胞色素P450酶5种亚型的抑制作用[J].药学学报, 2007, 42(6):589- 594
    158、周怀梧,米氏消除动力学研究进展[J].国外医学.药学分册, 1985, (06):359-363.
    159、谷风岐.关于酶动力学的几个问题[J].济宁医学院学报, 1991, (03):62-68.
    138、Lin Ge, Tang Jun, Liu Xiao quan, et al. Deacetylclivorine:a gender-selective metabolite of clivorine formed in female SD rat liver microsomes[J]. Drug Metab. Dispos, 2007, 35(4):607-613.
    160、Francoise M. B, Araz A. R, Jean D. V. D. G;et al. Glucuronidation of diflunisal, Propofol in liver microsomes of syndrome type I(-)- morphine, 4-nitrophenol, and two patients with crigler-najjar syndrome type I[J]. Biopharmaceutics & Drug Disposition, 1996, 17:311-317.
    161、彭文兴,李焕德,周宏灏.大豆苷元在人肝微粒体中的单羟化代谢机制[J].药学学报, 2004, (11):892-896.
    162、Drug Interaction Studies -Study Design, Data Analysis, and Implications for Dosing and Labeling[M]. 2004 , 10, FDA publication in U. S. A.
    163、PAIVI TAAVITSAINEN, Cytochrome P450 isoform specific in vitro methods to predict drug metabolism and interactions[D]. University of Oulu, 2001:40-41.
    164、曹安民,施畅,刘雁,等,酮康唑对大鼠肝脏CYP450酶系的影响[J].中国新药杂志2007, 16(4)
    165、朱立勤,娄建石,细胞色素P450与药物代谢的研究现状[J].中国临床药理学与治行学, 2004, 9(10}:1081-1086.
    166、Kovalczuk T, Jech M, Poustka J, et al. Ultra-performance liquid chromatography- tandem mass spectrometry:A novel challenge in multiresidue pesticide analysis in food [J]. Anal Chim Acta, 2006, 577(1):8-17.
    167、金高娃,章飞芳,薛兴亚,等.超高效液相色谱在复杂体系中药分离分析中的应用[J].世界科学技术-中医药现代化, 2006, (03):294-298.
    168、Akao, Purification and Characterization of Glycyrrhetic Acid Mono-glucuronideβ-D-Glucuronidase in Eubacterium sp. GLH [J]. Biol. Pharm.Bull.1999,22(1):80-82.
    1贺平,贾随旺,吴孟超,等.小鼠甘草酸的药代动力学及其与人血浆蛋白结合率[J].中国药理学通报. 1998, 14(1):89
    2张和平,贺平,李琳方等,血液中微量甘草酸的HPLC测定[J].中国医药工业杂志, 1997, 28(8):373-375.
    3范益,丁建花,刘苏怡等,α-与-β-甘草酸在小鼠体内分布的研究[J].中国临床药理学与治疗学, 2004, 9(6):619-622.
    4王骊丽,任平,黄熙等, RP-HPLC法同时测定大鼠血中甘草甜素和甘草次酸[J].第四军医大学学报, 2001, 22(12):1111-1113?
    5项琪,程刚,陈济民,芍药甘草汤在大鼠体内药代动力学研究[J].中国药学杂志, 2000, 35(9):615-618.
    6李晓光,翟所迪,甘草酸单铵脂质体体内外药剂学研究[J].中国新药杂志, 2003, 12(11):915-918.
    7曾春香,杨晴,胡琴,异甘草酸镁与复方甘草酸苷在大鼠体内分布和代谢的比较研究[J].中国药房, 2006, 17, (20):1543-1645.
    8沈金芳,逢晓云,孙黎,异甘草酸镁注射液人体内药动学研究[J].中国药学杂志, 2005, 40(10):769-771.
    9袁琼英,刘厚钰,周康等,甘草甜素脂质体和甘草甜素的药动学比较[J].中国新药杂志, 2005, 14(7), 904-905.
    10吴琳华,吴伟航,刘红梅等,高效液相色谱法测定人血浆中甘草次酸浓度[J].中国中医药信息杂志, 2005, 12(6):9-11.
    11吴锡铭,甘草酸铵的药动学和药效学等的研究进展[J].药学通报, 1987, 22(8):449
    12 Shibata No, Shimokawa Ta, Jiang ZQ. et al. Characteristics of Intestinal Absorption and Disposition of Glycyrrhizin in Mice[J]. Biopharm. Drug. Dispos. 2000. 21:95 -101.
    13 Qiu-Tao Gao, Xiao-Hui CHEN, Kai-Shun Bu. Comparative Pharmacokinetic Behavior of Glycyrrhetic Acid after Oral Administration of Glycyrrhizic Acid and Gancao- Fuzi-Tang[J]. Biol. Pharm. Bull. 2004, 27(2):221-228.
    14 Zhao Wang, Yuji Kurosaki, Taiji nakayama, et al. Mechanism of gastrointestinnal absorption of glycyrrhizin in rats[J]. Biol. Pharm. Bull. 1994, 17(10):1399-1403
    15 Okamura N;Maki T;Miyauchi H;et al. Simultaneous determination of glycyrrhizin, glycyrrhetic acid and glycyrrhetic acid mono-glucuronide in Shakuyaku-kanzo-to incubated with rat feces by semi-micro high-performance liquid chromatography[J].Biol Pharm Bull. 2001. 24(10):1161-4.
    16RAGGI MA, MAFFEI F, BUGAMELLI;et al. Bioavailability of glycyrrhizin and licorice extract in rat and human plasma as detected by a HPLC method[J]. Pharmazie. 1994, 49(4):269~272.
    17Ching H;Hou YC;Hsiu SL;et al. Influence of honey on the gastrointestinal metabolism and disposition of glycyrrhizin and glycyrrhetic acid in rabbits. [J] Biol Pharm Bull. 2002. 25(1):87-91.
    18Koga K;Ohmachi K;Kawashima S;et al. Determination of 18alpha-glycyrrhizin and
    18beta- glycyrrhizin in dog plasma by high-performance liquid chromatography. Journal Of Chromatography. [J]. Chromatogr B Biomed Sci Appl, 2000 738(1): 165-8.
    19Tekla G. J. van Rossum, Arnold G. Vulto, Pharmacokinetics of Intravenous Glycyrrhizin After Single and Multiple Doses in Patients with Chronic Hepatitis C Infection[J]. CLINICAL THERAPETITTCS. 1999. 21(12):2080-90.
    20Yamamura Y;Kawakami J;Santa T. et al. Pharmacokinetic profile of glycyrrhizin in healthy volunteers by a new High-Performance Liquid Chromatographic Method[J]. Pharm Sci. 1992, 81(10):1042~1046.
    21Ishiwata S;Nakashita K;Niizeki M;et al. Determination of serum concentrations of glycyrrhizin in humans by semi-micro high-performance liquid chromatography after administration of a therapeutic dose[J]. Biol. Pharm. Bull. 2000. 23(8):904-5.
    22吕坚,吴锡铭,周晴,等.气相色谱法测定大鼠血浆中18-H甘草酸差向异构体含量[J],中国药学杂志, 1993, 28(9):552-554.
    23 KERSTENS MN, EGUILLAUME CP, G. WOLTHERS B, et al. Gas chromatographic- mass spectrometric analysis of urinary glycyrrhetinic acid:an aid in diagnosing liquorice abuse[J]. Journal of Internal Medicine 1999, 246:539-547.
    24陈威,付少伟,何晓,气相色谱法测定甘草酸α体β体及其苷元的人血浆蛋白结合率[J].海峡药学, 2005, 17(4):59-60
    25Li Ding, Xin Huang, Jin Yang, et al. Determination of glycyrrhetic acid in human plasma by LC–ESI–MS[J]. Journal of Pharmaceutical and Biomedical Analysis. 2006, 40 758–762.
    26Lin ZJ;Qiu SX;Wufuer A;et al. Simultaneous determination of glycyrrhizin, a marker component in radix Glycyrrhizae, and its major metabolite glycyrrhetic acid in human plasma by LC-MS/MS [J]. Chromatogr. B. 2005, 814:201-7.
    27包元武,小柴胡汤中柴胡皂昔类化合物的分析方法学研究和甘草酸及其代谢产物的药代动力学研究. [D].上海,中国科学院研究生院, 2005.
    28寺泽捷年.甘草次酸体内代谢研究-大鼠体内代谢[J].国外医学·中医中药分册, 1987, 9(2):
    29 Shan SJ, Tanaka H, Shoyama Y. Enzyme-linked immunosorbent assay for glycyrrhizin using antiglycyrrhizin monoclonal antibody and an eastern blotting technique for glucuronides of glycyrrhetic acid[J]. Anal Chem. 2001, 73(24): 5784–5790.
    30 Fediuk NV, Il'icheva TN, Ol'kin SE. et al. Immunoenzyme test-system for detection of glycyrrhizic acid [J]. Eksp Klin Farmakol. 2001, 64(5):66-8.
    31 Waraporn Putalun, Hiroyuki Tanaka, Yukihiro Shoyama. Rapid detection of glycyrrhizin by immunochromatographic assay[J]. Phytochem. Anal. 2005, 16(5): 370–374
    32 Takatoshi Sakai;Katsura Shinahara;Akira Torimaru;et al. Sensitive Detection of Glycyrrhizin and Evaluation of the Affinity Constants by a Surface Plasmon Resonance-based Immunosensor [J]. Analytical Sciences. 2004, 20(2):279-283
    33 Hua-Jin Zeng, Bo-Yang Yu, Ji-Hua Liu. et al. Determination of glycyrrhizin in Chinese prescriptions and biological samples by enzyme-linked immunosorbent assay[J]. Analytica Chimica Acta. 2006, 564(2):173-178.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700