用户名: 密码: 验证码:
功能化壳聚糖组成及表面形态与干细胞的相互作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:通过自身材料学因素控制和优化设计,赋予材料诱导组织再生的功能,已成为生物材料的研究热点之一。本研究首先通过壳聚糖(CS)磷酸化改性和在CS基质中添加钙磷盐,调控磷灰石晶体的形成与组装,探讨材料对骨髓间充质干细胞(MSCs)增殖和分化的影响;其次改变CS表面微观物理形貌,探讨材料拓扑结构对MSCs黏附生长的影响。为制备具有良好生物相容性及骨诱导性的生物可降解膜材奠定理论基础。
     方法:(1)采用差速贴壁法分离、培养MSCs,观察其生物学特性;流式细胞技术和定向诱导分化法鉴定MSCs。(2)激光扫描共聚焦显微镜(LSCM)和原子力显微镜(AFM)观察MSCs在成骨诱导前后的变化。(3)制备亚甲基磷酸化壳聚糖(NMPC),与CS共混成膜并进行表征;与MSCs体外复合培养评价其生物相容性,实时荧光定量PCR(FQ-PCR)评价材料成骨诱导功能。(4)共沉淀法制备磷酸四钙(TTCP)、高温脱水法制备磷酸氢钙(DCPA),与CS共混成膜并进行表征;与MSCs体外复合培养检测其生物相容性,通过检测碱性磷酸酶(ALPase)活性和成骨相关基因表达评价其成骨诱导性。(5)利用相变法制备高分子聚苯乙烯(PS)多孔膜,以此为模板制备不同表面微观结构的CS膜,评价表面微观结构对MSCs黏附、生长的影响。
     结果:(1)体外培养MSCs成纤维样、漩涡状生长,纯度随传代次数增加而提高;P3代MSCs表面抗原CD29、CD44表达阳性,CD45表达阴性;MSCs经定向诱导可分化为成骨细胞和脂肪细胞。(2)经成骨诱导后,MSCs胞内Ca~(2+)由均匀分布转变为点状、块状的高Ca~(2+)分布;胞质周围的微管荧光染色强度明显高于胞质中央,且排列稀疏而紊乱;细胞由长梭形转变为不规则状,细胞边缘网丝状伪足样突起减少,胞核增大,内有3-5个核仁,细胞膜表面粗糙,呈矿化物沉积特征。(3)CS与NMPC共混成膜制得CS/NMPC,与CS相比,表面接触角由77±2°降至的20±10°,吸水率由128±14%升至248±24.6%,拉伸强度和断裂伸长降低,弹性模量升高,材料能吸附培养基中的Ca~(2+);CS/NMPC更有利于细胞增殖,第5、7、9天差异显著(P<0.05);骨钙素(OC)、骨桥蛋白(OPN)为CS膜上的275.1%和736.2%,表明NMPC能诱导MSCs向成骨分化。(4)TTCP和DCPA与CS溶液共混后成膜,获得CS基羟基磷灰石(CS/HA)膜,其表面接触角为57±5°,吸水率185±15%,拉伸强度、断裂伸长、弹性模量较纯CS膜降低,对培养基中Ca~(2+)吸附加速;与CS膜相比,CS/HA膜细胞生物相容性大幅提高,细胞增殖在第5、7天有显著差异(P<0.05),第9天有极显著差异(P<0.01);在成骨诱导培养12d后CS/HA膜上ALPase活性是CS膜的6.3倍,Ⅰ-型胶原(ColⅠ)、ALPase和OPN基因表达水平为CS膜的479.0%、377.1%和597.9%,表明CS/HA中的HA能显著诱导MSCs向成骨分化。(5)利用相分离技术制备不同孔洞PS膜,以此为模板制备微观结构完全匹配的CS膜,并在表面培养MSCs,结果表明CS膜上不同凸起对细胞黏附无显著差异;但凸起10-50μm不规则微球表面增殖率最高,其次为10μm规则紧密排列的半球状凸起,0.8-1μm短柱状凸起和光滑CS膜增值率最低。
     结论:材料化学组成及微观结构对MSCs的黏附、生长、分化均有影响。在以CS为基质的材料中添加含磷酸根的有机物NMPC和无机物HA,均增加细胞的生物相容性,并能诱导MSCs向成骨分化,是一种良好的具有骨诱导性能的组织工程材料;CS表面10-50μm微球结构CS膜能促进MSCs在材料上增殖,为下一步研究CS膜的不同拓扑结构对MSCs分化的影响奠定基础。
Objective:Biomaterials endowed with the function of inducing tissue regeneration have been a hot topic.In this study,chitosan(CS) was first modified by phosphorylation and by addition of calcium phosphate cement to modulate nucleation and crystallization.The products were used to study effects of biomaterials on the proliferation and differentiation of mesenchymal stem cells(MSCs).Secondly CS membranes with different physical morphology were fabricated to study effects of biomaterials on attachment and proliferation of MSCs.They provide experimental basis for developing novel biodegradable materials which have good biocompatibility and osteo-inductivity in guiding bone tissue regeneration.
     Methods:
     (1) MSCs were isolated and purified by differential adherence and their biological characteristics were observed.Cells were identified by surface molecules and the ability to differentiate into osteoblasts or adipoctyes.
     (2) Laser scanning confocal microscope(LSCM) and atomic force microscopy(AFM) were employed to observe changes of MSCs due to osteogenic differentiation.
     (3) CS was mixed with home-made N-methylene phosphonic chitosan(NMPC) to form CS/NMPC membrane and its performance was then characterized.MSCs were cultured on the CS/NMPC membrane to evaluate its biocompatibility.The osteogenic induction of materials were detected by fluorescence quantitative real-time PCR (FQ-PCR).
     (4) Tetracalcium phosphate(TTCP) made by co-precipitation and dicalicium phosphate anhydrous(DCPA) made by dehydration were mixed with CS to form CS/hydroxyapatite(CS/HA) membrane and its performance was then detected.To evaluate the biocompatibility and osteogenic induction of CS/HA,MSCs was cultured on the materials for detection of the activity of alkaline phosphatase(ALPase) and osteogenic mRNA.
     (5) Polystyrene(PS) membranes with pits of different sizes were presented by liquid phase separation and then convex CS membranes were prepared with the PS membranes as templates.The attachment and proliferation of the MSCs on the surface of CS with different microstructures were evaluated.
     Results:
     (1) MSCs cultured in vitro demonstrated uniform appearance under the inverted microscope.The morphous of cells was fibroblast shape and swirled when they assembled together.By flow cytometer,surface antigens was positive for CD29, CD44 and negative for CD45.MSCs isolated could be successfully induced into osteoblasts and adipocytes.
     (2) After osteo-induction,the distribution of Ca~(2+) was changed from uniform to punctiform and massive.The microtubules showed rarefaction and derangement.The morphology of MSCs changed from fusiform to irregular form.The filipodium of cells decreased and nucleus increased after induction.Membrane of cells became rough just like deposited mineralizer.
     (3) When NMPC was mixed with chitsan,CS/NMPC membrane was formed.The phenotype of membrane showed that the water contact angle decreased from CS's 77±2°to CS/NMPC's 20±10°and the water absorption increased from CS's 128±14%to CS/NMPC's 248±24.6%.The tensile strength and breaking elongation decreased but elastic modulus increased slightly.When immersed into culture medium, the materials could absorb Ca~(2+).Cell culture assay showed that proliferation of MSCs on CS/NMPC was higher than that on pure CS 5,7 and 9 days after inoculation.There were significant differences between the two groups(P<0.05).After 14 days' growth in basic culture medium on materials,the expression of osteocalcin(OC) and osteopontin(OPN) of MSCs on CS/NMPC was determined as 275.1%and 736.2% respectively of that on CS by FQ-PCR.This indicated that NMPC played an important role in MSCs osteogenic differentiation.
     (4) Home-made TTCP and DCPA were added into CS solution to form CS/HA membrane.Water contact angle decreased from CS's 77±2°to CS/HA's 57±5°and water absorption increased from CS's 128±14%to CS/HA's 185±15%.The tensile strength,breaking elongation and elastic modulus decreased compared with CS.CS/HA absorbed Ca~(2+) quickly and low crystalline hydroxyapatite deposited on the surface of the membranes.MTT showed that proliferation of stem cells on CS/HA was higher than that on CS 3,5 and 9 days after inoculation.There were significant differences between the two groups after 3 and 5 days of culture(P<0.05) and extremely significant differences after 9days(P<0.01).ALPase activity value of MSCs on CS/HA was 6.3 times of that on CS detected by ALPase kit.The expression mRNA levels ofⅠ-collagen(ColⅠ),ALPase and OPN of MSCs on CS/HA were determined as 479.0%,377.1%and 597.9%respectively of that on CS by FQ-PCR. These results indicated that hydroxyapatite on CS could induce MSCs to differentiate into osteoblasts,
     (5) The PS membranes with different morphologies and microstructures were obtained and the correspondingly scaled convex CS films were then prepared based on the template technology.MSCs cultured on the surface of CS with different microstructures showed no significant difference in cell's attachment on the first day. But the proliferation of MSCs was highest on CS 10-50 followed by CS10 and lowest on the surface with smooth CS and CS0.8-1 by MTT.
     Conclusion:Chemical composition and micro-structure of biomaterials can affect the attachment,growth and differentiation of MSCs.When materials with phosphate radical just as organic NMPC and inorganic HA are added to CS,it not only increases the biocompatibility but also accelerates the differentiation of MSCs into osteoblast.It is a good tissue engineering materials that have favorable osteo-inductivity.The microstructure of CS membrane surface affects the distribution of MSCs and results in increased proliferation of MSCs.
引文
[1] Kay SA, Lynch LW, Marxer M, Lynch SE. Guide bone regeneration: integration of a resorbable membrane and a bone graft material. Pract Periodontics Aesthet Dent. 1997; 9: 185-194.
    
    [2] Vacanti CA, Vacanti JP. The science of tissue engineering. Orthop Clin North Am, 2000; 31: 351-356.
    
    [3] Sarasam A, Madihally SV. Characterization of chitosan-polycaprolactone blends for tissue engineering applications. Biomaterials, 2005; 26: 5500-5558.
    
    [4] Williams JM, Adewunmi A, Schek RM, Flanagan CL, Krebsbach PH, Feinberg SE, Hollister SJ, Das S. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials, 2005; 26: 4817-4827.
    
    [5] Wu YC, Shaw SY, Lin HR, Lee TM, Yang CY. Bone tissue engineering evaluation based on rat calvaria stromal cells cultured on modified PLGA scaffolds. Biomaterials, 2006; 27: 896-904.
    
    [6] Wozney JM, Seeherman HJ. Protein-based tissue engineering in bone and cartilage repair. Curr Opin Biotechnol, 2004; 15: 392-398.
    
    [7] Leach JB, Schmidt CE. Characterization of protein release from photocrosslinkable hyaluronic acid-polyethylene glycol hydrogel tissue engineering scaffolds. Biomaterials, 2005; 26: 125-135.
    
    [8] Schmedlen RH, Masters KS, West JL. Photocrosslinkable polyvinyl alcohol hydrogels that can be modified with cell adhesion peptides for use in tissue engineering. Biomaterials, 2002; 23: 4325-4332.
    
    [9] Oh SH, Kang SG, Kim ES, Cho SH, Lee JH. Fabrication and characterization of hydrophilic poly(lactic-co-glycolic acid)/poly (vinyl alcohol) blend cell scaffolds by melt-molding particulateleaching method. Biomaterials, 2003; 24: 4011-4021.
    
    [10] Santerre JP, Woodhouse K, Laroche G, Labow RS. Understanding the biodegradation of polyurethanes: from classical implants to tissue engineering materials. Biomaterials, 2005; 26: 7457-7470.
    
    [11] Li Z, Ramay HR, Hauch KD, Xiao D, Zhang M. Chitosan-alginate hybrid scaffolds for bone tissue engineering. Biomaterials, 2005; 26: 3919-3928.
    
    [12] Li X, Jin L, Balian G, Laurencin CT, Greg Anderson D. Demineralized bone matrix gelatin as scaffold for osteochondral tissue engineering.Biomaterials, 2006; 27: 2426-2433.
    
    [13] Ignatius A, Blessing H, Liedert A, Schmidt C, Neidlinger-Wilke C, Kaspar D, et al. Tissue engineering of bone: effects of mechanical strain on osteoblastic cells in type I collagen matrices. Biomaterials, 2005; 26: 311-318.
    
    [14] Gomes ME, Godinho JS, Tchalamov D, Cunha AM, Reis RL. Alternative tissue engineering scaffolds based on starch: processing methodologies, morphology, degradation and mechanical properties. Mater Sci Eng C, 2002; 20: 19-26.
    
    [15] Seo SJ, Kim IY, Choi YJ, Akaike T, Cho CS. Enhanced liver functions of hepatocytes cocultured with NIH 3T3 in the alginate/galactosylated chitosan scaffold. Biomaterials, 2006; 27: 1487-1495.
    
    [16] Adekogbe I, Ghanem A. Fabrication and characterization of DTBPcrosslinked chitosan scaffolds for skin tissue engineering. Biomaterials 2005; 26:7241-50.
    
    [17] Huang Y, Onyeri S, Siewe M, Moshfeghian A, Madihally SV. In vitro characterization of chitosan-gelatin scaffolds for tissue engineering. Biomaterials, 2005; 26: 7616-7627.
    
    [18] 蒋挺大.甲壳素.北京:环境科学出版社,1995,45-57.
    [19]Ogawa K,Nakata K,Yamamoto A,Nitta Y,Yui T.X-ray study of chitosan L-and D-ascorbates.Chem Mater,1996,8:2349-2351.
    [20]Okuyama K,Noguchi K,Miyazawa T.Molecular and crystal structure of hydrated chitosan.Macromolecules,1997,30:5849-5855.
    [21]Xin MH,Li MC and Yao KD.H-bond in chitosan-based hydrogels.Macromolecular Symposia,2003;200:191-197.
    [22]Howling GI,Dettmar PW,Goddard PA,Hampson FC,Dornish M,Wood EJ.The effect of chitin and chitosan on the proliferation of human skin fibroblasts and keratinocytes in vitro.Biomaterials,2001,22:2959-2966.
    [23]Cho YW,Cho YN,Chung SH,Yoo G,Ko SW.Water-soluble chitin as a wound healing accelerator.Biomaterials,1999;20:2139-2145.
    [24]Lu JX,Prudhommeaux F,Meunier A,Sedel L,Guillemin G.Effects of chitosan on rat knee cartilages Biomaterials,1999;20:1937-1944.
    [25]Yamane S,IwasakiN,Majima T,FunakoshiT,MasukoT,HaradaK,Minami A,Monde K,Nishimura S.Feasibility of chitosan-based hyaluronic acid hybrid biomaterial for a novel scaffold in cartilage tissue engineering.Biomaterials,2005;26:611-619.
    [26]Hsu SH,Whu SW,Hsieh SC,Tsai CL,Chen DC,Tan TS.Evaluation of chitosan-alginate-hyaluronate complexes modified by an RGD-containing protein as tissue-engineering scaffolds for cartilage regeneration.Artif Organs,2004;28:693-703.
    [27]Haipeng G,Yinghui Z,Jianchun L,Yandao G,Nanming Z,Xiufang Z.Studies on nerve cell affinity of chitosan-derived materials.J Biomed Mater Res,2000;52:285-295.
    [28]Yamaguchi I,Itoh S,Suzuki M,Osaka A,Tanaka J.The chitosan prepared from crab tendons:Ⅱ.The chitosan/apatite composites and their application to nerve regeneration.Biomaterials,2003,24:3285-3292.
    [29]Mingyu C,Kai G,Jiamou L,Yandao G,Nanming Z,Xiufang Z.Surface modification and characterization of chitosan film blended with poly-L-lysine.J Biomater Appl,2004;19:59-75.
    [30]Li J,Pan J,Zhang L,Guo X,Yu Y.Culture of primary rat hepatocytes within porous chitosan scaffolds.J Biomed Mater Res,2003a;67:938-943.
    [31]Li J,Pan J,Zhang L,Yu Y.Culture of hepatocytes on fructosemodified chitosan scaffolds.Biomaterials,2003b;24:2317-2322.
    [32]张立国,潘继伦,李结良,王连永,俞耀庭.壳聚糖微载体的制备及原代大鼠肝细胞培养.中国修复重建外科杂志,2003;17:157-160.
    [34]倪斌,侯春林.几丁质膜引导兔挠骨缺损骨再生的试验研究.中华骨科杂志,1995,15:607-609.
    [34]Klokkevold P R,Vandemark L,Kenney E B,Bernard GW.Osteogenesis enhanced by chitosan poly-N-acetyl glucosaminoglycan in vitro.J.Periodontol,1996,67:1170-1175.
    [35]Ohara N,Hayashi Y,Yamada S,Kim SK,Matsunaga T,Yanagiguchi K,Ikeda T.Early gene expression analyzed by cDNA Microarray and RT-PCR in osteoblasts cultured with water-soluble and low molecular chitooligosaccharide.Biomaterials,2004;25:1749-1754.
    [36]王迎军,赵晓飞,卢玲,任力,陈晓峰,葛坚,刘炳乾.角膜组织工程支架壳聚糖-胶原复合膜的性能.华南理工大学学报(自然科学版),2006,34:1-5.
    [37]Maria VR and Jose Maria GC.Calcium phosphates as substitution of bone tissues.Progress in Solid State Chemistry,2004;32:1-31.
    [38]Heughebaert M,Le Geros RZ,Gineste M,Guilhem A,Bonel G.Physicochemical characterization of deposits associated with HA ceramics implanted in nonosseous sites.J Biomed Mater Res,1988;22:257-268.
    [39]Yang Z,Yuan H,Tong W,Zou P,Chen W,Zhang X.Osteogenesis in extraskeletally implanted porous phosphate ceramics:variability among different kinds of animals.Biomaterials,1996;17:2131-2137.
    [40]Yuan HP,de Bruijin JD,Li YB,Feng JQ,Yang Z J,Groot KD,ZhangXD.Bone formatin induced by calcium phosphate ceramics in soft tissue of dogs:a comparative study between porous alpha-TCP and beta-TCP.J Mater Sci:Mater Med,2001;12:7-13.
    [41]Zhao F,Yin YJ,Lu WW,Leong JC,Zhang W,Zhang J,Zhang M,Yao K.Preparation and histological evaluation ofbiomimetic three-dimensional hydroxyapatite/chitosan-gelatin network composite scaffolds.Biomaterials,2002;23:3227-3234.
    [42]Ge Z,Baguenard S,Lim LY,Wee A,Khor E.Hydroxyapatite-chitin materials as potential tissue engineered bone substitutes.Biomaterials,2004;25:1049-1058.
    [43]Park YJ,Lee YM,Park SN,Sheen SY,Chung CP,Lee SJ.Platelet derived growth factor releasing chitosan spong for periodontal bone regeneration.Biomaterials,2000,21(2):153-159.
    [44]张福江,赵峰,尹玉姬,姚康德.羟基磷灰石/壳聚糖-明胶网络复合材料在模拟体内环境中的特性及对兔挠骨缺损的修复.天津医药,2003;7:452-454.
    [45]Zhao F,Yin YJ,Lu WW,Leong JC,Zhang W,Zhang J,Zhang M,Yao K.Preparation and histological evaluation ofbiomimetic three-dimensional hydroxyapatite/chitosan-gelatin network composite scaffolds.Biomaterials,2002;23:3227-3234.
    [46]Pittenger MF,Mackay AM,Jaisdwal SC,Jaiswal RK,Douglas R,Mosca JD,Moorman MA,Simonetti DW,Craig S,Marshak DR.Multilineage potential of adult human mesenchymal stem cells.Science,1999;84(5411):143-147.
    [47]Jiang Y,Jahagirdar BN,Reinhardt RL,Schwartz RE,Keene CD,Ortiz-Gonzalez XR,Reyes M,Lenvik T,Lund T,Blackstad M,Du J,Aldrich S,Lisberg A,Low WC,Largaespada DA,Verfaillie CM.Pluripotency of mesenchymal stem cells derived from adult marrow.Natrue,2002;418:41-49.
    [48]Hofstetter CP,Schwarz EJ,Hess D,Widenfalk J,E1 Manira A,Prockop DJ,Olson L.Marrow stromal cells from guiding strands in the injured spinal cord and promote recovery.Proc Natl Acad Sci USA,2002,99:2199-2204.
    [49]Mauney JR,Kaplan DL,Volloch V.Matrix-mediated retention of osteogenic differentiation potential by human adult bone marrow stromal cells during ex vivo expansion.Biomaterials,2004,25:3233-3243.
    [50](lanza,R.etal.,eds) Bruder SP,Caplan AI.Bone regeneration through cellular engineering.In principles of Tissue engineering(2nd edn).Academic Press,2000.683-696.
    [51]杨芬,杨乃龙.两种体外分离成人骨髓间充质干细胞方法的比较.中国组织工程研究与临床康复,2008;12:
    [52]Hanada K,Dennis JE,Caplan AI.Stimulatory effects of basic fibroblast growth factor and bone morphogenetic protein-2 on osteogenic differentiation of rat bone marrow derived mesenchymal stem cells.J Bone Miner Res,1997;12:1606-1614.
    [53]Bruder SP,Jaiswal N,Ricalton NS.Mesenchymal stem cells in osteobiology and applied bone regeneration.Clin Orthop,1998;355(suppl):5247-5256.
    [54]Young H,Steele TA,Bray RA,Hudson J,Floyd JA,Hawkins K,Thomas K,Austin T,Edwards C,Cuzzourt J,Duenzl M,Lucas PA,Black AC Jr.Human reserve pluripotent mesenchymal stem cells are present in the connective tissues of skeletal muscle and dermis derived from fetal,adult,and geriatric donors.Anat Res,2001;264:512-561.
    [55]Bianco P,Riminucci M.Bone marrow stromal cells:nature,biology and potential applications.Stem cells,2001;19:180-192.
    [56]Maniatopoulos C,Sodek J,Melcher AH.Bone formation in vitro by stromal cells obtained from bone marrow of young adult rats.Cell tissue Res,1998;254:317-330.
    [57]Khan SN,Bostrom MP,Lane JM.Bone growth factors.Orthop Clin Nor Am,2000;31:375-388.
    [58]Tsuchida H,Hashimoto J,Crawford E,Manske P,Lou J.Engineered allogeneic mesenchymal stem cells repair femoral segmental defect in rats.J Orthop Res,2003;21:44-53.
    [59]Ahdjoudj S,Lasmoles F,Holy X,Zerath E,Marie PJ.Transforming growth factor beta-inhibits adipocyte differentiation induced by skeletal unloading in rat bone marrow stroma.J Bone Miner Res,2002;17:668-677.
    [60]Zhang X,Sobue T,Hurley MM.FGF-2 increases colony formation,PTH receptor and IGF-1 mRNA in mouse marrow stromal cells.Biochem Biophys Res Commun,2002;290:526-531.
    [61]Vortkamp A.Interaction of growth factors regulating chondrocyte differentiation in the developing embryo.Osteoarthritis Cartilage,2001;9:109-117.
    [62]Mauney JR,Kaplan DL,Volloch V.Matrix-mediated retention of osteogenic differentiation potential by human adult bone marrow stromal cells during ex vivo expansion.Biomaterials,2004;25:3233-3243.
    [63](lanza R etal.,eds) Bruder SP,Caplan AI.Boneregentration through cellular engineering.In principles of Tissue engineering(2nd edn).Academic Press,2000;683-696.
    [64]Olivier V,Faucheux N,Hardouin P.Biomaterial challenges and approaches to stem cell use in bone reconstructive surgery.Drug Discov Today,2004;9:803-811.
    [65]李章华,廖文,刘世清,张玉富,王常勇,赵强.组织工程骨修复节段性骨缺损的实验研究.中华整形外科杂志,2006;22:55-59.
    [66]曲哲,孙宏晨,郭英,欧阳喈.体外诱导鼠骨髓间充质干细胞构建人工骨的研究.口腔医学研究,2004;20:39-41.
    [67]侯锐,毛天球,杨耀武,程晓兵,高瞻,陈书军,陈富林.复合支架材料构建组织工程骨修复兔颅骨缺损.中华创伤杂志,2005;21:702-706.
    [68]Quarto R,Mastrogiacomo M,Cancedda R,Kutepov SM,Mukhachev V,Lavroukov A,Kon E,Marcacci M.Repair of Large bone defects with the use of autologous bone marrow stromal cells.N Engl J Med,2001;344:385-386.
    [69]杨志明,赵雍凡,解慧琪,黄富国,刘欣,李涛.组织工程肋骨移植修复胸壁巨大缺损.中国修复重建外科杂志.2000;14:365-368.
    [70]李彦林,韩睿,王福科.骨髓间充质干细胞在骨及软骨组织工程中的应用.中国临床康复,2006;10:121-124.
    [71]Lee JH,Jung HW,Kang IK,Lee HB.Cell behavior on polymer surfaces with different functional groups.Biomaterials,1994;15:705-711.
    [72]Kooten TG,Spijker HT,BusscherHJ.Plasma-treated polystyrene surfaces:model surfaces for strdying cell-biomatrials interactions.Biomaterials,2004;25: 1735-1747.
    
    [73] Hamerli P, Weigel TH, Groth TH, Paul D. Surface properties of and cell adhesion onto allylamine-plasma-coated polyethylenterephtalat membranes. Biomaterials, 2003; 24: 3989-3999.
    
    [74] Shelton RM, Rasmussen AC, Davies JE. Protein adsorption at the interface between charged polymer substrata and migrating osteoblasts. Bimaterials,1988; 9: 24-29.
    
    [75] Baldwin SP, Saltzman WM. Polymers for tissue engineering.Trends in Polymer Sci,1996;4: 177-182.
    
    [76] Kokubo T. Novel biomedical materials based on glasses. Mater Sci Forum, 1999; 293: 65-82.
    
    [77] Ozawa S, Kasugai S. Evaluation of implant materials (hydroxyapatite, glass-ceramics, titanium) in rat bone. Biomaterials, 1996; 17: 23-29.
    
    [78] Recknor J B, Sakaguchi D S, Mallapragada S K. Directed growth and selective differentiation of neural progenitor cells on micropatterned polymer substrate. Biomaterials, 2006, 27: 4098-4108.
    
    [79] Tan J, Saltzman WM.Biomaterials with hierarchically defined micro- and nanoscale structure. Biomaterials, 2004;25:3593-3601
    
    [80] Chung TW, Liu DZ, Wang SY. Enhancement of the growth of human endothelial cells by surface roughness at nanometer scale. Biomaterials, 2003, 24: 4655-4661.
    
    [81] Thapa A, Webster TJ, Haberstroh KM. Polymers with nano-dimensional surface features enhance bladder smooth muscle cell adhesion. J Biomed Mater Res, 2003; 67:1374-1383.
    
    [82] Thapa A, Miller DC, Webster TJ, Haberstroh KM. Nano-structured polymers enhance bladder smooth muscle cell function. Biomaterials, 2003; 24(17): 2915-2926.
    
    [83] Lampin M, Warocquier R, Legris C, Degrange M, Sigot-Luizard MF.Correlation between substratum roughness and wettability, cell adhesion and cell migration. J Biomed Mater Res, 1997; 36: 99-108.
    
    [84] Hallab NJ, Bundy Kj, O'Connor K, Moses RL, Jacobs JJ. Evaluation of metallic and polymeric biomaterial surface energy and surface roughness characterization for directed cell adhesion, Tissue Eng,2001;7: 55-71.
    
    [85] Deligianni DD, Katsala ND, Koutsoukos PG, Missirlis YF. Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength, Biomaterials,200;22: 87-96.
    
    [86] van Kooten TG, Whitesides JF, von Recum A. Influence of silicone (PDMS)surface texture on human skin fibroblast proliferation as determined by cell cycle analysis. J biomed Mater Res, 1998; 4:1-14.
    
    [87] Newell R. Washburn, Kenneth M, Yamada, Carl G, Simon JR, Kennedy SB, Amis EJ. High-throughput investigation of osteoblast response to polymer crystallinity: influence of nanometer-scale roughness on proliferation. Biomaterials, 2004; 25: 1215-1224.
    
    [88] Park A, Griffith LG.In vitro cell response to differences in poly 1-lactide crystallinity. J Biomed Mater Res, 1996; 31: 117-130.
    
    [89] Dalby MJ, Riehle MO, Johnstone HJ, Affrossman S, Curtis AS. Polymer-demixed nanotopography: control of fibroblast spreading and proliferation . Tissue Eng, 2002; 8: 1009-1108.
    [90]Hendrich C,Noth U,Stahl U,Merklein F,Rader CP,Schutze N,Thull R,Tuan RS,Eulert J.Testing of skeletal implant surfaces with human fetal osteoblasts.Clin Orthop Relat Res,2002;394:278-289.
    [91]奚廷斐,杨晓芳.生物材料生物相容性的分子水平评价研究.生物医学工程学杂志,1999;16:63-66.
    [92]Oshima H,Hatayama T,Nakamura M.Evaluation of cytotoxicity of metal compounds in dental materials by stress protein assay.Abstract in Sixth World Biomaterials Congress Transactions,Hawaii,2000.
    [93]Kato S,Akagi T,Sugimura K,Kishida A,Akashi M.Evaluation of biological responses to polymeric biomaterials by RT-PCR analysis:study of c-myc,c-fos and p53 mRNA expression.Biomaterials,2000;21:521-527.
    [94]Koc ON,Peters C,Aubourg P,Raghavan S,Dyhouse S,DeGasperi R,Kolodny EH,Yoseph YB,Gerson SL,Lazarus HM,Caplan AI,Watkins PA,Krivit W.Bone marrow-derived mesenchymal stem cells remain host-derived despite successful hematopoietic engraftment after allogeneic transplantation in patients with lysosomal and peroxisomal storage diseases.Exp Hematol,1999;27:1675-1681.
    [95]Lodie TA,Blickarz CE,Devarakonda TJ,He C,Dash AB,Clarke J,Gleneck K,Shihabuddin L,Tubo R.Systematic analysis of reportedly distinct populations of multipotent bone marrow-derived stem cells reveals a lack of distinction,Tissue Eng.2002;8:739-751.
    [96]司徒镇强,吴军正.细胞培养.西安:世界图书出版社,1996;修订版:177-120
    [97]Simmons P J,Torok-Storb B.Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody,STRO-1.Blood,1991,78:55-62.
    [98]Deryugina EI,Muller-Siebrug CE.Stromal cells in long-term cultures:Keys to the elucidation of hematopoietic development.Crit Rev Immunol,1993,13:115-150.
    [99]袁风红,邹耀红,高恺言,俞可佳.地塞米松对体外人骨髓基质细胞增殖及成骨分化的影响.中华风湿病学杂志,2006;10:482-484.
    [100]Rickard DJ,Kassem M,Heferan TE,Sarkar G,Spelsberg TC,Riggs BL.Isolation and characterization of osteoblast precursor cells from human bone marrow.J Bone Min Res,1996;11:312-324.
    [101]Coelho MJ,Fernandes Mh.Human bone cell cultures in biocompatibility testing.Part Ⅱ:Effect of ascorbic acid,beta-glycerophosphate and exarnethasone on osteoblastic differentiation.Biomaterials,2000;21:1095-1102.
    [102]Bellows CG,Heersche JN,Aubin JE.Determination of the capacity for proliferation and differentiation of osteoprogenitor cells in the presence and absence of dexamethasone.Dev Biol,1990;140:132-138.
    [103]Leboy PS,Beresford JN,Devlin C,Owen ME.Dexamethasone induction of osteoblast MRNAs in rat marrow stromal cell cultures.J Cell Physiol,1991;146:370-378.
    [104]Ostusuka E,Yamaguchhi A,Hirose S,Hagiwara H.Characterization of osteoblastic differentiation of stromal cell line ST2 that is induced by ascorbicacid.Am J Physilo,1999,277:C132-138.
    [105]Martin I,Shastri VP,Padera RF,Yang J,Mackay AJ,Langer R,Vunjak-Novakovic G,Freed LE.Selective differentiation of mammalian bone marrow stromal cells cultured on three-dimensional polymer foams.J Biomed Mater Res,2001;55:229-235.
    [106]Spiegelman BM,Choy L,Hotamisligil G,Graves RA,Tontonoz P.Regulation of adipocyte gene expression in differentiation and syndromes of obesity diabetes.J Bio Chem,1993;268:6823-6826.
    [107]Rasmussen H.The calcium messenger syste(ml).N Engl J Med,1986;31:1094-1101.
    [108]Rasmussen H.The calcium messenger syste(m2).N Engl J Med,1986;31:1164-1170.
    [109]包向军,梁星,陈明,王航,宋宏杰,朱保民.体外培养破骨细胞游离钙离子分布特点.华西口腔医学杂志,2006;24:18-20.
    [110]De-Lanerolle P,Cole AB.Cytoskeletal proteins and gene regulation form,function and signal transduction in the nucleus.Sci STKE,2002;2002:PE30.
    [111]Mailliot C,Podevin DV,Rosenthal RE,Sergeant N,Delacourte A,Fiskum G,Buee L.Rapid tauprotein dephosphorylation and differential rephosphorylation during cardiac arrest-induced cerebral ischemia and reperfusion.J Cereb Blood Flow Metab,2000;20:543-549.
    [12]Lin Y,Vandeputte M,Waer M.Natural killer cell-and macrophage-mediated rejection of concordant xenografts in the absence of T and B cell responses.J Immunol,1997,158:5658-5667.
    [113]吴扬哲,陈勇,蔡继业,刘美莉.应用AFM对人骨髓间充质干细胞的形态学研究.电子显微学报,2003;22:473-473.
    [114]李章华,王常勇,张玉富,赵 强,廖文,王永红,范秀媛,夏仁云.原子力显微镜观察间充质干细胞向成骨细胞系分化过程中的表征变化.华中科技大学学报(医学版),2004;33:312-319.
    [115]Miyatake K,Okamoto Y,Shigemasa Y,Tokura S,Minami S.Anti-inflammatory effect of chemically modified chitin.Carbohydrate Polymer,2003;53:417-423.
    [116]Nishi N,Ebina A,Nishimura SI,Tsutsumi A,Hasegawa O,Tokura S.Highly phosphorylated derivatives of chitin,partially deacetylated chitin and chitosan as new functional polymers:preparation and characterization.Intern J Biolog Macromolecul,1986;10,8(5):311-317.
    [117]Heras A,Rodriguez NM,Ramos VM,Agullo E.N-methylene phosphonic chitosan:a novel soluble derivative,Carbohydrate Polymers,2001;44:1-8.
    [118]姚子昂,吴海歌,韩宝芹,刘万顺.不同脱乙酰度对壳聚糖膜与角膜基质细胞相容性的影响.生物医学工程学杂志,2006,23:800-804.
    [119]张鲁华,杨飞,公衍道,赵南明,张秀芳.壳聚糖和明胶材料对血管平滑肌细胞的作用.生物物理学报,2004;20:19-25.
    [120]张叔良,易大年,吴天明.红外光谱分析与新技术.中国医药科技出版社,1993第1版:
    [121]王玉枝,陈贻文,杨桂法.有机化学.湖南大学出版社,2004第1版:268-291.
    [122]Domard A,Gey C,Rinaudo M,Terrassin C.~1H and ~(13)C and ~1H n.m.r.spectroscopy of chitosan a trimethyl chloride derivatives.Bioloqical Macromolecules,1987,9:233-237.
    [123]Baxter A,Dillon M,Taylor KD,Roberts GA.Improved method for i.r.derermination of the degree of N-acetylation of chitosan.J Biol Macromol,1992;14:166-169.
    [124]V.M.Ramos,N.M.Rodn'guez,M.F.D_1'a,M.S.Rodn'guez,A.Heras,E.Agullo.N-methylene phosphonic chitosan:effect of preparation methods on its properties.Carbohydrate Polymers,2003;52:39-46.
    [125]贺岚,白海红,艾有年.粘度法测定壳聚糖分子量的一些体会.中国卫生验杂志,2001;11:631-632.
    [126]何淑兰,张敏,耿占杰,尹玉姬,姚康德.部分氧化海藻酸钠的制备与性能.应用化学,2005;22:1007-1011.
    [127]范金石,陈国华,明昆,华哲.壳聚糖特性粘度的快速测定.青岛海洋大学学报,2002,32:296-300.
    [128]马萍,孙淑英,刘东春,王文俭.海藻酸钠理化参数的测定.中国海洋药物,2000,(02):54-56.
    [129]何曼军,陈维孝,董西侠.高分子物理.上海:复旦大学出版社,1983;第一版:127-140.
    [130]高峻刚,李源勋.高分子材料.化学工业出版社,2002;第一版:144-145.
    [131]曹文灵,李静,井多辉,公衍道,赵南明,张秀芳.幅射灭菌对壳聚糖管力学性能和生物降解性的影响研究.核技术,2005;28:187-191.
    [132]Hynes RO.Intergrins:versatility,modulation and signaling in cell adhesion.Cell,1992,69:11-25.
    [133]杨吟野,汤洪敏.扫描探针显微镜测壳聚糖材料的表面电荷分布.材料科学与工程学报2005,23:605-608.
    [134]杨柳,段小军,戴刚,唐康来,谭祖键,周强,李起鸿.人间充质干细胞体外成骨诱导培养及其生物学特性变化.第三军医大学学报,2002;24:509-512.
    [135]柴枫,金岩,赵铱民,段小燕.釉基质蛋白体外诱导大鼠外胚间充质细胞骨桥素和骨钙素mRNA的表达.口腔医学研究,2004;20:243-245.
    [136]Chen KJ,Shapiro HS,Wrana JL,Reimers S,Heersehe NJ,Sodek J.Localiaztion of bone sialoporetin(BSP) expression to sites of mineralized tissue formation in fetal rat tissues by in situ hybridiion.Matrix,1991;11:133-143.
    [137]Freeman WM,Walker S J,Vrana KE.Quantitative RT-PCR:pitfalls and potential.Biotechniques,1999;26:112-122,124-5.
    [138]Livak KJ and Schmittgen TD.Analysis of relative gene expression data usingreal-time quantitative PCR and the 2(-Delta Delta C(T)) Method.Methods,2001;25:4 02-8.
    [139]Xiao G,Jiang D,Ge C,Zhao Z,Lai Y,Boules H,Phimphilai M,Yang X,Karsenty G.Francesehi RT Cooperative interactions between activating transcription factor 4 and RunxZ/Cbfal stimulate osteoblast-specific osteocalcin gene expression.J Biol Chem.2005;280:30689-96.
    [140]Maria VR and Jose Maria GC.Calcium phosphates as substitution of bone tissues.Prog Solid State Chem,2004;32:1-31.
    [141]Livingston AT,Tran T,Mcalary J,Daculsi G.A comparative study of biphasic calcium phosphate ceramics for human mesenchymal stem-cell-induced bone formation biomaterials.Biomaterials,2005;26:3631-3638.
    [142]沈卫,顾燕芳,刘昌胜.一种制备高纯磷酸四钙的方法.中国,94114048.2[P].1995-08-16
    [143]戴红莲,闫玉华,王友法,李世普,江昕.磷酸四钙粉末的制备研究.硅酸盐通报.2002:(4):56-58.
    [144]Sargin Y,Kizilyalli M,Telli C,Guler H.A new method for the solid-state synthesis of tertacalcium phosphate,a Dental Cement:X-Ray Powder Diffraction and IR Studies.J European Ceramic Society,1997,17:963-970.
    [145]沈卫,刘昌胜,顾燕芳.磷酸钙骨水泥的水化反应凝结时间及抗压强度.硅酸盐学报,1998;26:129-135.
    [146]陈景帝,王迎军,魏坤,张淑花,王旭东.羟基磷灰石的可控制备及其研究.材料科学与工艺.2007:15:515-518.
    [147]Ito M,Hidaka Y,Nakajima M,Yagasaki H,KafrawyAH.Effect of hydroxyapatite content on physical properties and connective tissue reaction to a chitosan-hydroxyapatite composite membrane.J Biomed Mater Res,1999;45:204-208.
    [148]段友容,吕万新,王朝元,陈继镛,张兴栋.在动态模拟体液中致密CaP 陶瓷表面形貌对类骨磷灰石层形成的影响.生物医学工程学杂志,2002;19:186-190.
    [149]De Bruijin JD,Yuan HP,de Groot K.Osteoinductive biomimetic calcium phosphate coatings and their potential useable tissue engineering scaffolds,in bone Engineering,ED.By Davies JE.Canada.
    [150]Kasemo B and Lausmaa J.The biomaterials-tissue interface and its analogues in surface science and technology,In:JE Davis(ed),The bone-biomaterials interface,University of Toronto Press,Tomonto,Canada.
    [151]Altankov G and Groth T.Reorganization of substratum-bound fibronectin on hydrophobic materials is related to biocompatibility.J Mater Sci Miter Med,1994;5:732-737.
    [152]Anselme K,Bigerelle M,Noel B,Dufresne E,Judas D,Iost A,Hardouin P.Qualitative and quantitative study of human osteoblast adhesion on materials with various surface roughness.J Bio Mater Res,2000;49:155-166.
    [153]杨明,朱姗姗,成钺,常智杰,公衍道,赵南明,张秀芳.壳聚糖及其改性材料对骨髓基质细胞的作用.生物物理学报,2002;18:456-461.
    [154]吴萌,孙正义,王翠芳,张钦.人脐血中分离骨髓间充质干细胞成骨诱导前后生物学特性.中国临床康复,2003:7:2414-2416.
    [155]吕彩霞,姚子华.羟基磷灰石/壳聚糖复合材料研究进展.化工进展,2006;25:755-759.
    [156]赵峰,尹玉姬,宋雪峰.壳聚糖-明胶网络/羟基磷灰石复合材料支架的研究制备及形貌.中国修复重建外科杂志,2001;15:276-279.
    [157]Sodek J,Cheifitz S.Molecular regulation of osteogenesis.Toronto,Canada:em squared Inc,2000;31-34.
    [158]Macleod TM,Sarathchandra P,Williams G,Sanders R,Green CJ.The diamond CO_2 laser as a method of improving the vascularisation of a permanent collagen implant.Bums 2004;30:704-712.
    [159]Stevens MM and George JH.Exploring and engineering the cell surface interface.Science,2005;310:1135-1138.
    [160]Wilkinson CD,Riehle M,Wood M,Gallagher J,Curtis ASG.The use of materials patterned on a nano-and micro-metric scale in cellular engineering.Mater Sci Eng,2002;19:263-269.
    [161]苏丽萍,赵守亮,唐荣银,李玉成,余擎,周章华.生物因子盖髓载体壳聚糖多孔膜的制备和性能研究.牙体、牙髓牙周病学杂志,2004;14:207-210.
    [162]Grinnell F.Cellular adhesiveness and extracellular substrates.Int Rev Cytol,1978;53:65-72.
    [163]Baier RE.Adhesion:mechanisms that assist or impede it.Science,1968;168:1360-1369.
    [164]文学军,王小祥.金属生物材料的微粗糙表面及其生物学效应(Ⅰ)—金属生物材料的微粗糙表面.生物医学工程学杂志,1997;14:77-80.
    [165]Matsuzaka K,Walboomers XF,Ruijter JE de,Jansen JA.The effect of poly-L-lactic acid with parallel surface micro groove on osteoblast-like cells in vitro.Biomaterials,1999;20:1293-1301.
    [166]Wojciak-Stothard B,Curtis A,Monaghan W,MacDonald K,Wilkinson C.Guidance and activation of murine macrophages by nanometric scale topography,Cell Res,1996;223:426-35.
    [167]Clark P,Cionolly P,Curtis ASG,Dow JAT,Wilkinsin CDW,Topographical control of cell behaviour.I.Simple step cues.Development,1987,99:439-448.
    [168]Campbell CE and Von Recum AF.Microtopography and soft tissue response.J Invest Surg,1989;2:51-74.
    [169]王志宇,周丽娟,楼伟建.微球改性生物材料表面的构建及其细胞相容性研究.中国生物医学工程学报,2004;23:303-310.
    [170]Wan YQ,Wang Y,Liu ZM,Qua X,Han BX,Bei JZ,Wang SG.Adhesion and proliferation of OCT-1 osteoblast-like cells on micro-and nano-scale topography structured poly(L-lactide).Biomaterials,2005;25:4453-4459.
    [171]Khor E and Lim LY.Implantable applications of chitin and chitosan.Biomaterials,2003;24:2339-2349.
    [172]WanY Q,Wang Y,Liu Z M,Qu X,Han B,Bei J,Wang S.Adhesion and proliferation of OCT-1 osteoblast-like cells on micro-and nano-scale topography structured poly(1-1actide).Biomaterials,2005;26:4453-4459.
    [173]Avramescu ME,Sager WFC,Mulder MHV,Wessling M.Preparation of ethylene vinylalcohol copolymer membranes suitable for ligand coupling in affinity separation.J Membr Sci,2002;210:155-173.
    [174]Van DE,Witte P,Dijkstra P,Feijen J.Metastable liquid-liquid and solid-liquid phase boundaries in polymer-solvent-nonsolvent systems J Membr Sci B:Polymer Physics,1996;35:763-770.
    [175]陈观文,曾一鸣.膜微孔形成方法的研究进展.膜科学与技术,2003,23:117-123.
    [176]谢慧芳,于伟东,李建强,柯贵珍.PU/PEG多孔相变膜的制备与形态结构的表征.武汉科技学院学报,2007;20:8-11.
    [177]Jiang L,Wang R.,Yang B.Lit J,Tryk DA,Fujishima A,Hashimoto K,Zhu DB.Binary cooperative complementary nanoscale interfacial materials.Pure Appl Chem,2000;72;73-81.
    [178]胡巧玲,雷勇,张中明,沈家骢.壳聚糖棒材表面仿生拒水改性的研.高等学校化学学报,2005;26:1162-1165.
    [179]Ito Y.Surface micropatterning to regulate cell functions.Biomaterials,1999;20:2333-2342.
    [180]Baier BE,Dutton RC.Initial events in interactions of blood with a foreign surface.J Biomed Mater Res,1969;3:101-199.
    [181]Kautzsch T,Braun A,Wagemann H.Effect of surface topology of amorphous substrates on the growth mechanism and grain size of APCVD grown on silicon for solar cells.Mater Sci Eng B,2000;73:208-211.
    [182]Klee D,Ademovic Z,BosserhoffA,Hoecker H,Maziolis G,Erli HJ.Surface modification ofpoly(vinylidenefluoride) to improve the osteoblast adhesion.Biomaterials,2003;24:3663-3670.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700