用户名: 密码: 验证码:
几种细菌与土壤粘粒矿物相互作用的热力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以高岭石、蒙脱石和针铁矿等粘粒矿物及恶臭假单胞菌(Pseudomonasputida)、枯草芽孢杆菌(Bacillus subtilis)和苏云金芽孢杆菌(Bacillus thuringlensis)为材料,研究矿物与细菌的表面吸附特征、吸附热与吸附焓变,及环境pH、离子强度和温度对吸附焓变的影响,探讨了细菌与矿物的表面吸附机理。基于实验测定的接触角和zeta电位,运用表面热力学和XDLVO理论对细菌-矿物的吸附自由能进行了理论计算。探讨了粘粒矿物对细菌代谢活性的影响,获得了细菌-粘粒矿物体系中细菌代谢的热动力学特征。研究了镉及蒙脱石-镉体系中,假单胞菌的代谢活性,从热力学角度探讨了粘土矿物影响镉毒性的机理。主要结果如下:
     1.首次运用等温滴定量热技术(ITC),结合吸附、解吸等化学方法及扫描电镜技术(SEM)和傅立叶变换红外光谱技术(FTIR),揭示了细菌在高岭石、蒙脱石和针铁矿表面的主要吸附机制及其热力学特征。粘粒矿物对假单胞菌吸附率的大小顺序是:针铁矿(100%)>高岭石(96.5%)>蒙脱石(61.5%)。在pH等于或接近高岭石或蒙脱石的等电点时,假单胞菌在这两种矿物表面的吸附量最大,显示非静电力在吸附中的重要地位。高岭石、蒙脱石与假单胞菌的表面水分子在矿物-细菌吸附时有氢键形成,这是影响假单胞菌-矿物吸附的主要作用力之一。而表面羧基、氨基和羟基则在枯草芽胞杆菌-矿物吸附过程中起重要作用。细菌与针铁矿的吸附主要受静电力和氢键的影响。细菌与粘粒矿物的吸附均为放热反应。在相同条件下,细菌在粘粒矿物表面吸附焓变的大小顺序为:针铁矿(-7.55×10~(-8)mJ/cell)>高岭石(-5.83×10~(-8)mJ/cell)>蒙脱石(-4.15×10~(-8)mJ/cell),假单胞菌与粘粒矿物的吸附焓变随pH升高和离子强度增加而减小,其与层状硅酸盐矿物的吸附焓变随温度升高而增大,反应受熵与焓共同驱动,两者相互补偿。假单胞菌与针铁矿的吸附焓变随温度升高而降低,反应主要受焓驱动。枯草杆菌与矿物的吸附焓变受环境条件影响发生不规则变化,可能与革兰氏阳性的枯草芽胞杆菌细胞表面基团种类较革兰氏阴性的假单胞菌多,胞外多聚物较丰富等有关。
     2.基于表面热力学和XDLVO理论,获得了粘粒矿物与细菌吸附的疏水自由能变和静电力自由能变及总自由能变。发现疏水自由能为负,显示疏水作用为引力,有利于细菌与粘粒矿物的吸附;而静电力自由能为正,表明细菌-矿物间存在静电斥力。疏水自由能显著大于静电力自由能,表明疏水作用在粘粒矿物与细菌吸附时的贡献大于静电力。两种细菌与两种矿物间的总吸附自由能为负值,意味着细菌-矿物的吸附是热力学自发过程。高岭石与细菌间的吸附自由能大于蒙脱石与细菌间的吸附自由能,表明细菌与高岭石间的亲和力较高,吸附更容易发生,这与化学吸附及滴定量热结果一致。表面热力学方法和XDLVO理论在预测细菌—矿物吸附中有重要意义,但该方法未考虑多种非DLVO效应,如细胞表面多聚物、细菌鞭毛等在吸附反应中的作用,因此还存在一定的局限性,在揭示细菌-矿物相互作用的热力学机理方面还需与其它研究技术结合。
     3.首次使用等温微量热技术(IMC),研究了土壤粘粒矿物对细菌代谢活性的影响,查明了不同类型及不同浓度的土壤粘粒矿物体系中,细菌对数生长期、静止期或孢子形成期代谢活性的变化情况。发现在对数生长期,低量(5mg mL~(-1))高岭石可促进假单胞菌代谢活性,使其生长速率增大18%,代谢峰值功率提前50min出现,代谢活化能也降低2%;低量蒙脱石使枯草杆菌生长速率增加8%,代谢峰值功率提前30min出现,代谢活化能减小0.6%,显示对枯草杆菌代谢有促进效应。但不同浓度的高岭石均降低了枯草杆菌生长速率,使代谢峰值功率延迟出现且减小,代谢活化能升高,抑制枯草杆菌代谢活性。不同浓度的蒙脱石使假单胞菌生长速率减小,代谢峰值功率降低,细菌代谢活化能增大,显示对假单胞菌代谢活性有抑制作用。而针铁矿则显著抑制假单胞菌和枯草杆菌代谢活性,使它们的代谢活化能明显增加。在静止生长期,高岭石、蒙脱石和针铁矿均可抑制假单胞菌和枯草杆菌的代谢活性。对于苏云金芽孢杆菌(Bt),在高岭石、蒙脱石和针铁矿体系中,其生长速率均大于对照,总放热量也有所增加。但孢子形成期代谢峰值功率均减小,表明粘粒矿物可增强Bt对数期活性,粘粒矿物的增强效应依次为:蒙脱石>高岭石>针铁矿。但粘粒矿物可抑制Bt孢子形成,抑制效应是针铁矿>高岭石>蒙脱石。
     4.运用等温微量热技术,区分了蒙脱石和无蒙脱石体系中,镉对细菌的生物毒性差异,获取了不同体系中细菌代谢的热谱参数,定量描述了蒙脱石对镉生物毒性的影响。发现在蒙脱石-镉体系中,假单胞菌代谢热功率的峰值时间、峰值功率和总放热量均显著大于无蒙脱石体系,而生长速率常数小于无蒙脱石体系。体系中蒙脱石存在与否,镉对恶臭假单胞菌的半抑制浓度(IC_(50))未发生明显变化。这些结果表明蒙脱石的存在,延长了假单胞菌生长代谢周期,明显增强了细菌的代谢活性。矿物对镉的吸附及矿物对细菌代谢活性的促进效应是矿物减轻镉毒性的重要原因。
The interaction between bacteria and mineral is one of the most important processes in soil ecosystem.Understanding the mechanisms of bacterial sorption on mineral and the influence of soil minerals on the metabolic activity is of great environmental and geological significance.In this study,kaolinite,montmorillonite and goethite were selected as model minerals and Pseudomonas putida,Bacillus subtilis and Bacillus thuringiensis were used as model bacteria.The adsorption amount,adsorption heat and adsorption enthalpy of bacteria on clay minerals were obtained by equilibrium adsorption and isothermal titration calorimetry.Based on the surface thermodynamics and XDLVO theory,the free energy changes in sorption of bacteria on minerals were calculated.The metabolic activities of bacteria in the system with the presence of various concentrations of clay minerals were monitored.The effects of minerals on bacterial activity were evaluated,and the toxicities of cadmium on P.putida in the absence and presence of montmorillonite were assessed by microcalorimetric technique.The main results were outlined as follow:
     1.Isothermal titration calorimetry(ITC),with a combination of chemical adsorption-desorption,scanning electron microscopy(SEM) and Fourier transform infrared spectra(FTIR),were firstly employed to investigate the chemical characteristics and the thermodynamics of bacterial adsorption on kaolinite,montmorillonite and goethite.The greatest amount of bacteria was adsorbed by goethite(100%),followed by kaolinite(96.5%),and to a lesser extent by montmorillonite(61.5%).The maximal adsorption of P.putida on kaolinite and montmorillonite was found at pHs equivalent or close to the zero point charge of the two clay minerals,showing the important role of the non-electrostatic forces in the adsorption of bacteria.Hydrogen bonding was considered to be one of the main forces controlling the sorption of P.putida on kaolinite and montmorillonite,while the functional groups such as carboxyl,amino and hydroxyl group on surface of B.subtilis were involved in the adsorption on soil clay minerals. Electrostatic force and hydrogen bonding were the major forces governing the sorption of the bacteria on goethite.The adsorption of bacteria on soil clay minerals was exothermic process.The adsorption enthalpy of P.putida on minerals followed the order:goethite (-7.55×10~(-8) mJ/cell)>kaolinite(-5.83×10~(-8) mJ/cell)>montmorillonite(-4.15×10~(-8) mJ/cell).The enthalpies decreased with increasing pH and ionic strength.For kaolinite and montmorillonite,the enthalpies increased with increasing temperature,suggesting that the adsorption of P.putida was driven by entropy,and compensated by enthalpy.For goethite,the enthalpies decreased with increasing temperature,showing that the adsorption was driven by enthalpy.The enthalpies evolved in the adsorption of B.subtilis on minerals were not correlated with pH,ionic strength and temperature,probably due to the fact that more biomolecules,functional groups and extracellular polymers are present on the surface of this gram positive bacterium.
     2.Based on surface thermodynamics and XDLVO theory,the free energy changes due to hydrophobic interactions(△G~H),the free energy changes originated from electrostatic force(△G~(EL)) and the total free energy changes for the adsorption of P.putida and B.subtilis on kaolinite and montmorillonite were obtained.The negative values of AGH and the positive values of△G~(EL) suggested that the hydrophobic force favored,and the electrostatic force unfavored the bacterial adsorption on kaolinite and montmorillonite. The absolute values of△G~H were much larger than those of△G~(EL),indicating that the hydrophobic interactions play a more important role than electrostatic force in bacterial adsorption.The negative total free energy changes(△G) suggested that the sorption of bacteria on clay minerals is a thermodynamically spontaneous process.Greater△G values for bacterial adsorption on kaolinite than on montmorillonite indicated higher affinity of bacteria for kaolinite than for montmorillonite,which was in agreement with the results obtained from chemical adsorption and ITC studies.
     3.By using isothermal microcalorimetry,the impacts of soil clay minerals on the metabolic activity of bacteria at exponential and stationary stages were clarified.In the exponential growth stage,the growth rate constant(k) of P.putida increased by 18%,the time to reach the maximal heat power of bacterial growth was decreased by 50 min,and the metabolism activation energy was decreased by 2%in the presence of low amount(5 mg mL~(-1)) of kaolinite.Similarly,for B.subtilis,the growth rate constant increased by 8%, the peak time was decreased by 30 min,and the activation energy of bacterial metabolism was decreased by 0.2%in the presence of low amount of montmorillonite.It is assumed that the exponential growth of P.putida and B.subtilis could be stimulated by low amount of kaolinite and montmorillonite.However,the activity of B.subtilis was depressed by kaolinite,and the activity of P.putida could also be inhibited by montmorillonite.The activities of two bacteria studied were always inhibited by goethite as the presence of the mineral resulted in marked increase of metabolic activation energy of bacteria.In stationary stage,the activities of P.putida and B.subtilis were inhibited by all the minerals.For B.thuringiensis,the growth rate and total heat output were increased by the presence of the three minerals.The enhancing effect of mineral on the exponential growth was in the order of montmorillonite>kaolinite>goethite.The sporulation of B. thuringiensis was depressed by these minerals.The inhibitory effect followed the order: goethite>kaolinite>montmorillonite.
     4.The toxicities of cadmium on P.putida in the absence and presence of montmorillonite were evaluated based on thermokinetic parameter.The peak time,peak height and total heat output of P.putida were increased by the presence of montmorillonite.There was no significant difference for the half inhibitory concentrations (IC_(50)) of cadmium to P.putida with and without montmorillonite.The alleviating effect of montmorillonite on the toxicity of Cd~(2+) to P.putida attributed to the adsorption of Cd~(2+) by the clay mineral and the enhancing effect of the clay on the activity of bacteria.
引文
1.卞为东,洪葵.FTIR光谱定性识别细菌合成的PHA.现代仪器使用与维修,1999,2.49-51.
    2.陈小娟,沈韫芬,刘义,冯伟松,缪炜.利用微量热法研究Cd~(2+)和Cu~(2+)对嗜热四膜虫(Tetrahymena thermophila的毒性效应.应用与环境生物学报,2004,10,745-749.
    3.傅建华,邱冠周,胡岳华.浸矿细菌表面性质研究.金属矿山,2004,9,19-24.
    4.喻子牛.苏云金芽孢杆菌,北京:科学出版社,1990.
    5.熊毅等.土壤胶体(第一册),北京:科学出版社,1983.
    6.汤厚宽,谢昌礼,宋昭华,屈松生,廖耀庭,刘海水.生物热动力学研究-大肠杆菌生长速率和激活能.物理化学学报,1987,3,113-115.
    7.谢昌礼,徐贵端,屈松生.热动力学方法的研究I.反应速率常数、活化能的量热法测定.物理化学学报,1986,2,363-369.
    8.谢昌礼,汤厚宽,宋昭华,屈松生,廖耀庭,刘海水.细菌生长的热谱测定.微生物学报,1989,29,149-151.
    9.Absolom,D.R.,Lamberti,E V.,Policova,Z.,Zingg,W.,van Oss,C.J.,and Neumann,A.W.Surface thermodynamics of bacterial adhesion.Appl Environ Microbiol,1983,46,90-97.
    10.Abu-Lail,N.I.,and Camesano,T.A.Role of lipopolysaccharides in the adhesion,retention,and transport of Escherichia coli JM109.Environmental Science and Technology,2003,37,2173-2183.
    11.Ahimou,F.,Paquot,M.,Jacques,P.,Thonart,P.,and Rouxhet,P.G.Influence of electrical properties on the evaluation of the surface hydrophobieity of Bacillus subtilis.Journal of Microbiological Methods,2001,45,119-126.
    12.Airoldi,C.,and Prado,A.G.S.The inhibitory biodegradation effects of the pesticide 2,4-D when chemically anchored on silica gel.Thermochimica Acta,2002,394,163-169.
    13.Ambroz,Z.Effect of bentonite on the enzymatic activity of soil microflora.Soils and Fertility.1974,32,2875
    14.Amiel,C.,Mariey,L.,Denis,C.,Pichon,P.,and Travert,J.FTIR spectroscopy and taxonomic purpose:Contribution to the classification of lactic acid bacteria.Lait,2001,81,249-255.
    15.Ams,D.A.,Fein,J.B.,Dong,H.L.,and Maurice,P.A.Experimental measurements of the adsorption of Bacillus subtilis and Pseudomonas mendocina onto Fe-oxyhydroxide-coated and uncoated quartz grains.Geomicrobiology Journal,2004,21,511-519.
    16. Appenzeller, B. M. R., Duval, Y. B., Thomas, F., and Block, J. C. Influence of phosphate on bacterial adhesion onto iron oxyhydroxide in drinking water. Environmental Science & Technology, 2002, 36, 646-652.
    
    17. Atkinson, R. J., Posner, A. M., and Quirk., J. P. Adsorption of potentialdetermining ions at the ferric oxide aqueous electrolyte interface. Journal of Physical Chemistry, 1967,71,550-558.
    
    18. Azeredo, J., Visser, J., and Oliveira, R. Exopolymers in bacterial adhesion: Interpretation in terms of DLVO and XDLVO theories. Colloids and Surfaces B: Biointerfaces, 1999,14, 141-148.
    
    19. Babich, H., and Stotzky, G Effect of cadmium on fungi and on interactions between fungi and bacteria in soil: Influence of clay minerals and pH. Appl Environ Microbiol, 1977a, 33,1059-1066.
    
    20. Babich, H., and Stotzky, G Reductions in the toxicity of cadmium to microorganisms by clay minerals. Appl Environ Microbiol, 1977b, 33,696-705.
    
    21. Babich, H., and Stotzky, G Sensitivity of various bacteria, including actinomycetes, and fungi to cadmium and the influence of pH on sensitivity. Appl Environ Microbiol, 1977c, 33, 681-695.
    
    22. Baldauf, N. A., Rodriguez-Romo, L. A., Mannig, A., Yousef, A. E., and Rodriguez-Saona, L. E. Effect of selective growth media on the differentiation of Salmonella enterica serovars by Fourier-transform mid-infrared spectroscopy. Journal of Microbiological Methods, 2007, 68,106-114.
    
    23. Barja, I., and Nunez, L. Microcalorimetric measurements of the influence of glucose concentration on microbial activity in soils. Soil Biology and Biochemistry, 1999, 31, 441-447.
    
    24. Barja, M. I., Proupin, J., and Nunez, L. Microcalorimetric study of the effect of temperature on microbial activity in soils. Thermochimica Acta, 1997, 303,155-159.
    
    25. Barros, N., and Feijoo, S. A combined mass and energy balance to provide bioindicators of soil microbiological quality. Biophysical Chemistry, 2003, 104, 561-572.
    
    26. Barros, N., Feijoo, S., and Balsa, R. Comparative study of the microbial activity in different soils by the microcalorimetric method. Thermochimica Acta, 1997, 296, 53-58.
    
    27. Barros, N., Feijoo, S., Simoni, A., Critter, S. A. M., and Airoldi, C. Interpretation of the metabolic enthalpy change, △Hmet, calculated for microbial growth reactions in soils. Journal of Thermal Analysis and Calorimetry, 2001, 63, 577-588.
    
    28. Barros, N., Feijoo, S., Simoni, J. A., Prado, A. G S., Barboza, F. D., and Airoldi, C. Microcalorimetric study of some amazonian soils. Thermochimica Acta, 1999, 328, 99-103.
    
    29. Barros, N., Gomez-Orellana, I., Feijoo, S., and Balsa, R. The effect of soil moisture on soil microbial activity studied by microcalorimetry. Thermochimica Acta, 1995, 249,161-168.
    
    30. Becker, K., Al Laham, N., Fegeler, W., Proctor, R. A., Peters, G., and von Eiff, C. Fourier-transform infrared spectroscopic analysis is a powerful tool for studying the dynamic changes in staphylococcus aureus small-colony variants. Journal of Clinical Microbiology, 2006,44, 3274-3278.
    
    31. Beezer, A. E. Biological microcalorimetry, Academic Press 1980, London,.
    
    32. Beezer, A. E., Newell, R. D., and Tyrrell, H. J. Flow microcalorimetric investigation of yeast growth in a complex medium. Microbios, 1978,22, 73-84.
    
    33. Bellon-Fontaine, M. N., Mozes, N., van der Mei, H. C., Sjollema, J., Cerf, O., Rouxhet, P. G, and Busscher, H. J. A comparison of thermodynamic approaches to predict the adhesion of dairy microorganisms to solid substrata. Cell Biophysics, 1990,17,93-106.
    
    34. Beveridge, T. J., and Murray, R. G. Reassembly in vitro of the superficial cell wall components of Spirillum putridiconcyhylium. J Ultrastruct Res, 1976, 55,105-118.
    
    35. Beveridge, T. J., and Murray, R. G. Sites of metal deposition in the cell wall of Bacillus subtilis. J Bacteriol, 1980,141, 876-887.
    
    36. Boerner, R. E. J., and Brinkman, J. A. Fire frequency and soil enzyme activity in southern Ohio oak-hickory forests. Applied Soil Ecology, 2003,23,137-146.
    
    37. Boling, E. A., Blanchard, G. C., and Russell, W. J. Bacterial identification by microcalorimetry. Nature, 1973, 241,472-473.
    
    38. Bos, R., and Busscher, H. J. Role of acid-base interactions on the adhesion of oral Streptococci and Actinomyces to hexadecane and chloroform - influence of divalent cations and comparison between free energies of partitioning and free energies obtained by extended DLVO analysis. Colloids and Surfaces B-Biointerfaces, 1999, 14,169-177.
    
    39. Botta, G. A. Surface components in adhesion of group a Streptococci to pharyngeal epithelial cells. Current Microbiology, 1981, 6,101-104.
    
    40. Bottcher, H., and Furst, P. Direct microcalorimetry as a technique in cell cultures. Baillieres Clin Endocrinol Metab, 1997,11, 739-752.
    
    41. Bruinsma, G. M., De Vries, J., Van Der Mei, H. C., and Busscher, H. J. Adhesion of Pseudomonas aeruginosa to contact lenses after exposure to multi-purpose lens care solutions. Journal of Adhesion Science and Technology, 2001a, 15,1453-1461.
    
    42. Bruinsma, G. M., Rustema-Abbing, M., van der Mei, H. C., and Busscher, H. J. Effects of cell surface damage on surface properties and adhesion of Pseudomonas aeruginosa. Journal of Microbiological Methods, 2001b, 45,95-101.
    
    43. Caccavo, F., Jr., Schamberger, P. C., Keiding, K., and Nielsen, P. H. Role of hydrophobicity in adhesion of the dissimilatory Fe(Ⅲ)-reducing bacterium shewanella alga to amorphous Fe(Ⅲ) oxide. Applied and Environmental Microbiology, 1997,63, 3837-3843.
    
    44. Caccavo Jr, F., and Das, A. Adhesion of dissimilatory Fe(Ⅲ)-reducing bacteria to Fe(Ⅲ) minerals. Geomicrobiology Journal, 2002,19,161-177.
    
    45. Cai, P., Huang, Q., Jiang, D., Rong, X., and Liang, W. Microcalorimetric studies on the adsorption of DNA by soil colloidal particles. Colloids and Surfaces B: Biointerfaces, 2006a, 49,49-54.
    
    46. Cai, P., Huang, Q., Zhang, X., and Chen, H. Adsorption of DNA on clay minerals and various colloidal particles from an alfisol. Soil Biology and Biochemistry, 2006b, 38, 471-476.
    
    47. Cai, P., Huang, Q., Zhu, J., Jiang, D., Zhou, X., Rong, X., and Liang, W. Effects of low-molecular-weight organic ligands and phosphate on DNA adsorption by soil colloids and minerals. Colloids and Surfaces B: Biointerfaces, 2007,54,53-59.
    
    48. Cai, P., Huang, Q. Y., and Zhang, X. W. Interactions of DNA with clay minerals and soil colloidal particles and protection against degradation by dnase. Environmental Science and Technology, 2006c, 40,2971-2976.
    
    49. Calamai, L., Lozzi, I., Stotzky, G., Fusi, P., and Ristori, G. G. Interaction of catalase with montmorillonite homoionic to cations with different hydrophobicity: Effect on enzymatic activity and microbial utilization. Soil Biology and Biochemistry, 2000, 32,815-823.
    
    50. Camesano, T. A., and Abu-Lail, N. I. Heterogeneity in bacterial surface polysaccharides, probed on a single-molecule basis. Biomacromolecules, 2002, 3, 661-667.
    
    51. Camesano, T. A., and Logan, B. E. Probing bacterial electrosteric interactions using atomic force microscopy. Environmental Science & Technology, 2000, 34, 3354-3362.
    
    52. Camesano, T. A., Unice, K. M., and Logan, B. E. Blocking and ripening of colloids in porous media and their implications for bacterial transport. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 1999,160,291-308.
    
    53. Cao, W., and Lai, L. A thermodynamic study on the formation and stability of DNA duplex at transcription site for DNA binding proteins gcn4. Biophysical Chemistry, 1999,80,217-226.
    
    54. Chaerun, S. K., and Tazaki, K. How kaolinite plays an essential role in remediating oil-polluted seawater. Clay Minerals, 2005,40,481-491.
    
    55. Chaerun, S. K., Tazaki, K., Asada, R., and Kogure, K. Interaction between clay minerals and hydrocarbon-utilizing indigenous microorganisms in high concentrations of heavy oil: Implications for bioremediation. Clay Minerals, 2005, 40,105-114.
    
    56. Chardin, Dolla, Chaspoul, Fardeau, Gallice, and Bruschi. Bioremediation of chromate: Thermodynamic analysis of the effects of Cr(Ⅵ) on sulfate-reducing bacteria. Applied Microbiology and Biotechnology, 2002,60, 352-360.
    
    57. Chattopadhyay, S., and Puls, R. W. Adsorption of bacteriophages on clay minerals. Environmental Science and Technology, 1999,33, 3609-3614.
    58. Chen, G., and Strevett, K. A. Surface free energy relationships used to evaluate microbial transport. Journal of Environmental Engineering-Asce, 2002, 128, 408-415.
    
    59. Chen, G., and Zhu, H. Bacterial adhesion to silica sand as related to Gibbs energy variations. Colloids Surf B Biointerfaces, 2005,44,41-48.
    
    60. Chen, W.-Y., Lee, J.-F., Wu, C.-R, and Tsao, H.-K. Microcalorimetric studies of the interactions of lysozyme with immobilized Cu(Ⅱ): Effects of ph value and salt concentration. Journal of Colloid and Interface Science, 1997,190,49-54.
    
    61. Chen, W., Bruhlmann, R, Richins, R. D., and Mulchandani, A. Engineering of improved microbes and enzymes for bioremediation. Current Opinion in Biotechnology, 1999,10,137-141.
    
    62. Chenu, C. Clay- or sand-polysaccharide associations as models for the interface between microorganisms and soil: Water related properties and microstructure. Geoderma, 1993, 56,143-156.
    
    63. Chenu, C., Hassink, J., and Bloem, J. Short-term changes in the spatial distribution of microorganisms in soil aggregates as affected by glucose addition. Biology and fertility of soils, 2001, 34,349-356.
    
    64. Chenu, C., Pons, C. H., and Robert, M. Interaction of kaolinite and montmorillonite with neutral polysaccharides. In: Proceedings of the international clay conference (L. G Schultz, H. van Olphen and R A. Mumpton, eds.), pp. 375-381. The clay minerals society 1987, Bloomington.
    
    65. Chenu, C., and Stotzky, G. Interactions between microorganisms and soil particles: An overview. In: Interactions between soil particles and microorganisms (P. M. Huang, J.-M. Bollag and N. Senesi., eds.), pp. 4-29. John Wiley & Sons 2002, Chichester.
    
    66. Choromanska, U., and DeLuca, T. H. Microbial activity and nitrogen mineralization in forest mineral soils following heating: Evaluation of post-fire effects. Soil Biology and Biochemistry, 2002, 34,263-271.
    
    67. Chrestensen, C. A., Starke, D. W., and Mieyal, J. J. Acute cadmium exposure inactivates thioltransferase (glutaredoxin), inhibits intracellular reduction of protein-glutathionyl-mixed disulfides, and initiates apoptosis. 2000, 275, pp. 26556-26565.
    
    68. Cooper, A., and Johnson, C. M. Introduction to microcalorimetry and biomolecular energetics. Methods Mol Biol, 1994,22,109-124.
    
    69. Critter, S. A. M., and Airoldi, C. Application of calorimetry to microbial biodegradation studies of agrochemicals in oxisols. J Environ Qual, 2001, 30, 954-959.
    
    70. Critter, S. A. M., Freitas, S. S., and Airoldi, C. Microbial biomass and microcalorimetric methods in tropical soils. Thermochimica Acta, 2002, 394, 145-154.
    71. Curk, M. C., Peladan, F., and Hubert, J. C. Fourier-transform infrared (FTIR) spectroscopy for identifying Lactobacillus species. Ferns Microbiology Letters, 1994, 123,241-248.
    
    72. Deo, N., Natarajan, K. A., and Somasundaran, P. Mechanisms of adhesion of Paenibacillus polymyxa onto hematite, corundum and quartz. International Journal of Mineral Processing, 2001,62,27-39.
    
    73. Diab, S., and Shilo, M. Effect of adhesion to particles on the survival and activity of Mtrosomonas. sp. And .Nitrobacter sp. Archives of Microbiology, 1988, 150, 387-393.
    
    74. Ding, X., and Henrichs, S. M. Adsorption and desorption of proteins and polyamino acids by clay minerals and marine sediments. Marine Chemistry, 2002, 77,225-237.
    
    75. Dong, H., Onstott, T. C, Ko, C.-H., Hollingsworth, A. D., Brown, D. G, and Mailloux, B. J. Theoretical prediction of collision efficiency between adhesion-deficient bacteria and sediment grain surface. Colloids and Surfaces B: Biointerfaces, 2002,24,229-245.
    
    76. Dufrene, Y., Boonaert, C. J., and Rouxhet, P. G Role of proteins in the adhesion of azospirillum brasilense to model substrata. In :Effect of mineral-organic-microorganisms interactions on soil and freshwater environments. (J. Berthelin, P. M. Huang, J.-M. Bollag and F. Andreux, eds.), pp. 261-274. Kluwer-Plenum 1999, New York.
    
    77. Fendorf, S. E., Guangchao, Li., Mattthew, J. Mora., and L.-M., Dandurand. Imaging a Pseudomonad in mineral suspensions with scanning force and electron microscopy. Soil Science Society of America Journal 1997,61,109-115.
    
    78. Feng, Y, Park, J. H., Voice, T. C., and Boyd, S. A. Bioavailability of soil-sorbed biphenyl to bacteria. Environmental Science and Technology, 2000,34,1977-1984.
    
    79. Feng, Y, Racke, K. D., and Bollag, J. Isolation and characterization of a chlorinated-pyridinol-degrading bacterium. Appl Environ Microbiol, 1997, 63, 4096-4098.
    
    80. Flemming, C. A., Ferris, F. G., Beveridge, T. J., and Bailey, G. W. Remobilization of toxic heavy metals adsorbed to bacterial wall-clay composites. Applied and Environmental Microbiology, 1990, 56, 3191-3203.
    
    81. Fomina, M., and Gadd, G. M. Influence of clay minerals on the morphology of fungal pellets. Mycological Research, 2002,106,107-117.
    
    82. Fowle, D. A., and Fein, J. B. Experimental measurements of the reversibility of metal-bacteria adsorption reactions. Chemical Geology, 2000,168,27-36.
    
    83. Gadd, G. M. Heavy metal accumulation by bacteria and other microorganisms. Cellular and Molecular Life Sciences, 1990,46, 834-840.
    
    84. Gadd, G. M., and Griffiths, A. J. Microorganisms and heavy metal toxicity. Microbial Ecology, 1977,4,303-317.
    
    85. Gannon, J. T., Manilal, V. B., and Alexander, M. Relationship between cell surface properties and transport of bacteria through soil. Applied and Environmental Microbiology, 1991, 57,190-193.
    
    86. Gerson, D. F., and Scheer, D. Cell surface energy, contact angles and phase partition. Ⅲ. Adhesion of bacterial cells to hydrophobic surfaces. Biochim Biophys Acta, 1980, 602,506-510.
    
    87. Gianfreda, L., Rao, M. A., and Violante, A. Invertase P-fructosidase: Effects of montmorillonite, Al-hydroxide and Al(OH)_x-montmorillonite complex on activity and kinetic properties. Soil Biology and Biochemistry, 1991,23, 581-587.
    
    88. Glasauer, S., Langley, S., and Beveridge, T. J. Sorption of Fe(Hydr)oxides to the surface of Shewanella putrefaciens: Cell-bound fine-grained minerals are not always formed De Novo. Applied and Environmental Microbiology, 2001, 67, 5544-5550.
    
    89. Goldberg, R. N., and Armstrong, G T. Microcalorimetry: A tool for biochemical analysis. Med Instrum, 1974, 8,30-36.
    
    90. Grasso, D., Smets, B. R, and Strevett, K. A. Impact of physiological state on surface thermodynamics and adhesion of Pseudomonas aeruginosa, Environment Science and Technology, 1996,30,3604-3608.
    
    91. Grasso, D., Subramaniam, K., Butkus, M., Strevett, K., and Bergendahl, J. A review of non-DLVO interactions in environmental colloidal systems. Reviews in Environmental Science and Biotechnology, 2002, 1,17-38.
    
    92. Grunwald, E., and Steel, C. Solvent reorganization and thermodynamic enthalpy-entropy compensation. Journal of the American Chemical Society, 1995, 117,5687-5692.
    
    93. Guerin, W. R, and Boyd, S. A. Differential bioavailability of soil-sorbed naphthalene to two bacterial species. Applied and Environmental Microbiology, 1992, 58, 1142-1152.
    
    94. Hato, M. Attractive forces between surfaces of controlled "hydrophobicity" across water: A possible range of "hydrophobic interactions" between macroscopic hydrophobic surfaces across water. 1996,100,18530-18538.
    
    95. Haynes, C. A., and Norde, W. Globular proteins at solid/liquid interfaces. Colloids and Surfaces B: Biointerfaces, 1994,2, 517-566.
    
    96. Haynes, C. A., and Norde, W. Structures and stabilities of adsorbed proteins. Journal of Colloid and Interface Science, 1995,169,313-328.
    
    97. He, H. P., Yang, D., Yuan, P., Shen, W., and Frost, R. L. A novel organoclay with antibacterial activity prepared from montmorillonite and Chlorhexidini acetas. Journal of Colloid and Interface Science, 2006,297,235-243.
    
    98. He, L. M., and Tebo, B. M. Surface charge properties of and Cu(Ⅱ) adsorption by spores of the marine Bacillus sp. Strain SG-1. Appl Environ Microbiol, 1998, 64, 1123-1129.
    
    99. Hedlund, K. Soil microbial community structure in relation to vegetation management on former agricultural land. Soil Biology & Biochemistry, 2002, 34, 1299-1307.
    100.Hendricks,D.W.,Post,F.J.,and Khairnar,D.R.Adsorption of bacteria on soils:Experiments,thermodynamic rationale,and application.Water,Air,& Soil Pollution,1979,12,219-232.
    101.Hermesse,M.P.,Dereppe,C.,Bartholome,Y.,and Rouxhet,P.G.Immobilisation of Acetobacter aceti by adhesion.Canadian Journal of Microbiology,1998,34,638-644.
    102.Hogg,R.,Healy,T.W.,and Fuerstenau,D.W.Mutual coagulation of colloidal dispersions.Royal Society of Chemistry.1966,62,1638-1651.
    103.Huang,Q.,Liang,W.,and Cai,P.Adsorption,desorption and activities of acid phosphatase on various colloidal particles from an ultisol.Colloids and Surfaces B:Biointerfaces,2005a,45,209-214.
    104.Huang,Q.,and Shindo,H.Effects of copper on the activity and kinetics of free and immobilized acid phosphatase.Soil Biology and Biochemistry,2000,32,1885-1892.
    105.Huang,Q.,and Shindo,H.Activity and kinetics of flee and immobilized acid phosphatase.Soil science and plant nutrition,2001,47,767-772.
    106.Huang,Q.Y.,Chen,W.L.,and Xu,L.H.Adsorption of copper and cadmium by Cu-and Cd-resistant bacteria and their composites with soil colloids and kaolinite.Geomicrobiology Journal,2005b,22,227-236.
    107.Jiang,D.,Huang,Q.,Cai,P.,Rong,X.,and Chen,W.Adsorption of Pseudomonas putida on clay minerals and iron oxide.Colloids and Surfaces B:Biointerfaces,2007,54,217-221.
    108.Jodar-Reyes,A.B.,Martin-Rodriguez,A.,and Ortega-Vinuesa,J.L.An enthalpic analysis on the aggregation of colloidal particles studied by microcalorimetry.J Colloid Interface Sci,2001,237,6-10.
    109.Jones,D.L.,and Edwards,A.C.Influence of sorption on the biological utilization of two simple carbon substrates.Soil Biology and Biochemistry,1998,30,1895-1902.
    110.Jones,J.F.,Feick,J.D.,Imoudu,D.,Chukwumah,N.,Vigeant,M.,and Velegol,D.Oriented adhesion of Escherichia coli to polystyrene particles.Appl Environ Microbiol,2003,69,6515-6519.
    111.Kamel,Z.Toxicity of cadmium to two Streptomyces species as affected by clay minerals.Plant and Soil,1986,93,195-203.
    ll2.Keen,G.A.,and Prosser,J.I.The surface growth and activity of Nitrobacter.Microbial Ecology,1988,15,21-39.
    113.Kemp,R.B.An historical review of developments in cellular microcalorimetry.Pure & Applied Chemistry,1993,65,1875-1880.
    114.Khandal,R.K.,Chenu,C.,Lamy,I.,and Terce,M.Adsorption of different polymers on kaolinite and their effect on flumequine adsorption.Applied Clay Science,1992,6,343-357.
    115.Kimura,T.,and Takahashi,K.Calorimetric studies of soil microbes:Quantitative relation between heat evolution during microbial degradation of glucose and changes in microbial activity in soil. Journal of General Microbiology, 1985,131,3083-3089.
    116.Kostka, J. E., Haefele, E., Viehweger, R., and Stucki, J. W. Respiration and dissolution of Iron(Ⅲ) containing clay minerals by bacteria. Environmental Science & Technology, 1999a, 33, 3127-3133.
    117. Kostka, J. E., Wu, J., Nealson, K. H., and Stucki, J. W. The impact of structural Fe(Ⅲ) reduction by bacteria on the surface chemistry of smectite clay minerals. Geochimica et Cosmochimica Acta, 1999b, 63, 3705-3713.
    118.Kozlov, A. G., and Lohman, T. M. Calorimetric studies of E. coli SSB protein-single stranded-DNA interactions. Effects of monovalent salts on binding enthalpy. J. Mol. Biol., 1998,278,999-1014.
    119.Kubicki, J. D., Schroeter, L. M, Itoh, M. J., Nguyen, B. N., and Apitz, S. E. Attenuated total reflectance Fourier-transform infrared spectroscopy of carboxylic acids adsorbed onto mineral surfaces. Geochimica et Cosmochimica Acta, 1999, 63, 2709-2725.
    120.Lavie, S., and Stotzky, G. Adhesion of the clay minerals montmorillonite, kaolinite, and attapulgite reduces respiration of Histoplasma capsulatum. Appl Environ Microbiol, 1986a, 51, 65-73.
    
    121. Lavie, S., and Stotzky, G. Interactions between clay minerals and siderophores affect the respiration of Histoplasma capsulatum. Appl Environ Microbiol, 1986b, 51, 74-79.
    
    122. Lee, V. A., Craig, R. G., Filisko, F. E., and Zand, R. Microcalorimetry of the adsorption of lysozyme onto polymeric substrates. J Colloid Interface Sci, 2005, 288, 6-13.
    
    123.Levi-Minzi, R., Soldatini, G. F., and Riffaldi, R. Cadmium adsorption by soils. 1976, 27, pp. 10-15. Blackwell Synergy.
    
    124. Li, B., and Logan, B. E. Bacterial adhesion to glass and metal-oxide surfaces. Colloids and Surfaces B: Biointerfaces, 2004, 36, 81-90.
    
    125. Li, X., Liu, Y, Wu, J., Liang, H., and Qu, S. The action of the selenomorpholine compounds on Escherichia coli growth by microcalorimetry. Journal of Thermal Analysis and Calorimetry, 2002,67,589-595.
    
    126. Lin, F.-Y., Chen, W.-Y, and Sang, L.-C. Microcalorimetric studies of the interactions of lysozyme with immobilized metal ions: Effects of ion, pH value, and salt concentration. Journal of Colloid and Interface Science, 1999,214, 373-379.
    
    127. Lin, M. S., Chiu, H. M., Fan, F. J., Tsai, H. T., Wang, S. S., Chang, Y, and Chen, W. Y. Kinetics and enthalpy measurements of interaction between p-amyloid and liposomes by surface plasmon resonance and isothermal titration microcalorimetry. Colloids and Surfaces B: Biointerfaces, 2007, 58, 231-236.
    
    128. Lin, X., Liu, Y., Liu, P., Qu, S., and Yu, Z. Microcalorimetric investigation on the growth model and the protein yield of Bacillus thuringiensis. Journal of Biochemical and Biophysical Methods,2004,59,267-274.
    129.Lindqvist,R.,and Bengtsson,G.Dispersal dynamics of groundwater bacteria.Microbial Ecology,1991,21,49-72.
    130.Lindqvist,R.,and Enfield,C.G.Cell density and Non-equilibrium sorption effects on bacterial dispersal in groundwater microcosms.Microbial ecology,1992,24,25-41.
    131.Liu,P.,Liu,Y.,Jia,H.,Fengjiao,D.,Daiwen,P.,and Songsheng,Q.Microcalorimetric investigation of the effect of La~(3+) on mitochondria isolated from avian chicken liver tissue cells.Journal of Thermal Analysis and Calorimetry,2003a,73,843-849.
    132.Liu,Y.,Deng,F.,Zhao,R.,Shen,X.,Wang,C.,and Qu,S.-s.Microcalorimetrie studies of the toxic action of La~(3+) in mitochondria isolated from star-cross 288chicken heart tissue cells.Chemosphere,2000,40,851-854.
    133.Liu,Y.,Yah,C.,Wang,T.,Zhao,R.,Qu,S.,and Shen,P.Kinetics of the toxic action of Pb~(2+) on Rhizopus nigricans as studied by microcalorimetry.Thermochimica Acta,1999,333,103-108.
    134.Liu,Y.,Yu,H.G.,Huang,Y.P.,Shen,P.,and Qu,S.S.Microcalorimetric studies of the action of Na_2SeO_3 on the growth of Halobacterium halobium R1.Biol Trace Elem Res,2003b,92,83-91.
    135.Liu,Y.W.,Wang,Z.Y.,Liu,Y.,Wang,C.X.,Qu,S.S.,Deng,F.J.,and Li,F.J.Microcalorimetry study on the effect of Nd(III) ion on metabolism of mitochondria isolated from fish liver tissue.Journal of Thermal Analysis and Calorimetry,2001,65,761-767.
    136.Lorenz,M.G.,and Wackemagel,W.Bacterial gene transfer by natural genetic transformation in the environment.Microbiology Review,1994,58,563-602.
    137.Lower,B.H.,Yongsunthon,R.,III,F.P.V.,and Lower,S.K.Simultaneous force and fluorescence measurements of a protein that forms a bond between a living bacterium and a solid surface.Journal of Bacteriology,2005,187,2127-2137.
    138.Lower,S.K.,Hochella,M.E,Jr.,and Beveridge,T.J.Bacterial recognition of mineral surfaces:Nanoscale interactions between Shewanella and alpha -FeOOH.Science,2001a,292,1360-1363.
    139.Lower,S.K.,Tadanier,C.J.,and Hochella Jr,M.F.Dynamics of the mineral-microbe interface:Use of biological force microscopy in biogeochemistry and geomicrobiology.Geomicrobiology Journal,2001b,18,63-76.
    140.Lumry,R.,and Rajender,S.Enthalpy-entropy compensation phenomena in water solutions of proteins and small molecules:A ubiquitous property of water.Biopolymers,1970,9,1125-1227.
    141.Malik,M.,and Letey,J.Adsorption of polyacrylamide and polysaccharide polymers on soil materials.Soil Science Society of American Jounal,1991,55,380-383.
    142.Manini,E.,and Luna,G.M.Influence of the mineralogical composition on microbial activities in marine sediments: An experimental approach. Chemistry and Ecology, 2003,19,399-410.
    
    143. Marshall, K. C. Interaction between colloidal montmorillonite and cells of rhizobium species with different inogenic surfaces. Biochim Biophys Acta, 1968,156, 179-186.
    
    144. Marshall, K. C. Orientation of clay particles sorbed on bacteria possessing different ionogenic surfaces. Biochim Biophys Acta, 1969,193,472-474.
    
    145. Marshall, K. C. Clay mineralogy in relation to survival of soil bacteria. Annual Review of Phytopathology, 1975,13, 357-373.
    
    146. Marshall, K. C. Interfaces in microbial ecology, Harvard University Press, Cambrige, MA. 1976.
    
    147. Marshall, K. C, Stout, R., and Mitchell, R. Mechanisms of the initial events in the sorption of marine bacteria to surfaces. Journal of General Microbiology, 1971, 68, 337-348.
    
    148. Martin, J. P., Filip, Z., and Haider, K. Effect of montmorillonite and humate on growth and metabolic activity of some actinomycetes. Soil Biology and Biochemistry, 1976,8,409-413.
    
    149.Masaphy, S., Fahima, T., Levanon, D., Henis, Y., and Mingelgrin, U. Parathion degradation by Xanthomonas sp. And its crude enzyme extract in clay suspensions. Journal of environmental quality 1996,25,1248-1255.
    150. Maurice, P. A., Vierkorn, M. A., Hersman, L. E., and Fulghum, J. E. Dissolution of well and poorly ordered kaolinites by an aerobic bacterium. Chemical Geology, 2001, 180,81-97.
    151.McGuinness, S. M., and Barisas, B. G Actue toxicity measurement on aquatic pollutants using microcalorimetry on tissue-cultured cells. Environ. Sci. Technol., 1991,25,1098-1103.
    152.McGuinness, S. M., Roess, D. A., and Barisas, B. G Acute toxicity effects of mercury and other heavy metals on hela cells and human lymphocytes evaluated via microcalorimetry. Thermochimica Acta, 1990,172,131-145.
    153.Michel, C, M, B., C, A., A, B., and M, B. Enzymatic reduction of chromate: Comparative studies using sulfate-reducing bacteria key role of polyheme cytochromes c and hydrogenases. Appl Microbiol Biotechnol, 2001, 55,95-100.
    154. Mills, A. L., Herman, J. S., Hornberger, G M., and Dejesus, T. H. Effect of solution ionic-strength and iron coatings on mineral grains on the sorption of bacterial-cells to quartz sand. Applied and Environmental Microbiology, 1994,60, 3300-3306.
    155.Morra, M., and Cassinelli, C. Bacterial adhesion to polymer surfaces: A critical review of surface thermodynamic approaches. J Biomater Sci Polym Ed, 1997, 9, 55-74.
    156.Morsen, A., and Rehm, H. J. Degradation of phenol by a mixed culture of Pseudomonas putida and Cryptococcus elinovii adsorbed on activated carbon. Applied Microbiology and Biotechnology, 1987,26, 283-288.
    157.Mullen,M.D.,Wolf,D.C.,Ferris,F.G.,Beveridge,T.J.,Flemming,C.A.,and Bailey,G.W.(1989).Bacterial sorption of heavy metals.Vol.55,pp.3143-3149.
    158.Nunez-Regueira,L.,Núnez-Fernández,O.,Anón,J.A.R.,and Castineiras,J.P.The influence of some physicochemical parameters on the microbial growth in soils.Thermochimica Acta,2002,394,123-131.
    159.Nunez-Regueira,L.,Rodríguez-Anón,J.A.,Proupín-Castineiras,J.,and Núnez-Fernández,O.Microcalorimetric study of changes in the microbial activity in a humic cambisol after reforestation with Eucalyptus in Galicia(Nw Spain).Soil Biology and Biochemistry,2006,38,115-124.
    160.Naeem,A.,Woertz,J.R.,and Fein,J.B.Experimental measurement of proton,Cd,Pb,Sr,and Zn adsorption onto the fungal species Saccharomyces cerevisiae.Environmental Science & Technology,2006,40,5724-5729.
    161.Naidu,R.,and Harter,R.D.Effect of different organic ligands on cadmium sorption by and extractability from soils.Soil Science Society of America.1998.62,644-650.
    162.Naidu,R.,Kookana,R.S.,Sumner,M.E.,Harter,R.D.,and Tiller,K.G.Cadmium sorption and transport in variable charge soils:A review.American Society of Agronomy.1997,26,602-617.
    163.Nannipieri,P.,Ascher,J.,Ceccherini,M.T.,Landi,L.,Pietramellara,G.,and Renella,G.Microbial diversity and soil functions.European Journal of Soil Science,2003,54,655-670.
    164.Naumann,D.,Helm,D.,and Labischinski,H.Microbiological characterizations by FTIR spectroscopy.Nature,1991,351,81-82.
    165.Neu,T.R.Significance of bacterial surface-active compounds in interaction of bacteria with interfaces.Microbiological Reviews,1996,60,151.
    166.Neumann,A.W.,Good,R.J.,Hope,C.J.,and Sejpal,M.An equation-of-state approach to determine surface tensions of low-energy solids from contact angles.1974,49,291-304.
    167.Newman,H.N.Microbial films in nature.Microbios,1974,9,247-257.
    168.Nsabimana,D.,Haynes,R.J.,and Wallis,F.M.Size,activity and catabolic diversity of the soil microbial biomass as affected by land use.Applied Soil Ecology,2004,26,81-92.
    169.Nunez-Regueira,L.,Rodriguez-Anón,J.A.,Proupín-Castineiras,J.,and Núnez-Femández,O.Influence of the agricultural exploitation processes on the productivity capacity control of soils-design of an experimental procedure.Journal of Thermal Analysis and Calorimetry,2005,80,35-41.
    170.Nunez-Regueira,L.,Rodriguez-Anon,J.A.,Proupin-Castineiras,J.,and Nunez-Femandez,O.Microcalorimetric study of changes in the microbial activity in a humic Cambisol after reforestation with Eucalyptus in Galicia(NW Spain).Soil Biology and Biochemistry,2006,38,115-124.
    171.Nunez,L.,Barros,N.,and Barja,I.Effect of storage of soil at 48 ℃ on the microbial activity studied by microcalorimetry. Journal of Thermal Analysis and Calorimetry, 1994a, 41,1379-1383.
    172. Nunez, L., Barros, N., and Barja, I. A kinetic analysis of the degradation of glucose by soil microorganisms studied by microcalorimetry. Thermochimica Acta, 1994b, 237,73-81.
    173.0hmura, N., Kitamura, K., and Saiki, H. Selective adhesion of Thiobacillus ferrooxidans to pyrite. Applied and Environmental Microbiology, 1993, 59, 4044-4050.
    174.0hnuki, T., Yoshida, T., Ozaki, T., Samadfam, M., Kozai, N., Yubuta, K., Mitsugashira, T., Kasama, T., and Francis, A. J. Interactions of uranium with bacteria and kaolinite clay. Chemical Geology, 2005,220, 237-243.
    175.Omoike, A., and Chorover, J. Spectroscopic study of extracellular polymeric substances from Bacillus subtilis: Aqueous chemistry and adsorption effects. Biomacromolecules, 2004, 5,1219-1230.
    176.Omoike, A., and Chorover, J. Adsorption to goethite of extracellular polymeric substances from Bacillus subtilis. Geochimica et Cosmochimica Acta, 2006, 70, 827-838.
    177.Omoike, A., Chorover, J., Kwon, K. D., and Kubicki, J. D. Adhesion of bacterial exopolymers to alpha-FeOOH: Inner-sphere complexation of phosphodiester groups. Langmuir, 2004,20,11108-11114.
    178. Parent, M. E., and Velegol, D. E. coli adhesion to silica in the presence of humic acid. Colloids Surf B Biointerfaces, 2004,39,45-51.
    179.Parikh, S. J., and Chorover, J. ATR-FTIR spectroscopy reveals bond formation during bacterial adhesion to iron oxide. Langmuir, 2006,22, 8492-8500.
    180.Patra, P., and Natarajan, K. A. Microbially induced flotation and flocculation of pyrite and sphalerite. Colloids and Surfaces B Biointerfaces, 2004,36,91-99.
    181.Phipps, M. A., and Mackin, L. A. Application of isothermal microcalorimetry in solid state drug development. Pharmaceutical Science & Technology Today, 2000,3, 9-17.
    182.Podda, F., Zuddas, P., Minacci, A., Pepi, M, and Baldi, F. Heavy metal coprecipitation with hydrozincite [Zn(5)(Co(3))(2)(OH)(6)] from mine waters caused by photosynthetic microorganisms. Appl Environ Microbiol, 2000,66, 5092-5098.
    183.Postollec, F., Norde, W., van der Mei, H. C., and Busscher, H. J. Enthalpy of interaction between coaggregating and non-coaggregating oral bacterial pairs--a microcalorimetric study. J Microbiol Methods, 2003, 55,241-247.
    184.Postollec, F., Norde, W., van der Mei, H. C., and Busscher, H. J. Microcalorimetric study on the influence of temperature on bacterial coaggregation. Journal of Colloid and Interface Science, 2005,287,461-467.
    185.Prado, A. G. S., and Airoldi, C. Effect of the pesticide 2,4-D on microbial activity of the soil monitored by microcalorimetry. Thermochimica Acta, 2000, 349, 17-22.
    186.Prado, A. G. S., and Airoldi, C. Microcalorimetry of the degradation of the herbicide 2,4-D via the microbial population on a typical brazilian red Latosol soil.Thermochimica Acta,2001,371,169-174.
    187.Prado,A.G.S.,and Airoldi,C.A toxicity view of the pesticide picloram when immobilized onto a silica gel surface.Analytical and Bioanalytical Chemistry,2003,376,686-690.
    188.Quiquampoix,H.,Abadie,J.,Baron,M.H.,Leprince,F.,Maromoto-Pintro,P.,Ratcliffe,R.G.,and Stauton,S.Mechanisms and consequences of protein adsorption on soil mineral surfaces.ACS Symposium Series,1995,602,321-333.
    189.Quiquanmpoix,H.Mechanisms of protein adsorption on surfaces and consequences for soil extracellular enzyme activity.In:Soil biochemistry(J.M.Bollag and G.Stotzky,eds.),Vol.10,pp.171.Marcel Dekker,New York.2000,
    190.Rao,M.K.Y.,Somasundaran,P.,Schilling,K.M.,Carson,B.,and Ananthapadmanabhan,K.P.Bacterial adhesion onto apatite minerals - electrokinetie aspects.Colloids and Surfaces A-Physicochemical and Engineering Aspects,1993,79,293-300.
    191.Raubuch,M.,and Beese,F.Comparison of microbial properties measured by O_2consumption and microcalorimetry as bioindicators in forest soils.Soil Biology and Biochemistry,1999,31,949-956.
    192.Rijnaarts,H.H.M.,Norde,W.,Bouwer,E.J.,Lyklema,J.,and Zehnder,A.J.B.Reversibility and mechanism of bacterial adhesion.Colloids and Surfaces B:Biointerfaces,1995,4,5-22.
    193.Robert,M.,and Chenu,C.Interactions between soil minerals and microorganisms.In:Soil biochemistry.(G.Stotzky and J.M.Bollag,eds.),Vol.7,pp.307-404.Marcel Dekker,New York.1992.
    194.Ross,P.D.,and Subramanian,S.(1981).Thermodynamics of protein association reactions:Forces contributing to stability.American Chemical Society.20,3096-3102.
    195.Santhiya,D.,Subramanian,S.,and Natarajan,K.A.Surface chemical studies on galena and sphalerite in the presence of Thiobacillus thiooxidans with reference to mineral beneficiation.Minerals Engineering,2000,13,747-763.
    196.Santoro,G.,and Stotzky,G.Effect of electrolyte composition and ph on the particles size distribution of microorganisms and clay minerals as determined by the electrical sensing zone method.Archives of Biochemistry and Biophysics,1967,122,664.
    197.Schiffenbauer,M.,and Stotzky,G.Adsorption of coliphages T1 and T7 to clay minerals.Appl Environ Microbiol,1982,43,590-596.
    198.Sharma,P.K.,Hanumantha Rao,K.,Forssberg,K.S.E.,and Natarajan,K.A.Surface chemical characterisation of Paenibacillus polymyxa before and after adaptation to sulfide minerals.International Journal of Mineral Processing,2001,62,3-25.
    199.Sharma,P.K.,and Rao,H.K.Adhesion of Paenibacillus polymyxa on chalcopyrite and pyrite: Surface thermodynamics and extended dlvo theory. Colloids and Surfaces B: Biointerfaces, 2003,29,21-38.
    200. Shashikala, A. R., and Raichur, A. M. Role of interfacial phenomena in determining adsorption of Bacillus polymyxa onto hematite and quartz. Colloids and Surfaces B: Biointerfaces, 2002,24,11-20.
    201.Shellenberger, K., and Logan, B. E. Effect of molecular scale roughness of glass beads on colloidal and bacterial deposition. Environ Sci Technol, 2002, 36,184-189.
    202. Slaba, M, Bizukojc, M., Palecz, B., and Dlugonski, J. Kinetic study of the toxicity of zinc and lead ions to the heavy metals accumulating fungus Paecilomyces marquandii. Bioprocess Biosyst Eng, 2005,1-13.
    203.Smets, B. F., Grasso, D., Engwall, M. A., and Machinist, B. J. Surface physicochemical properties of pseudomonas fluorescens and impact on adhesion and transport through porous media. Colloids and Surfaces B: Biointerfaces, 1999, 14, 121-139.
    
    204. Sparling, G. P. Microcalorimetry and other methods to assess biomass and activity in soil. Soil Biology and Biochemistry, 1981,13, 93-98.
    
    205. Stapleton, R. D. Assessment of the microbiological potential for the natural attenuation of petroleum hydrocarbons in a shallow aquifer system. Microbial Ecology, 1998,36,349-361.
    
    206. Stohs, S. J., and Bagchi, D. Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med, 1995,18, 321-336.
    
    207. Stotzky, G. Influence of clay minerals on microorganisms. Ⅱ. Effect of various clay species, homoionic clays, and other particles on bacteria. Can J Microbiol, 1966a, 12, 831-848.
    
    208. Stotzky, G. Influence of clay minerals on microorganisms. Ⅲ. Effect of particle size, cation exchange capacity, and surface area on bacteria. Canadian Journal Microbiology, 1966b, 12,1235-1246.
    
    209. Stotzky, G. Clay minerals and microbial ecology. Trans N Y Acad Sci, 1967, 30, 11-21.
    
    210. Stotzky, G. Activity, ecology, and population dynamics of microorganisms in soil. CRC Crit Rev Microbiol, 1972,2, 59-137.
    
    211. Stotzky, G. Influence of soil minerals colloids on metabolic processes, growth, adhesion, and ecology of microbes and viruses. In: Interactions of soil minerals with natural organics and microbes (P. M. Huang and M. Schnitzer, eds.), Vol. 17, pp. 305. Soil Science Society of America, Madison. 1986.
    
    212. Stotzky, G. Persistence and biological activity in soil of insecticidal proteins from Bacillus thuringiensis and of bacterial DNA bound on clays and humic acids. Journal of Environmental Quality, 2000,29,691-705.
    
    213. Stotzky, G., and Babich, H. Fate of genetically-engineered microbes in natural environments. Recomb DNA Tech Bull, 1984,7,163-188.
    214.Stotzky,G,and Norman,A.G.Factors limiting microbial activities in soil.Ⅰ.The level of substrate,nitrogen,and phosphorus.Arch Mikrobiol,1961a,40,341-369.
    215.Stotzky,G,and Norman,A.G Factors limiting microbial activities in soil.Ⅱ.The effect of sulfur.Arch Mikrobiol,1961 b,40,370-382.
    216.Stotzky,G.,and Rem,L.T.Influence of clay minerals on microorganisms.Ⅰ.Montmorillonite and kaolinite on bacteria.Can J Microbiol,1966,12,547-563.
    217.Stotzky,G,and Rem,L.T.Influence of clay minerals on microorganisms.Ⅳ.Montmorillonite and kaolinites on fungi.Can J Microbiol,1967,13,1535-1550.
    218.Strevett,K.A.,and Chen,G Microbial surface thermodynamics and applications.Res Microbiol,2003,154,329-335.
    219.Suresh,L.,and Walz,J.Y.Effect of surface roughness on the interaction energy between a colloidal sphere and a flat plate.Journal of Colloid and Interface Science,1996,183,199-213.
    220.Teeling,H.,and Cypionka,H.Microbial degradation of tetraethyl lead in soil monitored by microcalorimetry.Applied Microbiology and Biotechnology,1997,48,275-279.
    221.Templeton,A.S.,Spormann,A.M.,and Brown,G.E.Speciation of Pb(Ⅱ) sorbed by Burkholderia cepacia/goethite composites.Environmental Science and Technology,2003,37,2166-2172.
    222.Templeton,A.S.,Trainor,T.P.,Traina,S.J.,Spormann,A.M.,and Brown,G E.,Jr.Pb(Ⅱ) distributions at biofilm-metal oxide interfaces.Proceeding of National Academic Science,2001,98,11897-11902.
    223.Theng,B.K.G,and Orchard,V.A.Interactions of clays with microorganisms and bacterial survival in soil:A physicochemical perspective.In:Environmental impact of soil component interactions.Metals,other inorganics and microbial activities(P.M.Huang,J.Berthelin,J.-M.Bollag,W.B.Me Gill and A.L.Pages,eds.),Vol.2,pp.123.CRC Lewis,Boca Raton.1995.
    224.Tissot,P.Calorimetric study of the bioremediation of a polluted soil.Journal of Thermal Analysis and calorimetry,1999,57,303-312.
    225.Torsvik,V.,Goksoyr,J.,and Daae,F.L.High diversity in DNA of soil bacteria.Applied and Environmental Microbiology,1990,56,782-787.
    226.van Loosdrecht,M.C.,Lyklema,J.,Norde,W.,Schraa,G,and Zehnder,A.J.Electrophoretic mobility and hydrophobicity as a measured to predict the initial steps of bacterial adhesion.Appl Environ Microbiol,1987a,53,1898-1901.
    227.van Loosdrecht,M.C.,Lyklema,J.,Norde,W.,Schraa,G.,and Zehnder,A.J.The role of bacterial cell wall hydrophobicity in adhesion.Appl Environ Microbiol,1987b,53,1893-1897.
    228.van Loosdrecht,M.C.,Lyklema,J.,Norde,W.,and Zehnder,A.J.Influence of interfaces on microbial activity.Microbiol.Mol.Biol.Rev.,1990a,54,75-87.
    229.van Loosdrecht,M.C.,Norde,W.,and Zehnder,A.J.Physical chemical description of bacterial adhesion. J Biomater Appl, 1990b, 5, 91-106.
    
    230. van Loosdrecht, M. C. M., and Zehnder, A. J. B. Energetics of bacterial adhesion. Cellular and Molecular Life Sciences, 1990,46, 817-822.
    
    231. van Oss, C. J. The influence of the size and shape of molecules and particles on their electrophoretic mobility. Separation & Purification Reviews 1975,4,167-188.
    
    232. van Oss, C. J. Energetics of cell-cell and cell-biopolymer interactions. Cell Biophysics, 1989,14,1-16.
    
    233. Van Oss, C. J. Hydrophobic, hydrophilic and other interactions in epitope-paratope binding. Molecular Immunology, 1995,32,199-211.
    
    234. Van Oss, C. J., and Giese, R. F. The hydrophilicity and hydrophobicity of clay minerals. Clays and Clay Minerals, 1995,43,474-477.
    
    235. van Oss, C. J., Giese, R. F., and Costanzo, P. M.. DLVO and non-DLVO interactions in hectorite. 1990,38,151-159.
    
    236. van Schie, P. M., and Fletcher, M. Adhesion of biodegradative anaerobic bacteria to solid surfaces. Applied and Environmental Microbiology, 1999,65, 5082-5088.
    
    237.Vido, K., Spector, D., Lagniel, G., Lopez, S., Toledano, M. B., and Labarre, J. A proteome analysis of the cadmium response in Saccharomyces cerevisiae. 2001, 276, 8469-8474.
    238. Vig, K., Megharaj, M., Sethunathan, N., and Naidu, R. Bioavailability and toxicity of cadmium to microorganisms and their activities in soil: A review. Advances in Environmental Research, 2003, 8,121-135.
    239.Vigeant, M. A., Ford, R. M., Wagner, M., and Tamm, L. K. Reversible and irreversible adhesion of motile Escherichia coli cells analyzed by total internal reflection aqueous fluorescence microscopy. Applied and Environmental Microbiology, 2002,68,2794-2801.
    240.Wadso, I. Isothermal microcalorimetry current problems and prospects. Journal of Thermal Analysis and Calorimetry, 2001,64,75-84.
    
    241. Walker, S. G., Flemming, C. A., Ferris, F. G., Beveridge, T. J., and Bailey, G. W. Physicochemical interaction of Escherichia coli cell envelopes and Bacillus subtilis cell walls with two clays and ability of the composite to immobilize heavy metals from solution. Applied and Environmental Microbiology, 1989, 55,2976-2984.
    
    242. Weerasooriya, R., Wijesekara, H. K. D. K., and Bandara, A. Surface complexation modeling of cadmium adsorption on gibbsite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002,207,13-24.
    
    243.Weise, W, and Rheinheimer, G. Scanning electron microscopy and epifluorescence investigation of bacterial colonization of marine sand sediments. Microbial Ecology, 1977,4,175-188.
    244. Wigglesworth-Cooksey, B., Berglund, D., and Cooksey, K. Cell-cell and cell-surface interactions in an illuminated biofilm: Implications for marine sediment stabilization. 2001,2,75.
    245.Wong,D.,Suflita,J.M.,McKirdey,J.P.,and Krumholz,L.R.Impact of clay minerals on sulfate-reducing activity in aquifers.Microbial Ecology,2004,47,80-86.
    246.Wu,W.Baseline studies of the clay minerals society source clays:Colloid and surface phenomena.Clay Minerals Soc.2001.49,446-452.
    247.Xie,C.-L.,Tang,H.-K.,Song,Z.-H.,and Qu,S.-S.Microcalorimetric study of bacterial growth.Thermochimica Acta,1988,123,33-41.
    248.Xu,W.,Johnston,C.T.,Parker,P.,and Agnew,S.F.Infrared study of water sorption on Na-,Li-,Ca-,and Mg-exchanged(SWY-1 and SAZ-1) montmorillonite.Clays and Clay Minerals,2000,48,120-131.
    249.Xue,W.,He,H.,Zhu,J.,and Yuan,P.FTIR investigation of CTAB-Al-montmorillonite complexes.Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2007,67,1030-1036.
    250.Yan,C.-n.,Liu,Y.,Wang,T.-z.,Tan,Z.-q.,Qu,S.-s.,and Shen,P.Thermochemical studies of the toxic actions of heavy metal ions on Rhizopus nigricans.Chemosphere,1999,38,891-898.
    251.Yang,Y.,Zhu,J.,Liu,Y.,Shen,P.,and Qu,S.Microcalorimetry is a sensitive method for studying the effect of nucleotide mutation on promoter activity.Journal of Biochemical and Biophysical Methods,2005,62,183-189.
    252.Yao,J.,Liu,Y.,Gao,Z.T.,Liu,P.,Sun,M.,Qu,S.S.,and Yu,Z.N.A microcalorimetric study of the biologic effect of Mn(Ⅱ) on Bacillus thuringiensis growth.Journal of Thermal Analysis and Calorimetry,2002,70,415-421.
    253.Yao,J.,Liu,Y.,Liang,H.G.,Zhang,C.,Zhu,J.Z.,Qin,X.,Sun,M.,Qu,S.S.,and Yu,Z.N.The effect of zinc(Ⅱ) on the growth of E.coli studied by microcalorimetry.Journal of Thermal Analysis and Calorimetry,2005,79,39-43.
    254.Yao,J.,Yi,L.,Yong,T.,Jianben,L.,Xiong,C.,Qin,Z.,Jiaxin,D.,Songsheng,Q.,and Ziniu,Y.Action of cu~(2+) on Bacillus thuringiensis growth investigated by microcalorimetry.Applied Biochemistry and Microbiology,2003,39,576-580.
    255.Yee,N.,and Fein,J.Cd adsorption onto bacterial surfaces:A universal adsorption edge? Geochimica et Cosmochimica Acta,2001,65,2037-2042.
    256.Yee,N.,and Fein,J.B.Quantifying metal adsorption onto bacteria mixtures:A test and application of the surface complexation model.Geomicrobiology Journal,2003,20,43-60.
    257.Yee,N.,Fein,J.B.,and Daughney,C.J.Experimental study of the pH,ionic strength,and reversibility behavior of bacteria-mineral adsorption.Geochimica et Cosmochimica Acta,2000,64,609-617.
    258.Yee,N.,Phoenix,V.R.,Konhauser,K.O.,Benning,L.G.,and Ferris,F.G.The effect of cyanobacteria on silica precipitation at neutral pH:Implications for bacterial silicification in geothermal hot springs.Chemical Geology,2003,199,83-90.
    259.Yeo,S.H.,and Chua,L.Y.Adhesion of Pseudomonas fluorescens on magnetic surfaces.Colloids Surf B Biointerfaces,2004,36,75-80.
    260. Young, I. M., and Crawford, J. W. Interactions and self-organization in the soil-microbe complex. Science, 2004, 304,1634-1637.
    261.Zerda, K. S., Gerba, C. P., Hou, K. C., and Goyal, S. M. Adsorption of viruses to charge-modified silica. Applied and Environmental Microbiology, 1985,49, 91-95.
    262. Zhu, J. C., Li, C. H., Liu, Y., Zhang, Z. H., Hou, A. X., and Qu, S. S. A microcalorimetric study of the action of mercuric chloride on the metabolism of mitochondria isolated from Cyprinus carpio liver tissue. Journal of Thermal Analysis and Calorimetry, 2005,
    263.Zobell, C. E. The effect of solid surfaces upon bacterial activity. Journal of Bacteriology, 1943,46,39-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700