用户名: 密码: 验证码:
温带干旱地区近地层CO_2浓度和土壤CO_2通量
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球变暖影响人类生存和可持续发展,是世界性重大课题,已经超越科学技术范畴,渗透到政治、经济、外交以及文化教育等社会领域。然而,对地球系统各个圈层之间温室气体的“源”与“汇”研究还存在不足,“碳失汇”之迷尚未揭开;人类对大气温室气体观测记录的历史与地球系统的形成、演化历史相比,时间太短;观测研究的方法和仪器设备有待于完善;陆地生态系统存在区域差异;人类正积极寻求各种减缓和适应的应对措施。因此,深入研究区域性温室气体的变化特征十分迫切和重要。
     本研究自2005年设计和研制了土壤表面(水平)和剖面(垂直)二氧化碳原位观测方法和装置,在我国温带干旱地区选定两个观测地点(宁夏和内蒙古),进行了典型草原、荒漠草原、榆树林和油松林四种植被类型,对应于栗钙土、灰钙土、粗骨土和灰褐土四种土壤类型的近地层空气二氧化碳浓度、地-气界面(土壤表面)和土壤剖面二氧化碳通量的原位观测研究。38个观测样点,为期近3年的工作,主要研究成果如下:
     1.土壤表面二氧化碳通量的原位观测方法及装置
     本研究研制了一套土壤表面CO_2通量原位观测的方法和装置。该方法和装置可用于近地层空气二氧化碳浓度和土壤表面(地-气界面)二氧化碳通量两个观测指标的原位测定,具有花费小、便于携带、易操作、多样点以及测定数据可靠、直接、快速等特点。
     2.土壤剖面二氧化碳通量的原位观测方法及装置
     本研究研制了一套土壤剖面CO_2通量的原位观测的方法和装置,该方法和装置可用于不同深度(0-200cm)土壤CO_2通量的观测、不同深度土壤层CO_2存储量的估测、土地利用变化拟引起土壤CO_2释放量变化的测算和估计,以及植被或地力恢复速率的评价等。
     3.近地层空气二氧化碳浓度的变化特征
     以典型草原、荒漠草原、榆树林和油松林四种植被类型的下垫面为对象,观测研究了近地层空气二氧化碳浓度的变化特征。
     近地层空气二氧化碳本底浓度为323.49±21.36×10~(-6);随植被类型不同存在差异:榆树林最低(297.92±15.56×10~(-6)),荒漠草原最高(331.82±19.17×10~(-6))。植被控制着近地层空气二氧化碳浓度的大小。
     近地层空气二氧化碳浓度存在明显的季节变化和日变化:十一月份浓度最高(336.54±27.12×10~(-6)),七月份最低(305.05±15.45×10~(-6));趋势呈“S”型曲线变化;日变化中,下午四点最低(318.2×10~(-6)),夜间零点最高(329.0×10~(-6));变化趋势呈“沟谷”状,与气温日变化趋势相反。影响因子有植被覆盖类型、气象因子等。
     4.土壤表面(地-气界面)二氧化碳通量的变化特征
     对干旱地区栗钙土、灰钙土、粗骨土和灰褐土四种土壤类型表面二氧化碳的通量进行了观测研究,得出以下结论:
     这四种土壤类型表面二氧化碳通量的平均值为230.05μmol/m~2.h,变化范围为-147.27—2319.55μmol/m~2.h,由大到小依次为粗骨土(351.82μmol/m~2.h)>灰褐土(347.33μmol/m~2.h)>栗钙土(193.36μmol/m~2.h)>灰钙土(162.37μmol/m~2.h),森林土壤(粗骨土和灰褐土)的通量显著大于草原土壤(栗钙土和灰钙土)。
     土壤表面二氧化碳的通量存在明显的季节变化和日变化:其中季节变化走势呈“S”型,九月份最高(516.79μmol/m~2.h),以土壤向大气释放为主;一月份最低(-7.09μmol/m~2.h),以大气进入土壤,以土壤吸收为主,变化趋势与当地气候变化基本一致,土壤表面二氧化碳通量稍有后置。冬季,在栗钙土、灰钙土、粗骨土和灰褐土四种土壤类型上的土壤表面二氧化碳通量观测中均出现吸收二氧化碳的现象,元月份平均土壤二氧化碳通量为负值(-7.09μmol/m~2.h),这将对减少和调节大气二氧化碳浓度具有重要意义。在日变化中,全天土壤表面二氧化碳通量呈“山峰”形变化,凌晨四点最小为154.13μmol/m~2.h,中午十二点最大为349.65μmol/m~2.h,日变化趋势随气候的日变化改变,具有昼夜交替规律,比气候因子变化同样稍有置后;也与0-10cm土壤温度的日变化相关,而且,0-10cm土壤温度的日变化置后更多。
     环境因子影响着土壤表面二氧化碳通量大小:地表空气温度、土壤温度(0-10cm、10-20cm和20-30cm)和土壤含水量(0-10cm)分别与土壤表面二氧化碳通量呈正相关关系,而10-20cm和20-30cm深度的土壤含水量与土壤表面二氧化碳通量呈负相关关系,地表空气相对湿度与土壤表面二氧化碳通量关系不显著;冬季下雪期间,雪对二氧化碳没有明显的吸收。
     5.土壤剖面二氧化碳通量的变化特征
     对干旱地区栗钙土、灰钙土、粗骨土和灰褐土四种土壤类型进行了土壤剖面二氧化碳通量的观测研究,主要结论是:
     土壤剖面二氧化碳通量的变化总趋势随土壤深度增加而增加;土壤种类不同,二氧化碳溢出速率存在不同:并且随季节变化而变化,生长季节明显高于其他季节。
     干旱地区0-70cm深度的土壤剖面二氧化碳通量平均值为660.43μmol/m~2.h,变化范围为-9076.25-16988.00μmol/m~2.h。即由于土地利用方式的改变,使0-70cm深度土壤剖面暴露在空气中,将可能有每年、每平方公里254.6 T(254.6t CO_2/km~2.a)的二氧化碳气体从土壤里向大气释放,这一数据,将用于土地利用改变温室气体排放的预测和估计。
     土壤种类不同,土壤剖面二氧化碳通量明显不同,四种土壤类型剖面二氧化碳通量由大到小排列为灰褐土(1271.92μmol/m~2.h)>粗骨土(1234.01μmol/m~2.h)>灰钙土(590.20μmol/m~2)>栗钙土(498.92μmol/m~2.h),即森林土壤(粗骨土和灰褐土)释放总量要大于草原土壤(栗钙土和灰钙土);在剖面通量-深度曲线中,均存在两个拐点,但是栗钙土、灰钙土和灰褐土呈一小一大峰,粗骨土为骆驼峰。这种变化的原因与土壤剖面结构和根系分布有关,钙积层的有无、厚度起决定作用。
     土壤质地决定土壤剖面二氧化碳通量的变化和大小,土壤剖面二氧化碳通量与空气温度、空气相对湿度的相关关系不显著。
     总之,本研究设计和研制了两套观测方法及其装置(水平和垂直),用于野外观测近地层空气二氧化碳浓度、土壤表面(地-气界面)和土壤剖面二氧化碳通量,填补了国内空白,其中土壤剖面二氧化碳通量为国内外首次报道;本研究采用所研制装置和方法,对我国温带干旱地区四种典型植被类型:草原植被(典型草原、荒漠草原)和森林植被(榆树林、油松林)下垫面的近地层空气二氧化碳浓度作了观测和研究,同时对我国温带干旱地区四种干旱土壤类型质地(栗钙土、灰钙土、粗骨土和灰褐土)的土壤表面(地-气界面)和土壤剖面二氧化碳通量进行了观测和比较研究,除典型草原(栗钙土)以外,均为国内首次报道,其中土壤剖面二氧化碳通量的观测研究,给出单位面积、时间内改变土地利用方式,或使0-70cm深度土壤剖面暴露在空气中,将会给大气增加温室气体“源”254.6t CO_2/km~2.a,二氧化碳气体从土壤里向大气释放,这一数据为首次报道,可用于土地利用改变而引起温室气体排放的预测和估算。
     必须指出:本研究存在一些未尽事宜。
     冬季,在栗钙土、灰钙土、粗骨土和灰褐土四种土壤类型上的土壤表面二氧化碳通量观测中均出现吸收二氧化碳的现象,元月份平均土壤二氧化碳通量为负值(-7.09μmol/m~2.h),这将对减少和调节大气二氧化碳浓度具有重要意义,但是其吸收机制还没能阐述清楚。
     近地层二氧化碳浓度、土壤表面和剖面二氧化碳的通量观测研究比较复杂,相关影响因素较多,包括植被、土壤种类、土壤质地、气象等,涉及大气圈、生物圈、土壤圈、岩石圈、水圈之间的物质、能量、信息交流,是长期的、历史的综合演变过程,揭示其中的规律,将需要更长时间的观测研究和反复验证。
     观测仪器装置具有广阔的应用前景,更多的地-气碳通量基础数据需要观测和获取,如农田、湿地等各种土地利用类型,都需要做碳通量的定量测定和科学评估,也需要将仪器装置自动化及版本升级;仪器装置在极端气候环境条件下使用,如0到-40℃低温环境、35-45℃高温环境、降雨天气等情况下,需要采取防护措施,这些将有待于今后进一步完善。
The impact of golbal warming on human survival and sustainable development is a global major issue,which goes beyond science and technology and penetrates into political, economic,diplomatic,cultural educational and other areas of society.However,there are some things unknown in greenhouse gases "sources" or "sinks" in circles of the Earth.
     The "missing carbon sink" mystery has not yet been answered.Compared top to the historical formation and evolution of the Earth,the history of observations research of atmospheric greenhouse gas is very short.
     The observation and research methods and equipment need to be improved.Human beings are actively seeking various mitigation and adaptation measures to deal with them. Therefore,in-depth study of regional characteristics of greenhouse gases is very urgent and important.
     A design and development of the soil surface(horizontal) and profile(vertical) of carbon dioxide in situ observation methods and devices have been carried out of the temperate,arid areas in China.Two observation sites were selected with a typical grassland in chestnut soil,desert grassland in sierozem,Elm stand in fragmental soil and chinese pine stand in gray-cinnamonic soil.The concentration in surface layers and the flux of carbon dioxide between soil surface and atmosphere with 38-point of sample have been measured and researched in situ since 2005.The main results are as follows:
     1.An in situ method and apparatus for measuring CO_2 flux at soil surface
     An in situ method and apparatus for measuring carbon dioxide flux at soil surface have been carried out.The methods and devices can be used for the concentration observations of carbon dioxide at surface layer of atmosphere and the flux measurment of carbon dioxide between soil and atmosphere in situ,with spending of small,portable and easy to operate devices,and diverse points of reliable data,directly and rapid obtained.
     2.An In Situ Method and Apparatus for Measuring CO_2 Flux at Various Depths of Arid Soil
     An in situ method and apparatus for measuring carbon dioxide flux at various depths of arid soil have been carried out.The methods and devices can be used for soil CO_2 flux of observation at different depths(0-200 cm).
     Other values are the CO_2 storage Estimation at different soil depth,the value Estimation of CO_2 emissions caused by change of land-use and land-cover,as well as restoration of vegetation or soil fertility rate of evaluation.
     3.The characteristics of the carbon dioxide concentration in the surface layer of the atmosphere
     This research focus on the concentration of carbon dioxide from the surface layer of atmosphere in 4 vegetations:typical grassland in chestnut soil,desert grassland in sierozem, Elm stand in fragmental soil and chinese pine stand in gray-cinnamonic soil.
     The background concentration of carbon dioxide is 323.49±21.36×10~(-6).There are differences of the carbon dioxide concentration as the different types of vegetation:Elm stand in fragmental soil for minimum 297.92±15.56×10~(-6),and the desert grassland in sierozem for maximum 331.82±19.17×10~(-6).Vegetation controls the changes of carbon dioxide concentration in the surface layer of atmosphere.
     It is found that there are some seasonal and diurnal variations.In the seasonal variation with a trend of "S",the CO_2 concentration of 336.54±27.12×10~(-6)reaches a summit in November and that of 305.05±15.45×10~(-6) falls to the minimum.
     In the diurnal variation with a trend of "valley" shape,the CO_2 concentration of 318.2×10~(-6) touches the minimum at 16:00 and that of 329.0×10~(-6) is up to the maximum at 24:00 or 0:00.The changes in the trend of CO_2 concentration in diurnal is opposite the changes in the trend of temperature.The key factors that influenced the the CO_2 concentration are the types of vegetation coverage,and other meteorological factors.
     4.The characteristics of the carbon dioxide flux from the interface of Soil - the atmosphere
     This research focus on the flux of carbon dioxide from the interface of soil -atmosphere in 4 soils:chestnut soil in typical grassland,sierozem in desert grassland, fragmental soil in Elm stand and gray-cinnamonic soil in Chinese pine stand.
     The the average of carbon dioxide flux in four types of soil surface is 230.05μmol/m~2.h.The range of changes is from -147.27μmol/m~2.h to 2319.55μmol/m~2.h.The order of the flux as soil types is 351.82μmol/m~2.h in fragmental soil>347.33μmol/m~2.h in gray-cinnamonic soil>193.36μmol/m~2.h in chestnut soil>162.37μmol/m~2.h in sierozem.The flux of carbon dioxide from forest soils(fragmental soil and gray-cinnamonic soil) is significantly higher than that from grassland soil(Chestnut soil and sierozem).
     It is found that there are some seasonal and diurnal variations in carbon dioxide.In the seasonal variation with a trend of "S" shape,the CO_2 flux of 516.79μmol/m~2.h comes to a summit with the release from soil into the atmosphere mainly in September,and that of -7.09μmol/m~2.h falls to the minimum with soil absorption from the atmosphere to the soil. The trend of carbon dioxide flux in season is basically the same with the trend of climate change in local,and the trend of the carbon dioxide flux is slight later then the trend of climate change.
     In winter,a phenomenon of absorption(-7.09μmol/m~2.h),appears in each soils in January.This change will reduce and regulate the cabon dioxide concentration of atmosphere.In the diurnal variation with "mountain" shape,the CO_2 flux of 154.13μmol/m~2.h is smallest at 4:00 and that of 154.13μmol/m~2.h is the maximum at 12:00.The changes trend of CO_2 flux in diurnal is as follows,as the climate change with turn of day and night,and the trend of the carbon dioxide flux is significant later then the trend of climate change.
     It is found that environmental factors affect the flux of carbon dioxide.Air temperature in soil surface,soil temperature(0-10 cm,10-20cm and 20-30 cm) and soil moisture(0-10 cm) is positively related to the carbon dioxide flux in soil surface.And the soil moisture in 10-20 cm and 20-30 cm depth is negatively related to the flux of carbon dioxide in soil surface.There is not significantly different between the air relative humidity in the soil surface and the carbon dioxide flux.During the winter,it is not found that the snow absorbs carbon dioxide in the atmosphere.
     5.The characteristics of the carbon dioxide flux from the Soil profile
     The carbon dioxide flux from the soil profile is observed and researched in 4 soils: chestnut soil,sierozem,fragmental soil and gray-cinnamonic soil.
     It is found that the carbon dioxide flux from Soil profiles change with the general trend of increased depth of soil.There are different rates of carbon dioxide in different soil types.In chestnut soil on the typical grassland soil,there is a downturn when soil calcium plot of the encounter occurred.In gray-cinnamonic soil on Chinese pine stand,there are two downturns,not only in the soil calcium plot,but in the mother layer of the soil.
     It is also found that soil texture takes part in the change and size of the carbon dioxide flux in soil profiles.There is not significant correlation between the flux of carbon dioxide and the air humidity.
     In summary,there is a complexity in researching carbon dioxide concentration,flux of carbon dioxide.And there are other more relative factors,including vegetation,soil type, soil texture,and weather involving the biosphere,pedosphere,lithosphere,hydrosphere between the material,energy and information exchange.
     The research of concentration and flux of carbon dioxide is a long-term, comprehensive history of the evolution process,which revealed the need for a longer period of time of the observation and research and repeated verification.Observation equipment also needs automated devices,as these will be further research and improvement.
引文
1.贝费尔,加德纳著,周传槐译.土壤物理学[M].北京:农业出版社,1983:234-240.
    2.蔡华君译,Ahrens TJ.地球的起源[J].地质地球化学,1995,(4):16-22.
    3.曹明奎,李克让.陆地生态系统与气候相互作用的研究进展[J].地球科学进展,2000,15(4):446-452.
    4.曹裕松,李志安,江远清,等.陆地生态系统土壤呼吸研究进展[J].江西农业大学学报(自然科学版),2004,36(1):138-143.
    5.陈泮勤,黄耀,于贵瑞.地球系统碳循环[M].北京:科学出版社,2004,9-10,221,222.
    6.陈全胜,李凌浩,韩兴国,等.典型温带草原群落土壤呼吸温度敏感性与土壤水分的关系[J].生态学报,2004,24(4):831-835.
    7.陈全胜,李凌浩,韩兴国,等.水分对土壤呼吸的影响及机理[J].生态学报,2003a,23(05):972-978.
    8.陈全胜,李凌浩,韩兴国,等.温带草原11个植物群落夏秋土壤呼吸对气温变化的响应[J].植物生态学报,2003b,27(4):441-447.
    9.陈四清,崔骁勇,周广胜,等.内蒙古锡林河流域大针茅草原土壤呼吸和凋落物分解的CO_2排放速率研究[J].植物学报,1999,41(06):645-650.
    10.陈佐忠,汪诗平.草地生态系统观测方法[M].北京:中国环境科学出版社,2004,43-57.
    11.陈佐忠,汪诗平.中国典型草原生态系统[M].北京:科学出版社,2000,1.
    12.程云生.中国大百科全书,农业Ⅱ[Z].北京,上海:中国大百科全书出版社,1990,1251.
    13.程振华,王玮.全球二氧化碳的分布和循环[J].环境科学研究,1989,2(1):52-58.
    14.崔骁勇,陈四清,陈佐忠.大针茅典型草原土壤CO_2排放规律的研究[J].应用生态学报,2000,11(03):390-394.
    15.崔骁勇,陈佐忠,陈四清.草地土壤呼吸研究进展[J].生态学报,2001,21(02):315-325.
    16.崔骁勇,王艳芬,杜占池.内蒙古典型草原主要植物群落土壤呼吸的初步研究[J].草地科学,1999,7(3):245-250.
    17.大气科学名词审定委员会.大气科学名词[M].北京:科学出版社,1996,86.
    18.戴万宏,王益权,黄耀.填土剖面CO_2浓度的动态变化及其受环境因素的影响[J].土壤学报,2004,141(15):827-831..
    19.刁一伟,郑循华,王跃思,等.开放式空气浓度增高条件下早地土壤气体浓度廓线测定[J].应用生态学报,2002,13(10):1249-1252.
    20.董云社,陈佐忠.内蒙古典型草地CO_2,N_2O,CH_4通量的同时观测及其日变化[J].科学通报,2000,45(3):318-322.
    21.董云社,彭公炳,李俊.温带森林土壤排放CO_2、CH_4、N_2O时空特征[J].地理学报,1996,51(增刊):120-128.
    22.杜睿,王艳芬.箱法在草地温室气体通量野外实验观测中的应用研究[J].大气科学,2001,25(1):61-70.
    23.段建南,李保国,石元春,等.干旱地区土壤碳酸钙淀积过程模拟[J].土壤学报,1999,36(3):318-326.
    24.樊自立,马英杰,王让会.历史时期西北干旱区生态环境演变过程和演变阶段[J].干旱区地理,2005,28(1):10-15.
    25.方精云,郭兆迪.寻找失去的陆地碳汇[J].自然杂志,2007,29(1):1-6.
    26.方精云,刘国华,徐嵩龄.我国森林植被的生物量和净生产量[J].生态学报,1996,16(5):497-508.
    27.方精云,扑世龙,赵淑清.CO_2失汇与北半球中高纬度陆地生态系统的碳汇[J].植物生态学报,2001,25(5):594-602.
    28.方精云.全球生态学[M].北京:高等教育出版社,2000,22.
    29.方精云.探索CO_2失汇之谜[J].植物生态学报,2002,26(2):255-256.
    30.方精云.中国自然植被的分布格局及其气候学和地形解释[M]//王如松,方精云.现代生态学和热点问题研究,北京:中国科学技术出版社,1996,369-380.
    31.高程达,孙向阳,曹吉鑫,等.土壤二氧化碳通量原位测定方法及装置[J].北京林业大学学报,2008a,30(2):102-105.
    32.高程达,孙向阳,栾亚宁,等.不同深度土壤CO_2通量的原位测定方法及装置[J],分析仪器,2008b,(3):14-17.
    33.龚亚珍,李怒云.中国林业碳汇项目的需求分析与设计思路[J].林业经济,2006,(6):36-37.
    34.龚子同.中国土壤系统分类[M].北京:科学出版社,1999,324-330.
    35.国家气候中心.人类减缓气候变化的途径和前景-IPCC第三工作组第四次评估报告初步解读[J].环境保护,2007,6A,34-35.
    36.郝庆菊,王跃思,宋长春,等.三江平原湿地土壤CO_2和CH_4排放的初步研究[J].农业环境科学学报,2004,23(05):846-851.
    37.何燧源.环境化学计算[M].北京:中国环境科学出版社,1996,132-144.
    38.黄建彬.二氧化碳[C]//化工百科全书,北京:化学工业出版社,1993,1009-1017.
    39.嵇晓燕,杨龙元,王跃思.太湖流域近地表大气二氧化碳本底体积分数观测研究[J].生态环境,2006,15(1):65-70.
    40.贾国相,陈远荣,张美娣.土壤二氧化碳方法找矿效果与前景[J].南方国土资源,2003,8:36-40.
    41.解宪丽,孙波,周慧珍,等.中国土壤有机碳密度和储量的估算与空间分布分析[J].土壤学报,2004,41(1):35-43.
    42.李凌浩,陈左忠.草地群落的土壤呼吸[J].生态学杂志,1998,17(4):45-51.
    43.李凌浩,王其兵,白永飞,等.锡林河流域羊草草原群落土壤呼吸及其影响因子的研究[J].植物生态学报,2000,24(06):680-686.
    44.李明峰,董云社,耿元波,等.温带草原生态系统CO_2排放对环境因子变化的响应[J].中国农业科学,2004,37(11):1722-1727.
    45.李天杰,赵烨,张科利,等.土壤地理学[M].北京:高等教育出版社,2004,66-69.
    46.李学柱.耕地土壤空气组成及土壤呼吸强度的测定方法[J].土壤通报,1961(4):61-65.
    47.李学柱.耕地土壤空气组成及土壤呼吸强度的测定方法[J].土壤通报,1961.(4):61-65.
    48.李玉宁,王关玉,李伟.土壤呼吸作用和全球碳循环[J].地学前缘,2002,9(02):351-357.
    49.李玉强,赵哈林,陈银萍.陆地生态系统碳源与碳汇及其影响机制研究进展[J].生态学杂志,2005,24(1):37-42.
    50.李兆富,吕宪国,杨青.湿地土壤CO_2通量研究进展[J].生态学杂志,2002,21(6):47-50.
    51.梁福源,宋林华.路南石林地区土壤空气中CO_2浓度分布规律与地下溶蚀形态研究[J].中国岩溶,2000,19(2):180-187.
    52.刘国华,傅伯杰,方精云.中国森林碳动态及其对全球碳平衡的贡献[J].生态学报,2000,20(5):733-740.
    53.刘嘉麒,钟华,刘东生.渭南黄土中温室气体组分的初步研究[J].科学通报,1996,41(24):2257-2260.
    54.刘强,刘嘉麒.北京斋堂黄土中主要温室气体组分特征[J].第四纪研究,1999,(5):478.
    55.刘绍辉,方精云,清田信.北京山地温带森林的土壤呼吸[J].植物生态学报,1998,22(02):119-126.
    56.刘绍辉,方精云.土壤呼吸的影响因素及全球尺度下温度的影响[J].生态学报,1997,17(5):469-476.
    57.罗辑,杨忠,杨清伟.贡嘎山东坡峨眉冷杉林区土壤CO_2排放[J].土壤学报,2000,37(03):402-409.
    58.牟守国.温带阔叶林、针叶林和针阔混交林土壤呼吸的比较研究[J].土壤学报,2004,41(04):564-570.
    59.内蒙古自治区土壤普查办公室.内蒙古土壤[M].北京:科学出版社,1994,244.
    60.南京大学,中山大学,北京大学,等.土壤学基础与土壤地理学[M].北京:人民教育出版社,1980,63.
    61.宁夏贺兰山国家级自然保护区管理局.宁夏贺兰山国家级自然保护区综合考察(内部资料).2002,40-51.
    62.宁夏贺兰山国家级自然保护区志编委.宁夏贺兰山国家级自然保护区志(内部资料).2006,47-65.
    63.宁夏农业勘查设计院.宁夏土壤[M].银川:宁夏人民出版社,1990,6.
    64.潘根兴.中国干旱地区土壤发生性碳酸盐及其在陆地系统碳转移上的意义[J].南京农业大学学报,1999,22(1):51-57.
    65.彭少麟,李跃林,任海,等.全球变化条件下的土壤呼吸效应[J].地球科学进展,2002, 17(05):705-711.
    66.齐志勇,王宏燕,王江丽,等.陆地生态系统土壤呼吸的研究进展[J].农业系统科学与综合研究,2003,19(02):116-119.
    67.气候变化国家评估报告编写委员会.气候变化国家评估报告[M].北京:科学出版社,2007,44.
    68.秦耀东.土壤物理学[M].北京:高等教育出版社,2003,146-147.
    69.邵明安,王全九,黄明斌.土壤物理学[M].北京:高等教育出版社,2006,186-195.
    70.盛裴轩,毛节泰,李建国,等.大气物理学[M].北京:北京大学出版社,2003,6-7,242-272.
    71.宋长春.湿地生态系统碳循环研究进展[J].地理科学,2003,23(05):622-628.
    72.宋长春,杨文燕,徐小锋,等.沼泽湿地生态系统土壤CO_2和CH_4排放动态及影响因素[J].环境科学,2004,25(04):1-6.
    73.宋文质,王少彬,苏瀚,等.我国农田土壤的主要温室气体CO_2、CH_4和N_2O排放研究[J].环境科学,1996,17(1):85-88.
    74.孙菽芬.陆面过程的物理、生化机理和参数化模型[M].北京:气象出版,2005,1-26.
    75.孙向阳,郭青俊.妙峰山林地CO_2释放量的初步研究[J].北京林业大学学报,1995.17(4):22-28.
    76.孙向阳,乔杰,温带森林土壤中的CO_2排放通量,东北林业大学学报,2001,29(1):34-39
    77.孙向阳.森林土壤和大气间的温室效应气体交换[J].世界林业研究,1999,12(2):38-43.
    78.孙向阳.土壤学[M].北京:中国林业出版社,2005,170-171.
    79.陶贞,沈承德,高全洲,等.高寒草甸土壤有机碳储量和CO_2通量[J].中国科学(D),2007,37(4):553-563.
    80.田连怒.贺兰山东坡植被[M].呼和浩特:内蒙古大学出版社,1996,1-115.
    81.土壤科学名词审定委员会.土壤科学名词[M].北京:科学出版社,1996.
    82.汪业勖,赵士洞,牛栋.陆地土壤碳循环的研究动态[J].生态学杂志,1999,18(5):29-35.
    83.王长科,王跃思,刘广仁.北京城市大气CO_2浓度变化特征及影响因素[J].环境科学,2003,7:13-17.
    84.王传宽,杨金艳.北方森林土壤呼吸和木质残体分解释放出的CO_2通量[J].生态学报,2005,25(3):633-638.
    85.王庚辰,杜睿,孔琴心,等.中国温带典型草原土壤呼吸特征的实验研究[J].科学通报,2004,49(07):692-696.
    86.王淼,姬兰柱,李秋荣,等.土壤温度和水分对长白山不同森林类型土壤呼吸的影响[J].应用生态学报,2003,14(08):1234-1238.
    87.王明星,曾庆存.大气中的二氧化碳含量[J].大气科学,1999,10(2):212-219.
    88.王明星,郑循华.大气化学概论[M].北京:气象出版社,2005,5-6.
    89.王绍强,周成虎,夏洁.USGCRP碳循环研究的最新动向[J].地球科学进展,2000,15(4): 592-596.
    90.王效科,王艳莹.全球碳循环中的失汇及其形成原因[J].生态学报,2002,22(1):94-103.
    91.王义凤,雍世棚,刘钟龄.内蒙古自治区的植被地带特征[J].植物学报,1979,21(3):274-283.
    92.王毅勇,宋长春,闫百兴,等.三江平原不同土地利用方式下湿地土壤CO_2通量研究[J].湿地科学,2003,1(02):111-114.
    93.王跃思,胡玉琼,纪保明,等.放牧对内蒙古草原温室气体排放的影响[J].中国环境科学,2002,22(6):490-494.
    94.王跃思,王长科,郭雪清,等.北京大气CO_2浓度年变化、季节变化及长期趋势[J].科学通报,2002,7:1108-1112.
    95.温玉璞,汤洁,邵志清,等.瓦里关山大气二氧化碳浓度变化及地表牌坊影响的研究[J].应用气象学报,1997,5:129-136.
    96.吴兑.温室气体与温室响应[M].北京:气象出版社,2003,8-28.
    97.吴雅琼,刘国华.中国森林生态系统土壤CO_2释放分布规律及其影响因素[J].生态学报,2007,27(5):2126-2135.
    98.吴仲民,曾庆波,李意德,等.尖峰岭热带森林土壤的碳储量和CO_2排放量的初步研究[J].植物生态学报,1997,21(5):416-423.
    99.肖仲洋译,Kirshner R P.地球的元素[J].科学(中文版),1995,(2):15-22.
    100.谢德体.土壤肥料学[M].北京:中国林业出版社,2004,79.
    101.熊顺贵.基础土壤学[M].北京:中国农业大学出版社,2002,154,156-160.
    102.杨晶,李凌浩.土壤呼吸及其测定法[J].植物杂志,2003,(05):26-37.
    103.杨桥.地球科学概论[M].北京:石油工业出版社,2004,10.
    104.杨学明,张晓平,方华军.农业土壤固碳对缓解全球变暖的意义[J].地理科学,2003,23(1):101-106.
    105.杨永辉.草原土壤N_2O释放及全球变暖影响下土壤养分变化的反馈效应[J].应用生态学报,1996,7(4):386-390.
    106.杨玉盛,董彬,谢锦升,等.森林土壤呼吸及其对全球变化的响应[J].生态学报,2004,24(03):583-591.
    107.易志刚,蚁伟民.森林生态系统中土壤呼吸研究进展[J].生态环境,2003,12(03):361-365.
    108.易志刚,蚁伟民,周国逸,等.鼎湖山三种主要植被类型土壤碳释放研究[J].生态学报,2003,23(08):1673-1678.
    109.于贵瑞,李海涛,王绍强.全球变化与陆地生态系统碳循环和碳积累[M].北京:气象出版社,2003:43-96,372-375.
    110.于贵瑞,孙晓敏.陆地生态系统通量观测的原理与方法[M].北京:高等教育出版社,2006,192-193.
    111.俞锦标,李春华,赵培道,等.贵州普定县岩溶地区土壤空气中CO_2含量分布及岩溶作用 的研究[J].中国岩溶,1985(4):325-331.
    112.袁道先.岩溶作用与碳循环研究进展[J].地球科学进展,1999,14(5):425-432.
    113.曾荣树,孙枢,陈代钊,等.减少二氧化碳向大气层排放——二氧化碳地下储存研究[J].中国科学基金,2004(4):196-200.
    114.詹尼,H,李孝芳译.土壤资源起源与性状[M].北京:科学出版社,1988,151.
    115.张阿玲,方栋.温室气体的控制和回收利用[M].北京:中国环境科学出版社,1996,35-42.
    116.张川如,虞绍永.二氧化碳气井测试与评价方法[M].北京:石油工业出版社,1999,1-6.
    117.张美娣.二氧化碳找矿方法及其应用[J].矿产与地质,1996,10(5):336-345.
    118.张万儒,许本彤.森林土壤定位研究方法[M].北京:中国林业出版社,1984:66-76.
    119.张焱,李凌浩,王艳芬,等.锡林河流域两类植物群落土壤呼吸特征的比较(英文)[J].植物学报(英文版),2003,(9):1024-1029.
    120.赵其国,龚子同.土壤地理研究法[M].北京:科学出版社,1989,67.
    121.郑伟.慕士塔格近地表大气CO_2浓度变化研究[D].兰州:中国科学院寒区旱区环境与工程研究所,2005.
    122.中国科学院内蒙古宁夏综合考察队.内蒙古植被[M].北京:科学出版社,1985,392,422.
    123.中国科学院内蒙古宁夏综合考察队.内蒙古自治区及东北西部地区地貌[M].北京:科学出版,1980,229-232.
    124.中国气象局..生态气象观测规范[M].北京:气象出版社,2005,8-9.
    125.中国植被编辑委员会.中国植被[M].北京:科学出版社,1980,927-929.
    126.周存宇,周国逸,王迎红,等.鼎湖山针阔叶混交林土壤呼吸的研究[J].北京林业大学学报,2005,(04)23-27.
    127.周存宇,周国逸,张德强,等.鼎湖山森林地表CO_2通量及其影响因子的研究[J].中国科学D辑,2004,32(增2):175-182.
    128.周广胜.全球碳循环[M].北京:气象出版社,2003,22.
    129.周军,同延安,黄东亮,等.水分与有机物料对土壤呼吸的影响[J].土壤肥料,1996,(03):7-9.
    130.周淑贞.气象学与气候学[M].北京:高等教育出版社,1997,10-13.
    131.Allegre CJ,Schneider S H,肖仲洋译.地球的演化[J].科学(中文),1995,(2):23-31.
    132.Anderson J M.Carbon dioxide evolution from two temperate,deciduous woodland soils[J].J.Appl.Ecol.,1973,10:361-378.
    133.Anderson J P E.Soil respiration[C]// Page A L.Methods of soil analysis.Madison,Wisconsin USA:American Society of Agronomy Inc,1982:831-871.
    134.Anderson P E J.Soil Respiration[C]//Page A L.Methods of Soil Analysis,Madison,Wisconsin USA: American Society of Agronomy, Inc., Soil Science Society of American,Inc.1982, 831— 871.
    135. Antonio L. The Origins of Life [J]. Natural History. 2006, 115: 36-43.
    136. Beerling D J, Osborne C P & Chaloner W G. Evolution of leaf-form in land plants linked to atmospheric CO_2 decline in the Late Palaeozoicera [J]. Nature. 2001. Vol. 410:352-354.
    137. Berner A R. Paleozoic atmospheric CO_2: Importance of solar radiation [J]. Science, 1993, 261:68-70.
    138. Borken W, Xu Y J. and Brumme, R. A climate change scenario for carbon dioxide and dissolved organic carbon fluxes from a temperate forest soil: Drought and rewetting effects [J]. Soil Sci. Soc. Am. J. 1999. 63:1848-1855.
    139. Bouwman A F. Exchange of greenhouse gases between terrestrial ecosystems and the atmosphere. In: Bouwman A F. Soils and the Greenhouse Effect[C]. New York: Wiley Chichester. 1990.61-127.
    140. Bouwman A F. Soil and the Greenhouse Effect [M]. New York: John Wiley & Sons, 1990, 1-21.
    141. Bremner J M, Blackmer A M. Composition of soil atmospheres [M]//Page A L. Methods of soil Analysis. Madson, Wisconsin USA: American Society of Agronomy Inc, 1982:873-874.
    142. Bremner J M, Blackmer A M. Composition of soil atmospheres[C]// Page A L, and et. Al., Methods of soil Analysis, Madson, Wisconsin USA. 1982.873-874.
    143. Bryant E, 刘东生译. Climate Process and Change[M]. Cambridge University Press,2004,2-3.
    144. Buyanovsky G A, Kuccra C L. and Wagner G H. Comparative carbon balance in natural and agricultural ecosystems [J]. Bull. Ecol. Soc. Am. J. 1985, 46:937-942.
    145. Campbell C A. and Zentner R P. Crop production and soil organic matter in long-term crop rotations in the semi-arid northern great plains of Canada[C]//E.A. Paul et al. soil organic matter in temperate agro-ecosystems: Long- term experiments in North America. CRC Press, Boca Raton, FL. 1997,317-333.
    146. Cannell M G R and Milne R. Carbon pools and sequestration in forest ecosystems in Britain [J]. Forestry. 1995. 68(4): 361-371.
    147. Castro M S, Peter john W T, Melillo J M, et al. Effects of nitrogen fertilization on the fluxes of NO_2, CH_4, and CO_2 from soils in a Florida slash pine plantation [J]. Canadian Journal of Forest Research, 1994,24:9-13.
    148. CHEN P Q, HUANG Y, YU G R, et. Al., Global system carbon cycle [M]. Beijing: Science press, 2004:221.
    149. Cleemput O V, Boeckx P. Greenhouse gas fluxes, Measurement of [M]// Lal R. Encyclopedia of soil science. New York: Marcel Decker, 2002:626-629.
    150. CMDL/NOAA. Atmospheric CO_2 monthly mean concentration: Mauna Loa[R]. Japan Meteorological Agency, Tokyo: WMO WDCGG DATA, 2002.
    151.Craig R.Distribution of Soil Organic and Inorganic Carbon Pools by Biome and Soil Taxa in Arizona[J].Soil Science Society of America Journal,2006.70(1):256-266.
    152.Cropper W P,Ewel K C,Raich J W.The measurement of soil CO_2 evolution in situ[J].Pedobiologia,1985,28:35-40.
    153.Crutzen P J,Ramanathan V.The Ascent of Atmospheric Sciences[J].Science.2000,290:99-304.
    154.Davidson S.Minimizing artifacts and biases in chamber-based measurements of soil respiration [J].Agricultural and Forest Meteorology,2002,113:21-37.
    155.De Camargo O A F,Grohmann E S.A technique for sampling the soil atmosphere[J].Soil Science,1974,117:173-174.
    156.Dixon R K.,et al.Carbon pools and flux of global forest ecosystem[J].Science.1994,263.
    157.Edwards N T,Sollins P.Continuous measurement of carbon dioxide evolution from partitioned forest floor components[J].Ecology,1973,54:406-412.
    158.Edwards N T.The use of soda-lime for measuring respiration rate in terrestrial ecosystems[J].Pedobiologia,1982,23:321-330.
    159.Eswaran H,Reich P F,Kimble J M.Global carbon sinks[M]//Lal R.Global Climate Change and Pedogenic Carbonates,Boca Raton:CRC Press,2000,15-26.
    160.Fan S,Gloor,M.et al.North American carbon sinks[J].Science,1999,283:1815.
    161.Fang C,Monchieff J B.simple and fast technique to measure CO_2 profiles in soil[J],Soil Biochem,1998,30:2107-2112.
    162.Fang J Y,Chen A P,et al.Change in forest biomass carbon storage in China between 1949 and 1998[J].science,2001,282:2320-2322.
    163.Fernandez I J.Soil carbon dioxide characteristics under different forest types and after harvest[J].Soil Sci.Soc.Am.J,1993,7:1115-1121.
    164.Franzluebbers K,Franzluebbers A J,and Jawson M D.Environmental controls on soil and whole-ecosystem respiration from a tallgrass prairie[J].Soil Sci.Soc.Am.J.2002,66:254-262.
    165.Friedlingstein P.A steep road to climate stabilization,Nature.2008.451:297-299.
    166.UNITED NATIONS.UNITED NATIONS FRAMEWORK CONVENTION ON LIMATE CHANGE,FCCC/INFORMAL/84 GE.05-62220(E) 2007,05
    167.Garrett H E,Cox G S.Carbon dioxide evolution from the forest floor of an oak-hickory forest [J].Soil Science Society of America Journal,1973,37:641-644.
    168.Gauquelin T.西班牙安达卢西亚东部地区干草原的植物量和碳素贮量[J].AMBIO(人类环境杂志).1998.27(2):99-103.
    169.Gilmanov T G,Johnson D A,Saliend N Z.Winter CO_2 fluxes above sagebrush-steppe ecosystems in Idaho and Oregon[J].gricultural and Forest Meteorology,2004,126:73-88.
    170.Goulden M L,Wofsy S C,Harden J W,et al.Sensitivity of boreal forest carbon balance to soil thaw[J].Science.1998.279:214.
    171. Hack H R B. An application of a method of gas microanalysis to the study of soil air [J]. Soil Science, 1956,82:217-231.
    172. Hanson P J, Wullschleger S D. Seasonal and Topographic Patterns of Forest CO_2 Efflux from an upland oak forest [J]. Tree Physiology, 1993, 13:1-15.
    173. Harold J L, Robert F C. Forest soils [M]. New York: John Wiley & sons, 1946:257-260.
    174. Harrison A F, Howard P J A. Carbon storage in forest soils [J]. Forestry, 1995, 68(4):335-347.
    175. Harrison A F. et al. Carbon Storage in forest soils [J]. Forestry. 1995.68(4): 335-348.
    176. Harrison K, Broecker W. A strategy for Estimating the impact of CO_2 Fertilization on Soil Carbon Storage [J]. Global biogeochemical Cycle. 1993. 7(1):69-80.
    177. Hashimoto S and Suzuki M, bertical distributions of carbon dioxide diffusion coefficients and production rates in forest soils[J], Soil Sci. Soc. Am. J., 2002,66:1151-1158
    178. Heimann M. Review of the global carbon cycle nowadays and the foresights of Arrhenius and H. glom 100 years ago [J]. Ambio Human and Environments. 1997, 26:17-24.
    179. Houghton R A, Hackle J L, Lawrence K T. The U.S. Carbon Budget: Contributions from land-use change[J]. Science, 1999,285:574.
    180. http://www.un.org/apps/news/story.asp?NewsID=23502&Cr=climate&Crl, 2007.
    181. Hughen K, Lehman S, Southon J, et al. ~(14)C activity and global carbon cycle changes over the past 50000years[J]. Science. 2004.303:202-207.
    182. IPCC. Climate Change 2001:The Scientific Basis[M]. Cambridge University Press,2001,1-881. 183.IPCC. ClimateChange2007: The Physical Science Basis (中文) [J]. 2007, 世界环境, 13-22.
    184. IPCC. IPCC special report on carbon dioxide capture and storage[M]. Cambridge University Press, 2005.
    185. IPCC. Special Report for the UN Framework Convention on Climate Change on Radiant Forcing of Climate Change. 1994.1-13.
    186. Jacinthe P A, Lal R. soil respiration. In: Lal R. Encyclopedia of Soil Science [Z]. Taylor & Francis. 2006, 1508.
    187. Jeffrey D W. Soil-Plant relationships: An ecological approach [M]. London: Croon Helm, 1987:129-132.
    188. Kaiser J. New network aims to take the word's CO_2 pulse [J]. Science. 1998.281:506-507.
    189. Kammann C. A new sampling technique to monitor concentration of CO_2,CH_4 and N_2O in air at well-defined depths in soils with varied water potential[J] . European J Soil Sci, 2001,52:297-303.
    190. KEELING C D, Bacastow R B, et al. Atmospheric carbon dioxide variations at Mauna Loa observatory, Hawaii [J]. Tellus, 1976,28:538-551.
    191. Keeling C D, Whorf T P, Wahlen M, et al. Inter-annual extremes in the rate of rise of atmospheric carbon dioxide since 1980[J].Nature. 1995,375:666-670.
    192. Knoepp J D, Vose J M. Quantitative comparison of in situ soil CO_2 flux measurement methods [G]. Southern Research Station, USDA Forest Service, 2002:1-10.
    193. Koizumi H. Effect of carbon dioxide concentration on microbial respiration in soil [ J]. Ecol. Res. 1991. 6(3): 227- 232.
    194. LAL R. Soil science and carbon civilization [J]. soil science society of America journal.2007, 71(5):1425-1437.
    195. Manne A S, Richels R G. An alternative approach to establishing trade-offs among greenhouse gases [J]. Nature. 2001.410:675-677.
    196. Martens P. How will climate change affect human health? [J]. American Scientist, 1999, 87: 534-542.
    197. Martin P. Estimating the CO_2 uptake in Europe [J]. Science. 1998.281:1805.
    198. Massot M, Clobert J, Ferriere R. Global warming, dispersal inhibition and extinction risk[J], Global Change Biology, 2008, 14: 461-464
    199. Metz B, Davidson O, Coninck H D, and et al. IPCC special report on carbon dioxide capture and storage [M]. Cambridge, New York: Cambridge University press, 2005,385-399)
    200. Miotke F D. Die messung des CO_2 Gehaltes der Bodenluft mit dem Drager-Great und die beschleunigte Kalklosung durch hohere Fliessgeschwindigkeiten [M]. Z. Geomorph. N.F. 1972, 16:93-102.
    201. MONGER H C. Arid soils//Encyclopedia of Soil Science[M]. New York: Taylor &Francis, 2006,131.
    202. Monson R K, Lipson D L, Burns S P, and et al. Winter forest soil respiration controlled by climate and microbial community composition [J]. Nature, 2006, 439:711.
    203. Moraes J L. Soil carbon stocks of the Brazilian Amazon basin [J]. Soil Sci. Soc. Am. J. 1995, 59(1): 244-247.
    204. Mosier A R. Gas flux measurement techniques with special reference to techniques suitable for measurements over large ecologically uniform areas [M]//Bouwman A F. Soil and the greenhouse effect. New York: John Wiley and Sons, 1990:289-301.
    205. Nakadal T. Examination of the method for measuring soil respiration in cultivated land: Effect of carbon dioxide concentration on soil respiration[J]. Ecol. Res., 1993,8(1): 65-71.
    206. Nebel B J, Wright R T. Environmental Science: the way the world works (sixth edition) [M]. New Jersey:Prentice-Hall,Inc. 1998,410.
    207. Neill K P O, Kasischke E S, Richter, D D. Environmental controls on soil CO_2 flux following fire in black spruce, white spruce, and aspen stands of interior Alaska[J]. Canadian Journal of Forest Research, 2002,32 (9): 1525-1532.
    208. None. Paleozoic atmospheric CO_2: Importance of solar radiation[J]. Science, 1993, 261:68-71.
    209. Parkin T B and Kaspar T C. Temperature controls on diurnal carbon dioxide flux: Implications for estimating soil carbon loss [J]. Soil Science Society of America Journal, 2003, 67(6): 1763-1769.
    210. Post W M. Soil carbon pools and word life zones [J]. Nature. 1982.298:156-159.
    211. Raich J W and Tufekcioglu A. Vegetation and soil respiration: correlations and controls [J]. Biogeochemistry, 2000, 48:71-90.
    212. Raich J W, Bowden R D, Steuder P A. Comparison of two static chamber techniques for determining carbon dioxide efflux from forest soils [J]. Soil Science Society of America Journal, 1990,54:1754-1757.
    213. Raich J W, Schelesinger W H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate [J]. Tellus, 1992,44b(2): 81—99.
    214. Rochette P, Desjardins R L and Pattey E. Spatial and temporal variability of soil respiration in agricultural fields[J]. Can. J. Soil Sci, 1991,71:189-196.
    215. Roger J, Dargaville S. Inter-annual variability in the inter-hemispheric atmospheric CO_2 gradient: contributions from transport and the seasonal rectifier [J]. Tellus.2003,55(2):711-722.
    216. Roulier M H, Stolzy L H, Szuszkiewcz T E. An improved procedure for sampling the atmosphere of field soils [J]. Soil Science Society of American, 1974,38:687-689.
    217. Rozhkov V A. Soil carbon estimate and soil map for Russia[C]. Working paper of all SA. Laxenburg. Austria. 1996.
    218. Scanlon B R. Soil gas movement in unsaturated system[C]//Sumner M. Handbook of soil science, CRC Press, 2000,277-319.
    219. Schlesinger W H, Reynolds J F, Cunningham G L. Biological feedbacks in global desertification [J]. Science, 1990, 247:1043-1048.
    220. Schlesinger W H. Biogeochemistry: An Analysis of Global Change [M]. New York: Academic Press, 1997.
    221. Sedjo R A. the Carbon Cycle and Global Forest Ecosystem [J]. Water, Air, and Soil Pollution. 1993.70:295-307.
    222. Shoji H, Masakazu S. Vertical distribution of carbon dioxide diffusion coefficients and production rates in forest soils [J]. Soil science Society of America Journal, 2002,66(4): 1151-1158.
    223. Shukla M K, Lal R. Air permeability of soil, In: Lal R. encyclopedia of soil science[Z]. Taylor & Francis, 2006.60-63.
    224. Shukla M K, Lal R. Air Permeability of Soil [M]// Lal R. Encyclopedia of soil science. New York: Taylor & Francis, 2006:60-63.
    225. Singh J S, Gupta S R. Plant decomposition and soil respiration in terrestrial ecosystem [J]. Bot. Rev., 1977.43:449-528.
    226. Smith K A. Soil Analysis: instrumental techniques and related procedures [M]. New York: Marcel Decker, 1983:408; 422-426.
    227. Smith K A. Soil Analysis: Instrumental techniques and related procedures[M]. New York: Marcel Decker, 1983:408.
    228. Smith L C, MacDonald G M, Velichko A . Siberian peatlands a net carbon sink and global methane source since the Early Holocene [J]. Science. 2004.303:353-365.
    229. Sotomayor D, Rice C W. Soil air carbon dioxide and nitrous oxide concentrations in profile under tallgrass prairie and cultivation[J]. J. Environ Qual, 1999,28:784-793.
    230. Swinbank E C. Measurement of vertical transfer of heat and water vapor by eddies in the lower atmosphere [J]. J. Meteorological, 1951, 8:135-145.
    231. Tanner L H, Hubert J F, Coffey B P. Stability of atmospheric CO_2 levels across the Triassic/Jurassic boundary [J]. Nature. 2001, 411: 675-677.
    232. Tans P P, Fung I Y, Takahashi T. Observational Constraints on the Global Atmospheric Budge [J]. Science. 1990.247:1431-1438.
    233. Toland D E, Zak D R. Seasonal pattern of soil respiration different forest types and after harvest [J]. Soil Sci. Soc. Am. J., 1993, 57:1171-1176.
    234.UNEP. 全球环境展望年鉴[Z]. 北京: 中国环境科学出版社, 2007, 2, 75.
    235. UNITED NATIONS. KYOTO PROTOCOL TO THE UNITED NATIONS FRAMEWORK CONVENTION ON CLIMATE CHANGE, 1997.
    236. Verweij J A. Carbon Sequestration in forest ecosystems higher than expected Change [J]. 1995.25(6):15-17.
    237. Vose J M, Elliott K J. Effects of elevated CO_2 and N fertilization on soil respiration from ponderosa pin [J]. Canadian Journal of Forest Research, 1995, 25:1243-1251.
    238. Wang H M. Notes on the forest soil respiration measurement by a Li-6400 system [J]. Journal of forestry research, 2005, 16(2): 132-136.
    239. Wilde S A. Forest soils: their properties and relation to silviculture [M]. New York: The Ronald press company, 1958,185.
    240. Witze A. Climate change: Losing Greenland [J]. Nature, 2008, 452: 7189-7194.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700