用户名: 密码: 验证码:
新疆奇台县绿洲土壤特性空间变异及盐渍化逆向演替研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤盐渍化是一个世界性的资源问题和生态问题,是学者们关注的热点。干旱区绿洲的农田土壤盐渍化和次生盐渍化是影响绿洲生存与发展的重要因素。盐渍化土壤在一定条件下会自然地向良性方向发展。这种土壤盐渍化的恢复过程称之为土壤盐渍化的逆向演替。土壤盐渍化的发生过程可视为可逆反应,这个反应时刻处于动态平衡之中,找出促进其逆反应的催化剂,使反应最大限度地朝着逆反应方向进行,土壤盐渍化就会自然地良性恢复。
     为了探讨土壤盐渍化逆向演替的过程和特征,本文研究的主要内容和结论如下:
     (1)在奇台绿洲不同位置选择不同耕种时间的农田,分析其剖面土壤可溶性总盐、pH值、有机质含量随耕种时间的变化。通过对比不同采样地点,不同耕种时间的土壤特性,探讨在地下水埋深不断下降的过程中,不同发展阶段农田土壤盐渍化的时空变化规律。研究表明:奇台县绿洲地下水埋深已低于影响地表盐渍化的水位埋深临界值(5m),地下水矿化度低于3g/L,研究区整体处于有利于土壤盐渍化逆向演替的环境。随着地下水埋深的不断下降以及耕种时间的延长,农田土壤含盐量逐渐减少,土壤有机质逐渐增加,土壤盐渍化逆向演替过程已经发生。地下水埋深是影响土壤盐渍化的逆反应的最主要的因素。地下水埋深在3-5m时,土壤脱盐速度最快,大于5m时,含盐量减少的速率明显降低。
     (2)在绿洲平原区中部设计中尺度采样区,对比分析了不同耕种时期(耕种10年和20年)的农田土壤盐分、有机质、pH值的空间变异性。结果表明,柳树河子和草原站农田土壤盐分属中等变异性;土壤有机质也表现出中等变异性;土壤pH值属弱变异性。耕种20年和耕种10年的农田土壤盐分、有机质、pH值都具有空间自相关性,前者土壤特性的空间自相关性比后者强,并且前者的自相关距都大于后者。用克里格插值绘制的空间分布图表明两个耕种时期的农田土壤盐分、有机质、pH值的空间分布差别较大。耕种20年的土壤特性在空间上的变化更连续。表明随着人类农业活动(包括耕种、灌水、施肥等农业管理措施)的影响日益增强,盐渍化土壤会自然向良性方向发展。
     (3)对平原水库下游重度盐渍化区土壤特性的空间变异性研究表明:土壤总盐表现出中-强变异水平,有机质属于中等变异强度,pH值属于弱变异性。土壤总盐和有机质的变异系数由表层向底层逐渐增大,而pH值的变异系数在垂直方向上差异很小。土壤有机质具有强烈的空间相关性,虽然空间总变异较大,但变异主要由内在结构性因素引起。土壤总盐和pH值均表现出中等强度的空间相关性,说明变异是由结构性因素和随机性因素共同作用的结果。
     (4)平原水库下游重度盐渍化区,随着地下水的开采利用,水位埋深不断下降,预计在2024年降至影响地表盐渍化的地下水埋深临界值5m以下;土壤含盐量在2034年减少到<0.3%,变为非盐渍土。即满营湖地下水埋深低于5m的时间达到10年,盐渍化土壤耕种期达到20-30年,土壤可自然恢复为非盐渍土。
     (5)分析得出奇台绿洲土壤盐渍化的逆向演替过程具有时空特征,并且可划分为初级、中级、高级三个阶段。时间特征表现在,无论农田在绿洲的什么位置,耕种时间越长,土壤含盐量越低,有机质含量越高,盐渍化逆向发展的越好。当农田耕种时间和地下水埋深低于临界值的时间超过20年时,盐渍土基本可以自然恢复为非盐渍土。空间特征表现在,由绿洲下部向上部,土壤盐渍化逆向演替阶段逐渐向高级过渡。
Soil salinization is a global problem of resource and ecology, and scholars pay more attention on it. Soil salinization and secondary soil salinization are the most important factors which influence the survival and development of oasis. Soil salinization will evolve into the benign aspect naturally under certain conditions,which is called reversal evolvement of soil salinization. The course of soil salinization occurrence can be regarded as a reversible reaction, and the reaction always in a dynamic balance. Finding out the activators which can advance the reversible reaction, making the reaction become the counterreaction furthest, soil salinization will restore naturally.
     In order to discuss the course and feature of reversal evolvement of soil salinization, the main findings of this study are:
     (1) Choosing farmlands of different cultivated time in plain and oasis-desert ecotone in Qitai oasis, analyzes the changes of soil soluble total salt, pH value, organic matter. Contracting the farmland soil features of different samples and different cultivated time, with the decline of groundwater table, discusses the temporal and spatial changes of farmlands soil-salinization in different phases. The results show that Qitai oasis has already in a circumstance which is valuable for soil-salinization reversal evolvement. Groundwater table is below 5 meters, the critical point which will affect the surface salt accumulation. Groundwater mineralization degree is lower than 3g/L. With the decreasing of groundwater table and the increasing of cultivated time, the content of soil soluble total salt declined and organic matter enhanced, soil-salinization reversal evolvement has already occurred. The relation between soil salt content and groundwater table is close. When groundwater table is 3 to 5 meters, the speed of desalinization is the fastest. While groundwater table is higher than 5 meters, the speed of desalinization slows down obviously.
     (2) Design middle-scale sample area in middle plain in oasis, analyze and compare spatial variability of soil salt, organic matter and pH value of 10 years and 20 years cultivated farmlands. The variability intensities of soil salt and organic matter are middle, while the variability intensity of soil pH value is low. Both 20 years and 10 years farmlands soil salt, organic matter and pH value are spatially auto-correlated. Both auto-correlations and correlation ranges of the former soil characterization are higher and greater than the latter. Image maps by ordinary Kriging showed distributions of soil salt, organic matter and pH value at different time were different. Spatial changes of 20 years cultivated farmlands soil characterization are more continuous than 10 years cultivated farmlands. That is to say, along with the increasing influence of human agricultural activities (including such culture management as cultivation, irrigation and fertilization, etc.), saline soil will evolve into the benign aspect naturally.
     (3) Spatial variability of soil properties(soil salt, organic matter, pH value) in serious salinization area of Lower reach of plain reservoir The variability intensities of soil salt, organic matter and pH value are separately middle to high, middle and low.. The variability intensities of soil salt and organic matter are increase from surface to bottom, while the vertical deference of the variability intensities of pH value is unobvious. Auto-correlation of soil organic matter is great, though the total spatial variability is high, the variability is mainly caused by structural factors. Soil salt and pH value have middle auto-correlations, both structural factors and random factors affect spatial variability.
     (4) Man yinghu, serious salinization area of Lower reach of plain reservoir. With the exploration and utilization of groundwater, the groundwater level will decrease gradually. By forecast, groundwater level will below the zero flux plain, 5 meters, in 2024. Soil salt content will less than 0.3% in 2034. That is to say, the time of groundwater level under 5 meters last 10 years, and the time of farmlands cultivate last 20 to 30 years, saline soil will naturally restore into non-saline soil.
     (5) Salinization reversal evolvement presents temporal and spatial characters, and can be classified as three different phases: the primary, the middle and the high-level. From the aspect of time, no matter in what physiognomy positions of oasis, the longer the cultivated time last, the more the organic matter and the less the salinity become, the better the salinization reversal evolvement develop. When the time of farmlands cultivate and the time of groundwater table under 5 meters last more than 20 years, saline soil can convert into non-saline soil. In point of space, from the lower to the upside of Qitai oasis, the stage of soil salinization reversal evolvement gradually transfers to high-level.
引文
[1]刘贯群.内蒙孪井灌区地下水数值模拟及土壤盐渍化预报[D].青岛:青岛海洋大学,2002.
    [2]石元春,等.区域水盐运动监测预报[M].石家庄:河北科学技术出版社,1991.
    [3]张凌云,赵庚星.滨海盐渍土适宜土壤盐碱改良剂的筛选研究[J].水土保持学报,2005,19(3):21-23.
    [4]李取升,王志春.苏打盐渍土壤微咸水淋洗改良技术研究[J].地理科学,2002,22(3):342-348.
    [5]刘玉新,谢小丁.耐盐植物对滨海盐渍土的生物改良试验研究[J].山东农业大学学报(自然科学版),2007,38(2):183-188.
    [6]陈鹏,王海军,等.松嫩平原土壤盐渍化的逆向演替规律研究[J].吉林农业科学,2002,27(3):40-42.
    [7]王海军,盛连喜,等.松嫩平原西部土壤盐渍化逆向演替的影响因子与调控系统[J].东北师大学报自然科学版,2003,25(3):60-65.
    [8]贾宝全,慈龙骏.绿洲景观生态研究[M].北京:科学出版社,2003.
    [9]李丰德.论奇台县开发利用地下水资源存在的问题及建议[J].地下水,2003,25(1):31-33.
    [10]宋长春,邓伟.吉林西部地下水特征及其与土壤盐渍化的关系[J].地理科学,2000,6(3):246-250.
    [11]陈亚新,史海滨,田存旺.地下水与土壤盐渍化关系的动态模拟[J].水利学报,1997,5(5):77-83.
    [12]刘广明.地下水蒸发规律及其与土壤盐分的关系[J].土壤学报,2002,5(3):384-389.
    [13]Eiichi Shimojima, Ryuma Yoshioka, Ichiro Tamagawa. Salinization owing to evaporation from bare-soil surfaces and its influences on the evaporation[J].Journal of Hydrology, 1996, 178(1): 109-136.
    [14]Geungjoo Lee, Robert N. Carrow, Ronny R. Growth and water relation responses to salinity stress in halophytic seashore paspalum ecotypes[J].Scientia Horticulturae, 2005, 104(2): 221-236.
    [15]王遵亲.中国盐渍土[M].北京:科学出版社,1993.
    [16]任理,王济,秦耀东.非均质土壤饱和稳定流中盐分运移的传递函数模拟[J].水科学进展,2000,11(4):392-400.
    [17]张志才,陈喜.土壤水运移的数值模拟研究[J].工程勘察,2008,(8):27-31.
    [18]杨艳,王全九,等.利用同一土柱测定土壤水分和保守性溶质运移参数[J].水利学报,2007,38(1):121-126.
    [19]王玉刚,肖笃宁,等.新疆三工河流域尾闾绿洲地下水变化与土壤积盐的响应[J].生态学报,2007,27(10):4036-4044.
    [20]姚荣江,杨劲松.黄河三角洲地区浅层地下水与耕层土壤积盐空间分异规律定量分析[J].农业工程学报,2007,23(8):45-51.
    [21]陈小兵,杨劲松,等.基于水盐生产函数的绿洲灌区水盐调控研究[J].灌溉排水学报,2007,26(4):75-78.
    [22]翁永玲,宫鹏.土壤盐渍化遥感应用研究进展[J].地理科学,2006,26(3):369-375.
    [23]李金霞等.基于遥感与GIS的扎鲁特旗土地盐渍化动态监控[J].干旱区资源与环境,2007,21(12):57-63.
    [24]陈巍,陈邦本,沈其荣.滨海盐土脱盐过程中pH变化及碱化问题研究[J].土壤学报,2000,37(4):521-528.
    [25]张伟华,孙智,李跃进.不同灌溉水质对土壤碱化影响及其改良效果的研究[J].干旱区资源与环境,2001,15(2):32-37.
    [26]骆玉霞,陈焕伟.GIS支持下的TM图像土壤盐渍化分级[J].遥感信息,2001,4:12-14.
    [27]史晓霞.基于CA模型的长岭县土壤盐渍化时空演变可视化模拟[D].东北师范大学硕士论文, 2005,5.
    [28]牛博,倪萍,塔西甫拉提·特依拜.遥感技术在干旱区盐渍化动态变化分析中的应用[J].地质灾害与环境保护,2004,15(4):78-82.
    [29]戚隆溪,陈启生,逢春浩.土壤盐渍化的预测和预报研究[J].土壤学报,1997,34(2):189-19.
    [30]章光新,邓伟,何岩, RAMSIS Salama.水文响应单元法在盐渍化风险评价中的应用[J].吉林大学学报(地球科学版),2005,35(3):356-370.
    [31]杨玉建,杨劲松.基于D-S证据理论的土壤潜在盐渍化研究[J].农业工程学报,2005,21(4):30-34.
    [32]赵可夫,李法曾.中国盐生植物[M].北京:科学出版社,1999.
    [33]李金耀,张富春,马纪.植物分子水平的耐盐机制[J].植物生理学通讯,2003,39(6):715-719.
    [34]张新春,庄炳昌,李自超.植物耐盐性研究进展[J].玉米科学,2002,10(1):50-56.
    [35]郭蓓,邱丽娟,李向华.植物盐诱导基因的研究进展[J].农业生物技术学报, 1999, 7(4): 401-408.
    [36]平淑珍,林敏,安道昌.耐盐联合固氮菌在盐渍化土壤改良中的应用[J].高技术通讯,1999,9(1): 60-65.
    [37]陈洁,林栖凤.植物耐盐生理及耐盐机理研究进展[J].海南大学学报(自然科学版),2003,6(21):177-181.
    [38]张楠楠,徐香玲.植物抗盐机理的研究[J].哈尔滨师范大学自然科学学报,2005,21(1):65-68.
    [39]Mishra1 A, Sharma1 S D, Khan G H. Rehabilitation of degraded sodic lands during a decade of Dalbergia sissoo plantation in Sultan[J]. District of Uttar Pradesh, 2002, 23: 375-386.
    [40]Zhang L, Dawes W R, Slavich P G, et al. Growth and ground water uptake responses of Lucerne to changes in ground water level sand salinity: lysimeter, isotope and modeling studies[J]. Agricultural Water Management, 1999, 39(2-3): 265-282.
    [41]Jess Cuartero, Rafael Fernndez-Munoz. Tomato and salinity[J]. Scientia Horticulturae, 1998, 78(1-4): 83-125.
    [42]Ramoliya P J, A. N. Pandey. Effect of salinization of soil one emergence, growth and survival of seedlings of Cordiarothii[J]. Forest Ecology and Management, 2003, 176(1-3):185-194.
    [43]Qadir M, Qureshi R H, Ahmad N, Ilyas M. Salt-tolerant for age cultivation on a saline-sodic field for biomass production and soil reclamation[J]. Land Degradation & Development, 1999, 7(1): 11-18.
    [44]Edward P, Glenn J, Jed Brown, et al.Salt Tolerance and Crop Potential of Halophytes[J]. Critical Reviews in Plant Sciences, 1999, 18(2): 227-255.
    [45]Laurent Barbiéro, Vincent Valles, Annick Régeard, et al. Residual alkalinity as tracer to estimate the changes induced by forage cultivation in a non-saline irrigated sodic soil[J].Agricultural WaterManagement, 2001, 50(3): 229-241.
    [46]Barrett-Lennard E G. Restoration of saline land through revegetation[J].Agricultural Water Management, 2002, 53(1-3):213-226.
    [47]董晓霞,郭洪海,孔令安,等.滨海盐渍地种植紫花苜蓿对土壤盐分特性和肥力的影响[J].山东农业科学,2001,1:24-25.
    [48]李海英,彭红春,牛东玲,等.生物措施对柴达木盆地弃耕盐碱地效应分析[J].草地学报,2002,10(1):63-69.
    [49]张晓琴,胡明贵.紫花苜蓿对盐渍化土地理化性质的影响[J].草业科学,2004,21(11):31-35.
    [50]罗廷彬,任崴,李彦,等.新疆盐碱地长期利用盐水灌溉土壤盐分变化[J].灌溉排水学报,2004,23(5):36-41.
    [51]林学政,沈继红,刘克斋,等.种植盐地碱蓬修复滨海盐渍土效果的研究[J].海洋科学进展,2005,23(1):65-70.
    [52]尹怀宁.泥炭对沙地、盐碱地土壤改良的影响[J].中国煤炭,1999,5:38-39.
    [53]杜连凤,刘文科,刘建.三种秸秆有机肥改良土壤次生盐渍化的效果及生物效应[J].土壤通报,2005,36(3):309-313.
    [54]贾大林,孟兆江,王和洲.农业高效用水及农艺节水技术[J].节水灌溉,1999,4:7-10.
    [55]于阳辉,李永霞,张俊红,等.非金属矿物在土壤改良中的应用现状与发展前景[J].中国非金属矿工业导刊,2005,1:37-39.
    [56]张丽辉,孔东,张艺强.磷石膏在碱化土壤改良中的应用及效果[J].内蒙古农业大学学报,2001,22(2):81-97.
    [57]王金满,杨培岭,石懿,等.脱硫副产物对改良碱化土壤的理化性质与作物生长的影响[J].水土保持学报,2005,19(3):34-37.
    [58]高永恒.土壤改良剂对多年生黑麦草生长特性和土壤理化性质的影响研究[D].甘肃农业大学硕士论文,2004.
    [59]曾觉廷,陈萌.三种土壤改良剂对紫色土结构孔隙状况影响的研究[J].土壤通报,1993,6: 591-594.
    [60]Shock C C, Feibert B G, Saunders L D. A comparison of straw mulching and PAM for potato production[R]. OSU, Malheyr Experiment Station Special Report.1997, 978:71-78.
    [61]毛学森.硬覆盖对盐渍土水盐运动及作物生长发育影响的研究[J].土壤通报,1998,29(6):264-266.
    [62]李伟强,雷玉平,张秀梅,等.硬壳覆盖条件下土壤冻融期水盐运动规律研究[J].冰川冻土,2001,23(3):251-257.
    [63]Sembiring H, Raun W R, Johnson G V, et al. Effect of Wheat Straw Inversion on Soil Water Conservation[J]. Soil Sciene, 1995, 159(2): 81-89.
    [64]李新举,张志国.秸秆覆盖对土壤水分蒸发及土壤盐分的影响[J].土壤通报,1999,30(6):257-258.
    [65]刘虎俊,王继和,胡明贵,等.干旱区盐渍化土地梨园覆草相应研究[J].中国沙漠,1999,19(4):411-415.
    [66]纪永福,蔺海明,杨自辉.解冻期覆盖盐渍土地表对土壤盐分和水分的影响[J].干旱区研究,2005,22(1):17-24.
    [67]李朝刚.干旱高杨黄灌区盐碱的恢复治理[J].干旱区研究,1999,(3):57-62.
    [68]Angel Utset, Teresa Lopez, Martin Dlaz. A comparison of soil maps, kriging and a combined method for spatially predicting bulk density and field capacity of ferralsols in the Havana-Matanzas Plain[J]. Geoderma, 2000, 96(3):199-213.
    [69]俞仁培,陈德明.我国盐渍土资源及其开发利用[J].土壤通报,1999,4:158-159.
    [70]王春裕,王汝镛,李建东.中国东北地区盐渍土的生态分区[J].土壤通报,1999,30(5):193-197.
    [71]张士功,邱建军,张华.我国盐渍土资源及其综合治理[J].中国农业资源与区划,2000,21(1): 52-56.
    [72]蔺娟,地里拜尔·苏里坦.土壤盐渍化的研究进展[J].新疆大学学报(自然科学版),2007,24(3):318-328.
    [73]杨劲松.土壤盐渍地球化学研究的进展及发展趋势[J].土壤,1991,(4):206-209.
    [74]佟才,王志平,段丽杰.盐渍化土地恢复调控的研究进展[J].北方环境,2004,29(5):32-35.
    [75]王政权.地统计学及其在生态学中的应用[M].北京:科学出版社,1999.
    [76]Webster R. Quantitative spatial analysis of soil in the field[J]. Advance in Soil Science, 1985, 3: 1-70.
    [77]王人铎,胡光道.线性地质统计学[M].北京:地质出版社,1987.
    [78]Issaks E.H., R.M. Srivastava. An introduction to applied geostatistics[M] New York, Oxford Univ. press, 1989.
    [79]候景儒,郭光裕.矿床统计预测及地址统计学的理论与应用[M].北京:冶金工业出版社,1993.
    [80]陈亚新,史海滨,魏占民,等.土壤水盐信息空间变异的预测理论与条件模拟[M].北京:科学出版社,2005.
    [81]李毅,刘建军.土壤空间变异研究方法[J].石河子大学学报(自然科学版),2000,4(4):331-337.
    [82]Burgess T.M., R.Webster. Optimal interpolation and isarithmic mapping of soil properties: The semi Varigram and punctual Kriging[J]. J. Soil Sci, 1980, 31(2): 315-331.
    [83]Burrough P.A. Multiscale sources of spatial variability in soil: The application of fractal concepts to nested levels of soil variation[J]. J Soil Sci, 1983, 34(3): 577-597.
    [84]Delhomme J P. Spatial variability and uncertainty in groundwater flow parameters: a geostatistical approach[J]. Water Resource Research, 1979,5(2):269-280.
    [85] Clifton P M, Neuman S P. Effects of Kriging and inverse modeling on conditional simulation of thr Avra vally aquifer in Southern Arizona[J]. Water Resouce Research,1982,18(4):1215-1234
    [86] Biggar J W, Nielsen D R. Spatial analysis of water table salinity and Hydraulic conductivity prior to salinization[J]. ISRSS China,1985.
    [87] Neuman S P, Yakowitz. A statistical approach to the problem aquifer hdrology:1 theory[J]. Water Resource Research,1979,15(4):845-860.
    [88]Neuman S P, Yakowitz. A statistical approach to the problem aquifer hdrology:3 improved solution method and added perspective[J]. Water Resource Research,1980,16(2):331-346.
    [89]Hoeksema R J, Kitanidis P K. An application of the geostatisticl approach to the inverse problem in two-dimensional groundwater modeling[J]. Water Resource Research,1984,20(7):1003-1020.
    [90]Hoeksema R J, Kitanidis P K. Analysis of the spatial structure of properties of selected aquifers[J].Water Resource Research,1985,21(4):563-572.
    [91]Ahmed S, De Marsily G. Comparison of geostatistical methods for estimating transmissivity and specific capacity[J]. Water Resource Research,1987,23(9):1717-1737.
    [92] Ye W G, Yoon Y S, Lee K S. Aquifer Parameter identification with Kriging and optimum parameterization[J]. Water Resource Reseach, 1983,19(1):225-233.
    [93]Hoeksema R J, Kitanidis P K. Analysis of the spatial structure of properties of selected aquifer[J]. Water Resource Research,1985,21(4):563-572.
    [94]Hoeksema R J. Co-Kriging model for estimation of water-table elevation[J]. Water Resource Research,1989,25(3):429-435.
    [95]许彦卿等.地统计学方法在地下水动态预测中的应用[J].西安地质学院学报,1991,36-39.
    [96]朝伦巴根,和泰,刘延玺.含水层渗透系数K的空间变异性研究[J].地质学报,1994,68(4):358-367.
    [97]张征,邹正盛,刘淑春.岩溶含水介质渗透性空间变异规律的地质统计分析[J].工程地质水文地质,1995,(2):4-7.
    [98]秦耀东,李保国.应用析取克里格法估计区域地下水埋深分布[J].水利学报,1998,(8):28-33.
    [99]陈家军,郭乔羽,王红旗.应用协同-泛克里格法估计地下水水位[J].水利学报,2000,(7):7-13.
    [100]李保国,胡克林等.区域浅层地下水硝酸盐含量评价的指示克里格法[J].水利学报,2001,(3):1-5.
    [101]Dirk M allants'Binayakp. Spatial Variability of Hydraulic properties inamulti-layered soil profile[J]. Soil Science, 1996, 161(3): 167-181.
    [102]McBratney A B, Whelan B M. The potential for site-specific management of cotton farming systems[C]. Discussion paper No.1 Cooperative Research Center for Sustainable Cotton Production, Australia. 1995.
    [103]Tsegaye T., Hill R.L. Intensive tillage effects on spatial variability of soil physical properties[J].Soil Science,1998,163(2):143-154.
    [104]王绍强,朱松丽,周成虎.中国土壤土层厚度的空间变异性特征[J].地理研究,2001,20(2):161-169.
    [105]马黎春,盛建东,等.克拉玛依干旱生态农业区土壤质地的空间异质性研究[J].干旱区地理,2006,29(1):109-114.
    [106]王政权,王庆成.森林土壤物理性质的空间异质性研究[J].生态学报,2000,20(6):945-950.
    [107]马风云,李新荣,等.沙坡头固沙植被若干土壤物理因子的空间异质性研究[J].中国沙漠,2005,25(2):207-215.
    [108]Bolland M.D.A.,Allen D.G.Spatial variation of soil test Phosphorus and Potassium, oxalate-extractable iron and Aluminum, Phosphorusretent ion index, and organic carbon content in soils of western Australia[J].Communications Soil Science and Plant Analysis,1998, 29(3/4):381-392.
    [109]胡克林,李保国,林启美,等.农田土壤养分的空间变异性特征[J].农业工程学报,1999,15(3):33-38.
    [110]姜城,等.农田土壤养分空间变异特性及评价[C].中国土壤学会脆弱生态系统恢复与新世纪农业发展学术研讨会论文.2000.
    [111]闫晓明,等.土壤化学性状空间变异研究[C].中国土壤学会脆弱生态系统恢复与新世纪农业发展学术研讨会论文.2000.
    [112]李振高,俞慎,等.水稻根际硝化一反硝化生态因子的水平空间变异[J].土壤学报,1999,36(l):111-117.
    [113]M. Sylla, A Stein, N. van Breemen.Spatial variability of soil salinity at different scales in the mangrove rice agro-ecosystem in West Africa[J].Agriculture, Ecologyments and Environment, 1995, 54(1):1-15.
    [114]Cetin Mahmut, Kirda Cevat. Spatial and temporal changes of soil salinity in a cotton field irrigated with low-quality water[J]. Journal of Hydrology, 2003, 272(1-4):238-249.
    [115]M.M. Jordan, J. Navarro-Pedreno. Spatial dynamics of soil salinity under arid and semi-arid conditions: geological and environmental implications[J]. Environmental Geology, 2004, 45(4):448-456.
    [116]陈鹏,初雨,等.绿洲-荒漠过渡带景观的植被与土壤特征要素的空间异质性分析[J].应用生态学报,2003,14(6):904-908.
    [117]李艳,史周,王人潮.基于GIS的土壤盐分时空变异及分区管理研究[J].水土保持学报,2005,19(3):121-129.
    [118]何志斌,赵文智.荒漠绿洲区人工梭梭林土壤水分空间异质性的定量研究[J].冰川冻土,2004,26(2):207-211.
    [119]徐英,陈亚新,周耀明.不同时期农田土壤水分和盐分的空间变异性分析[J].灌溉排水学报,2005,24(3):30-34.
    [120]杨劲松,姚荣江.黄河三角洲地区土壤水盐空间变异特征研究[J].地理科学,2007,27(3):348-353.
    [121]Chang T.K, Shyu G.S, Lin Y.P, et al. Geostatistical analysis of soil arsenic content in Taiwan[J]. J. Environ. Sci. Health, Part A Environ.Sci.Eng., 1999,34(7):1485-1501.
    [122]Facchinelli A, Sacchi E, Mallen L. Multivariate statistical and GIS-based approach to identify heavy metal sources in soils[J].Environmental Pollution,2001,114(3):313-324.
    [123]Kuperman R.G., Carreiro M.M. Soil heavy metal concentrations, microbial biomass and enzyme activities in a contaminated grassland ecosystem[J].Soil Biology and Biochemistry,1997, 29(2):179-190.
    [124]Juang K.W., Lee D.Y. A comparison of three Kriging methods using auxiliary variables in heavy-metal contaminated soils[J].Environ Qual,1998,27:355-363.
    [125]Juang K.W., Lee D.Y., Chen Z.S. Geostatistical cross-validation for additional sampling assessment in heavy–metal contaminated soils[J].Chinese Inst. of Environ. Eng., 1999, 9:89-96.
    [126]Cambardella C.A., Moorman T.B., Novak L.M.,et al.Field-scale variability of soil properties in central Iowa soils[J].Soil Sci. Soc. Am.J,1994,58:1501-1511.
    [127]Litaor M.I. Spatial analysis of plutonium in soils around Rocky Flats, Colorado[J].Environ Qual,1995,24:506-516.
    [128]Van Meirvenne M, Pannier M.J, Hofman G, et al. Regional characterization of the long-term change in soil organic carbon under intensive agriculture[J].Soil Use Manage,1996,12(2):86-94.
    [129]Journel A.G, Deutsch C.V. Rank-order geostatistics: A proposal for a unique coding and commonprocessing of diverse data[C].Baafi E.Y, Schofield N.A.Proceedings of the Fifth International Geostatistics Congress.Kluwer Acedemic publishers, Wollongton, Australia,1997:174-187.
    [130]Juang K.W, Lee D.Y., Timothy R.E. Using rank-order geostatistics for spatial Interpolation of highly skewed data in a heavy-metal contaminated site[J].Journal of Environmental Quality, 2001, 30(3):894-903.
    [131]Kai-Wei Juang, Dar-Yuan Lee, Yun-Lung Teng. Adaptive sampling based on the cumulative distribution function of order statistics to delineate heavy-metal contaminated soils using kriging[J]. Environmental Pollution, 2005, 138(2):268-277.
    [132]施加春,刘杏梅等.浙北环太湖平原耕地土壤重金属的空间变异特征及其风险评价研究[J].土壤学报,2007,44(5):824-830.
    [133]郑袁明,陈煌,等.北京市土壤中Cr,Ni含量的空间结构与分布特征[J].第四纪研究,2003,23(4):436-446.
    [134]王学军,邓宝山,张泽浦.北京东郊污灌区表层土壤微量元素的小尺度空间结构特征[J].环境科学学报,1997,17(4):412-416.
    [135]陈玉福,董鸣.毛乌素沙地景观的植被与土壤特征空间格局及其相关分析[J].植物生态学报,2001,25(3):265-269.
    [136]王红,宫鹏,刘高焕.黄河三角洲多尺度土壤盐分的空间分异[J].地理研究,2006,25(7):649-658.
    [137]徐英,陈亚新,等.土壤水盐空间变异尺度效应的研究[J].农业工程学报,2004,20(2).
    [138]Legendre P., M-J. Fortin. Spatial pattern and ecological analysis[J]. Vegetation,1989,80:107-138.
    [139]Turner M.G., R.H. Gardner. Quantitative methods in landscape ecology[M].New York,Springer-Verlag.,1991.
    [140]Sokala J. Ecological heterogeneity[M].New York, Springer,1991.
    [141]Levin S.A. The problem of pattern and scale in ecology[J].Ecology,1992,73:1943-1967.
    [142]Kareiva P. Space: The final frontier foe ecological theory[J]. Ecology,1994,76:1-7.
    [143]Dutilleul P., P. Legendre. Spatial heterogeneity against heteroscedasticity: an ecological paradigmversus a statistical concept[J].Oikos,1993,66:152-167.
    [144]Li H., J.F. Reynolds. Ecological interpretation of semivariogram analysis: Quantification of spatial heterogeneity[J].Submitted to Ecology, in press,1994.
    [145]Wu J G. Landscape ecology[M]. Beijing: Higher Education Press, 2000.
    [146]Li H., Reynolds J F. On definition and quantification of heterogeneity[J].Oikos, 1995,73: 280~284.
    [147]李哈滨,伍业刚.景观生态学数量研究方法[M].北京:中国科学技术出版社,1992:209-233.
    [148]Philips J.D. Measuring complexity of environmental gradients[J].Vegetation,1985,(6):95-102.
    [149]Roberson G.P. Geostatistics in ecology: interpolating with known variance[J].Ecology,1987,68:744-748.
    [150]Burrough P.A. Spatial aspects of ecological data. In Data analysis in community and landscape ecology[M].The Netherlands, Pudoc Wageningen, 1987.
    [151]Kemp W.P., T.M. Kalaris, W.F. Quimby. Rangeland grasshopper spatial variability: macro-scale population assessment[J].J. of Economic. Entomology, 1989, 82:1270-1276.
    [152]Schotzko D.J., L.E. O’keetfe. Geostatistical description of the spatial distribution of lygus hesperus in lentils[J]. J. Econ. Entomol., 1989,82:1277-1288.
    [153]Rossi, R. E., D. J. Mulla, A.G. Joural, E.H. Franz. Geostatistical tools for modeling and interpreting ecological spatial dependence[J].Ecological Monograghs, 1992,62(2):277-314.
    [154]Dutilleul P., P. Legendre. Spatial heterogeneity against heteroscedasticity: an ecological paradigm versus a statistical concept[J].Oikos,1993,66:152-167.
    [155]祁元,王一谋,等.农牧交错带西段景观结构和空间异质性分析[J].生态学报,2002,22(11):2006-2014.
    [156]初玉,杨慧玲,等.浑善达克沙地小叶锦鸡儿灌丛的空间异质性[J].生态学报,2005,25(12):3294-3300.
    [157]张乃明,李保国,胡克林.太原污灌区土壤重金属和盐分含量的空间变异特征[J].环境科学学报,2001,21(3):349-353.
    [158]王政权,张彦东,王庆成.水曲柳幼苗根系对土壤养分和水分空间异质性的反应[J].植物研究,1999,19(3):329-334.
    [159]C. E. P. Cerri, M. Bernoux. Assessment of soil property spatial variation in an Amazon pasture:basis for selecting an agronomic experimental area[J]. Geoderma, 2004, 123(1-2):51-68.
    [160]McBratney A B, Websrer R. How many observations are needed for regional estimation of soil properties[J].Soil Sci.,1983,135(3):177-183.
    [161]Trangmer B.B., R.S. Yost, Uehara G. Application of geostatistics to spatial studies of soil properties[A]. Advanc in Agronomy[C], 1985, 38:45-94.
    [162]姜城、杨俐苹.土壤养分变异与合理取样数量[J].植物营养与肥料学报,2001,7(3):262-270.
    [163]杨贵羽,陈亚新.土壤水分盐分空间变异性与合理采样数研究[J].干旱地区农业研究,2002,20(4):64-66.
    [164]姚荣江,杨劲松,姜龙.黄河三角洲土壤盐分空间变异性与合理采样数研究[J].水土保持学报,2004,18(2):89-94.
    [165]李艳,史舟,等.地统计学在土壤科学中的应用及展望.水土保持学报,2003,17(1):178-182.
    [166]奇台县史志编纂委员会.奇台县志[M].乌鲁木齐:新疆大学出版社,1994.64-71,84-86.
    [167]中国土壤学会.土壤农业化学常规分析方法[M].北京:科学出版社,1983:45-56.
    [168]Matheron G. The theory of regionalized variables and its applications[A].Cahier No.5 Center of Morphological Mathematics of Fontainebleau[C]. Paris: Ecole National Superieure des Mines de Paris, 1971. 211-246.
    [169]Vieira S.R., J.L. Hatfield, D.R. Nielsen, J.W. Biggar. Geostatistical theory and application to variability of some agronomical properties[J]. Hilgardia, 1983, 51(3):1-75.
    [170]郭占荣,刘花台.西北内陆灌区土壤次生盐渍化与地下水动态调控[J].农业环境保护,2002,21(1):45-48.
    [171]孙鸿烈,等.中国资源科学百科全书[M].北京:中国大百科全书出版社,2000.
    [172]樊自立,马英杰,马映军.中国西部地区耕地土壤盐渍化评估及发展趋势预测[J].干旱区地理,2002,25(2):97-102.
    [173]徐建华.现代地理学中的数学方法[M].北京:高等教育出版社,2002.339-340.
    [174]王春裕.诌议土壤盐渍化的生态防治[J].生态学杂志,1997,16(6):67-71.
    [175]牛灵安,郝晋珉,张宝忠,牛新胜.盐渍化改造区土壤有机质变化与培肥系统研究[J].中国农业大学学报.2003,8(增刊):26-30.
    [176]刘旭霞.北疆部分区域土壤pH、可溶性总盐及有机质含量调查[J].干旱环境监测,2004,18(3):175-179.
    [177]新疆农业厅,新疆土壤普查办公室.新疆土壤[M].北京:科学出版社,1996.458,464.
    [178]陈亚新,史海滨,陈慧新,等.盐溶质及其离子品位空间变异性的CoKriging估计[J].水利学报,1998(6):35-40.
    [179]胡克林,李保国,陈德立,等.农田土壤水分和盐分的空间变异性及其协同克立格估值[J].水科学进展,2001,12(4):460-466.
    [180]赵成义,王玉潮,李子良,等.田块尺度下土壤水分和盐分的空间变异性[J].干旱区研究,2003,20(4):252-256.
    [181]莫治新,尹林克,文启凯.塔里木河中下游表层土壤盐分空间变异性研究[J].干旱区研究,2004,21(3):250-253.
    [182]李哈滨,王政权,王庆成.空间异质性定量研究理论与方法[J].应用生态学报,1998,9(6):651-657.
    [183]郭旭东,傅伯杰,马克明,等.基于GIS和地统计学的土壤养分空间变异特征研究——以河北省遵化市为例[J].应用生态学报,2000,11(4):557-563.
    [184]姚荣江,杨劲松,刘广明.黄河三角洲地区典型地块土壤盐分空间变异特性研究[J].农业工程学报,2006,22(6):61-66.
    [185]周慧珍.土壤空间变异性研究[J].土壤学报,1996,33(3):232-240.
    [186]Sandjivy L. The factor Kriging analysis of regionalized data(A).Verly G. et al. Geostatistics for natural resources Characterization(C).Holland,1984:559-570.
    [187]张淑娟,何勇,方慧.基于GPS和GIS的田间土壤特性空间变异性的研究[J].农业工程学报,2003,19(2):39-44.
    [188]Zhang S R, Sun B, Zhao Q G, et al. Temporal-spatial variability of soil organic carbon stocks in arehabilitating ecosystem[J]. Pedosphere, 2004, 14(4):501-508.
    [189]李述刚,王周琼.荒漠土壤碱化分级的初步研究[A].中国土壤学会盐渍土专业委员会编.中国盐渍土分类分级文集[C].南京:江苏科学技术出版社,1989.135-139.
    [190]刘淑瑶,谢遗民.近代黄河三角洲盐渍土分类分级主要依据的探讨[A].中国土壤学会盐渍土专业委员会编.中国盐渍土分类分级文集[C].南京:江苏科学技术出版社,1989.40-47.
    [191]顾峰雪,张远东,等.阜康绿洲土壤盐渍化与植物群落多样性的相关性分析[J].资源科学,2002,24(3):42-48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700