用户名: 密码: 验证码:
Harpins蛋白诱导植物生长和防卫的信号传导交叉调控及植物互作因子的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Harpins是由革兰氏阴性植物病原细菌产生的一类蛋白类激发子,它们的共同特征是:富含甘氨酸,热稳定,对蛋白酶敏感,在非寄主植物叶片上可以诱导Hypersensitive response(HR)或Hypersensitive cell death(HCD)。外源施用后,可以诱导多种植物抗病、抗虫、抗旱、促进植物生长。这些效应在不同harpins处理的植物上都有所发现,它们是来自于Eriwinia amylovora的HrpN_(Ea)、Pseudomonas syringae pv.syringae的HrpZ_(Pss)、P.syringae pv.phaseolicola的HrpZ_(Psph)和Xanthomonas oryzae的HpaG。但是,对于harpins如何行使自身的多重功能,目前还不清楚。本研究着重对以下几个方面进行了研究。
     1.脱落酸和乙烯信号互作对HrpN_(Ea)诱导拟南芥根生长的调控作用
     HrpN_(Ea)是由引起蔷薇科植物火疫病的病原细菌Erwinia amylovora产生的一种Harpin蛋白。HrpN_(Ea)处理植物可以激发乙烯和脱落酸分别诱导植物生长和抗旱。本文报道了脱落酸和乙烯两种激素同时应用时调节HrpN_(Ea)在拟南芥根生长中的促进作用。我们首先研究了野生型拟南芥Col-0和Ler-0从种子萌发结束到胚根伸出后,HrpN_(Ea)对根生长的作用,结果发现,与水和EVP处理相比,HrpN_(Ea)处理后明显促进了根的初期生长。在处理12h和24h后,HrpN_(Ea)的作用更明显。EVP同水处理一样不影响根的生长。用HrpN_(Ea)溶液浸泡处理野生型拟南芥种子在促进脱落酸和乙烯水平升高的同时促进根的生长。这些反应通过抑制剂AgNO_3或1-MCP抑制野生型种子对乙烯的感知及NDGA和AOA抑制野生型种子对ABA和乙烯合成而受到限制。HrpN_(Ea)处理拟南芥突变体etr1-1,ein5-1和ABA不敏感突变体abi2-1后,对根生长始终都没有影响。我们的结果建立了一个在HrpN_(Ea)的作用下,脱落酸和乙烯信号和促进根系生长之间的机械联系。然而,当在叶片上施用HrpN_(Ea)时,在促进植物生长过程中,乙烯信号是在没有脱落酸信号的情况下起作用的,这表明,HrpN_(Ea)在植物叶片和根中的信号机制是不同的。
     2.HpaG_(Xoo)转基因表达诱导植物生长和抗病性
     根据前人的报道,外源施用harpins时,可以启动SAR通路包括SA积累、EDSI和NDR1的调控、PR基因的表达及NPR1对PR基因表达的调控,其中HCD与抗病性同步发生、但没有必然的因果关系。HpaG_(Xoo)是水稻白叶枯病菌X.oryzae pv.oryzae的基因hpaG_(Xoo)编码的一种harpin蛋白,同其它harpins蛋白一样可以在非寄主植物上诱导产生过敏反应以及其它多种效应。我们将编码HpaG_(Xoo)的基因hpaG_(Xoo)与花椰菜花叶病毒35S启动子的融合基因单元通过真空花絮渗透法转入拟南芥,获得表达HpaG_(Xoo)的拟南芥(HpaG_(Xoo)-expressing Arabidopsis,HATA1)转基因系。对转基因系进行了以下分子验证:通过PCR方法,确定了hpaG_(Xoo)基因在拟南芥基因组中的稳定整合;用RT-PCR方法证明了hpaG_(Xoo)基因在拟南芥中可以转录;从转基因拟南芥中提取的HpaG_(Xoo)具有在烟草上诱导HR的能力;同时根据SDS-PAGE电泳,转基因表达的HpaG_(Xoo)大小没有改变(15.6 kD)。这些结果表明,hpaG_(Xoo)基因在拟南芥体内可以正常翻译为有活性的、完整的HpaG_(Xoo)分子。另外,我们选择了具有一定代表性的细菌菌株P.syringae pv.tomato DC3000,对转基因拟南芥的不同株系进行抗病性实验,结果发现不同的转基因株系都获得了对该细菌的抗性,但抗性水平有所差别。同时我们对抗病防卫反应基因NPR1、PR-1和PR3b的表达进行了测定,发现在转基因株系中,防卫反应相关基因都有一定的表达。但是,所有的转基因株系都没有HCD的发生,而外源喷施野生型拟南芥发生了明显的Micro-HR。根据这些结果,我们认为HpaG_(Xoo)在拟南芥中转基因表达可以诱导抗病防卫基因的表达,诱导对细菌的抗病性,但不能诱发HCD。另外,是否带有信号肽对hpaG_(Xoo)基因在植物体内表达后所诱导的促生长和抗病没有影响。
     3.HpaG_(Xooc)及其功能片段对田间水稻产量的影响
     对水稻细菌性条斑病菌(X.oryzae pv.oryzicola)的HpaG_(Xooc)进行改造,产生了9个不同的功能片段,其中HpaG_(10-42)促进水稻生长、诱导水稻抗病性的效应最强。本研究在3个地区对9个水稻品种进行了田间小区实验,发现HpaG_(10-42)蛋白提高水稻产量的效应显著地优于HpaG_(Xooc)全长蛋白。根据水稻生长期确定处理时间,测定了两种蛋白18种浓度组合的田间效应。分别在苗期,返青后期,分蘖期和始穗期喷施不同组合的蛋白溶液,调查两种类型水稻产量。正交分析表明,功能片段HpaG_(10-42)的6μg/ml的浓度组合的效果最好,但是HpaG_(10-42)在最小剂量的施用效果仍显著高于HpaG_(Xooc)最高剂量的施用效果。HpaG_(10-42)和HpaG_(Xooc)在水稻海陆红2号的四个生长期单独施用,发现HpaG_(10-42)在苗期,返青后期和分蘖后期处理,都明显增加作物产量,而在始穗期施用效果不大,但都比全长蛋白的效果好。HpaG_(10-42)促进水稻产量增加效果好于常规农事操作和HpaG_(Xooc)处理。而HpaG_(10-42)对9个不同水稻品种产量的影响存在很大差别,而和品种类型无关。本研究结果为有效应用病原代谢物的有益功能片段来改良大田粮食作物,提供了范例。
     4.HpaG_(Xoo)蛋白表达及抗体制备
     HpaG_(Xoo)在植物上可以诱导产生多种效应,但是对于该蛋白在植物上是如何起作用,在什么部位起作用,目前还不清楚。已有人报道了harpins在植物细胞中的作用部位,但对不同harpins的研究结果不尽相同。为了下一步研究HpaG_(Xoo)在植物中的作用部位,构建了可用于HpaG_(Xoo)蛋白纯化的高效表达载体,并制备了抗血清。利用PCR方法从水稻白叶枯病菌中扩增得到hpaG_(Xoo)基因,连接pET30a(+)载体,获得了重组质粒pET30a(+)::hpaG_(Xoo),该载体上保留了蛋白质纯化所需的His tag编码序列。转化宿主菌BL21(DE3)产生表达菌株BLHR4。表达菌株经IPTG诱导培养,进行SDS-PAGE电泳,产生分子量为21.6 kD大小的组氨酸标记的融合蛋白条带。利用HisTrap HP Kit试剂盒对HpaG_(Xoo)蛋白进行了纯化。SDS-PAGE结果表明,体外表达融合组氨酸的HpaG_(Xoo)经过Ni柱纯化同样得到21.6kD大小的单一条带。以牛血清蛋白(BSA)为标准,经凝胶成像系统BioImage软件测定,蛋白提取液中目的蛋白的浓度约为0.5-1.0 mg/ml,每升菌液可提纯蛋白约2-4 mg。该纯化蛋白在烟草上引起典型的过敏性反应。我们将浓度为1 mg/ml纯化的蛋白新西兰家兔进行免疫,获得了HpaG_(Xoo)蛋白的多克隆抗体,间接ELISA方法测定抗血清的效价,结果效价达到1:16,000以上,能够满足以后的实验需要。同时利用Western blot对蛋白与抗体之间的特异性结合进行了验证,结果表明,不论是粗蛋白还是纯化蛋白在相应的位置上都有很强的杂交信号,而空载体提取物在相应的位置没有任何信号。为了验证转基因植物中表达的HpaG_(Xoo)蛋白与抗血清之间是否特异性结合,我们提取了植物中表达的HpaG_(Xoo)蛋白,并对其进行了杂交分析,结果表明,转基因植物中表达的HpaG_(Xoo)蛋白和原核表达的一样可以和抗血清特异性识别并产生较强的杂交信号,由于该蛋白原核表达融合了His-tag,故比植物中表达的蛋白条带大,因此杂交信号不在一条直线上。
     5.HpaG_(Xoo)蛋白互作因子的筛选
     本研究使用酵母双杂交系统,以HpaG_(Xoo)为诱饵,对拟南芥cDNA文库进行筛选。根据营养缺陷型和β-半乳糖苷酶活性初步筛选到6个阳性克隆,测序并在Genbank中进行序列比对,结果表明它们分别编码拟南芥中的核黄素合酶(Riboflavin synthase,RS)、液泡膜嵌入蛋白(Tonoplast intrinsic protein 2,TIP2)、成束类阿拉伯半乳聚糖蛋白(Fasciculin-like arabinogalactan-protein,FLA8)、质膜嵌入蛋白(Plasma membraneintrinsic protein,PIP1)、核转运因子(Nuclear transport factor 2,NTF2)和碳酸酐酶(Carbonic anhydrase 2,CA2)蛋白,而且序列同源性达到100%。
     总结:本研究结果表明,harpins诱导植物生长和抗病的过程中,乙烯和脱落酸信号传导通路参与了这些反应的调控。植物与HpaG_(Xoo)互作的因子可能通过不同的机制在这些信号传导过程中起作用。对这些问题的研究,有助于深入了解harpins诱导植物多种反应的机制。
     本研究的创新点:(1)解析ABA和乙烯信号的互作对HrpN_(Ea)诱导拟南芥根生长的调控作用;(2)构建了带有His-tag的HpaG_(Xoo)表达载体并纯化出有活性的蛋白质;(3)筛选到了与HpaG_(Xoo)互作的植物因子,对其功能进行初步预测。
     不足之处:由于时间关系,没能对HpaG_(Xoo)在植物上的作用部位及筛选出的互作因子的功能做进一步研究。
Harpins are glycine-rich,protease-sensitive,heat-stable,acidic proteins produced by Gram-negative plant pathogenic bacterial,and are required for induction of the hypersensitive response(HR) or hypersensitive cell death(HCD) in nonhost plants of bacteria.Application of harpins to many plants can enhance plant growth,induce resistance to pathogens,insects and drough.These effects have been observed in plants treated with HrpN_(Ea) from Eriwinia amylovora,HrpZ_(Pss) from Pseudomonas syringae pv.syringae, HrpZ_(Psph) from P.syringae pv.phaseolicola,and HpaG from Xanthomonas oryzae.How harpins perform these diverse functions has not been clear completely.
     1.Root growth of Arabidopsis thaliana is regulated by ABA and ethylene signaling interaction in response to HrpN_(Ea)
     Applying HrpN_(Ea) to plants can stimulate ethylene and abscisic acid to induce plant growth and drought tolerance,respectively.Here we report that both hormones cooperate to mediate the role of HrpN_(Ea) in promoting root growth of Arabidopsis thaliana(Arabidopsis). Root growth was promoted coordinately with elevation in levels of ABA and ethylene subsequent to soaking seeds of wild-type Arabidopsis in a solution of HrpN_(Ea).These responses were arrested by inhibiting wild-type seeds to sense ethylene or synthesize either of ABA and ethylene.Consistently,HrpN_(Ea) effects on roots were nullified in ethylene-insensitive etr1-1 and ein5-1 mutants,and ABA-insensitive mutant abi2-1 of Arabidopsis.Our results establish a mechanistic connection between enhancement of root growth and signaling by ABA and ethylene in response to HrpN_(Ea).However,ethylene signaling was working in the absence of ABA signaling to promote plant growth when HrpN_(Ea) was applied to leaves,indicating different signaling mechanisms in leaves from roots.
     2.Transgenic expression of HpaG_(Xoo) enhances plant growth and confers plant resistance to bacteria
     HpaG_(Xoo),encoded by the hpaG_(Xoo) gene of X.oryzae pv.oryzae,is a member of harpin group of proteins.Like others harpins,HpaG_(Xoo) induces HR and others various effects in the plant.Here we show that expression of the hpaG_(Xoo) gene in transgenic Arabidopsis enhances plant growth and confers pathogen defense without HCD.The hpaG_(Xoo) gene was inserted into the transformation vector pBI121 between the 35S promoter and uidA(GUS) gene.Transformation was conducted by flower vacuum infiltration with recombinant Agrobacterium tumefaciens.Integration of hpaG_(Xoo) gene into Arabidopsis chromosomes were determined by polymerase chain reaction(PCR).The expression of hpaG_(Xoo) gene in hpaG_(Xoo)-expressing transgenic Arabidopsis(HATA1) plants was detected by RT-PCR and assays for activity of HpaG_(Xoo) isolated from transgenic plants.T3 plants of HATA1 lines and transgenic lines containing the vector only were tested,together with the parent (ecotype Col-0) plants,for expression of defense-related genes,cell death and resistance to pathogen bacteria.Resistance to Pseudomonas syringae pv.tomato(DC3000) was enhanced at various levels in HATA1 lines.Genes NPR1,PR-1,PR3b,which are involved in pathogen defense,were expressed to various levels in HATA1 plants tested.However, cell death was not observed in HATA1 plants.Based on these data,we concluded that expression of HpaG_(Xoo) in transgenic Arabidopsis plants enhances plant growth and induces expression of defense-related genes and confers nonspecific resistance to pathogenic bacteria in the absence of HCD.In addition,plant growth and resistance to bacteria expression can be induced in transgenic plants expressing HpaG_(Xoo) constructed with or without a signal peptide in the transformation unit.
     3.HpaG affects grain yield of rice in extensive grower plantings
     Based on works in our lab,HpaG_(10-42) is most active among the nine fragments, generated from truncating the X.oryzae pv.oryzicola HpaG_(Xooc) protein,in enhancing growth and inducing disease resistance in rice.Here we show evidence that HpaG_(10-42) significantly exceeds HpaG_(Xooc) to increase grain yield of rice under grower plantings based on 9 rice varieties growing at 3 locations.Application procedures were established by testing 18 combinations of two proteins doses with treating time according to rice growth stages.HpaG_(10-42) was applied to nursery seedling 10 d before transplant,late turning-green stage,late tillering stage and early heading stage of indica and japonica rice varieties using different concentration arrays.Orthogonal experimental analysis on grain yield show that the optimized concentration array of HpaG_(10-42) is 6μg/ml array.HpaG_(10-42) used at the minimal dosage was significantly greater than HpaG_(Xooc) used at higher concentrations applied at the four stages of rice growth in the effects on yield of rice.HpaG_(10-42) enhances gain yield higher than local agronomic measures,including use of chemicals and HpaG_(Xooc). In addition,effect of HpaG_(10-42) on 9 varieties of rice is different,and have no related to type of rice.Our results provide an example for effective use of beneficial fragments derived from pathogen metabolites to increase yield in the staple food crop.
     4.Expression and antibody preparation of HpaG_(Xoo) protein
     Toward cellular localization of HpaG_(Xoo) in plants,an hpaG_(Xoo) expression vector was made to involve a his-tag,which facilitates protein purification by affinity chromatography. In the study,hpaG_(Xoo) gene was amplified by PCR from JXOⅢgDNA,and PCR product was 420 bp.Purified hpaG_(Xoo) fragment was ligased to pET30a(+) vector,creating recombinant plasmid pET30a(+)::hpaG_(Xoo),which contains a His-tag-encoding sequence. Recombinant HpaG_(Xoo) protein was produced and subjected to sodium dodecyl sulphate polyacrylamide gel electrophoresis(SDS-PAGE),which revealed the protein as 21.6 kD in size.After infiltrated into tobacco leaves,HpaG_(Xoo) caused typical HR.Recombinant HpaG_(Xoo) protein was purified through His Trap HP columns(pre-charged with Ni~(2+)).The yield was 2-4 mg/L culture and the concentration of purified proteins was 0.5-1.0 mg/ml. The HpaG_(Xoo)-His fusion protein also caused typical HR on tobacco.Therefore,we made an effective construction and produced active HpaG_(Xoo).The polyclonal antibody against HpaG_(Xoo) was produced with New Zealand White Rabbit.The titer of the polyclonal antibody against HpaG_(Xoo) was greater than 1:16,000.The anti-HpaG_(Xoo) polyclonal antibody reacted with HpaG_(Xoo) protein in the analysis of ELISA and Western blot hybridization analysis.Moreover,Western blot hybridization analysis also revealed specific presence of HpaG_(Xoo) in HATA1 lines.
     5.Screening of proteins that interact with HpaG_(Xoo) using yeast two-hybrid
     To explore plant proteins that could interact with HpaG_(Xoo),a yeast two-hybrid system was used to screen Arabidopsis cDNA library.The bait and library plasmid were cotransformed into the yeast strain Y190.Six positive clones were obtained by the selection of autotrophic phenotype andβ-galactosidase assay.Sequencing and Genbank blasting comparison demonstrated that these six clones were distinct in sequences and encoded parts of Arabidopsis riboflavin synthase(RS),tonoplast intrinsic protein 2(TIP2),fasciculin-like arabinogalactan-protein(FLAS),plasma membrane intrinsic protein(PIP1),nuclear transport factor 2(NTF2),or carbonic anhydrase 2(CA2) proteins.Moreover,similarity of the cloned sequences is 100%compared with the corresponding homologues reported previously.
     In conclusion,plant responses to harpins involve regulation by ABA and ethylene signaling pathways.Plant proteins interacting with HpaG may act in the pathways by different mechanisms.Characterization of how HpaG_(Xoo) and its interacting factors function will shed light on signaling regulation of diverse responses of plants to harpins.
引文
1.Achard P,Baghour M,Chapple A,Hedden P,Van Der Straeten D,Genschik P,Moritz T,Harberd NP(2007) The plant stress hormone ethylene controls floral transition via DELLA-dependent regulation of floral meristem-identity genes.Proc Natl Acad Sci USA 104:6484-6489
    2.Achard P,Vriezen WH,Van Der Straeten D,Harberd NP(2003) Ethylene regulates Arabidopsis development via the modulation of DELLA protein growth repressor function.Plant Cell 15:2816-2825
    3.Adie B,Chico JM,Rubio-Somoza I,Solano R(2007) Modulation of Plant Defenses by ethylene.J Plant Growth Regul 26:160-177
    4.Alexander MK,Bourns BD,Zakian VA(2001) One-hybrid Systems for detecting protein-DNA interactions.Methods Mol Biol 177:241-259
    5.Alfano JR,Collmer A(1996) Bacterial pathogens in plants:life up against the wall.Plant Cell 8:1683-1698
    6.Alfano JR,Collmer A(1997) The type Ⅲ(Hrp) secretion pathway of plant pathogenic bacteria:Trafficking harpins,Avr proteins and death.J Bacteriol 179:5655-5662
    7.Alfano JR,Collmer A(2004) Type Ⅲ secretion system effector proteins:double agents in bacterial disease and plant defense.Annu Rev Phytopathol 42:385-414
    8.Alonso JM,Hirayarna T,Roman G,Nourizadeh S,Ecker JR(1999) EIN2,a bifunctional transducer of ethylene and stress responses in Arabidopsis.Science 284:2148-2152
    9.Anderson JP,Badruzsaufari E,Schenk PM,Manners JM,Desmond OJ,Ehlert C,Maclean DJ,Ebert PR,Kazan K(2004) Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis.Plant Cell 16:3460-3479
    10.Arlat M,Van Gijsegem F,Huet JC,Pernollet JC,Boucher CA(1994) PopA1,a protein which induces a hypersensitivity-like response on specific Petunia genotypes,is secreted via the Hrp pathway of Pseudomonas solanacearum.EMBO J 13:543-553
    11.Aronheim A,Zandi E,Hennemann H,Elledge SJ,Karin M(1997) Isolation of an AP-1 repressor by a novel method for detecing protein-protein interactions.Mol Cell Biol 17:3094-3102
    12.Asai T,Stone JM,Heard JE,Kovtun Y,Yorgey P,Sheen J,Ausubel FM(2000) Fumonisin Bl-induced cell death in Arabidopsis protoplasts requires jasmonate-,ethylene-,and salicylate-dependent signaling pathways.Plant Cell 12:1823-1836
    13.Assmann SM(1994) Ins and outs of guard cell ABA receptors.Plant Cell 6:287-288
    14.Barney MA,Guinebretere MH,Marcais B,Coissac E,Paulin JP,Laurent J(1990) Cloning of a large gene luster involved in Erwinia amylovora CFBP 1430 virulence.Mol Microbiol 4:778-786
    15.Barry CS,Giovannoni JJ(2006) Ripening in the tomato Green ripe mutant is inhibited by ectopic expression of a protein that disrupts ethylene signaling.Proc Natl Acad Sci USA 103:7923-7928
    16.Bauer DW,Wei ZM,Beer SV,Collmer A(1995) Erwinia chrysantherni harpin_(Ech):an elicitor of the hypersensitive response that contributes to soft rot pathogenesis.Mol Plant-Microbe Interact 8:484-491
    17.Benavente LM,Alonso JM(2006) Molecular mechanisms of ethylene signaling in Arabidopsis. Mol Biosyst 2:165-173
    18.Bennett MA,Shern JF,Kahn RA(2004) Reverse two-hybrid techniques in the yeast Saccharomyces cerevisiae.Methods Mol Biol 261:313-326
    19.Binder BM,Walker JM,Gagne JM,Emborg TJ,Hemmann G,Bleecker,AB,Vierstrab,RD(2007)The Arabidopsis EIN3 binding F-Box proteins EBF1 and EBF2 have distinct but overlapping roles in ethylene signaling.The Plant Cell 19:509-523
    20.Bleecker AB,Kende H(2000) Ethylene:a gaseous signal molecule in plants.Annu Rev Cell Dev Biol 16:1-18
    21.Bogdanove AJ,Kim JF,Beer SV(2000) Disease-specific genes of Erwinia amylovora:Keys to understanding pathogenesis and potential targets for disease control,pp163-178 in:JL Vanneste(ed),Fire Blight and Its Causative Agent,Erwinia amylovora,CAB International,Wallingford,UK
    22.Bogdanove A J,Kim JF,Wei Z,Kolchinsky P,Charkowski AO,Conlin AK,Collmer A,Beer SV (1998) Homology and functional similarity of an hrp-linked pathogenicity locus,dspE,of Erwinia amylovora and the avirulence locus avrE of Pesudornonas syringae tomato.Proc Natl Acad Sci USA 95:1325-1330
    23.Borejsza-Wysocka E,Kader AA,Norelli JL,Bauer DW,Garr ER,Beer SV,Aldwinckle HS(2000)Effect of expressing hrpN in apple on resistance to Erwinia amylovora.In Vitro Cell Dev Biol (Animal) 36:1023 SA
    24.Bostock RM(2005) Signal crosstalk and induced resistance:straddling the line between cost and benefit.Annu Rev Phytopatho143:545-480
    25.Brigitte M,Chretien F(2005) Correlation between structural element and infectivity of prion protein.Med Sci(Paris) 21:806-807
    26.Brito B,Aldon D,Barberis P,Boucher C,Genin S(2002) A signal transfer system through three compartments transduces the plant cell contact-dependent signal controlling Ralstonia solanacearum hrp genes.Mot Plant-Microbe Interact 15:109-119
    27.Brocard-Gifford IM,Lynch TJ,Finkelstein RR(2003) Regulatory networks in seeds integrating developmental,abscisic acid,sugar,and light signaling.Plant Physiol 131:78-92
    28.Causier B,Davies B(2002) Analysing protein-protein interactions with the yeast two-hybrid system.Plant Mol Biol 50:855-870
    29.Chang C and Stadler R(2001) Ethylene hormone receptor action in Arabidopsis.Bioessays 23:619-627
    30.Chang C,Bleecker AB(2004) Ethylene biology.More than a gas.Plant Physiol 136:2895-2899
    31.Chao Q,Rothenberg M,Solano R,Roman G,Yerzaghi W,Ecker JR(1997) Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE 3 and related proteins.Cell 89:1133-1144
    32.Charkowski AQ,Alfano JR,Preston G,Yuan J,He SY,Collmer A(1998) The Pseudomonas syringae pv.tomato HrpW protein has domains similar to harpins and pectate lyases and can elicit the plant hypersensitive response and bind to pectate.J Bacterial 180:5211-5217
    33.Chen L,Qian J,Qu SP,Long JY,Yin Q,Zhang CL,Wu XJ,Sun F,Wu TQ,Beer SV,Dong HS (2007) Identification of specific fragments of hpaG_(Xooc),a harpin protein from Xanthomonas oryzae pv.oryzicola,that induce disease resistance and enhanced growth in rice.Phytopathology (accepted)
    
    34. Chen YF, Randlett MD, Findell JL, Schaller GE (2002) Localization of the ethylene receptor ETR1 to the endoplasmic reticulum of Arabidopsis. J Biol Chem 277:19861-19866
    
    35. Cheng WH, Endo A, Zhou L, Penney J, Chen HC, Arroyo A, Leon P, Nambara E, Asami T, Seo M, Koshiba T, Sheen J (2002) A unique short-chain dehydrogenase/ reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell 14: 2723-2743
    
    36. Chiwocha SD, Cutler AJ, Abrams SR, Ambrose SJ, Yang J, Ross AR, Kermode AR (2005) The etr1-2 mutation in Arabidopsis thaliana affects the abscisic acid, auxin, cytokinin and gibberellin metabolic pathways during maintenance of seed dormancy, moist-chilling and germination. Plant J 42: 35-48
    
    37. Cho HT, Cosgrove DJ (2002) Regulation of root hair initiation and expansin gene expression in Arabidopsis. Plant Cell 14: 3237-3253
    
    38. Choi G, Yi H, Lee J Kwon YK, Soh MS, Shin B, Luka Z, Hahn TR, Song PS (1999) Phytochrome signaling is mediated through nucleoside diphosphate kinase 2. Nature 401: 610-613
    
    39. Clark MS (1997) Plant Molecular Biology, A Laboratory Manual Springer, Berlin
    
    40. Clarke JD, Aarts N, Feys BJ, Dong X, Parker JE (2000) Roles of salicylic acid, jasmonic acid, and ethylene in cpr-induced resistance in Arabidopsis. Plant Cell 12: 2175-2190
    
    41. Collin S, Fernandez-Lobato M, Gooding PS, Mullineaux PM, Fenoll C (1996) The two nonstructural proteins from wheat dwarf virus involved in viral gene expression and replication are retinoblastoma-binding proteins. Virology 219: 324-329
    
    42. Collmer A, Badel JL, Charkowski AO, Deng WL, Fouts DE, Ramos AR, Rehm AH, Anderson DM, Alfano JR (2000) Pseudomonas syringae Hrp type III secretion system and effector proteins. Proc Ntal Acad Sci USA 97: 8770-8777
    
    43. Culter S, Ghassemian M, Bonetta D, Cooney S, McCourt P (1996) A protein famesyl transferase involved in abscisic acid signal transduction in Arabidopsis. Science 273:1239-1241
    
    44. Dangl JL, Jones JD (2001) Plant pathogens and integrated defence responses to infection. Nature 411: 826-833
    
    45. Debeaujon I, Koornneef M (2000) Gibberellin requirement for Arabidopsis seed germination is determined both by testa characteristics and embryonic abscisic acid. Plant Physiol 122: 415-424
    
    46. Delledone M, Xia Y, Dixon RA, Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394: 585-588
    
    47. Deplancke B, Dupuy D, Vidal M, Walhout AL (2004) A gateway-compatible yeast one-hybrid system. Genome Res 14: 2093-2101
    
    48. Deshaies RJ (1999) SCF and Cullin/Ring H2-based ubiquitin ligases. Annu Rev Cell Dev Biol 15: 435-467
    
    49. Desikan R, Clarke A, Atherfold P, Hancock JT, Neill SJ (1999) Harpin induces mitogen-activated protein kinase activity during defense responses in Arabidopsis thaliana suspension cultures. Planta 210: 97-103
    
    50. Desikan R, Hancock JT, Ichimura K, Shinozaki K, Neill SJ (2001) Harpin induces activation of the Arabidopsis mitogen-activated protein kinase ATMPK4 and ATMPK6. Plant Physiol 126: 1579-1587
    51. Desikan R, Reynolds A, Hancock JT, Neill SJ (1998) Harpin and hydrogen peroxide both initiate programmed cell death but have differential effects on defence gene expression in Arabidopsis suspension cultures. J Biochem 330:115-120
    
    52. Dixon, RA (2001) Natural products and plant disease resistance. Nature 411: 843-847
    
    53. Dong HP, Peng JL, Bao ZL, Meng XD, Bonasera JM, Chen GY, Beer SV, Dong HS (2004) Downstream divergence of ethylene signaling pathway for harpin-stimulated Arabidopsis growth and insect defense. Plant Physiol 136:3628-3638
    
    54. Dong HP, Yu HQ, Bao ZL, Guo XJ, Peng JL, Yao Z, Chen GY, Qu SP, Dong HS (2005) The ABI2-dependent abscissic acid signalling controls HrpN-induced drought tolerance in Arabidopsis. Planta 221: 313-327
    
    55. Dong HS, Beer SV (2000) Riboflavin induces disease resistance in plants by activating a novel signal transduction pathway. Phytopathology 90: 801-811
    
    56. Dong HS, Delaney TP, Bauer DW, Beer SV (1999) Harpin induces disease resistance in Arabidopsis through the systemic acquired resistance pathway mediated by salicylic acid and the NIM1 gene. Plant J 20: 207-215
    
    57. Dong X (1998) SA, JA, ethylene, and disease resistance in plants. Curr Opin Plant Biol 1: 316-323
    
    58. Dong X (2001) Genetic dissection of systemic acquired resistance. Curr Opin Plant Biol 4: 309-314
    
    59. Doonan J, Fobert P (1997) Conserved and novel regulators of the plant cell cycle. Curr Opin Cell Biol 9: 824-830
    
    60. Douarin LB, Pierrat B, Baur VE, Chambon P, Losson R (1995) A new version of the two-hybrid assay for detection of protein-protein interactions. Nucleic Acids Res 23: 876-878
    
    61. Ecker JR (1995) The ethylene signal transduction pathway in plants. Science 268: 667-675
    
    62. Ecker JR (2004) Reentry of the ethylene MPK6 module. Plant Cell 16: 3169-3173
    
    63. El-maarouf H, Barny MA, Rona JP, Bouteau F (2001) Harpin, a hypersensitive response elictitor from Erwinia amylovora, regulates ion channel activities in Arabidopsis thaliana suspension cells. FEBS Lett 25: 82-84
    
    64. Fankhauser C, Yeh KC, Lagarias JC, Zhang H, Elich TD, Chory J (1999) A substrate phosphorylated by phytochrome that modulates light signaling in Arabidopsis. Science 284: 1539-1541
    
    65. Fields S, Song O (1989) A novel genetic system to detect protein-protein interactions. Nature 340: 245-246
    
    66. Fields S, Sternglanz R (1994) The two-hybrid system: An assay for protein-protein interactions. Trends Genet 10: 286-292
    
    67. Finkelstein RR, Gampala SS, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14 Suppl:S15-S45
    
    68. Finkelstein RR, Lynch TJ (2000) The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell 12: 599-609
    
    69. Fontanilla JM, Montes M, De Prado R (2005a) Induction of resistance to the pathogenic agent Botrytis cinerea in the cultivation of the tomato by means of the application of the protein "Harpin" (Messenger). Commun Agric Appl Biol Sci 70: 35-40
    
    70. Fontanilla M, Montes M, De Prado R (2005b) Effects of the foliar-applied protein "HarpinEa" (Messenger) on tomatoes infected with Phytophthora infestans. Commun Agric Appl Biol Sci 70:41-45
    
    71. Gagne JM, Smalle J, Gingerich DJ, Walker JM, Yoo SD, Yanagisawa S, Vierstra RD (2004) Arabidopsis EIN3-binding F-box 1 and 2 form ubiquitin-protein ligases that repress ethylene action and promote growth by directing EIN3 degradation. Proc Natl Acad Sci USA 101: 6803-6808
    
    72. Galan JE, Collmer A (1999) Type III secretion machines: bacterial devices for protein delivery into host cells. Science 284: 1322-1328
    
    73. Gallie DR, Le H, Caldwell C, Browning KS (1998) Analysis of translation elongation factors from wheat during development and flowering heat shock. Biochem Biophy Res Commun 245: 295-300
    
    74. Gamble RL, Qu X, Schaller GE (2002) Mutational analysis of the ethylene receptor ETR1. Role of the histidine kinase domain in dominant ethylene insensitivity. Plant Physiol 128:1428-1438
    
    75. Gao Z, Chen YF, Randlett MD, Zhao XC, Findell JL, Kieber JJ, Schaller GE (2003) Localization of the Raf-like kinase CTR1 to the endoplasmic reticulum of Arabidopsis through participation in ethylene receptor signaling complexes. J Biol Chem 278: 34725-34732
    
    76. Gaudriault S, Malandrin L, Paulin JP, Barny MA (1997) DspA, an essential pathogenicity factor of Erwinia amylovora showing homology with AvrE of Pseudomonas syringae, is secreted via Hrp secretion pathway in a Dsp-depend way. Mol Microbiol 26:1075-1069
    
    77. Gerhardt P, Murray RGE, Costilow R N, Nester EW, wood WA, Krieg NR, Phillips GB (1981) Manual of methods for general bacteriology. USA American Society of Microbiology, Washington, DC
    
    78. Ghassemian M, Nambara EJ, Cutler S, Kawaide H, Kamiya Y, McCourt P (2000) Regulation of abscisic acid signaling by the ethylene response pathway in Arabidopsis. Plant Cell 12: 1117-1126
    
    79. Gibson SI (2005) Control of plant development and gene expression by sugar signaling. Curr Opin Plant Biol 8: 93-102
    
    80. Goodman RN, Novacky AJ (1994) The hypersensitive reaction in plants to pathogenes. APS Press
    
    81. Greenberg JT, Silverman FP, Liang H (2000) Uncoupling salicylic acid-dependent cell death and defense-related responses from disease resistance in the Arabidopsis mutant acd5. Genetics 156: 341-350
    
    82. Gu YQ, Yang C, Thara VK, Zhou J, Martin GB (2000) Pti4 is induced by ethylene and salicylic acid, and its product is phosphorylated by the Pto kinase. Plant Cell 12: 771-786
    
    83. Gubler F, Millar AA, Jacobsen JV (2005) Dormancy release, ABA and pre-harvest sprouting. Curr Opin Plant Biol 8:183-187
    
    84. Guiltinan MJ, Marcotte WR, Quatrano RS (1990) A plant leucine zipper protein that recognizes an abscisic acid response element. Science 250: 267-271
    
    85. Guo H, Ecker JR (2003) Plant responses to ethylene gas are mediated by SCFEBF1/EBF2 -dependent proteolysis of EIN3 transcription factor. Cell 115: 667-677
    
    86. Guo H, Ecker JR (2004) The ethylene signaling pathway: new insights. Curr Opin Plant Biol 7: 40-49
    
    87. Gyuris J, Golemis E, Chertkov H, Brent R (1993) Cdil, a human G1 and S phase protein phosphatase that associates with Cdk2. Cell 75: 791-803
    
    88. Hall AE, Findell JL, Schaller GE, Sisler EC, Bleecker AB (2000) Ethylene perception by the ERS1 protein in Arabidopsis.Plant Physiol 123:1449-1458
    89.Hammond-Kosack K,Jones JDG(1996) Resistance genes-dependent plant defense response.Plant Cell 8:1773-1791
    90.Hass C,Lohrmann J,Albrecht V,Sweere U,Hummel F,Yoo SD,Hwang I,Zhu T,Schafer E,Kudla J,Harter K(2004) The response regulator 2 mediates ethylene signaling and hormone signal integration in Arabidopsis.EMBO J 23:3290-3302
    91.He SY,Huang HC,Collmer A(1993) Pseudomonas syringae pv.syringae harpin_(Pss):A protein that is secreted via the Hrp pathway and elicits the hypersensitive response in plants.Cell 73:1255-1266
    92.He ZH,Fujiki M,Kobom BD(1996) A cell wall associated receptor-like protein kinase.J Biol Chem 271:19789-19793
    93.Hirayama T,Kieber JJ,Hirayama N,Kogan M,Guzman P,Nourizadeh S,Alonso JM,Dailey WP,Dancis A,Ecker JR(1999) RESPONSIVE-TO-ANTAGONIST1,a Menkes/Wilson disease-related copper transporter,is required for ethylene signaling in Arabidopsis.Cell 97:383-393
    94.Hoffman T,Schmidt JS,Zheng X,Bent AF(1999) Isolation of ethylene-insensitive soybean mutants that are altered in pathogen susceptibility and gene-for-gene disease resistance.Plant Physiol 119:935-950
    95.Hoyle RH(1999) Statistical Strategies for Small Sample Research.Thousand Oaks,CA,Sage Publications
    96.Hoyos AE,Stanley CM,He SY,Pike S,Pu XA,Novacky A(1996) The interaction of harpin_(pss) with plant cell walls.Mol Plant-Microbe Interact 9:608-616
    97.Hua J,Chang C,Sun Q,Meyerowitz EM(1995) Ethylene insensitivity conferred by Arabidopsis ERS gene.Science 269:1712-1714
    98.Hua J,Meyerowitz EM(1998) Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana.Cell 94:261-271
    99.Ichimura K,Mizoguchi T,Irie K,Morris P,Giraudat J,Matsumoto K,Shinozaki K(1998) Isolation of ATMEKK1(a MAP kinase kinase kinase)-interacting proteins and analysis of a MAP kinase cascade in Arabidopsis.Biochem Biophys Res Commun 253:532-543
    100.Ikeda A,Sonoda Y,Vernieri P,Perata P,Hirochika H,Yamaguchi J(2002) The slender rice mutant,with constitutively activated gibberellin signal transduction,has enhanced capacity for abscisic acid level.Plant cell Physiol 43:974-979
    101.Jaime FM,Elena M,Peter HQ(1999) A simple,rapid and quantitative method for preparing Arabidopsis protein extracts for immunoblot analysis.The Plant Journal 20:251-257
    102.James P,Halladay J,Craig EA(1996) Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast.Genetics 144:1425-1436
    103.Jang YS,Sohn SI,Wang MH(2006) The hrpN gene of Erwinia amylovora stimulates tobacco growth and enhances resistance to Botrytis cinerea.Planta 223:449-456
    104.Jeannette E,Rona JP,Bardat F,Cornel D,Sotta B,Miginiac E(1999) Induction of RAB18 gene expression and activation of K~+ outward rectifying channels depend on an extracellular perception of ABA in Arabidopsis thaliana suspension cells.Plant J 18:13-22
    105.Joimsson N,Varshavsky A(1994) Split ubiquitin as a sensor of protein interactions in vivo.Proc Natl Acad Sei USA 91:10340-10344
    106. Jones AM, Assmann SA (2004) Plants: the latest model system for G-protein research. EMBO Rep 5: 572-578
    
    107. Joung JK, Ramm EI, Pabo CO (2000) A bacterial two-hybrid selection system for studying protein-DNA and protein-protein interactions. Proc Natl Acad Sci USA 97: 7382-7387
    
    108. Kamada S, Kusano H, Fujita H, Ohtsu M, Koya RC, Kuzumaki N, Tsujimoto Y (1998) A cloning of the antiapoptotic gene gelsolin. Proc Natl Acad Sci USA 95: 8532-8537
    
    109. Kang J, Choi H, Im M, Kim SY (2002) Arabidopsis basic leucine zipper proteins that mediate stress- responsive abscisic acid signaling. Plant Cell 14: 343-357
    
    110. Karimova G, Pidoux J, Ullmann A, Ladant D (1998) A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc Natl Acad Sci USA 95:5752-5756
    
    111. Kevin LC, Li WH, Ecker RE (2002) Ethylene biosynthesis and signaling networks. Plant Cell Supp: S131-S151
    
    112. Kim JF, Alfano JR (2002) Pathogenicity islands and virulence plasmids of bacterial plant pathogens. Curr Top Microbiol Immunol 264: 127-147
    
    113. Kim JF, Beer SV (2000) hrp genes and harpins of Erwinia amylovora: A decade of discovery. In Fire Blight and Its Causative Agent, Erwinia amylovora (Vanneste, JL, ed). CAB International, Wallingford, pp 141-162
    
    114. Kim JG Jeon E, Oh J, Moon JS, Hwang I (2004) Mutational analysis of Xanthomonas harpin HpaG identifies a key functional region that elicits the hypersensitive response in nonhost plants. J Bacteriol 186: 6239-6247
    
    115. Kim JG, Park BK, Yoo CH, Jeon E, Oh J, Hwang I (2003) Characterization of the Xanthomonas axonopodis pv. glycines HpaG pathogenicity island. J Bacteriol 185: 3155-3166
    
    116. Klement Z (1982) Hypersensitivity. pp. 149-177 in: MS Mount and GH Lacy (eds), Phytopathogenic Prokaryotes, VolII, Academic Press, New York
    
    117. Kohorn BD, He ZH, Fujiki M (1996) Elusin: a receptor-like kinase with an EGF domain in the cell wall. pp297-303 in: PR Shewry, NG Halford, R Hooley (ed), Protein Phosphorylation in Plants, Clarendon Press, Oxford; Oxford Univ Press, New York
    
    118. Koornneef M, Bentsink L, Hilhorst H (2002) Seed dormancy and germination. Curr Opin Plant Biol 5: 33-36
    
    119. Kumar A, Sunish Kumar R, Sakthivel N (2003) Compositional difference of the exopolysaccharides produced by the virulent and virulence-deficient strains of Xanthomonas oryzae pv. oryzae. Curr Microbiol 46: 251-255
    
    120. Laby RJ, Wei ZM, Beer SV (2006) Hypersensitive response elicitor fragments eliciting a hypersensitive response and uses thereof. United States Patent 7, 132, 525
    
    121. Lee J, Klessig DF, Numberger T (2001a) A harpin binding site in tobacco plasma membranes mediated activation of the pathogenesis-related gene HIN1 independent of extracellular calcium but dependent on mitogen-activated protein kinase activity. Plant Cell 13: 1079-1093
    
    122. Lee J, Klusener B, Tsiamis G, Stevens C, Tampakaki AP, Panopoulos N J, Noller J, Weiler EW, Cornelis GR, Mansfield JW, Nurnberger T (2001b) HrpZ_(Psph) from the plant pathogen Pseudomonas syringae pv. phaseolicola binds to lipid bilayers and forms and ion-conducting pore in vitro. Proc Natl Acad Sci USA 98: 289-294
    123. LeNoble ME, Spollen WG, Sharp RE (2004) Maintenance of shoot growth by endogenous ABA: genetic assessment of the involvement of ethylene suppression. J Exp Bot 55: 237-245
    124. Leung J, Merlot S, Giraudat J (1997) The Arabidopsis ABSCISIC ACID-INSENSITIVE2 (ABI2) and ABU genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. Plant Cell 9: 759-771
    125. Li CM, Brown I, Mansfield J, Stevens C, Boureau T, Romantschuk M, Taira S (2002) The Hrp pilus of Pseudomonas syringae elongates from its tip and acts as a conduit for translocation of the effector protein HrpZ. EMBO J 21:1909-1915
    126. Li HJ, Guo HW (2007) Molecular basis of the ethylene signaling and response pathway in Arabidopsis. J Plant Growth Regul 26: 106-117
    127. Li R, Fan Y (1999) Reduction of lesion growth rate of late blight plant disease in transgenic potato expressing harpin protein. Sci China (Ser C) 42: 96-101
    128. Li X, La Motte GE, Stewart CR, Cloud NP, Wear-Bagnall S, Jiang CZ (2006) Determination of IAA and ABA in the same plant sample by a widely applicable method using GC-MS with selected ion monitoring. J Plant Growth Regul 11: 55-65
    129. Lictra EJ, Liu JO (1996) A three-hybrid system for detecting small ligand-protein receptor interactions. Proc Natl Acad Sci USA 93: 12817-12821
    130. Liu FQ, Liu HX, Jia Q, Wu XJ, Guo XJ, Zhang SJ, Song F, Dong HS (2006) The internal glycine-rich motif and cysteine suppress several effects of the HpaG_(Xooc) protein in plants. Phytopathology 96: 1052-1059
    131. Liu L, Saunders K, Thomas CL, Davies JW, Stanley J (1999) Bean yellow dwarf virus RepA, but not Rep, binds to maize retinoblastoma protein, and the virus tolerates mutations in the consensus binding motif. Virology 256: 270-279
    132. Liu XG, Yue YL, Li B, Nie YL, Li W, Wu WH, Ma LG (2007) A G Protien-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid. Science 23: 1712-1716
    133. Liu Y, Zhang S (2004) Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. Plant Cell 16: 3386-3399
    134. Lund ST, Stall RE, Klee HJ (1998) Ethylene regulates the susceptible response to pathogen infection in tomato. Plant Cell 10: 371-381
    135. Ma YH, Zhou CY, Sheng CS (1979) Methods in Field Experiments and Statistical Analyses (in Chinese). Agriculture Press, Beijing, China 186-189
    136. Marsolier MC, Prioleau MN, Sentenac A (1997) An RNA polymerase III-based two-hybrid system to study RNA polymerase II transcriptional regulators. J Mol Biol 268: 243-249
    137. Mauch-Mani B, Mauch F (2005) The role of abscisic acid in plant-pathogen interactions. Curr Opin Plant Biol 8: 409-414
    138. McDonald KL, Cahill DM (1999) Influence of abscisic acid and the abscisic acid biosynthesis inhibitor, norflurazon, on interactions between Phytophthora sojae and soybean (Glycine max). Eur J Plant Pathol 105: 651-658
    139. Meng XD, Brodsky MH, Wolfe SA (2005) A bacterial one-hybrid system for determing the DNA-binding specificity of transcription factors. Nature Biotech 23: 988-994 to abscisic acid regulation of germination and postgermination development.Plant Physiol 141:243-256
    158.Peng J-L,Bao ZL,Li P,Chen GY,Wang JS,Dong HS(2004a) Harpinxoo and its functional domains activate pathogen-inducible plant promoters in Arabidopsis.Acta Bot Sinica 46:1083-1090
    159.Peng JL,Bao ZL,Ren HY,Wang JS,Dong HS(2004b) Expression of harpinxoo in transgenic tobacco induces pathogen defense in the absence of hypersensitive cell death.Phytopathology 94:1048-1055
    160.Peng JL,Dong HS,Dong HP,Delaney TP,Bonasera JM,Beer SV(2003) Harpin-elicited hypersensitive cell death and pathogen resistance requires the NDR1 and EDS1 genes.Physiol Mol Plant Pathol 62:317-326
    161.Penninckx IA,Yhomma BP,Buchala A,Metrattx JP,Broekaert WF(1998) Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis.Plant Cell 10:2103-1237
    162.Perrin RM,Young LS,Murthy UMN,Harrison BR,Wang Y,Will JL,Masson PH(2005) Gravity Signal Transduction in Primary Roots.Ann Bot(Lond) 96:737-743
    163.Pickard BG(1994) Contemplating the plasmalemma control center model.Protoplasma 182:1-9
    164.Pierce K.L,Premont RT,Lefkowitz RJ(2002) Seven-transmembrane receptors.Nat Rev Mol Cell Biol 3:639-650
    165.Pieterse CM,van Pelt JTJ,Parchmann S,Mueller MJ,Buchala AJ,Metraux J-P,van Loon LC (2000) Rhizobacteria-mediated induced systemic resistance(ISR) in Arabidopsis requires sensibility to jasmonate and ethylene but is not accompanied by an increase in their production.Physiol Mol Plant Pathol 57:123-134
    166.Pieterse CM,Van Wees SCM,Van Pelt JA,Knoester M,Laan R,Gerrits H,Weisbeek PJ,Van Loon LC(1998).A novel signaling pathway controlling induced systemic resistance in Arabidopsis.Plant Cell 10:1571-1580.
    167.Popham P,Pike S,Novacky A(1995) The effects of harpin from Erwinia amylovora on the plasmalemma of suspension-cultured tobacco cells.Physiol Mol Plant Pathol 47:39-50
    168.Potuschak T,Lechner E,Parmentier Y,Yanagisawa S,Grava S,Koncz C,Genschik P(2003)EIN3-dependent regulation of plant ethylene hormone signaling by two Arabidopsis F box proteins:EBF1 and EBF2.Cell 115:679-689
    169.Potuschak T,Vansiri A,Binder BM,Lechner E,Vierstra RD,Genschik,P(2006) The exoribonuclease XRN4 is a component of the ethylene response pathway in Arabidopsis.Plant Cell 18:3047-3057
    170.Preston G,Huang HC,He SY,Collmer A(1995) The HrpZ proteins ofPseudomonas syringae pv.syringae,glycinea,and tomato are encoded by an operon containing Yersinia ysc homology and elicit the hypersensitive response in tomato but not soybean.Mol Plant-Microbe Interact 8:717-732
    171.Price J,Li TC,Kang SG,Na JK,Jang JC(2003) Mechanisms of glucose signaling during germination of Arabidopsis.Plant Physiol 132:1424-1438
    172.Putz U,Skehel P,Kuhl D(1996) A tri-hybrid system for the analysis and detection of RNA-protein interactions.Nucleic Acids Res 24:4834-4640
    173. Qiu D, Wei ZM, Bauer DW, Beer SV (1997) Treatment of tomato seed with harpin enhances germination and growth and induces resistance to Ralstonia solanacearum. Phytopathology 87: S80
    
    174. Razem FA, El-Kereamy A, Abrams SR, Hill RD (2006) The RNA-binding protein FCA is an abscisic receptor. Nature 439: 291-294
    
    175. Reboutier D, Frankart C, Briand J, Biligui B, Laroche S, Rona JP, Barny MA, Bouteau F (2007) The HrpN(ea) harpin from Erwinia amylovora triggers differential responses on the nonhost Arabidopsis thaliana cells and on the host apple cells. Mol Plant-Microbe Interact 20: 94-100
    
    176. Reinders A, Schulze W, Thaminy S (2002) Intra- and intermolecular interactions in sucrose transporters at the plasma membrane detected by the split-ubiquitin system and functional assays. Structure 10: 763-772
    
    177. Ren HY, Gu GY, Long JY, Wu TQ, Song T, Zhang SJ, Chen ZY, Dong HS (2006a) Combinative effects of a bacterial type-III effector and a biocontrol bacterium on rice growth and disease resistance. J Biosci 31: 617-627
    
    178. Ren HY, Song T, Wu TQ, Sun LJ, Liu YX, Yang FF, Chen ZY, Dong HS (2006b) Effects of a biocontrol bacterium on growth and defence of transgenic rice plants expressing a bacterial type-III effector. Annals of Microbiology 56: 281-287
    
    179.Resnick JS, Wen CK, Shockey JA, Chang C (2006) REVERSIONTO-ETHYLENE SENSITIVITY1, a conserved gene that regulates ethylene receptor function in Arabidopsis. Proc Natl Acad Sci USA 103: 7917-7922
    
    180. Rock CD, Sun X (2005) Crosstalk between ABA and auxin signaling pathways in roots of Arabidopsis thaliana (1) Heynh. Planta 222: 98-106
    
    181. Roman G, Lubarsky B, Kieber JJ, Rothenberg M, Ecker JR (1995) Genetic analysis of ethylene signal transduction in Arabidopsis thaliana: five novel mutant loci integrated into a stress response pathway. Genetics 139: 1393-1409
    
    182. Ross AF (1991) Systemic acquired induced by localized virus infections in plants. Virology 14: 340-358
    
    183. Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY, Hunt MD (1996) Systemic acquired resistance. Plant Cell 8: 1809-1819
    
    184. Salmond GPC, Reeves PG (1993) Membrane traffic wardens and protein-secretion in Gram-negative bacterial. Trends Biochem Sci 18:7-12
    
    185. Sambrook J, Russell DW (2001) Molecular Cloning, A Laboratory Manual (3rd ed), Cold Spring Harbor Laboratory Press, New York
    
    186. Schaad MC, Anderberg RJ, Carrington JC (2000) Strain-specific interaction of the tobacco Etch virus NIa protein with the translation initiation factore IF4E in the yeast two-hybrid system. Virology 273: 300-306
    
    187. Schroeder JI, Kwak JM, Allen GJ (2001) Guard cell abscisic acid signaling and engineering drought hardiness in plant. Nature 410: 327-330
    
    188. Schulte R, Bonas U (1992) Expression of the Xanthomonas campestris pv. vesicatoria hrp gene cluster, which determines pathogenicity and hypersensitivity on pepper and tomato, is plant inducible. J Bacteriol 174: 815-823
    
    189. Serebriiskii IG, Vassin VM, Tsygankov YD (1996) Two new members of the bio B superfamily: cloning, sequencing and expression of bio B genes of Methylobacillus flagellatum and Corynebacterium glutamicum. Gene 175: 15-22
    
    190. Shah J, Klessig DF (1999) Salicylic acid: signal perception and transduction. In Biochemistry and Molecular Biology of Plant Hormones, eds PPJ Hooykaas, MA Hall, and KR Libbenga, pp513-541. Amsterdam, The Netherlands: Elsevier Science
    191. Shen Q, Gomez-Cadenas A, Zhang P, Walker-Simmons MK, Sheen J, Ho TH D (2001) Dissection of abscisic acid signal transduction pathway in barley aleurone layers. Plant Molecular Biology 47: 437-448
    192. Shen Q, Ho THD (1995) Functional dissection of an abscisic acid (ABA)-inducible gene reveals two independent ABA-responsive complex each containing a G-box and novel cis-acting element. Plant Cell 7: 295-307
    193. Shen YY, Wang X F, Wu FQ, Du SY, Cao Z, Shang Y, Wang XL, Peng CC, Yu XC, Zhu SY, Fan RC, Xu YH, Zhang DP (2006) The Mg-chelatase H subunit is an abscisic acid receptor. Nature 443: 823-826
    194. Shin HM, Goldman PS, DeMaggio AJ, Hollenberg SM, Goodman RH, Howkstra MF (1996) A positive genetic selection for disrupting protein-protein interactions; identificationn of CREB mutations that prevern association with the coactivaor CBP. Proc. Natl. Acad. Sci. USA 93: 13896-13901
    195. Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6: 410-417
    196. Sikorski R, Peters R (1998) Two-hybridzyme. Science 281: 1822-1823
    197. Silver PA, Brent R, Ptashne M (1986) DNA binding is not sufficient for nuclear localization of regulatory proteins in Saccharomyces cerevisiae. Mol Cell Biol 6: 4763-4766
    198. Soderman E, Brocard I, Lynch T, Finkelstein R (2000) Regulation and function of Arabidopsis ABA-INSENSITIVE4 (ABI4) gene in seed and ABA response signaling networks. Plant Physiol 124: 1752-1765
    199. Solano R, Stepanova A, Chao QM, Ecker JR (1998) Nuclear events in ethylene signaling: a transduction cascade mediated by ETHYLENE INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes Dev 12: 3703-4714
    200. Spiegel AM, Weinstein LS (2004) Inherited diseases involving G proteins and G protein-coupled receptors. Annu Rev Med 55: 27-39
    201. Spoel SH, Koornneef A, Claessens SMC, Korzelius JP, Van Pelt JA, Mueller MJ, Buchala AJ, Metraux JP, Brown R, Kazan K, Van Loon LC, Dong XN, Pieterse CMJ (2003) NPR1 modulates cross-talking between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15: 760-770
    202. Stagljar I, Korostensky C, Johnsson N, te Heesen S (1998) A genetic system based on split-ubiquitin for the analysis of interactions between membrane proteins in vivo. Proc Natl Acad Sci USA 95: 5187-5192
    203. Staskawicz BJ, Mudgett MB, Dangl JL, Galan JE (2001) Common and contrasting themes of plant and animal diseases. Science 292: 2285-2289
    204. Stepanova AN, Alonso JM (2005) Ethylene signaling pathway/Arabidopsis ethylene signaling pathway. Sci STKE 276:cm3/cm4
    
    205. Strobel RN, Gopalan JS, Kuc JA, He SY (1996) Induction of systemic acquired resistance in cucumber by Pseudomonas syringae pv. syringae 61 HrpZ_(Pss) protein. Plant J 9: 431-439
    
    206. Stuiver MH Custers JHHV (2001) Engineering disease resistance in plants. Nature 411: 865-868
    
    207. Tampakaki AP, Panopoulos NJ (2000) Elicitation of hypersensitive cell death by extracellularly targeted HrpZ_(Psph) produced in planta. Mol Plant-Microbe Interact 13:1366-1374
    
    208. Thaler SJ, Bostock RM (2004) Interactions between abscisic-acid mediated responses and plant resistance to pathogens and insect. Ecology 85: 48-58
    
    209. Thomma BP, Eggermont K, Tierens KF, Broekaert WF (1999) Requirement of functional ethylene-insensitive 2 gene for efficient resistance of Arabidopsis to infection by Botrytis cinerea. Plant Physiol 121:1093-1102
    
    210. Thomma BPHJ, Eggermont K, Penninckx LAMA, Mauch-Mani B, Vogelsang R, Cammue BPA, Broekaert WF (1998) Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc Natl Acad Sci USA 95: 15107-15111
    
    211. Tieman DM, Taylor MG, Ciardi JA, Klee HJ (2000) The tomato ethylene receptors NR and LeETR4 are negative regulators of ethylene response and exhibit functional compensation within a multigene family. Proc Natl Acad Sci USA 97: 5663-5668
    
    212. Tsan J, Wang Z, Jin Y, et al (1997) The two-hybrid system [A] In: Bartel PL, Fields S eds Advances in molecular biology[C]. New York: Oxford University Press: 217-232
    
    213. Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki (2000) Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci USA 97: 11632-11637
    
    214. Urao T, Miyata S, Yamaguchi-Shinozaki K, Shinozaki K (2000) Possible His to Asp phosphorelay signaling in an Arabidopsis two-component system. FEBS Lett 478: 227-232
    
    215. Van Loon L C, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36: 453-483
    
    216. Vidal M, Braun P, Chen E, Boeke JD, Harlow E (1996) Genetic characterization of mammalian protein-protein interaction domain by using a yeast reverse two-hybrid system. Pro Natl Acid Sci USA 93: 10321-10326
    
    217. Vogel JP, Woeste KE, Theologs A, Kieber JJ (1998) Recessive and dominant mutations in the ethylene biosynthetic gene ACS5 of Arabidopsis confer cytokinin insensitivity and ethylene overproduction, respectively. Proc Natl Acad Sci USA 95: 4766-4771
    
    218. Wang X, Li M, Zhang J, Zhang Y, Zhang G, Wang J (2007) Identification of a key functional region in harpins from Xanthomonas that suppresses protein aggregation and mediates harpin expression in E coli Mol Biol Rep 2006 Dec 19 [Epub ahead of print], DOI 10.1007/S11033-006-9043-6
    
    219. Wang X, Ullah Z, Grumet R (2000) Interaction between zucchini yellow mosaic potyvirus RNA-dependent RNA polymerase and host Poly-(A) binding protein. Virology 275: 433-443
    
    220. Wang XQ, Ullah H, Jones AM, Assmann SM (2001) G protein regulation of ion channels and abscisic acid signaling in Arabidopsis guard cells. Science 292: 2070-2072
    
    221. Wang YN, Liu C, Li KX, Sun FF, Hu HZ, Li X, Zhao YK, Han XY, Zhang WS, Duan YF, Liu MY, Li X (2007) Arabidopsis EIN2 modulates stress response through abscisic acid response pathway. Plant Mol Biol 64: 633-644
    
    222. Wei ZM, Beer SV (1996) Harpin from Erwinia amylovora induces plant disease resistance. Acta Horticulturae 411: 223-225
    
    223. Wei ZM, Fan H, Stephens JJ, Beer SV, Laby RJ (2005) Hypersensitive response elicitor fragments which are active but do not elicit a hypersensitive response. United States Patent 6,858,707
    
    224. Wei ZM, Lacy RJ, Zumoff CH, Bauer DW, He SY, Collmer A, Beer SV (1992) Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science 257: 85-88
    
    225. Wei ZM, Qiu D, Kropp MJ, Schading RL (1998) Harpin, an HR elicitor, activates both defense and growth systems in many commercially important crops. Phytopathology 88: S96
    
    226. Wittmann S, Chatel H, Fortin MG (1997) Interaction of the viral protein genome linked of turnip mosaic potyvirus with the translational eukaryotic initiation factor (iso) 4E of Arabidopsis thaliana using the yeast two-hybrid system. Virology 234: 84-92
    
    227. Wu XJ, Wu TQ, Long JY, Yin Q, Zhang Y, Chen L, Liu RX, Gao TC, Dong HS (2007) Productivity and biochemical properties of green tea in response to full length and functional fragments of hpaG_(Xoo), a harpin protein from the bacterial rice leaf streak pathogen Xanthomonas oryzae pv. oryzicila. J Biosci 22: 1119-1131
    
    228. Wu Y, Sanchez JP, Lopez-Molina L, Himmelbach A, Grill E, Chua NH (2003) The abil-1 mutation blocks ABA signaling downstream of cADPR action. Plant J 34: 307-315
    
    229. Xie Z, Chen Z (2000) Harpin-induced hypersensitive cell death is associated with altered mitochondrial functions in tobacco cells. Mol Plant-Microbe Interact 13: 183-190
    
    230. Xu Y, Chang P-FL, Liu D, Narasimhan ML, Raghothama KG, Hasegawa PM, Bressan RA (1994) Plant defense genes are synergistically induced by ethylene and methyl jasmonate. Plant Cell 6: 1077-1085
    
    231. Yamada H, Hanaki N, Imamura A, Ueguchi C, Mizuno T (1998) An Arabidopsis protein that interacts with the cytokine in inducible response regulator, ARR4, implicated in the His-Asp phosphorylay signal transduction. FEBS Lett 436: 76-80
    
    232. Yamauchi Y, Ogawa M, Kuwahara A, Hanada A, Kamiya Y, Yamaguchi S (2004) Activation of gibberellin biosynthesis and response pathways by low temperature during imbibition of Arabidopsis thaliana seeds. Plant Cell 16: 367-378
    
    233. Yanagisawa S, Yoo SD, Sheen J (2003) Differential regulation of EIN3 stability by glucose and ethylene signalling in plants. Nature 425: 521-525
    
    234. Zasloff, M (2002) Antimicrobial peptides of multicellular organisms. Nature 415: 389-395
    
    235. Zhang S, Klessig DF (2000) Pathogen-induced MAP kinases in tobacco. Results Probl Cell Differ 27: 65-84
    
    236. Zhou Y, Fowke L, Wang H (2002) Plant CDK inhibitors: studies of interactions with cell cycle regulators in the yeast two-hybrid system and functional comparisons in transgenic Arabidopsis plants. Plant Cell Rep 20: 967-975
    
    237. Zhu WG, Magbanua MM, White FF (2000) Indentification of two novel hrp-associated genes in the hrp gene cluster of Xanthomonsa oryzae pv. oryzea. J Bacteriol 182: 1844-1853
    
    238. Zitter TA, Beer SV (1998) Harpin for insect control. Phytopathology 88: S104-105
    239.包志龙(2005)蛋白质激发子harpins诱导的植物信号通路及其交叉对话.硕士学位论文 南京农业大学
    240.戴良英,李枸,罗宽(2002)拟南芥COI1互作基因的分离.湖南农业大学学报(自然科学版)5:359-363
    241.董宏平(2003)Harpin促进植物生长和诱导抗虫抗旱的信号传导解析.博士学位论文 南京农业大学
    242.李平(2002)水稻黄单胞菌无毒基因avrXa3的克隆与鉴定以及过敏反应激发子Hrf蛋白质遗传多样性和功能域的研究.博士学位论文 南京农业大学
    243.李平,陆徐忠,邵敏等(2004)水稻黄单胞细菌Harpin蛋白的遗传多样性及其诱导烟草过敏反应和抗病性功能.中国科学C辑 生命科学34:136-143
    244.陆徐忠,邵敏,闻伟刚等(2004)水稻条斑病细菌类Harpin蛋白的纯化与特性研究.植物病理学报 34:43-48
    245.马力耕,孙大业(2001)光敏色素与转录因子结合直接调控植物基因表达和发育.生命科学4:148-150
    246.彭建令(2003)两类激发子(harpins和核黄素)启动植物抗病防卫和生长信号传导的分子遗传学解析.博士学位论文 南京农业大学
    247.闻伟刚(2001)水稻黄单胞菌过敏性反应激发子的研究.博士学位论文 南京农业大学
    248.闻伟刚,王金生(2001)水稻白叶枯病菌harpin基因的克隆与表达.植物病理学报31:295-300
    249.余晓江(2002)Harpin_(Xoo)启动番茄Pro介导的蛋白质激酶级联抗病防卫反应.硕士学位论文南京农业大学
    250.赵立平,梁元存,刘爱新,董汉松(1997)表达harpin基因的大肠杆菌DH5α(PCPP430)诱导抗性研究.高技术通讯7:1-4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700