用户名: 密码: 验证码:
Harpins蛋白诱导植物防卫和生长及四种激素信号的交叉调控作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物防卫反应的激活是通过植物识别激发子开始的,激发子是由病原物编码的分子,如:微生物蛋白、小肽及多糖等。当遭遇外界各种不同的刺激时,植物会迅速启动反应机制,调用多个信号通路中相关的调控因子,重新编排形成高效的信号网络,应对面临的生存危机。植物如何根据不同的外源信号调用相关的因子,并使其“各就各位”发挥作用,是目前植物科学领域研究的重要话题。
     革兰氏阴性植物病原细菌产生的蛋白质激发子harpins可诱导植物多种反应,如抗病,抗虫,促生长和抗旱等。作为一种多功能激发子,它非常有利于研究植物在生长发育,抗病防卫,抗虫和抗逆等过程中的相关信号传导机制。于是,harpins如何被植物识别,如何引发各种效应,并且这些反应中有哪些信号通路参与,它们相互之间有没有交叉对话,如何交叉对话、以及harpins如何实现这些功能等多个问题成为了研究的重点。
     1.不同HpaG_(Xooc)功能片段的分离鉴定及对植物的诱导抗病和促生长作用
     Harpins是由革兰氏阴性植物病原细菌产生的一类蛋白质激发子,他们的共同特点是:富含甘氨酸、热稳定、对蛋白酶敏感,注射到产生菌的非寄主植物叶片细胞间隙后,可以诱导过敏性细胞死亡(hypersensitive cell death,HCD),诱导植物产生防卫反应、促进植物生长。Harpin蛋白的不同效应,有些是对植物有益的,而这些效应的发生可能是依赖于蛋白质不同的功能域实现的。分离、鉴定蛋白质有益和有害的功能区域,更有利于我们将harpin相关蛋白应用于农作物,而不产生诸如细胞坏死之类的负面效应。
     水稻细菌性条斑病菌(Xanthomonas oryzae pv.oryzicola)Hpa G_(Xooc)作为Harpin蛋白家族中的一员,包含两个富含甘氨酸的结构域(glycine-rich motif,GRM),一个半胱氨酸残基(cysteine)。GRM是Harpin类蛋白质共有的特征,而半胱氨酸则是其他Harpin类蛋白质所没有的。本研究根据HpaG_(Xooc)不同功能域和区段,基于PCR的体外诱变技术产生九个HpaG_(Xooc)的蛋白质功能片段,分别为HpaG_(1-105)、HpaG_(1-94)、HpaG_(1-61)、HpaG_(1-47)、HpaG_(7-61)、HpaG_(62-137)、HpaG_(10-42)、HpaG_(95-137)、HpaG_(84-94),右下角的数字分别代表了蛋白质所包括的HpaG_(Xooc)相应的氨基酸区域.将这九个片段体外表达,产生的蛋白质施用于烟草(Nicotiana tabaccum)和水稻(Oryza sativa)能产生不同的效应。HapG_(1-94)、HpaG_(95-137)、HpaG_(84-94)和HpaG_(Xooc)诱导细胞死亡的能力相近,HpaG_(1-105)、HpaG_(1-61)、HpaG_(1-47)、HpaG_(7-62)及△GRM诱导细胞死亡的能力高于HpaG_(Xooc)63%以上;HpaG_(62-137)诱导细胞死亡的能力是HpaG_(Xooc)的2倍,但是HpaG_(10-42)诱导细胞死亡的能力低于其他蛋白约90%以上。
     同HpaG_(Xooc)全长蛋白相比较,HpaG_(62-137)能在烟草上诱导更强的HCD,而HpaG_(10-42)不表现明显的细胞死亡,但都能在水稻上能激发更强的防卫反应和促进植株更快的生长。在检测的9个片段及全长蛋白质中,对水稻白叶枯病菌(Xanthomonasoryzae pv.oryzae)的抗性诱导效应中,HpaG_(10-42)诱导效应最强,HpaG_(1-61)和HpaG_(7-61)次之,HpaG_(62-137)的诱导抗病性效应表现为最低;而对稻瘟病菌(Magnaporthe grisea)的诱导抗性效应中,HpaG_(62-137)处理的叶片上仅能看到侵染点,没有明显的坏死斑;而HpaG_(10-42)处理的叶片上甚至连坏死斑都无法看见。因此,HpaG_(10-42)能同时抑制细菌和真菌病原的致病性。在对水稻的促生长效应中,以HpaG_(Xooc)为对照,HpaG_(1-105)、HpaG_(1-62)、HpaG_(1-47)、HpaG_(62-137)和HpaG_(84-94)的促生长效应较弱;但是△GRM、HpaG_(1-94)、HpaG_(7-61)及HpaG_(10-42)处理后根系分别增长了15%、55%、20%和48%。因此HpaG_(1-94)和HpaG_(10-42)在促进水稻生长的效应最强。
     在蛋白粗提液实验中HpaG_(1-94)、HpaG_(10-42)、HpaG_(62-137)和△GRM对植物的作用明显强于HpaG_(Xooc),因此我们将这几种蛋白质进行镍柱纯化,并进一步检测、验证他们的生物活性以确证上面的实验结果。从结果可以看出不管是粗蛋白提取液还是纯化蛋白质均表现相同的效应。
     由于在检测的所有蛋白质中HpaG_(62-137)和HpaG_(10-42)表现为更高水平的HCD诱导活性及所有其他有益效应,因此我们使用HpaG_(62-137)和HpaG_(10-42)同HpaG_(Xooc)相比较,来检测他们在诱导植物HCD和激活生长防卫相关信号传导通路的活性。HpaG_(62-137)处理后HCD标志基因hsr203和hin1基因在处理6小时后就开始积累转录,并随着处理时间的推移叶片中的表达量也逐渐增加;处理48小时后,HpaG_(62-137)处理的叶片中这两个基因的表达量明显强于HpaG_(Xooc)的处理。此外HpaG_(10-42)处理6个小时后防卫反应基因NPR1和PR1开始被诱导表达;特别是PR1基因的表达明显地依赖于诱导,因为在处理0小时时没有明显的组成性表达。从HpaG_(10-42)和HpaG_(Xooc)处理48小时后NPR1和PR1基因表达的结果可以看出,HpaG_(10-42)的诱导表达效应明显强于HpaG_(Xooc)。由于HpaG_(10-42)的诱导活性明显强于HpaG_(Xooc)全长蛋白质的活性,因此可以解释我们所观察到的植物上有益效应的表型。我们同时发现某些特异性片段相比较全长蛋白更能有效地激活某些信号通路。总之,本研究结果阐释了一个HpaG_(Xooc)的特异性片段HpaG_(10-42)能促进水稻生长和诱导抗病性,具有潜在的农业应用价值。
     2.HrpN_(Ea)诱导植物生长和膨胀素基因表达及乙烯与赤霉素的调控作用
     膨胀素(Expansin)是植物细胞生长期间释放的一种能使细胞壁松弛的蛋白质,是细胞壁的关键调节剂,对细胞生长有重要作用。有研究表明植物激素介导了膨胀素的功能,但是植物激素是特异性作用还是共同起作用及作用机制仍然不是很清楚。本文报道了HrpN_(Ea)促进植物生长和诱导expansin基因表达所启动的不同信号通路。
     拟南芥浸种处理15天后在MS平板上可以看见,HrpN_(Ea)可以明显的促进根系生长,根系增长89%,幼苗鲜重增加67%;同样盆播幼苗在HrpN_(Ea)喷雾处理15天和30天后也明显的促进的植株地上部分的生长。HrpN_(Ea)浸种番茄后可以促进种子萌发、根系生长及后期的营养生长,HrpN_(Ea)处理12天后植株高度增加46%,鲜重增加52%。烟草在HrpN_(Ea)处理20天后可以看见促生长作用,到40天促生长作用更明显,高度和鲜重分别增加32%和50%,到处理60天营养生长后期,与对照相比,地上部分生长明显加快,茎节粗壮,叶片肥大,长势旺盛。HrpN_(Ea)处理水稻后极大的促进了种子萌发和根系生长,处理12天后可以明显观察到促生长作用,高度和鲜重分别增加56%和48%,直接促进了幼苗的生长.此外与对照相比,HrpN_(Ea)不仅增加了植株叶面积,而且还增加了叶片数量。HrpN_(Ea)明显增加植物体内全氮含量,其提高幅度分别比对照高28%(拟南芥),36.4%(番茄),28.9%(烟草)和25.4%(水稻)。HrpN_(Ea)浸种处理四种植物10天后,叶绿素a和叶绿素b及叶绿素总量均明显增加。此外,HrpN_(Ea)处理后,叶绿素a/b比值也显著高于对照处理。当HrpN_(Ea)喷雾处理10天与20天的植株地上部分后,叶片全氮量和叶绿素含量同样增加。因此,HrpN_(Ea)通过影响基本生理过程来强化植物的生物合成功能和增加植物生物学产量.
     我们检测了HrpN_(Ea)处理四种不同植物后对生长相关基因的诱导表达。HrpN_(Ea)处理后拟南芥AtEXP7在叶片和茎中表达不明显,而在根中表达量较高;LeEXP2和LeEXP5在茎中表达而在叶片和根中不表达;另外8个EXPs,包括AtEXP10和AtEXP2在叶片中表达量高,而在根和茎中表达量较低。同时AtEXP16和NtEXP2的诱导表达分别相似于AtEXP10和NtEXP2,在叶片中特异性表达的EXPs如AtEXP10、LeEXP2和NtEXP2,在根和茎中转录水平明显降低。在不同的器官、不同的处理模式及诱导时间的不同,基因表达水平也不相同。AtEXP2、LeEXP18和NtEXP2表达模式相同,在处理72小时和96小时内随着处理时间的推移表达量逐渐增加。相反地,其他的EXPs基因在处理6小时后直到72小时始终保持高水平表达量。
     为了阐释HrpN_(Ea)诱导EXPs基因表达和促生长作用同乙烯信号通路的相关性,我们测定了HrpN_(Ea)处理后乙烯信号通路中关键基因的表达情况及同EXPs表达的关系。拟南芥中ETR1的表达受HrpN_(Ea)诱导,并且随着诱导时间表达量逐渐增强;EIN2表达是组成性的,并且在HrpN_(Ea)处理6小时后表达量快速增加达到顶峰,随后不再增加。HrpN_(Ea)处理后乙烯信号通路的标志基因PDF1.2和PR-3b被诱导表达,说明HrpN_(Ea)激活乙烯信号通路。同样地,在番茄和烟草中编码乙烯受体类的基因LeETR1和NtETR1在HrpN_(Ea)处理后也诱导表达,并且在对照和处理0小时时没有明显的组成性表达。HrpN_(Ea)喷雾处理20天拟南芥野生型和突变体etr1-1幼苗后,突变体中的AtEXP10的表达量相比较野生型极大的降低,处理2天后,突变体中基因表达水平仅是野生型的5%。当用HrpN_(Ea)和乙烯抑制剂1-MCP混合处理番茄、烟草和水稻幼苗后,LeEXP2、NtEXP2和OsEXP4基因的表达量比HrpN_(Ea)单独处理时有明显的下降。HrpN_(Ea)和1-MCP共同处理番茄、烟草和水稻后,植株的生长明显受到抑制。因此,在供试的四种植物中,乙烯的接受在HrpN_(Ea)促生长和诱导EXP基因的表达过程中是关键的。
     我们比较了HrpN_(Ea)和GA_3对水稻OsEXPs基因的影响。水稻中EXPs基因均能被HrpN_(Ea)和GA_3诱导增强表达。水稻中HrpN_(Ea)诱导OsEXP2、OsEXP4和OsEXP16表达增强,作用类似于GA_3。但HrpN_(Ea)的作用明显滞后于GA_3,并且诱导效应低于GA_3。尤其是OsEXP2和OsEXP16,在GA_3处理6小时后开始持续增强表达,而HrpN_(Ea)处理12小时后表达水平才逐渐增强。OsEXP4基因在处理12小时后表达开始明显增强,然后一直保持在正常表达水平。我们使用了赤霉素合成抑制剂pp333来验证HrpN_(Ea)在诱导EXP基因的表达和促生长作用是否需要赤霉素信号传导。HrpN_(Ea)处理水稻幼苗后OsEXP4被极大地诱导增强表达,HrpN_(Ea)和抑制剂pp333共处理后,OsEXP4的表达却被抑制了。在番茄和烟草中,pp333同样抑制了HrpN_(Ea)对LeEXP2和NtEXP2诱导表达效应。以上结果可知,HrpN_(Ea)诱导EXPs基因的表达和促生长效应需要赤霉素信号通路。为了检测拟南芥中赤霉素是否参与了HrpN_(Ea)促生长和诱导AtEXP基因过程,研究使用了野生型(Col-0)植株和赤霉素合成突变体ga5-1。HrpN_(Ea)诱导AtEXP7基因在根中增强表达,而AtEXP10基因在叶中被诱导增强表达;同野生型相比,突变体ga5-1在HrpN_(Ea)处理后这两个基因均没有明显的表达。浸种试验中,HrpN_(Ea)不能诱导ga5-1的促生长效应。因此,阻断赤霉素合成同样消弱了HrpN_(Ea)的促生长和诱导EXPs基因表达的作用。
     本研究结果说明HrpN_(Ea)促生长和诱导EXPs基因表达需要乙烯和赤霉素信号通路。
     3.烟草诱导防卫与生长调控相关基因CES1的克隆和功能初步分析
     本实验室以前使用病毒TMV N14和CMV SV52分别诱导处理NC89后,通过体细胞无性系繁殖得到两个突变体ces1-1、ces2-1,三者在抗病性和长势上存在明显差异,在幼苗期ces2-1的长势最强,ces1-1的长势最弱;5-6叶期之后NC89的长势最强,而ces2-1的长势减弱,ces1-1的长势最弱。5-6叶期接种烟草赤星病菌(Alternaria alternata)发现,ces1-1、ces2-1的抗病性较NC89明显强,且ces2-1较ces1-1强。
     本研究中利用差显片段设计特异性引物,RACE法克隆到全长基因,CES1基因ORF长372 bp碱基,翻译出的蛋白质一级机构包括124个氨基酸,命名为CES1(constitutive expresser of systemic acquired resistancel)。通过功能分析发现,此蛋白质在53-69 bp之间有一个富含脯氨酸/苏氨酸区域(Pro/Thr-rich domain)、含有一个氨基葡聚糖结合位点、两个蛋白激酶C磷酸化位点、两个酪氨酸蛋白激酶Ⅱ磷酸化位点以及三个N端酰基化位点。在线预测该蛋白质发现有2个α-螺旋、3个β-片、6个翻转。由于此蛋白质研究较少,没有预测到此蛋白质的空间结构。二级结构预测没有发现信号肽。通过序列比对发现该基因是在高等植物中是保守的,并且在N末端和C末端高度保守。2,4-D和HrpN_(Ea)处理后均增强了突变体的抗病性,并诱导增强防卫相关基因的表达。农杆菌介导的洋葱表皮细胞GFP瞬时表达实验表明:CES1定位于细胞核内。通过抗病性分析发现,CES1正向调节抗病性,负向调节生长。
     4.乙烯与脱落酸信号共同调控HrpN_(Ea)诱导的韧皮部防卫反应与昆虫驱避
     植物韧皮部相关防卫(plant phloem-related defense,PRD)能够抵抗刺吸式昆虫的取食。已知HrpN_(Ea)类生物激发子能够激发抗虫信号传导途径,可能参与了韧皮部防卫反应的诱导,但是抗虫途径如何调节PRD反应仍是未知的。本章初步研究了拟南芥ABA和ET信号传导通路协同作用参与了HrpN_(Ea)介导的PRD反应及抗虫驱避效应,并且初步筛选了13个受HXpN_(Ea)上调并且参与调控ABA和ET信号通路的转录调节因子。原位杂交及化学发光实验结果证明HrpN_(Ea)处理后可以增加在韧皮部产生韧皮部相关蛋白的表达及沉积胼胝质,两者共同构成了PRD反应,并且有利于驱避蚜虫、减少蚜虫韧皮部取食活动;实验结果证明HrpN_(Ea)诱导的蚜虫驱避效应需要EIN2扣ABI2因子的协同作用,同时蚜虫的取食活动同驱避效应有关。
     对拟南芥生态型Col-0和Ler-0在HxpN_(Ea)处理后蚜虫趋避效应以及蚜虫刺吸电子信号分析,结果表明蚜虫更喜好取食Col-0型植株;同时对照处理中,蚜虫驱避效应主要发生在20-40分钟和3-12小时两个阶段;而在HrpN_(Ea)处理中,蚜虫驱避主要集中在1-12小时。此外,HrpN_(Ea)处理增加了蚜虫对叶片的试探性的刺吸,而韧皮部取食活动明显降低,说明处理后降低了蚜虫对植株的取食喜好。
     为了确定HrpN_(Ea)处理后ET和ABA信号传导途径是否影响蚜虫的取食活动,我们使用了拟南芥ET和ABA信号通路相关的突变体。HrpN_(Ea)处理后,突变体ein5-1和abi1-1在HrpN_(Ea)处理后,同野生型处理一样降低了蚜虫取食的喜好。相反地,突变体ein2-1和abi2-1处理后这种降低效应不明显,蚜虫喜好没有明显降低,对蚜虫的活动没有明显的影响。因此,HrpN_(Ea)诱导植株的蚜虫趋避效应需要EIN2和ABI2的协同作用,主要作用在蚜虫韧皮部取食活动阶段,降低蚜虫对植物的喜好。
     遗传学和化学药物抑制双重实验结果说明,ET和ABA信号通路交叉调控HrpN_(Ea)诱导的抑制蚜虫繁殖力的效应,植株ET和ABA的产生及接受能力对于蚜虫趋避是很关键的。化学抑制ABA不敏感突变体abi2-1中ET的接受以及化学抑制乙烯不敏感突变体ein2-1中ABA生物合成均抑制了HrpN_(Ea)的诱导效应。
     同时罗丹明B及胼胝质沉积的化学发光实验也证明HrpN_(Ea)处理后降低了蚜虫对植株的取食喜好,增加了韧皮部胼胝质沉积,并且这一过程需要EIN2和ABI2的协同作用。通过分析ET和ABA信号通路中关键基因和标志基因以及韧皮部相关基因的表达谱,表明HrpN_(Ea)处理后,ET和ABA信号途径协同作用,并且EIN2作用于ABI2的上游。通过对花柱顶端横切面的原位杂交结果可以看出,AtPP2-A1和AtPP2-A2基因定位在韧皮部,并且在HrpN_(Ea)处理的植株中杂交信号强于对照植株。
     5.总结
     通过以上研究结果,我们对harpins诱导防卫和调控生长的作用机理有了更进一步的认识。第一,本研究根据HpaG_(Xooc)不同功能域和区段,分离、鉴定了九个HpaG_(Xooc)的蛋白质功能片段,并对不同的功能片段进行了生物活性测定,结果显示不同的功能片段在植物上的效应也不相同,其中功能片段HpaG_(62-137)能在烟草上诱导更强的HCD,而HpaG_(10-42)不表现明显的细胞死亡,但他们都能在水稻上激发更强的防卫反应和促进植株更快的生长。第二,HrpN_(Ea)促进植物生长过程中,诱导了细胞壁松弛蛋白基因EXPs基因的表达,并且两者需要通过乙烯和赤霉素信号通路。在番茄、烟草和拟南芥中,抑制赤霉素合成和乙烯接受同样也抑制了HrpN_(Ea)诱导EXP基因表达和促生长效应。第三,本论文初步研究了拟南芥脱落酸(ABA)和乙烯(ET)信号传导通路参与了HrpN_(Ea)介导的PRD反应及抗虫趋避效应,结果证明HrpN_(Ea)诱导的蚜虫趋避效应需要EIN2(ETHYLENE INSENSITIVE 2)和ABI2(ABA INSENSITIVE 2)因子的协同作用,原位杂交及化学发光实验结果证明HrpN_(Ea)处理后可以增加在韧皮部产生韧皮部相关蛋白的表达及沉积胼胝质,并且初步筛选了13个受HrpN_(Ea)上调并且参与调控ABA和乙烯信号通路的转录调节因子。
The activation of defense responses in plants is initiated by host recognition of pathogen-encoded molecules called elicitors, e.g., microbial proteins, small peptides, and oligosaccharides, etc. The interaction of pathogen elicitors with host receptors (many of which may be encoded by R genes) likely activates a signal transduction cascade that may involve protein phosphorylation, ion fluxes, reactive oxygen species (ROS), and other signaling events. Subsequent transcriptional and/or posttranslational activation of transcription factors eventually leads to the induction of plant defense genes. In addition to eliciting primary defense responses, pathogen signals may be amplified through the generation of secondary plant signal molecules such as SA. Both primary pathogen elicitors and secondary endogenous signals may activate a diverse array of plant protectant and defense genes. So it is ubiquitous for these pathways to crosstalk with each other, depending on which signaling components are recruited into the pathway in response to different stimuli. Such signaling components are the keys to link different pathways and construct an efficient signaling network for plant to confront challenges encountered.
     1. Identification of specific fragments of HpaG_(Xooc), a Harpin from Xanthomonas oryzae pv. oryzicola, that induce disease resistance and enhance growth in rice
     Harpin proteins from plant pathogenic bacteria can stimulate hypersensitive cell death (HCD) and pathogen defence, and they can enhance growth in plants. Two of these diverse activities clearly are beneficial and may depend on particular functional regions of the proteins. Identification of beneficial and deleterious regions might facilitate the advantageous use of harpin-related proteins on crops without causing negative effects like cell death. HpaG_(Xooc) produced by Xanthomonas oryzae pv. oryzicola, the pathogen that causes bacterial streak of rice, is a 137-amino acid harpin as a member of harpin group of proteins that contains two copies of the glycine-rich motif (GRM), a characteristic of harpins, and a cysteine, which is absent in other harpins. Here we report the identification and testing of nine functional fragments of HpaGxooc using PCR-based mutagenesis. These specific proteins named hpaG_(1-105), hpaG_(1-94), hpaG_(1-61), hpaG_(1-47), hpaG_(7-61), hpaG_(62-137), hpaG_(10-42), hpaG_(95-137) and hpaG_(84-94) which span the indicated amino acid residues of the HpaG sequence, which caused different responses following their application to Nicotiana tabaccum (tobacco) and Oryza sativa (rice). Cell death levels were close when induced by HapG_(1-94), HpaG_(95-137), HpaG_(84-94), and HpaG_(Xooc), over 63% greater in response to HpaG_(1-105), HpaG_(1-16), HpaG_(1-47), or HpaG_(7-62), and AGRM, but 2-fold greater when induced by HpaG_(62-137) compared to HpaG_(Xooc)- Noticeably, HpaG_(10-12) was over 90% less active than other proteins in the effect. Fragments HpaG_(62-137) and HpaG_(10-42) induced more intense HCD and did not cause evident cell death in tobacco, respectively, but both stimulated stronger defence responses and enhanced more growth in rice than the parent protein, HpaG_(Xooc).
     When the 10 variants of HpaG_(Xooc) were used to induce resistance to Xanthomonas oryzae pv. oryzae, which causes bacterial leaf blight of rice, HpaG_(1-61) and HpaG_(7-61) were much more active than others except HpaG_(10-42), whereas HpaG_(10-42) was most effective, HpaG_(62-137) surprisingly provided the lowest level of disease resistance. Of the nine fragments and full-length HpaG_(Xooc) tested to induce the resistance to Magnaporthe grisea, which causes rice blast, blast symptoms shown as tissue necrosis appeared on several sites of leaves treated with EVP, but were limited on HpaG_(Xooc)-treated leaves. On leaves treated with HpaG_(62-137), infection signs were found but necrosis was not evident, while even infection signs were not evident on leaves treated with HpaG_(10-42) So HpaG_(10-42) was consistent in impeding pathogenicity by the bacterial and fungal pathogens.
     We studied rice root growth by soaking seeds separately in solutions of cell-free preparations of the 12 proteins. Compared to control, all the proteins tested supported better growth of roots as observed at 6 dpt. When compared with HpaG_(Xooc), HpaG_(1-105), HpaG_(1-62), HpaG_(1-47), HpaG_(62-137), and HpaG_(84-94) were less active; in contrast,△GRM, HpaG_(1-94), HpaG_(7-61), and HpaG_(10-42) increased root length by 15%, 55%, 20%, and 48%, respectively. Clearly, HpaG_(1-94) and HpaG_(10-42) were robust in promoting rice growth.
     Because HpaG_(1-94), HpaG_(10-42), HpaG_(62-137), and AGRM markedly preponderated over HpaG_(Xooc) to affect plants in assays with cell-free protein preparations, purified forms of these proteins were tested for bioactivities to corroborate results shown above. We obtained the same results in testing both cell-free and purified proteins. Because HpaG_(62-137) and HpaG_(10-42) tested versus other proteins provided higher levels of HCD and all the defined beneficial effects, respectively, both variants were compared to HpaG_(Xooc) in activating plant signaling events associated with HCD and associated with plant defense and growth.
     In leaves treated with HpaG_(62-137), hsr203 and hin1 both were induced to accumulate transcripts since 6 hpt and expression leaves were increased with time. When compared at 48 hpt, markedly greater transcripts of both genes were detected in leaves treated with HpaG_(62-137) than HpaG_(Xooc). We studied responses of NPR1 and PR1 to HpaG_(10-42) tested in comparison with HpaG_(Xooc), both genes were expressed at levels increased with time after treatment with HpaG_(10-42), as monitored at intervals in 48 hpt. The low levels of expression in 6 hpt suggested that both genes were induced for transcription. Especially, the expression of PR1 seemed dependent of induction because little transcripts were detectable as constitutive expression determined immediately after treatment. Comparison indicated that HpaG_(10-42) was markedly stronger than HpaGxooc in the induction of NPR1 and PR1 expression analyzed at 48 hpt. HpaG_(10-42) was more active than HpaG_(Xooc) in inducing expression of several genes that regulate rice defence and growth processes, which may explain the greater beneficial effects observed. We found also that specific fragments are more effective in activating certain signaling pathways than HpaG_(Xooc). Overall, our results suggest that a particular fragment of HpaG_(Xooc), HpaG_(10-42), holds promise for practical agricultural use to enhance disease resistance and growth of rice.
     2. Plant growth and expansin gene expression regulated by ethylene and gibberellin in response to a bacterial typeⅢeffector
     Expansin proteins (EXPs) act to loose cell walls and modulate growth of the cell and plant under mediation by some hormones. It is not clear whether a hormone is specific and distinct hormones interact to regulate EXP activity. Here we report plant growth enhancement (PGE) and expansin gene (EXP) expression in response to HrpN_(Ea), a bacterial type-Ⅲeffector, and roles of ethylene (ET) and gibbrellin (GA) in both responses.
     Arabidopsis root growth at 15 dpt and weight of 20-d seedlings revealed 89% and 67% increases following soaking seeds and spaying treatment by HrpN_(Ea) vs. EVP. Treating tomato seeds with a HrpN_(Ea) solution promoted seed germination and subsequent growth of roots and plants; Plants grew better evidently in treatment with HrpN_(Ea) vs. EVP, as observed at 12 and 30 dpt; Similarly, 46% and 52% increases were found in height and weight of 12-d tomato plants. The percentages were 32% and 50% for height and weight of 40-d tobacco plants, 56% and 48% for height and weight of 12-d rice plants treating with a HrpN_(Ea) solution. These results suggest that HrpN_(Ea) similarly stimulates growth of the different plants. Besides, HrpN_(Ea) treatment resulted in not only increase in leaf size but also production of 2-4 more leaves per plants compared to control. For example, Arabidopsis and tobacco plants had 2-3 and 3-4 additional leaves in treatment with HrpN_(Ea) vs. EVP when plants were surveyed at 30 and 40 dpt. Total nitrogen content was increased by 28%, 36.4%, 28.9% and 25.4%, respectively, in Arabidopsis, tomato, tobacco and rice plants following treatment with HrpN_(Ea) in contrast to EVP. The increase was consistent with PGE levels in the plants. Levels of chlorophylls a and b, total levels either, increased evidently in the fours plants responding to HrpN_(Ea) vs. EVP, as determined at 10 d after treated imbibed seeds. Moreover, marked increases were seen in proportion of chlorophyll a to b. Therefore, HrpN_(Ea) intensifies the biosynthetic and productive pathways through affecting the basic physiological responses.
     We conducted RT-PCR protocols using EF1αas a standard to test EXP expression in Arabidopsis, tomato and tobacco plants following treatment with HrpN_(Ea). Expression of AtEXP7 in Arabidopsis leaves and stems was not evident but showed high levels in roots. In contrast, LeEXP5 preferred to express in stems but not leaves and roots, whereas the other 8 EXPs, including AtEXP10, LeEXP2 and AtEXP2, were expressed greater in leaves compared to roots and stems. The induced expression of AtEXP 16 and NtEXP1 was quite similar to that of AtEXP10 and NtEXP2, respectively. AtEXP10, LeEXP2 and NtEXP2 were leaf-specific in expression accumulated transcripts at lower levels in stems and roots vs. leaves. When expressed in the preferential organs, patterns and time course of expression varied depending on genes. AtEXP2, LeEXP18 and NtEXP2 exhibited a similar expression pattern; they increased transcripts gradually with time in 72 or 96 hpt; the other EXPs maintained high expression levels from 6 hpt through 72 hpt.
     To relate an ET signal with EXPs and PGE, we studied a transcriptional coincidence of ET-response genes with EXPs and PGE. ETR1 was induced by the protein and increased levels with time. EIN2 was constitutive and was enhanced quickly at 6 hpt with HrpNEa but not change evidently thereafter. The PDF1.2 and PR-3b were expressed after induction, suggesting an activation of the pathway. Consistently, LeETR1 and NtETR1, which encode ET receptor homologs in tomato and tobacco, showed to be induced by HrpN_(Ea) applied to 20-d plants. We found that the Arabidopsis etr1-1 mutant markedly compromised AtEXP10 expression, compared to WT, in 20-d seedlings sprayed with a HrpN_(Ea) solution. PGE in tomato, tobacco and rice was impaired markedly by 1-MCP present in HrpN_(Ea) treatment, a ethylene sensitivity inhibitor. Growth of plants subsequent to soaking seeds in a solution of HrpN_(Ea) and 1-MCP was evidently decreased relative to that in treatment with only HrpN_(Ea). Therefore, ET sensing is critical to the induction of EXP expression and PGE by HrpN_(Ea) in the four plants.
     We compared HrpN_(Ea) and GA_3 in the effects on OsEXPs, which increase expression in rice plants treated with GA_3, an important form of GA. When applied to 20-d rice plants, HrpN_(Ea) acted similarly as did GA_3 in inducing expression of OsEXP2, OsEXP4 and 0sEXP16. However,HrpN_(Ea) seemed to function slower and less effectively than GA_3; gene expression became evident earlier and expression levels also were greater in response to GA_3 vs. HrpN_(Ea). In particular, OsEXP2 and OSEXP16 were expressed at high extents successively since 6 hpt with GA_3 but increased expression levels gradually with time since 12 hpt with HrpN_(Ea). OsEXP4 markedly accumulated transcript at 12 hpt with HrpN_(Ea) or GA_3 and thereafter remained a moderate level of expression. We addressed if EXP expression and PGE require a GA signal by determining effects of the GA synthesis inhibitor pp333 on EXPs and PGE. The expression of OsEXP4 was greatly compromised when pp333 was present in HrpN_(Ea) treatment. In WT tomato, the expression of LeEXP2 induced by the application of HrpN_(Ea) was inhibited by pp333 supplied to HrpN_(Ea) treatment. NtEXP2 showed evident constitutive expression and was enhanced markedly to increase expression level by HrpN_(Ea) applied alone; pp333 eliminated the effect. In consistence, pp333 evidently impaired the effect of HrpN_(Ea) in promoting growth of the three plants. Based on these results, a GA signal is required for the induction of EXP expression and PGE.
     3. Cloning and function analysis of tobacco cDNA involved in constitutive expression of systemic acquired resistance.
     Tobacco constitutive expresser of SAR1-1 and ces2-1 mutants have been generated from the variety NC89. The three genotypes varied greatly in growth and resistance to Alternaria alternata. Primers used for rapid amplification of cDNA 5'- and 3'- ends (5'-RACE and 3'-RACE) were designed on the basis of the mRNA differential display fragment. 5- terminal fragment cloned by 5'-RACE and 3'- terminal fragment amplified by 3'-RACE were pieced together integrally and the complete sequence was validated by homologous Blast and DNAStar software.
     The newly identified cDNA fragment was 759 bp in length which included the complete ORF or CDS of CES1 from 88 bp to 459 bp coding 123 amino acid (aa), and nominated CES1. Beside the ORF region 372 bp in length, 87 bp upstream form initiation codon ATG and 300 bp downstream from stop codon TGA were also amplified by 5'-RACE and 3'-RACE, respectively.
     The online blast result indicated that CES1 shared 89% identities with the auxin-repressed protein gene (APR1) in a 123 aa region. The predicted protein contained a Glycosaminoglycan attachment site, two Protein kinase C phosphorylation sites, two Casein kinaseⅡphosphorylation sites and three N-myristoylation sites. A sequence similarity search in public database showed that the ARP gene has homologs in various higher plants including monocots and dicots. The deduced amino acid sequences are highly conserved among these homologs (up to 89% identity).
     The semi-quantitative RT-PCR assay showed the development and defense-related genes were strongly induced by treated with 2,4-D and hrpN_(Ea) and the plants were enhanced to resistance to Alternaria alternate. Transient expression of the CES1-GFP protein in onion epidermal cell showed that CES1 was localized in cell nuclei. These indicated that the CES1 gene positively regulates SAR but negatively regulates growth by regulating associating gene and activating different signaling pathway.
     4. Ethylene and abscisic acid signaling synergizes to regulate the phloem-related defense and insect repellency in plants responding to HrpN_(Ea)
     Plant phloem-related defense (PRD) functions against attacks by sap-sucking insects. Known signaling pathways are implicated in PRD induction by biotic elicitors, such as HrpN_(Ea) (a bacterial type-Ⅲprotein), but how the pathways interact to regulate PRD is unclear. Here we show that abscisic acid (ABA) and ethylene (ET) signaling synergism modulated by transcription factor(s) controls HrpNEa-induced PRD and insect repellency in Arabidopsis and we have screened 13 transcription factors up-regulated by HrpN_(Ea). Aphid repellency and depressed phloem-feeding activities were attributed to PRD configuration by phloem protein and callose deposition in the phloem. Aphid Repellency Is Affected by Feeding Activity and Both Events Require Plant EIN2/ABI2 Synergism in Response to HrpN_(Ea).
     5. Summary remarks
     Results obtained from studies described above have provided us with further understanding on action mechanism of defense and growth in plants responding to Harpin proteins. First, we identify and test nine functional fragments of HpaG_(Xooc), and these proteins have different effects on Nicotiana tabaccum (tobacco) and Oryza sativa (rice). Among them, HpaG_(62-137) and HpaG_(10-42) induced more intense HCD and did not cause evident cell death in tobacco, respectively, but both stimulated stronger defence responses and enhanced more growth in rice than the parent protein, HpaG_(Xooc) Second, plant growth enhancement was induced by HrpN_(Ea) concomitantly with induced expression of EXPs gene, a cell wall loose protein, and both inductions require GA and ET in plants responding to HrpN_(Ea). The results show that inhibiting Arabidopsis, tomato and tobacco plants to synthesize GA or sense ET compromised EXP expression and PGE phenotypes. Third, abscisic acid and ethylene signaling controls HrpNEa-induced PRD and insect repellency in Arabidopsis, and aphid repellency requires plant EIN2/ABI2 synergism in response to HrpN_(Ea). Moreover, we have screened 13 transcription factors based on their gene transcripts up-regulated by HrpN_(Ea).
引文
1. Aarts N, Metz M, Holub E, Staskawicz BJ, Daniels MJ, Parker JE (1998) Different requirements for EDS1 and NDR1 by disease resistance genes define at least two R gene-mediated signaling pathways in Arabidopsis. Proc Natl Acad Sci USA 95:10306-10311
    
    2. Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15: 63-78
    
    3. Abeles FB, Morgan PW, Saltveit ME (1992) Ethylene in plant biology, 2~(nd) ed, San Diego: Academic Press
    
    4. Albone KS, Gaskin P, MacMillan J, Phinney BO, Willis CL (1990) Biosynthetic origin of gibberellins A_3 and A_7 in cell-free preparations from seeds of Marah macrocarpus and Malus domestica. Plant Physiol 94: 132-142
    
    5. Alfano JR, Collmer A (1996) Bacterial pathogens in plants: life up against the wall. Plant Cell 8: 1683-1698
    
    6. Alfano JR, Collmer A (2004) Type III secretion system effector proteins: double agents in bacterial disease and plant defense. Annu Rev Phytopathol 42: 385-414
    
    7. Allen GJ, Kuchitsu K, Chu SP, Murata Y, Schroeder JI (1999) Arabidopsis abi1-1 and abi2-1 phosphatase mutations reduce abscisic acid-induced cytoplasmic calcium rises in guard cells. Plant Cell 11:1785-1798
    
    8. Alonso JM, Hirayama T, Roman G, Nourizadeh S, Ecker JR (1999) EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 284:2148-2152
    
    9. Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, Ehlert C, Maclean DJ, Ebert PR, Kazan K (2005) Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell 16: 3460-3479
    
    10. Andi S, Taguchi F, Toyoda K, Shiraishi T, Ichinose Y (2001) Effect of methyl jasmonate on harpin-induced hypersensitive cell death, generation of hydrogen peroxide and expression of PAL mRNA in tobacco suspension cultured BY-2 cells. Plant Cell Physiol 42: 446-449
    
    11. Anjanasree KN, Bansal KC (2003) Isolation and characterization of ripening-related expansin cDNA from tomato. J Plant Biochem Biotechnol 12:31-35
    
    12. Amon DI (1949) Copper enzymes in isolated chloroplasts: polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1-15
    
    13. Baker CJ, Orlandi EW, Mock NW (1993) Harpin, an elicitor of hypersensitive response in tobacco caused by Erwinia amylovora, elicits active oxygen production in suspension cells. Plant Physiol 102:1341-1344
    
    14. Bauer DW, Wei ZM, Beer SV, Collmer A (1995) Erwinia chrysanthemi harpin_(Ech): an elicitor of the hypersensitive response that contributes to soft-rot pathogenesis. Mol Plant-Microbe Interact 8: 484-491
    15. Beaudoin N, Serizet C, Gosti F, Giraudat J (2000) Interactions between abscisic acid and ethylene signaling cascades. Plant Cell 12: 1103-1115
    
    16. Belfield EJ, Ruperti B, Roberts JA, McQueen-Mason S (2005) Changes in expansin activity and gene expression during ethylene-promoted leaflet abscission in Sambucus nigra. J Exp Bot 56: 817-823
    
    17. Benschop JJ, Millenaar FF, Smeets ME, van Zanten M, Voesenek LACJ, Peeters AJM (2007) Abscisic acid antagonizes ethylene-induced hyponastic growth in Arabidopsis. Plant Physiol 143: 1013-1023
    
    18. Berberich T, Sugawara K, Harada M, Kusano T (1995) Molecular cloning, characterization and expression of an elongation factor 1α gene in maize. Plant Mol Biol 29: 611-615
    
    19. Binder BM, Bleecker AB (2003) A model for ethylene receptor function and 1-methylcyclopropene action. ACTA Hort 628: 177-187
    
    20. Bishop-Hurley SL, Gardner RC, Walter C (2003) Isolation and molecular characterization of genes expressed during somatic embryo development in Pinus radiata. Plant Cell Tissue Organ Cult 74: 267-281
    
    21. Blankenship SM, Dole JM (2003) 1-Methylcyclopropene: a review. Postharvest Biol Technol 28: 1-15
    
    22. Bleecker AB (1997) The ethylene binding site of the ETR1 protein. In: Kanellis AK, eds Biology and Biotechnology of the plant hormone ethylene. 63-70
    
    23. Boccara M, Schwartz W, Guiot E, Vidal G, Paepe RD, Dubois A, Boccara AC (2007) Early chloroplastic alterations analysed by optical coherence tomography during a harpin-induced hypersensitive response. Plant J 50: 338-346
    
    24. Brito B, Aldon D, Barberis P, Boucher C, Genin S (2002) A signal transfer system through three compartments transduces the plant cell contact-dependent signal controlling Ralstonia solancearum hrp genes. Mol Plant-Microbe Interact 15: 109-119
    
    25. Brummell DA, Harpster MH, Civello PM, Palys JM, Bennett AB, Dunsmuir P (1999) Modification of expansin protein abundance in tomato fruit alters softening and cell wall polymer metabolism during ripening. Plant Cell 11: 2203-2216
    
    26. Caderas D, Muster M, Vogler H, Mandel T, Rose JKC, McQueen-Manson S, Kuhlemeier C (2000) Limited correlation between expansin gene expression and elongation growth rate. Plant Physiol 123:1399-1414
    
    27. Carey R, Cosgrve DJ (2007) Portrait of the expansin superfamily in Physcomitrella patens: comparisons with angiosperm expansins. Ann Bot 99: 1131-1141
    
    28. Catala C, Rose JK, Bennett AB (2000) Auxin-regulated genes encoding cell wall-modifying proteins are expressed during early tomato fruit growth. Plant Physiol 122: 527-534
    
    29. Ceccardi TL, Barthe GA, Derrick KS (1998) A novel protein associated with citrus blight has sequence similarities to expansin. Plant Mol Biol 38: 775-783
    
    30. Century KS, Shapiro AD, Repetti PP, Dahlbeck D, Holub E, Staskawicz B J (1997) NDR1, a pathogen-induced component required for Arabidopsis disease resistance. Science 278: 1963-1965
    
    
    
    31. Chang C, Shocker JA (1999) The ethylene-response pathway: signal perception to gene regulation. Curr Opi in Plant Biol 2: 352-358
    
    32. Chen F, Dahal P, Bradford KJ (2001) Two tomato expansin genes show divergent expression and localization in embryos during seed development and germination. Plant Physiol 127: 928-936
    
    33. Chen H, Wilkerson CG, Kuchar JA, Phinney BS, Howe GA (2005) Jasmonate-inducible plant enzymes degrade essential amino acids in the herbivore midgut. Proc Natl Acad Sci USA 102: 19237-19242
    
    34. Chen K, Du L, Chen Z (2003) Sensitization of defense responses and activation of programmed cell death by a pathogen-induced receptor-like protein kinase in Arabidopsis. Plant Mol Biol 53:61 -74
    
    35. Cho HT, Cosgrove DJ (2000) Altered expression of expansin modulates leaf growth and pedicel abscission in Arabidopsis thaliana. Proc Natl Acad Sci USA 97: 9783-9788
    
    36. Cho HT, Cosgrove DJ (2002) Regulation of root hair initiation and expansin gene expression in Arabidopsis. Plant Cell 14: 3237-3253
    
    37. Choi DS, Lee Y, Cho HT, Kende H (2003) Regulation of expansin gene expression affects growth and development in transgenic rice plants. Plant Cell 15:1386-1398
    
    38. Clark MS (1997) Plant Molecular Biology, A Laboratory Manual Springer, Berlin
    
    39. Clarke JD, Aarts N, Feys BJ, Dong X, Parker JE (2000) Roles of salicylic acid, jasmonic acid, and ethylene in cpr-induced resistance in Arabidopsis. Plant Cell 12: 2175-2190
    
    40. Cosgrove DJ (1989) Characterization of long-term extension of isolated cell walls from growing cucumber hypocotyls. Planta 177:121-130
    
    41. Cosgrove DJ (1997) Relaxation in a high-stress environment: the molecular bases of extensible cell walls and cell enlargement. Plant Cell 9: 1031-1041
    
    42. Cosgrove DJ (1998) Cell wall loosening by expansins. Plant Physiol 118: 333-339
    
    43. Cosgrove DJ (1999) Enzymes and other agents that enhance cell wall extensibility. Annu Rev Plant Physiol Plant Mol Biol 50: 391-417
    
    44. Cosgrove DJ (2000) Loosening of plant cell walls by expansins. Nature 407: 321-326
    
    45. Cosgrove DJ (2000) Loosening of plant cell walls by expansins. Nature 407: 321-326
    
    46. Cosgrove DJ (2000) New genes and new biological roles for expansins. Curr Opi Plant Biol 3: 73-78
    
    47. Cosgrove DJ (2001) Wall structure and wall loosening: a look backwards and forwards. Plant Physiol 125: 131-134
    
    48. Cosgrove DJ, Bedinger P, Durachko DM (1997) Group I allergens of grass pollen as cell wall-loosening agents. Proc Natl Acad Sci USA 94:6559-6564
    
    49. Dangle JL, Dietrich RA, Richberg MH (1996) Death don't have no mercy: cell death programs in plant-microbe interactions. Plant Cell 8:1793-1807
    
    50. Desikan R, Hancock JT, Ichimura K, Shinozaki K, Neill SJ (2001) Harpin induced activation of the Arabidopsis mitogen-activated protein kinases AtMPK4 and AtMPK6. Plant Physiol 126: 1579-1587
    
    51. Dinant S, Clark AM, Zhu Y, Vilaine F, Palauqui JC, Kusiak C, Thompson GA (2003) Diversity of the superfamily of phloem lectins (phloem protein 2) in angiosperms. Plant Physiol 131:114-128.
    52. Dixon RA (2001) Natural products and plant disease resistance. Nature 411: 843-847
    
    53. Dong H, Delaney TP, Bauer DW, Beer SV (1999) Harpin induces disease resistance in Arabidopsis through the systemic acquired resistance pathway mediated by salicylic acid and the NIM1 gene. Plant J 20: 207-215
    54. Dong HP, Peng J, Bao Z, Meng X, Bonasera JM, Chen G, Beer SV, Dong H (2004) Downstream divergence of ethylene signaling pathway for harpin-stimulated Arabidopsis growth and insect defense. Plant Physiol 136: 3628-3638
    55. Dong HP, Yu H, Bao Z, Guo X, Peng J, Yao Z, Chen G, Qu S, Dong H (2005) The ABI2-dependent abscissic acid signaling controls HrpN-induced drought tolerance in Arabidopsis. Planta 221: 313-327
    56. Dong X (2001) Genetic dissection of systemic acquired resistance. Curr Opin Plant Biol 4: 309-314
    57. Douglas E (2006) Phloem-sap feeding by animals: problems and solutions. J Exp Bot 57: 747-754
    58. Downes BP, Crowell DN (1998) Cytokinin regulates the expression of a soybean beta-expansin gene by a post-transcriptional mechanism. Plant Mol Biol 37: 437-444
    59. Fang ZD (1997) Methods in Plant Pathology (in Chinese). Agric Press Beijing
    60. Feng JX, Liu D, Pan Y, Gong W, Ma LG, Luo JC, Deng XW, Zhu YX (2005) An annotation update via cDNA sequence analysis and comprehensive profiling of developmental, hormonal or environmental responsiveness of the Arabidopsis AP2/EREBP transcription factor gene family. Plant Mol Biol 59: 853-68
    61. Fontanilla JM, Montes M, De Prado R (2005) Induction of resistance to the pathogenic agent Botrytis cinerea in the cultivation of the tomato by means of the application of the protein "Harpin" (Messenger). Commun Agric Appl Biol Sci 70: 35-40
    62. Fontanilla JM, Montes M, De Prado R (2005) Effects of the foliar-applied protein "Harpin_(Ea)" (Messenger) on tomatoes infected with Phytophthora infestans. Commun Agric Appl Biol Sci 70: 41-45
    63. Gal TZ, Aussenberg ER, Burdman S, Kapulnik Y, Koltai H (2006) Expression of a plant expansin is involved in the establishment of root knot nematode parasitism in tomato. Planta 224: 155-162
    64. Gamble RL, Qu X, Schaller GE (2002) Mutational analysis of the ethylene receptor ETR1. Role of the histidine kinase domain in dominant ethylene insensitivity. Plant Physiol 128: 1428-1438
    65. Ghassemian M, Nambara E, Cutler S, Kawaide H, Kamiya Y, McCourt P (2000) Regulation of abscisic acid signaling by the ethylene response pathway in Arabidopsis. Plant Cell 12: 1117-1126
    66. Gopalan S, Wei W, He SY (1996) hrp gene-dependent induction of hin1: a plant gene activated rapidly by both harpins and the avr Pto gene-mediated signal. Plant J 10: 591-600
    67. Greenboin-Wainberg Y, Maymon I, Borochov R, Alcarez J, Olszewski N, On N, Eshed Y, Weiss D (2005) Cross talk between gibberellin and cytokinin: the Arabidopsis GA response inhibitor SPINSLY plays a positive role in cytokinin signaling. Plant Cell 17: 92-102
    68. Guo H, Ecker JR (2004) The ethylene signaling pathway: new insights. Curr Opin Plant Biol 7: 40-49
    
    
    
    69. Hall AE, Chen QG, Findell JL, Schaller GE, Bleecker AB (1999) The relationship between ethylene binding and dominant insensitivity conferred by mutant forms of the ETR1 ethylene receptor. Plant Physiol 121: 291-299
    
    70. Hall AE, Findell JL, Schaller GE, Sisler EC, Bleecker AB (2000) Ethylene perception by the ERS1 protein in Arabidopsis. Plant Physiol 123:1449-1458
    
    71. Hartweck M, Olszewski E (2006) Rice gibberllin insensitive dwarfl is a gibberellin receptor that illuminates and raises questions about GA signaling. Plant Cell 18: 278-282
    
    72. He SY (1998) Type Ⅲ protein secretion systems in plant and animal pathogenic bacteria. Annu Rev Phytopathol 36: 363-392
    
    73. He SY, Huang HC, Collmer A (1993) Pseudomonas syringae pv. syringae harpin_(Pss): A protein that is secreted via the Hrp pathway and elicits the hypersensitive response in plants. Cell 73: 1255-1266
    
    74. Hedden P, Kamiya Y (1997) Gibberellin biosynthesis: enzymes, genes and their regulation. Annu Rev Plant Physiol Plant Mol Biol 48: 431-460
    
    75. Hiwasa K, Rose JK, Nakano R, Inaba A, Kubo Y (2003) Differential expression of seven α-expansin genes during growth and ripening of pear fruit Plant Physiol 117: 564-572
    
    76. Hooley R, Beale MH, Smith SJ (1991) Gibberellin perception at the plasma membrane of Avena fatua aleurone protoplasts. Planta 183: 274-280
    
    77. Hoyos AE, Stanley CM, He SY, Pike S, Pu XA, Novacky A (1996) The interaction of harpin_(pss) with plant cell walls. Mol Plant-Microbe Interact 9: 608-616
    
    78. Hua J, Meyerowitz E (1998) Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94: 261-271
    
    79. Huang JR, Takano T, Akita S (2000) Expression of α-expansin genes in young seedlings of rice (Oryza sativa L). Planta 211:467-473
    
    80. Hugouvieux V, Kwak JM, Schroeder JI (2001) An mRNA cap binding protein, ABH1, modulates early abscisic acid signal transduction in Arabidopsis. Cell 106:477-487
    
    81. Huq E (2006) Degradation of negative regulators: a common theme in hormone and light signaling networks? Trends Plant Sci 11: 4-7
    
    82. Itoh H, Sasaki A, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Hasegawa Y, Minami E, Ashikari M, Matsuoka M (2005a) Dissection of the phosphorylation of rice DELLA protein, SLENDER RICE1. Plant Cell Physiol 46:1392-1399
    
    83. Itoh H, Shimada A, Ueguchi-Tanaka M, Kamiya N, Hasegawa Y, Ashikari M, Matsuoka M (2005b) Over expression of a GRAS protein lacking the DELLA domain confers altered gibberellin responses in rice. Plant J 44: 669-679
    
    84. Itoh H, Ueguchi-Tanaka M, Sato Y, Ashikari M, Matsuoka M (2002) The gibberellin signaling pathway is regulated by the appearance and disappearance of SLENDER RICE1 in nuclei. Plant Cell 14: 57-70
    
    85. Jang YS, Sohn SI, Wang MH (2006) The hrpN gene of Erwinia amylovora stimulates tobacco growth and enhances resistance to Botrytis cinerea. Planta 223: 449-456
    
    86. Johnson PR, Ecker JR (1998) The ethylene gas signal transduction pathway: a molecular perspective. Annu Rev Genet 32: 227-254
    
    87. Kamiya Y, Garcia-Martinez J (1999) Regulation of gibberellin biosynthesis by light. Curr Opin Plant Biol 2: 398-403
    
    88. Kang JY, Choi HI, Im MY, Kim SY (2002) Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell 14: 343-357
    
    89. Kehr J (2006) Phloem sap proteins: their identities and potential roles in the interaction between plants and phloem-feeding insects. J Exp Bot 57: 767-774
    
    90. Keinski S, Leyser O (2005) The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435: 446-451
    
    91. Kempema LA, Cui X, Holzer FM, Walling LL (2007) Arabidopsis transcriptome changes in response to phloem-feeding silverleaf whitefly nymphs. Similarities and distinctions in response to aphids. Plant Physiol 143: 849-865
    
    92. Kennedy D (2002) The importance of rice. Science 296: 13
    
    93. Kim JF, Beer SV (1998) HrpW of Erwinia amylovora, a new harpin that contains a domain homologous to pectate lyases of a distinct class. J Bacteriol 180: 5203-5210
    
    94. Kim JF, Beer SV (2000) hrp Genes and Harpins of Erwinia amylovora: A Decade of Discovery. Pages 141-161 in: Vanneste JL ed. Fire Blight. CAB International Oxon, UK
    
    95. Kim JF, Jeon E, Oh J, Moon JS, Hwang I (2004) Mutational analysis of Xanthomonas harpin HpaG identifies a key functional region that elicits the hypersensitive response in nonhost plants. J Bacteriol 186:6239-6247
    
    96. Klee HJ (2004) Ethylene signal transduction. Moving beyond Arabidopsis. Plant Physiol 135: 660-667
    
    97. Kuhn JM, Boisson-Demier A, Dizon MB, Maktabi MH, Schroeder JI (2006) The protein phosphase AtPP2CA negative abscisic acid signal transduction in Arabidopsis, and effects of abh1 on AtPP2CA mRNA. Plant Physiol 140: 127-139
    
    98. Kwasniewski M, Szarejko I (2006) Molecular cloning and characterization of β-expansin gene related to root hair formation in barley. Plant Physiol 141: 1149-1158
    
    99. Laby RJ, Wei ZM, Beer SV (2006) Hypersensitive response elicitor fragments eliciting a hypersensitive response and uses thereof. United States Patent 6583107
    
    100. Lang CA (1958) Simple micro-determination of Kjeldahl nitrogen in biological materials. Analytical Chemistry 30: 1692-1694
    
    101. Lange BM, Wildung MR, McCaskill D, Croteau R (1998) A family of transketolases that directs isoprenoid biosynthesis via a mevalonate-independent pathway. Proc Natl Acad Sci USA 95: 2100-2104
    
    102. Larkindale J, Hall JD, Knight MR, Vierling E (2005) Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol 138: 882-897
    
    103. Lee J, Klessig DF, Nurnberger T (2001a) A harpin binding site in tobacco plasma membranes mediates activation of the pathogenesis-related gene HEN1 independent of extracellar calcium but dependent on mitogen-activated protein kinase activity. Plant Cell 13: 1079-1093
    
    104. Lee Y, Choi D, Kende H (2001) Expansins: ever-expanding numbers and functions. Curr Opi Plant Biol 4: 527-532
    
    105. Li B, Shi Q, Fang J, Pan X (2004) Techniques of diseases, insect pests and weeds control and their efficacy in bio-rational rice production (in Chinese with English abstract). J Appl Ecol 15:111-115
    
    106. Li P, Lu X, Shao M, Long J, Wang J (2004b) Genetic diversity of harpins from Xanthomonas oryzae and their activity to induce hypersensitive response and disease resistance in tobacco. Sci China C Life Sci 47: 461-469
    
    107. Liu F, Liu H, Jia Q, Wu X, Guo X, Zhang S, Song F, Dong H (2006) The internal glycine-rich motif and cysteine suppress several effects of HpaGxooc in plants. Phytopathol 96: 1052-1059
    
    108. Liu YD, Zhang SQ (2004) Phosphorylation of 1-aminocyclopropane-l-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. Plant Cell 16: 3386-3399
    
    109. Mauch-Mani B, Mauch F (2005) The role of abscisic acid in plant-pathogen interactions. Curr Opin Plant Biol 8:409-414
    
    110. McDowell JM, Cuzick A, Can C, Beynon J, Dangl JL, Holub EB (2000) Downy mildew (Peronospora parasitica) resistance genes in Arabidopsis vary in functional requirements for NDR1, EDS1, NPR1 and salicylic acid accumulation. Plant J 22: 523-9
    
    111. McNairn RB, Currier HB (1968) Translocation blockage by sieve plate callose. Planta 82: 369-380
    
    112. Mcqueen-Mason SJ, Durachko DM, Cosgrove DJ (1992) Two endogenous proteins that induce cell wall extension in plant. Plant Cell 4:1425-1433
    
    113. Meyer K, Leube MP, Grill E (1994) A protein phosphatase 2C involved in ABA signal transduction in Arabidopsis thaliana. Science 264:1452-1455
    
    114. Mor H, Manulis A, Zuck M, Nizan R, Coplin D L, Barash I (2001) Genetic organization of the hrp gene cluster and dspAE/BF operon in Erwinia herbicola pv. gypsophilae. Mol Plant-Microbe Interact 14:431-436
    
    115. Moran PJ, Thompson GA (2001) Molecular responses to aphid feeding in Arabidopsis in relation to plant defense pathways. Plant Physiol 125:1074-85
    
    116. Muday GK (2001) Auxins and tropisms. J Plant Growth Reg 20: 226-243
    
    117. Muller B, Bourdais G, Reidy B, Bencivenni C, Massonneau A, Condamine P, Rolland G, Conejero G, Rogowsky P, Tardieu F (2007) Association of specific expansins with growth in maize leaves is maintained under environmental, genetic, and developmental sources of variation. Plant Physiol 143: 278-290
    
    118.Nakashima K, Fujita Y, Katsura K, Maruyama K, Narusaka Y, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Transcriptional regulation of ABI3- and ABA-responsive genes including RD29B and RD29A in seeds, germinating embryos, and seedlings of Arabidopsis. Plant Mol Bio 60: 51-68
    
    119. Noel L, Thieme F, Nennstiel D, Bonas U (2002) Two novel type Ill-secreted proteins of Xanthomonas campestris pv. vesicatoria are encoded within the HpaG pathogenicity island. J Bacteriol 184:1340-1348
    120. Ogawa M, Hanada A, Yamauchi Y, Kuwahara A, Kamiya Y, Yamaguchi S (2003) Gibberellin biosynthesis and response during Arabidopsis seed germination. Plant Cell 15: 1591-1604
    121. Oh CS, Beer SV (2007) AtHIPM, an ortholog of the apple HrpN-interacting protein, is a negative regulator of plant growth and mediates the growth-enhancing effector of HrpN in Arabidopsis. Plant Phyiol 145:426-436
    122. Oh J, Kim JG, Jeon E, Yoo CH, Moon JS, Rhee S, Hwang I (2007) Amyloidogenesis of type III-dependent harpins from plant-pathogenic bacteria. J Biol Chem 282: 13601-13609
    123. Ohme-Takagi M, Shinshi H (1995) Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 7: 173-182
    124. Park S, Han KH (2003) An auxin-repressed gene (RpARP) from black locust (Robinia pseudoacacia) is posttranscriptionally regulated and negatively associated with shoot elongation. Tree Physiol 23, 815-823
    125. Parker JE, Holub EB, Frost LN, Falk A, Gunn ND, Daniels MJ (1996) Characterization of eds1, a mutation in Arabidopsis suppressing resistance to Peronospora parasitica specified by several different RPP genes. Plant Cell 8: 2033-2046
    126. Peart JR, Cook G, Feys BJ, Parker JE, Baulcombe DC (2002) An EDS1 orthologue is required for N-mediated resistance against tobacco mosaic virus. Plant J 29: 569-579
    127. Peng JL, Bao ZL, Dong HS, Ren HY, Wang JS (2004a) Expression of harpin_(Xoo) in transgenic tobacco induces pathogen defense in the absence of hypersensitive cell death. Phytopathol 94: 1048-1055
    128. Peng JL, Dong H, Bao ZL, Li P, Chen GY, Wang JS (2004b) Harpin_(xoo) and its functional domains activate pathogen-inducible plant promoters in Arabidopsis. Acta Bot Sinica 46: 1083-1090
    129. Peng JL, Dong HS, Dong HP, Delaney TP, Bonasera BM, Beer SV (2003) Harpin-elicited hypersensitive cell death and pathogen resistance requires the NDR1 and EDS] genes. Physiol Mol Plant Pathol 62: 317-326
    130. Penninckx IAMA, Thomma BPH, Buchala A, Metraux JP, Broekaert WF (1998) Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell 10: 2103-2113
    131.Pien S, Wyrzykowska J, McQueen-Mason S, Smart C, Fleming A (2001) Local expression of expansin induces the entire process of leaf development and modifies leaf shape. Proc Nat Acad Sci USA 98: 11812-11817
    132. Pieterse CM, van Wees SC, van Pelt JA, Knoester M, Laan R, Gerrits H, Weisbeek PJ, van Loon LC (1998) A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10: 1571-1580
    133. Pontier D, Tronchet M, Rogowsky P, Lam E, Roby D (1998) Activation of hsr203, a plant gene expressed during incompatible plant-pathogen interactions, is correlated with programmed cell death. Mol Plant-Microbe Interact 11: 544-554
    134. Powell G, Tosh CR, Hardie J (2006) Host plant selection by aphids: behavioral, evolutionary, and applied perspectives. Annu Rev Entomol 51: 309-330
    
    
    
    135. Prange RK, Delong JM (2003) 1-methylcyclopropene: the "magic bullet" for horticuhural products. Chromca Hortic 43:11-14
    
    136. Raghavan C, Ong EK, Dalling MJ, Stevenson TW (2006) Regulation of genes associated with auxin, ethylene and ABA pathways by 2,4-dichlorophenoxyacetic acid in Arabidopsis. Funct Integr Genomics 6: 60-70
    
    137. Ramsay N, Glover BJ (2005) The MYB/MYC/bHLH complex and the evolution of cellular diversity. Trends in Plant Sci 10: 63-70
    
    138. Read SM, Northcote DH (1983) Subunit structure and interactions of the phloem proteins of Cucurbita maxima (pumpkin). Euro J of Biochem 134, 561-569
    
    139. Reboutier D, Frankart C, Briand J, Biligui B, Laroche S, Rona JP, Barny MA, Bouteau F (2007) The HrpN_(Ea) harpin from Erwinia amylovora triggers differential responses on the nonhost Arabidopsis thaliana cells and on the host apple cells. Mol Plant Microbe Interact 20: 94-100
    
    140. Reboutier D, Frankart C, Briand J, Biligui B, Rona JP, Haapalainen M, Barny MA, Bouteau F (2007) Antagonistic action of harpin proteins: HrpW_(Ea) from Erwinia amylovora suppresses HrpN_(Ea)-induced cell death in Arabidopsis thaliana. J Cell Sci 120:3271-3278
    
    141.Reddy ASN, Poovaiah BW (1990) Molecular cloning and sequencing of a cDNA for an auxin-repressed messenger-RNA -correlation between fruit growth and repression of the auxin regulated gene. Plant Mol Biol 14:127-136
    
    142. Ren H, Gao Z, Chen L, Wei K, Liu J, Fan Y, Davies WJ, Jia W, Zhang J (2007) Dynamic analysis of ABA accumulation in relation to the rate of ABA catabolism in maize tissues under water deficit. JExpBot 58: 211-219
    
    143. Ren HY, Gu G, Long J, Tin Q, Wu T, Song T, Zhang S, Chen Z, Dong H (2006) Combinative effects of a bacterial type-Ill effector and a biocontrol bacterium on rice growth and disease resistance. J Biosci 31: 617-627
    
    144. Robertson M (2003) Increased dehydrin promoter activity caused by HvSPY is independent of the ABA response pathway. Plant J 34: 39-46
    
    145. Roman G, Lubarsky B, Kieber JJ, Rothenberg M, Ecker JR (1995) Genetic analysis of ethylene signal transduction in Arabidopsis thaliana: five novel mutant loci integrated into a stress response pathway. Gentics 139:1393-1409
    
    146.Rosado A, Amaya I, Valpuesta V, Cuatero J, Botella MA, Borsani O (2006) ABA- and ethylene-mediated responses in osmotically stressed tomato are regulated by the TSS2 and TOS1 loci. J Exp Bot 57:3327-3335
    
    147. Rose JKC (2003) The plant cell wall. Oxford: CRC Press, ISBN 9781841273280
    
    148. Rose JKC, Lee HH, Bennett AB (1997) Expression of a divergent expansin gene is fruit-specific and ripening-regulated. Proc Natl Acad Sci USA 94: 5955-5960
    
    149. Sabirzhanova IB, Sabirzhanov BE, Chemeris AV, Veselov DS, Kudoyarova GR (2005) Fast changes in expression of expansin gene and leaf extensibility in osmotically stressed maize plants. Plant Physiol Biochem 43:419-422
    
    150. Salisbury FB, Ross CW (1995) Plant physiology, 4th ed. New York, Wadsworth Publ Co, ISBN 0534151620
    151.Salmond GPC, Reeves PG (1993) Membrane traffic wardens and protein-secretion in Gram-negative bacteria. Trends Biochem Sci 18: 7-12
    
    152. Sambrook J, Russell DW (2001) Molecular Cloning, A Laboratory Manual. 3rd ed. New York: Cold Spring Harbor Laboratory Press, ISBN 0879695773
    
    153. Sampedro J, Cosgrove DJ (2005) The expansin superfamily. Genome Biol 6: 242
    
    154. Sanchez MA, Mateos I, Labrador E, Dopico B (2004) Brassinolides and IAA induce the transcription of four a-expansin genes related to development in Cicer arietinum. Plant Physiol Biochem 42: 709-716
    
    155. Schagger H, von Jagow G (1987) Tricine-sodium dodecyl sulphate-polyacrylamid gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166: 368-379
    
    156. Schroeder JI, Allen GJ, Hugouvieux V, Kwak JM, Waner D (2001) Guard cell signal transduction. Annu Rev Plant Physiol Plant Mol Biol 52: 627-658
    
    157. Shcherban TY, J Shi, DM Durachko, MJ Guiltinan, SJ Mc-Queen-Mason, M Shieh and DJ Cosgrove (1995) Molecular cloning and sequence analysis of expansins-a highly conserved, multigene family of proteins that mediate cell wall extension in plants. Proc Natl Acad Sci USA 92: 9245-9249
    
    158. Shi YH, Zhu SW, Mao XZ, Feng JX, Qin YM, Zhang L, Cheng J, Wei LP, Wang ZY, Zhu YX (2006) Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. Plant Cell 18: 651-664
    
    159. Shin JH, Jeong DH, Park MC, An G (2005) Characterization and transcriptional expression of the a-expansin gene family in rice. Mol Cells 20: 210-218
    
    160. Silverstone AL, Sun TP (2000) Gibberellins and green revolution. Trends in Plant Sci 5:1-2
    161.Solano R, Stepanova A, Chao Q, Ecker JR. (1998) Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE FACTOR1. Genes Dev 12: 3703-3714
    162. Spoel SH, Koornneef A, Claessens SMC, Korzelius JP, Van Pelt JA, Mueller MJ, Buchala AJ,Metraux JP, Brown R, Kazan K, Van Loon LC, Dong X, Pieterse CMJ (2003) NPR1 modulates cross-talking between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15: 760-770
    163.Sponsel VM, Schmidt FW, Porter SG, Nakayama M, Kohlstruk S, Estelle M (1997) Characterization of new gibberellin-responsive semidwarf mutants of Arabidopsis. Plant Physiol 115: 1009-1020
    
    164. Stafstrom JP, Ripley BD, Devitt ML, Drake B (1998) Dormancy-associated gene expression in pea axillary buds. Planta 205: 547-552
    
    165. Staswick PE (1995) Plant Hormones. In: Davies PJ (ed). Physiology, Biochemistry and Molecular Biology (2nd ed). Dordrecht: Kluwer Academic Public 179-187
    
    166. Steber CM, Cooney S, McCourt P (1998) Isolation of the GA-response mutant sly] as a suppressor of ABI1-1 in Arabidopsis thaliana. Genetics 149: 509-521
    
    
    167. Steffens B, Sauter M (2005) Epidermal cell death in rice Oryza sativa L. is regulated by ethylene, gibberellin and abscisic acid. Plant Physiol 139:1-9
    
    168. Steffens B, Wang J, Sauter M (2006) Interaction between ethylene, gibberellin and abscisic acid regulate emergence and growth rate of adventitious in deepwater rice. Planta 223: 604-612
    
    169. Stepanova AN, Yun J, Likhacheva AV, Alonso JM (2007) Multilevel interactions between ethylene and auxin in Arabidopsis roots. Plant Cell 19: 2169-2185
    
    170. Strobel RN, Gopalan JS, Kuc JA, He SY (1996) Induction of systemic acquired resistance in cucumber by Pseudomonas syringae pv. syringae 61 HrpZ_(Pss) protein. Plant J 9:431-439
    
    171. Subramanian S, Kondaiah P, Adiga PR (2002) Expression, purification, and characterization of minimized chicken riboflavin carrier protein from a synthetic gene in Escherichia coli. Protein Expres Purif 26: 284-289
    
    172. Swain SM, Tseng TS, Olszewski NE (2001) Altered expression of SPINDLY affects gibberellin response and plant development. Plant Physiol 126:1174-1185
    
    173. Swarup R, Perry P, Hagenbeek D, Van Der Straeten D, Beemster GTS, Sandberg G, Bhalerao R, Ljung K, Bennett MJ (2007) Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation. Plant Cell 19:2186-2196
    
    174. Thompson GA, Goggin FL (2006) Transcriptomics and functional genomics of plant defense induction by phloem-feeding insects. J Exp Bot 3:1-12
    
    175. Tjallingii F (2006) Salivary secretions by aphids interacting with proteins of phloem wound responses. J Exp Bot 57: 739-745
    
    176. Tjallingii WF, Hogen Esch TH (1993) Fine structure of aphid stylet routes in plant tissues in combination with EPG signals. Physiological Entomology 18: 317-328
    
    177. Traw MB, Bergelson J (2003) Interactive effects of jasmonic acid, salicylic acid, and gibberellin on induction of trichomes in Arabidopsis. Plant Physiol 133:1367-1375
    
    178. Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow TY, Hsing YC, Kitano H, Yamaguchi I (2005) GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature 437:693-698
    
    179. van Loon LC, Baker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacterial. Annu Rev Phytopathol 36: 453-483
    
    180. Vogler H, Caderas D, Mandel T, Kuhlemeier C (2003) Domains of expansin gene expression define growth regions in the shoot apex of tomato. Plant Mol Biol 53: 267-272
    
    181. Walker AR, Davision PA, Biolognesi-Wmfield AC, James CM, Srinivasan N, Blundell TL, Esch JJ, Marks MD, Gray JC (1999) The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein. Plant Cell 11:1337-1350
    
    182. Wang B, Boulter D, Gatehouse JA (1994) Characterization and sequencing of cDNA clone encoding the phloem protein PP2 of Cucurbita pepo. Plant Mol Biol 24: 159-170
    
    183. Wang WY, Esch JJ, Shiu SH, Agula H, Binder BM, Chang C, Patterson SE, Bleecker AB (2006) Identification of important regions for ethylene binding and signaling in the transmembrane domain of the ETR1 ethylene receptor of Arabidopsis. Plant Cell 18:3429-3442
    
    184. Wang X, Li M Zhang J, Zhang Y Zhang G, Wang J (2007) Identification of a key functional region in harpins from Xanthomonas that suppresses protein aggregation and mediates harpin expression in E. coli. Mol Biol Rep 34: 189-198
    
    185. Wei ZM, Beer S (1996) Harpin from Erwinia amylovora induces plant resistance. Acta Hortic 411: 223-225
    
    186. Wei ZM, Fan H, Stephens JJ, Beer SV, Laby RJ (2005) Hypersensitive response elicitor fragments which are active but do not elicit a hypersensitive response. United States Patent 6858707
    
    187. Wei ZM, Lacy RJ, Zumoff CH, Bauer DW, He SY, Collmer A, Beer SV (1992) Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science 257: 85-88
    
    188. Wei ZM, Qiu D, Kropp MJ, Schading RL (1998) Harpin, an HR elicitor, activates both defense and growth systems in many commercially important crops. Phytopathol 88: S96
    
    189. Will T, van Bel AJE (2006) Physical and chemical interactions between aphids and plants. J Exp Bot 57: 729-737
    
    190. Wu X, Wu T, Long J, Yin Q, Zhang Y, Chen L, Liu R, Gao T, Dong H (2007) Productivity and biochemical properties of green tea in response to a bacterial type-III effector protein and its variants. J Biosci 32: 000-000
    
    191. Xie DX, Chen Z (2000) Harpin-induced hypersensitive cell death is associated with altered mitochondrial functions in tobacco cells. Mol Plant-Microbe Interact 13: 183-190
    
    192. Xie DX, Feys BF, James S, Nieto-Rostro M, Turner JG (1998) COII: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280: 1091-1094
    
    193. Xie Z, Zhang ZL, Hanzlik S, Cook E, Shen QXJ (2007) Salicylic acid inhibits gibberellin-induced alpha-amylase expression and seed germination via a pathway involving an abscisic-acid-inducible WRKY gene. Plant Mol Biol 64: 293-303
    
    194. Xu JC, Tian J, Belanger FC, Huang B (2007) Identification and characterization of an expansin gene AsEXPl associated with heat tolerance in C_3 Agrostis grass species. J Exp Bot 1 -8
    
    195. Yan FS (1995) The probing movement and expression and track research method in the stylet of aphid. Chin J Zool 30: 40-44
    
    196. Yang J, Zhang J, Liu K, Liu L (2006) Abscisic acid and ethylene interact in wheat grains in response to soil drying during grain filling. New Phytol 171: 293-303
    
    197. Yang QH, Lu W, Hu ML, Wang CM, Zhang RX, Yao M, Wan JM (2003) QTL and epistatic interaction underlying leaf chlorophyll and H_2O_2 contents variation in rice. Oryza sativa L. Acta Genet Sinica 30: 245-250
    
    198.Yennawar NH, Li LC, Dudzinski DM, Tabuchi A, Cosgrove DJ (2006) Crystal structure and activities of EXPB1 (Zea m 1), a β-expansin and group-1 pollen allergen from maize. Proc Natl Acad Sci USA 103: 14664-14671
    
    199. Zenoni S, Reale L, Tornielli GB, Lanfaloni L, Porceddu A, Ferrarini A, Moretti C, Zamboni A, Speghini A, Ferranti F, Pezzotti M (2004) Downregulation of the petunia hybrida a-expansin gene PhEXP1 reduces the amount of crystalline cellulose in cell walls and leads to phenotypic changes in petal limbs. The Plant Cell 16: 295-308
    
    200. Zentalla R, Yamauchi D, Ho TH (2002) Molecular dissection of the gibberellin/abscisic acid signaling pathways by transiently expressed RNA interference in barley aleurone cells. Plant Cell 14: 2289-2301
    
    201. Zhang CL, Qian J, Bao ZL, Hong X, Dong H (2007) The induction of abscisic-acid-mediated drought tolerance is independent of ethylene signaling in Arabidopsis plants responding to a harpin protein. Plant Mol Biol Rep DOI10.1007/sl 1105-007-0012-5
    
    202. Zhang GP (1997) Gibberellic acid3 modifies some growth and physiologic effects of Paclobutrazol. pp333 on wheat J Plant Growth Regul 16: 21-25
    
    203. Zhang JS, Xie C, Du BX, Wu XL, Chen SY (2001b) Tobacco two-component gene NTHK2. Chin Sci Bull 46: 574-577
    
    204. Zhang JS, Xie C, Shen YG, Chen SY (2001a) A two-component gene (NTHK1) encoding a putative ethylene-receptor homolog is both developmentally and stress regulated in tobacco. Theor Appl Genet 102: 815-824
    
    205. Zhou X, Liu Q, Xie F, Wen CK (2007) RTE1 is a golgi-associated and ETR1-dependent negative regulator of ethylene responses. Plant Physiol 145: 75-86
    
    206. Zhu WG, Magbanua MM, White FF (2000) Identification of two novel hpaG-associated genes in the hpaG gene cluster of Xanthomonas oryzae pv. oryzae. J Bacteriol 182: 1844-1853
    
    207. Zitter TA, Beer SV (1998) Harpin for insect control. Phytopathol 88: S104-S105
    
    208.董汉松(1995)植物诱导抗病性原理和研究,科学出版社
    
    209.闻韦刚(2001)水稻黄单胞菌过敏性反应激发子的研究.博士学位论文,南京农业大学
    
    210.于海芹(2005)植物诱导抗旱与抗病防卫信号通路及其调控的初步研究.硕士学位论文,南 京农业大学
    
    211.张石城,刘祖祺编著(1999)植物化学调控原理与技术.北京:中国农业大学出版社333-437

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700