用户名: 密码: 验证码:
高粱与苏丹草的遗传及其杂种优势利用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高粱[Sorghum bicolor(L.)Moench和苏丹草[Sorghum sudanense(Piper)Stapf]均属于禾本科高粱属,普遍被认为起源于热带非洲,二者在亲缘关系上有一定距离,但无生殖隔离。高粱的分类问题,在几百年来一直被众多植物学家探索着。目前,苏丹草与高粱是否属于同一个种至今存在争议,亟待澄清两物种分类学上混乱。
     高粱与苏丹草没有生殖隔离,这就使利用高粱与苏丹草的杂种优势成为可能。开展高粱-苏丹草杂种优势利用及其指纹图谱和分子标记研究,对饲用高粱和苏丹草遗传育种具有重要的理论和实际意义。
     本研究旨在通过数值分类学、细胞遗传学、生理生物化学和分子生物学等方法,探讨苏丹草与高粱形态学与分子性状的遗传亲缘关系,开展高粱与苏丹草杂交优势利用研究,建立高粱与苏丹草及其杂交种DNA指纹图谱,进行高粱/苏丹草褐色中脉基因的遗传分析和SSR标记定位,为进一步选育更加高产优质品种创造前提和条件。本研究获得的主要结论如下:
     1.高粱与苏丹草生物学特性的数值分析
     选取高梁属不同来源和类型高粱品种6个,苏丹草品种4个,另加1份与苏丹草和高粱染色体数相同的饲用墨西哥玉米(Zea Mexicana)作为参照物种开展数值分析。在植物营养生长阶段和生殖生长阶段观测高粱、苏丹草生物学性状共64个。对苏丹草与高粱10个品种共300个个体的两组判别分析表明,苏丹草与高粱品种间F测验达极显著水平。因此,苏丹草与高粱类间差异明显。至于苏丹草类内和高粱类内部分品种间F测验显著,说明苏丹草与高粱类内又存在分化现象。对苏丹草与高粱的10个品种各30株共300个个体进行判别分析,结果每品种的30个个体都能回判到各自品种中,表明参试的30个个体是合理的。用观测的64个性状指标对苏丹草和高粱共10个品种进行分层聚类,结果苏丹草和高粱明显被分成两大类。
     与此同时,本研究还系统分析了苏丹草和高粱64个生物学性状的分类学意义;利用主成分分析法确定出6个主分量,在特定生态条件和栽培模式下,主成分Ⅰ、Ⅱ值的大小决定着苏丹草和高粱共同祖先向各自发展方向进行演化,以6个主成分的回归因子得分值进行10个品种的快速聚类,结果苏丹草和高粱被分成2大类。进一步扩大参试品种的数量,对48个苏丹草和高粱及其近缘种进行数量分类研究,结果基本支持原10个品种的结论,但全部苏丹草和高梁两类群不能被完全分离开来。
     2.高粱与苏丹草及其杂种的细胞遗传学研究
     采用去壁低渗火焰干燥法对4个苏丹草和6个高粱品种的核型进行比较研究,结果表明苏丹草和高粱体细胞染色体数均为20(2n=20)。苏丹草品种均为1A核型,并具有1对随体染色体,其中1、2号品种的第2对染色体为近中间着丝点染色体,3、4号品种为中间着丝点染色体;高粱品种除5号为1A核型、中间着丝点染色体外,其余的5个品种为2A或2B核型,且都有1或2对近中间着丝点染色体,9号品种还出现1对近端着丝点染色体;高粱8、9号品种各观察到1对随体染色体。染色体数量分析表明,第1到第10对染色体长短臂的绝对长度、相对长度以及绝对全长在苏丹草和高粱两类间的差异均不显著(P>0.05)。因此,苏丹草和高粱的遗传差异不在染色体长度上。
     进一步观察了3个杂种F_1减数分裂染色体行为和2个杂种F_2体细胞中染色体数目。结果杂种F_1花粉母细胞减数分裂过程中,中期Ⅰ染色体核型和数目清晰可见(2n=2x=20),配对行为规则;棒状和环状二价体的频率因组合不同而有差异,Tx623A×S722 F_1、3042A×Sa F_1和Tx623A×Sa F_1棒状二价体频率分别为4.887,5.710和5.126,环状二价体频率分别为5.113,4.290和4.874;在后期Ⅰ,配对的染色体能够正常分离。杂种F_2体细胞中染色体数目为20(2n=20)。说明苏丹草与高粱染色体具有很高的同源性,能够正常配对并稳定传递,二者亲缘关系非常近。
     3.高粱与苏丹草同工酶以及光合特性的比较研究
     采用聚丙烯酰胺电泳法,对4个苏丹草和6个高粱品种进行过氧化物酶同工酶的分析比较,结果表明苏丹草和高粱各品种的酶带不完全相同,但却未能找到苏丹草和高粱两类的特异带谱。进一步对以上材料进行酯酶同工酶分析,结果苏丹草被聚为一类,高粱被聚为另一类,因此,酯酶同工酶谱可以作为鉴别苏丹草和高粱的有效生化标记。
     采用CI-310便携式光合测定系统,对32份高粱和10份苏丹草品种进行强弱光下光合特性的比较研究。结果表明:高粱和苏丹草的各项光合指标除后者的胞间CO_2浓度外,在强弱两种光照条件下均有显著或极显著差异。在弱光条件下,各项光合指标在高粱和苏丹草间均没有显著差异;但在强光条件下,高粱的蒸腾速率和胞间CO_2浓度极显著或显著超过苏丹草。在弱光条件下,无论高粱或苏丹草,其净光合速率、蒸腾速率和气孔导度三者间均呈显著或极显著正相关;但在强光条件下,苏丹草的各项指标无显著相关,而高粱大部分指标间相关极显著。
     4.应用RAPD和SSR分子标记对高粱和苏丹草遗传多态性的研究
     选用了32份高粱品种、10份苏丹草品种及2份高粱近缘种拟高粱和假高粱进行了RAPD分析。结果表明:12对RAPD引物产生的68条DNA扩增片段中,52条(76.5%)具有多态性。高粱之间的相似系数从55%到95%;苏丹草之间的相似系数从52%到84%,因此选择的品种之间的多态性高,具有代表意义。高粱不育系和保持系之间的相似度很大为89%以上。以0.66为阈值将44个品种分为十个类群。第1类群为4份苏丹草品种;在2、3、4群中既有苏丹草也有高粱;5、6、7、8群中则全部为高粱。因此,从RAPD分子标记聚类结果看,高粱和苏丹草遗传差异较小,难以完全分开。
     用SSR标记分析了48份高粱、苏丹草及其近缘植物拟高粱、假高粱、墨西哥玉米、玉米的多态性及其亲缘关系。91对SSR引物在48个品种中扩增得到723个等位基因,平均每个位点有7.945个等位基因,多态性率达98.480%,多态性信息含量PIC为0.783。其中,在高粱品种内扩增出669个等位基因,平均每个位点有7.352个,多态性率为84.530%,多态性信息含量PIC为0.774;在苏丹草品种内扩增出649个等位基因,平均每个位点有7.132个,多态性率为78.483%,多态性信息含量PIC为0.770。通过对高粱与苏丹草多态性信息含量PIC值差异性t检验表明,二类群间无显著差异(p>0.05)。高粱和苏丹草两类间平均遗传距离仅0.035。全部48份材料间的遗传相似系数最小为0.217,最大为0.975,据此进行聚类分析,结果显示:以相似系数0.766作为分类临界值,可以将48份材料分成5类,即全部高粱和苏丹草品种聚为1类,拟高梁(S.propinquum)1类,假高粱(S.halepense)1类,墨西哥玉米(Zeamexicana)1类,玉米(Zea mays)1类。因此,将苏丹草作为1个独立的植物分类种并不合适,建议将其划归双色高粱种(S.bicolor)。
     5.高粱与苏丹草杂种优势利用的研究
     苏丹草(S.sudanense)与高粱(S.bicolor)均为禾本科高粱属植物,二者的杂种优势明显。20世纪80年代,作者首次在我国开展高粱与苏丹草杂种优势利用的研究,研究结果表明:F_1单株生物产量性状高于双亲平均值,甚至超过或接近高亲。影响高粱-苏丹草杂交种单株茎叶鲜重的主要因素是主茎粗、叶长;决定单位面积鲜草产量的主要是密度、叶长和单株茎叶鲜重,其中在一定范围内密度对单位面积产量的直接通径系数最大,为1.0299~(**)。多年随机区组试验结果表明,杂交种单位面积鲜草产量显著超过苏丹草,并以30万株/hm~2为最适种植密度。杂交种营养品质与苏丹草相近,氰化物含量低,在孕穗后期含糖量达到最大值,为10.0%(Bx)。
     6.高粱与苏丹草及杂交种DNA指纹图谱构建和褐色中脉基因的定位
     从100个RAPD引物中筛选到9个多态性高、重复性好的引物,多态性条带比率为64.06%,利用4个核心RAPD引物可以为42份高粱与苏丹草品种资源中的每份品种构建一张特定的数字指纹,并通过其中1个引物F-01构建了一张能鉴别2份国审品种皖草2号和皖草3号高粱-苏丹草杂交种的RAPD指纹图谱,不过该图谱不能区别皖草3号与其父本Sa。从95对SSR引物中筛选出多态性丰富的引物73对,多态性条带比率为86.06%,通过3对核心SSR引物就可以构建42份高粱和苏丹草的SSR数字指纹,同时利用其中1对SSR引物txp18,寻找到两个杂交种的互补带,从而构建了两个高粱-苏丹草杂交种的SSR指纹图谱,这张SSR指纹图谱不仅能鉴别皖草2号和皖草3号,还可以把杂交种与其亲本区别开来。
     高粱/苏丹草褐色中脉品种的叶片中脉和茎杆髓部是褐色的,茎杆的表皮呈深褐色。此类品种能使难以消化的木质素含量降低40%-60%,从而大幅度地提高消化率。利用高粱经典材料Tx623A的褐色中脉突变体(bmr-6类型)与白色中脉苏丹草(Sa-line)进行杂交,构建F_2分离群体,F_1表现为白色中脉,F_2白褐分离比符合3:1。这说明褐色中脉基因受一对等位基因控制,表现为隐性遗传。用已知定位到连锁群上的SSR标记和分离群体分析法,对褐色中脉bmr-6基因进行了连锁分析,发现1个与褐色中脉bmr-6基因连锁的微卫星标记,连锁距离为4.2cM,并将该基因初步定位于第7连锁群上。
Sorghum[Sorghum bicolor(L) Moench]and sudangrass[S.sudanense(piper) stapf] are two members of the agriculturally-important genus Sorghum(Gramineal),but some disagreement exists as to whether they actually belong to the same species.Hybrids of these two species have exhibited favorable forage yields and overall improved quality and disease resistance.They are widely used in aquaculture,production of livestock food and environmental protection.It is urgent to study the morphological characteristics,heterosis, forage value and molecular genetic for hybrid.
     In this research,the genetics of sorghum(S.bicolor) and sudangrass(S.sudanense) was studied by numerical taxonomy,cytogenetics,physiology/biochemistry and molecular biology.Heterosis of hybrid between sorghum and sudangrass was utilized for the first time in China.DNA fingerprints for 42 sorghum and sudangrass varieties and 2 sorghum-sudangrass hybrids were constructed.The brown midrib gene(bmr-6) of sorghum-sudangrass hybrids was mapped.The results were listed as the following:
     1.Numerical Analysis of Genetic Variation in Sorghum[S.bicolor(L.) Moench]and Sudangrass[S.sudanense(Piper) Stapf]
     Sixty-four biological characteristics were evaluated for a comparative study between sorghum(S.bicolor) and sudangrass(S.sudanense) by means of variance,discrimination and cluster analyses.The significant differences in biological characteristics between sorghum and sudangrass were found.The F-test divergence values between the varieties of sorghum and sudangrass were highly significant.Discrimination analysis of all plants suggested that 100%of originally grouped cases were classified correctly.Cluster analysis showed that the 10 varieties of sorghum and sudangrass in the study fell into 2 groups:four sudangrass varieties making up one kind,and six sorghum varieties making up the other. Analysis of variance showed the characteristics chosen for cluster analysis were reasonable.
     The characters of significant positive correlation and significant negative correlation had been found.In terms of a combined line,64 characters were clustered to 5 groups.The taxonomic significance of these characters had also been analyzed.6 principal branch quantitative characters were determined using the principal component analysis.Principal component-Ⅰwas named for principal sudangrass factor and principal component-Ⅱwas named for sorghum principal factor.10 varieties could be divided into 2 main groups depending on the result of cluster analysis by principal component regression values. Sudangrass was clustered to 1 group,and sorghum was clustered to the other group.
     The results of quantity classification for 48 varieties,i.e.32 sorghum varieties and 10 sudangrass varieties and 4 relatives,supported basically above viewpoint.
     2.Cytogenetical Studies of Relationship on Sudangrass(S.sudanense) and Sorghum (S.bicolor)
     The Karyotypes of 4 sudangrass varieties and 6 sorghum varieties during mitosis were investigated using the method of wall degradation and hypotonic treatment of making chromosomal preparations.The results showed that the numbers of chromosome are 20 in sudangrass(S.sudanense) and sorghum(S.bicolor).The karyotypes of sudangrass varieties were 1A,and their karyotype formulas were shown as follows:No1 and No2 2n=18m+2sm(2SAT),No3 2n=18m+2sm(2SAT),No4 2n=20m(2SAT).Their karyotypes were not all same among sorghum varieties.Only No5 was 1A,and all the other varieties were 2A or 2B.The karyotype formulas of sorghum varieties were:No5 2n=20m,No6 2n=16m+4sm,No7 2n=18m+2sm,No8 2n=18m(2SAT)+2sm,No9 2n=16m+2sm(2SAT)+2st,No10 2n=16m+4sm.There were not different significantly between sudangrass and sorghum in short arm,long arm and absolute total length(P>0.05).
     The Karyotypes of F_1 hybrids and their parents were analyzed,and the meiosis behavior of 3 F_1 hybrids and the chromosome numbers of 2 F_2 hybrids were observed The result showed that the karyotypic types of sorghum and sudangrass were 1A,and the karyotype formula of Sa was 2n=18m+2sm(sat);the karyotype formulas of 3042A and 3042A×Sa F_1 were 2n=20m,but the others were 2n=20m(sat).The difference among 3 groups(i.e.sudangrass,sorghum and sorghum-sudangrass hybrid F_1) weren't significant in absolute long arm,absolute short arm,absolute total length,arm ratio(l/s),relative total length from 1st to 10th chromosome pair(P>0.05);This result supported above viewpoint. The paired chromosome configuration of sorghum-sudangrass hybrid F_1 in pollen mother cells at metaphase I was 2n=2x=20(10Ⅱ),and the chromosome pairing behavior was regular,but the frequencies of rod bivalent of Tx623A×S722 F_1,3042A×Sa F_1 and Tx623A×Sa F_1 were different,which were 4.887,5.710 and 5.126,respectively;that of ring bivalent were 5.113,4.290 and 4.874,respectively.At anaphase I,the paired chromosomes of sorghum-sudangrass hybrid F_1 could separate from each other.The chromosome numbers of F_2 hybrid were 20(2n=20).Therefore,the sudangrass/sorghum relationship is sufficiently close.
     3.Photosynthetic Characteristics,Peroxidase(POD) and Esterase(EST) Isozyme Analysis in Sudangrass and Sorghum
     Six sorghums and four sudangrasses varieties was assayed by preoxidase(POD) and EST isozyme based on Polyacryamide gel electropheresis(PAGE),respectively.The results showed that preoxidase isozyme could determine different characteristics of different varieties with enzyme patterns difference,but could not distinguish sorghum with sudangrass.EST isozyme could determine characteristic of different varieties with enzyme pattern difference,and could distinguish sudangrass and sorghum.
     Four photosynthetic indices of sorghum and sudangrass were measured under strong and weak light conditions by CI-310 Portable Photosynthesis System.The results showed that the differences of net photosynthetic rate,transpiration rate,stomatal conductance of sorghum and sudangrass were significant between weak(PAR:353.07μmol·m~(-2)s~(-1),in the overcast day) and strong(PAR:1331.86μmol·m~(-2)s~(-1),in clear-cloudy day,) radiation,but internal CO_2 of sudangrass was not changed significantly.Under weak radiation,the difference of every index between sorghum and sudangrass was not significant.But transpiration rate and internal CO_2 were significant between sorghum and sudangrass under strong radiation.Under weak radiation,there were significantly positive correlated among net photosynthetic rate,transpiration rate and stomatal conductance in sorghum or sudangrass.Under strong radiation,there were not significant correlated among all indices of sudangrass;but there were significantly positive correlated among most indices in sorghum.
     4.Diversity Comparison and Phylogenetic Relationships of S.bicolor and S.sudanense as Revealed by RAPD and SSR markers
     Thirty-two accession of S.bicolor,ten varieties of S.sudanense and two related species of S.bicolor were analyzed using random amplified polymorphic DNA(RAPD) markers.The results were as follows:(1)Atotal of 68 bands were amplified by 12 primers, among which 52(76.5%) bands were found to be polymorphic.(2)The similarity coefficient of S.bicolor and S.sudanense were 55%to 95%and 52%to 84%,respectively.The polymorphy is high in both.Restorer and maintainer lines of Sorghum bicolor can be differentiated by RAPD although the similarity of them was more than 89%.(3)Cluster analysis showed the 44 varieties fell into 10 groups by the threshold value of 0.66.The whole accession of the first group were S.sudanense and the whole accession of the 5,6,7 and 8 groups were S.bicolor.But there were S.sudanense and S.bicolor in the 2,3 and 4 groups.It suggested that S.bicolor and S.sudanense can not be distinguished by RAPD.
     Phylogenetic relationships among 48 accessions of sorghum(S.bicolor),sudangrass (S.sudanense) and their relatives(S.propinquum,S.halepense,Zea mexicana,Z.mays) were investigated using SSR markers.The 91 SSR primer pairs generated a total of 723 polymorphic alleles,with an average of 7.945 alleles per locus,and a range of 2 to 19 alleles.The average genetic diversity,as measured by the polymorphic information content (PIC),was 0.783.The average polymorphic rates were 84.530%and 78.483%within sorghum and sudangrass,respectively.The PIC values were 0.774 and 0.770,respectively, and there was no significant difference(P>0.05) between sorghum and sudangrass. Additionally,the genetic distance(GD_(sor-su)) between sorghum and sudangrass was only 0.035,suggesting a high degree of genetic homogeneity.Genetic similarity(GS) values between all varieties ranged from 0.217 to 0.975 and were used to produce a dendrogram. The 48 accessions were clustered into five groups(GS=0.766),specifically,groupⅠ(consisting of sorghum,sudangrass and sorghum-sudangrass hybrids),groupⅡ(S. propinquum),groupⅢ(S.halepense),groupⅣ(Z.mexicana) and group V(Z.mays). Results of our analyses suggest the sudangrass/sorghum relationship is sufficiently close to place them both within the same species-sorghum(S.bicolor).
     5.Heterosis Utilization of Hybrid between Sorghum[S.bicolor(L.) Moench]and Sudangrass[S.sudanense(Piper) Stapf]
     The morphological characteristics,heterosis and the forage value of hybrid between sorghum(S.bicolor) and sudangrass(S.sudanense) were studied.The results showed that the hybrid vigor was obvious.F_1 was higher than mid-parent,even higher than high-parent in leaf width,leaf length,plant height,tiller and fresh weight per plant.The forage yield of hybrid was higher significantly than that of sudangrass.Main stem diameter and leaf length had strong direct effects on fresh weight per plant,and the same was true for density,leaf length and weight per plant on yield per unit area.The path coefficient of density with yield per unit area(p=1.0299~(**)) was significant at 0.01 level.The best density suitable for the hybrid was 30×10~4 plants/hm~2.The nutrient level of the hybrid was close to that of sudangrass.CN~- content in the hybrid was lower.Sugar content was 10.0%(Bx) at later stage of booting,and it was higher than other developmental stages.
     6.Establishment of DNA Fingerprinting and Mapping of the Brown Midrid Gene (bmr-6) for Sorghum/Sudangrass and Hybrids
     Nine RAPD primers with high polymorphism and repeatability were screened from 100 RAPD primers,and the polymorphism rate was 64.06%.Every accession could construct a special data fingerprint by 4 RAPD core primers in 42 sorghum and sudangrass accessions.One RAPD fingerprint was constructed by primers F-01,and could differentiate two sorghum-sudangrass hybrids,but didn't distinguish Wancao No 3 and Sa.73 SSR primer pairs were screened from 95 SSR primer pairs,and the polymorphism rate was 86.06%.Each of 42 sorghum and sudangrass accessions could construct a special data fingerprint by 3 SSR core primer pairs.Primer txp18 showed obvious complementary band between the two sorghum-sudangrass hybrids.One SSR fingerprint was constructed by primer txp18,which could distinguish Wancao No 2,Wancao No 3 and their parents.
     The midrib and stem marrow were brown in the brown midrib sorghum/sudangrass varieties.The scarfskin was dark brown.The content of lignin reduced 40%to 60%than normal varieties.So the digestibility increased effectively.F_1 and F_2 population were constructed by the hybrid of Tx623A(brown midrib,bmr-6) and Sa-line(white midrib).F_1 generation showed white midrib.The ration of white and brown midrib was suitable to 3:1 in F_2 generation.The results showed that the brown midrib gene(bmr-6) was a single recessive gene.Using microsatellite(SSR) markers and F_2 segregation population,one SSR marker was linkage with the brown midrib gene.The linkage map distance was 4.2 cM.The SSR marker was in LG-07.Therefore,the brown midrib gene(bmr-6) was mapped in LG-07.
引文
1.Agrama H A,Widle G E,Reese J C,Campbell L R,Tuinstra M R.Genetic mapping of QTLs associated with greenbug resistance and tolerance in sorghum bicolor[J].Theor Appl Genel,2002,104:1373-1378
    2.Aldrich P R,J Doebley.Restruction fragment variation in the nuclear and chloroplast genomes of cultivated and wild sorghum bicolor[J].Theor Appl Genet,1992,85:293-302
    3.Aldrich P R.Patterns of allozyme variation in cultivated and wild Sorghum bicolor[J].Theor Appl Genet,1992,85:451-460
    4.Bak S,Olsen C E,Halkier B A,Moller B L.Transgenic tobacco and arabidopsis plants expressing the two multifunctional sorghum cytochrome P450 enzymes,CYP79A1 and CYP71E1,are cyanogenic and accumulate metabolites derived from intermediates in dhurrin biosynthesis[J].Plant Physiology,2000,123(4):1437-1448
    5.Barrett B A,Kidwell K K.AFLP based genetic diversity assessment among wheat cultivars from the Pacific Northwest[J].Crop Science,1998,38(5):1261-1271
    6.Barriere Y,Ralph J,Mechin V,Guillaurnie S,Grabber JH,Argillier O,Chabbert B,Lapierre C.Genetic and molecular basis of grass cell wall biosynthesis and degradability.Ⅱ.Lessons from brown-midrib mutants[J].Comptes Rendus Biologies,2004,327:847-860
    7.Beil G M,Atkins R E.Estimates of general and specific combining ability in F_1 hybrids for grain yield and its components in grain sorghum,Sorghum vulgate Pers[J].Crop Sci.1967,7:225-228
    8.Bergman C J,Fjellstrom R G,Mcclung AM.Association between amylose content and a microsatellite marker across exotic rice germplasm[J].Rice Genetics Symposium,2000,(4):22-27
    9.Bitchier J A,Auger D L,Riddle NC.In search of the molecular basis of heterosis[J].Plant Cell,2003,15(10):2236-2239
    10.Bittinger T S,Cantrell R P and Axtell J D.Allelism tests of the brown-midrib mutants of sorghum [J].J Hered,March 1981,72:147-148
    11.Boora K,Frederiksen R A,Magill C W.A molecular marker that segregate with sorghum leaf light resistance in one cross is maternally inherited in another[J].Mol Gen Genet,1999,261:317-322
    12.Bostein D,White R L,Skolnick M,Davis R W.Construction of a genetic linkage map in man using restriction fragment length polymorphism[J].Am.J.Hum.Genet.,1980,32:314-331
    13.BoudetA M.Lignins and lignification:selected issues[y].Plant Physiol Biochem,2000,38:91-96
    14.Bout S,Vermerris W A.Candidate-gene approach to clone the sorghum Brown midrib gene encoding caffeic acid O-methyltransferase[J].Molecular Genetics and Genomics,2003,269:205-214
    15.BrookesA J.The essence of SNPs[J].Gene,1999,234:177-186
    16.Brown S.M,Hopkin A,Mitchell M L.etal.Multiple methods for the identification of polymorphic simple sequence repeats(SSR) in sorghum(Sorghum bicolor Moench)[J].Thoretical and Applied Genetics,1993,93:190-198
    17.Casler M D,Pedersen J F,Undersander D J.Forage yield and economic losses associated with the brown-midrib trait in sudangrass[J].Crop Science,2003,43(3):782-789
    18.Celarier R P.Cytotaxonomy of the Andropogoneae,Ⅲ.Subtribe Sorgheae,genus Sorghum[Y]. Cytologia,1959,23,395-418
    19.Celarler M.Sorghum roat morphogenesis and gromth-effect of maturity genes[J].Crop Science,1958,17(1):35-39
    20.Charles W.Stuber,Mary Polacco,M Lynn Senior.Synergy of empirical reeding,Marker-Assisted Selection,and Genomics to Increase Crop Yield Potential[J].Crop Science,1999,(39):1571-1583
    21.Charters Y M,Robertson A,Wilkinson M J,et al.PCR analysis of lilseed rape cultivars(Brassica napus L.ssp.Oleifera) using 5' anchored simple sequence repeat(SSR) primer[J].Theor Appl Genet,1996,92:442-447
    22.Chen S L,Phillips S M.198.SORGHUM Moench,Methodus,207.1794,nom.cons.,not Sorgum Adanson(1763),The genus Sorghum[J],Flora of China,2006,22:601-602
    23.Cherney J H,Cherney D J R,Akin D E and Axtell J D.Potential of brown-midrib,low-lignin mutants for improving forage quality[J].Adv.Agron,1991,46:157-198
    24.Clayton W D.Proposal to Conserve the Generic Name Sorghum Moench(Gramineae) versus Sorgum Adans.(Gramineae)[J].Taxon,1961,10(8):242-243
    25.Clayton,W D,and Renvoize S A,Flora of Tropical East Africa,Gramineae(Part 3)[M].(A A Balkema:Rotterdam),1982
    26.Collins F C,Pickett R C.Combining ability for grain yield,per cent protein and g tysine/100 g protein of Sorghum bicolor(L) Moench[J].Crop Sci,1972,12:423-427
    27.Conner A B,Karper R E.Hybrid vigor in sorghum[J].Tex.Agri.Exp.Sta.Bull.1727,359
    28.Crasta O R,Xu W W,Rosenow DT.Mapping of post- flowering drought resistance traits in grain sorghum:association between QTLs influencing premature senescence and maturity[J].Mol Gen Genet,1999,262:579-588
    29.Cui Y X,Xu G W,Magill C W,Schertz K F,Hart G E.RFLP based assay of Sorghum bicolor(L.)Moench genetic diversity[J].Theor Appl Genet,1995,90(6):787-796
    30.Davin L B,Lewis N G.Dirigent proteins and dirigent sites explain the mystery of specificity of radical precursor coupling in lignan and lignin biosynthesis[J].Plant Phys,2000,123:453-461
    31.De Wet J M J.Systematics and evolution of Sorghum sect.Sorghum(Gramineae)[J].American Journal of Botany,1978,65:477-484
    32.De Wet J M J,and Huckaby J P.The origin of Sorghum bicolor.Ⅱ Distribution and domestication [J].Evolution,1967,21:787-802
    33.Dice L R.Measures of the amount of ecologic association between species[J].Ecology,1945,26,297-302
    34.Doggett H.Sorghum[M].London and Horlow,1970
    35.Doggett H.Sorghum.Second edition[M].Pubished in A ssociation with the International Development Research.Centre Canadqa.1987,34-39
    36.EndrizzI J E.Cytological studies of some species and hybrids in the Eu-sorghums[j].Bot.Gaz.1957,119:1-10
    37.Fribourg H A.in:Heath M E,Barnes R F,and Metcalfe D S.Forages:The Science of Grassland Agriculture[M].Iowa State University Press,Ames,Iowa.1985:278-286
    38.Fry S C,Willis S C,Paterson A E J.Intraprotoplasmic and wall-localised formation of arabinoxylan-bound diferulates and larger ferulate coupling-products in maize cell-suspension cultures[J].Planta,2000,211,679-692
    39.Garber E L.Cytotaxonomic studies in the genus sorghum.Univ.Calif Publ Bot,1950,23:283-362
    40.Gomez M I,Islam-Faridi M N,Zwick M S,Czeschin D G,Jr Hart G E,Wing R A,Stelly D M,and Price H J.Brief communication.Tetraploid nature of Sorghum bicolor(L.) Moench[J].The Journal of Heredity,1998:89(2):188-190
    41.Grabber J H,Ralph J,Lapierre C,Barriere Y.Genetic and molecular basis of grass cell wall biosynthesis and degradability.I.Lignin-cell wall matrix interactions[J],C.R.Biologies,2004,327:455-465
    42.Grand C P,Parmentier P,Boudet A and Boudet A M.Comparison of lignins and enzymes involved in lignification in normal and brown-midrib(bm3) mutant corn seedlings[J].Physiol.Veg,1985,23:905-911
    43.Halpin C,Holt K,Chojecki J,Oliver D,Chabbert B,Monties B,Edwards K,Barakate A,Foxon GA.Brown-midrib maize(bm 1) - a mutation affecting the cinnamyl alcohol dehydrogenase gene [J].Plant J.1998,14:545-553
    44.Hamalainen J H,Watanabe K N,Valkonen J P T,Arihara A,Plaisted R L,Pehu E,Miller L,Slack S A.Mapping and marker-assisted selection for a gene for extreme resistance to potato virus Y[J].Theor Appl Genet.1997,94:192-197
    45.Harlan J R,De Wet J M J.A Simplified classfication of cultivated sorghum[J].Crop Science.1972,12(2):172-176
    46.Haussmann B I G,Mahalakshmi V,Reddy BVS,Seetharama N,Hash C T,Geiger H H.QTL mapping of stay-green in two sorghum recombinant inbred populations[J].Theor Appl Genet,2002,106:133-142
    47.Hitchcock A S,Marks C F,Townsend J L,Munz P A,Fribourg H A.Sorghum &Sudangrass[EB/OL].http://www.sarep.ucdavis.edu/cgi-bin/ccrop.exe/show_crop_36.2003.1.20
    48.Hitchcock A S.Manual of the Grasses of the United States[M].Originally published in 1950 as U.S.D.A.Miscellaneous Publication No.200.Dover,New York.Second edition revised by Agnes Chase.Two Volumes.1971
    49.Hsu F H,Lin J B,and Chang S R.Effects of waterlogging on seed germination,electric conductivity of seed leakage and developments of hypocotyl and radicle in sudangrass[J],Bot.Bull.Acad.Sin.2000,41:267-273
    50.Humphreys J M,Chapple C.Rewriting the lignin road map[J].Curr Opin Plant Biol,2002,5:224-229
    51.Ioannidou D,Pinel A,Brugidou C,Albar L,Ahmadi N,Ghesquiere A,Nicole M,Fargette D.Characterisation of the effects of a major QTL of the partial resistance to Rice yellow mottle virus using a near isogenic-line approach[J].Physiological and Molecular Plant Pathology,2003,63(4):213-221
    52.Iptas S,Yilmaz M,Oz A & Avcioglu R.Possibilities of utilizing silage corn,forage sorghum and sorghum-sudangrass hybrids under the ecological conditions in Tokat[C].Proc.1 st Turkey Silage Conference,Bursa,Turkey,1997.97-104
    53.Iptas S,Brohi A R,Effect of Nitrogen Rate and Stubble Height on Dry Matter Yield,Crude Protein Content and Crude Protein Yield of a Sorghum-Sudangrass Hybrid[Sorghum bicolor (L.) Moench × Sorghum sudanense (Piper) Stapf.] in the Three-Cutting System[J]. Journal of Agronomy & Crop Science; 2003, 189(4):227-232
    54. Jaccard P. Nouvelles rescherches sur la distribution florale[J]. Bull.Soc.Vand.Sci.Nat, 1980,44:223-270
    55. Jobin Decor M P, Graham G C, Henry R J, Drew R A. RAPD and isozyme analysis of genetic relationships between Carria papya and wild relatives[J]. Genetic Resaurce and Crop Evaluation, 1997,44:471-477
    56. Jorgenson R L. Brown midrib in maize and its lignage relations [J]. J. Am. Soc. Agron, 1931, 23: 549-557
    57. Kambal A E, Webster O J. Estimates of general and specific combining ability in grain sorghum Sorghum vulgare Pers[J]. Crop Sci. 1965(5): 521
    58. Karper R E, Quinby J R. Hybrid vigor in sorghum[J]. J. Heredity, 1937(28): 83-91
    59. Katsar C S, Paterson A H, Teetes G L, Peterson G C. Molecular analysis of sorghum resistance to the greenbug(Homoptera:Aphididae) [J]. Plant Resistance, 2002,95: 448-457
    60. Kebede H, Subudhi PK, Rosenow DT. Quantitative trait loci influencing drought tolerance in grain sorghum {sorghum bicolor{ L.) Moench) [J]. TheorApplGenet, 2001, 103: 266-276
    61. Kellya J D, Geptsb P, Miklas P N, Coyne D P. Tagging and mapping of genes and QTL and molecular marker-assisted selection for traits of economic importance in bean and cowpea[J].Field Crops Research,2003,(82):135-154
    62. Kilcer T F, Q M Ketterings, P Cerosaletti, P Barney, and J H Cherney. Cutting Management for Brown Mid Rib Sorghum Sudangrass [J]. What's Cropping Up? Newsletter, 2003, 13(4): 4-6
    63. Kilian A,Steffenson B J,Saghai Msroof M A,Kleinholfs A.RFLP markers linked to the durable stem resistance gene Rpgl in barley[J]. Mol plant-Microbe inter,1994,7:298-301
    64. Klein R R, Rodriguez-Herrera R, Schlueter J A, Klein P E, Yu Z H, Rooney W L. Identification ofgenomic regions that affect grain-mould incidence and other traits of agronomic importance in sorghum[J]. TheorAppl Genet, 2001,102: 307-319
    65. Koehn R K, Hilbish T J. The adaptive importance of genetic variation [J]. Am. Sci. 1987, 75:134-141
    66. Kong L, Dong J, Hart G E. Characteristics, linkage map positions, and allelic differentiation of Sorghum bicolor (L.) Moench DNA simple-sequence repeats (SSRs) [J]. Theor Appl Genet, 2000 (101): 438-448
    67. Lanner C, Bryngelsson T, Gustafsson M.Genetic validity of RAPD markers at the intra- and inter-specific in wild Brassica species with n=9[J]. Theoretical and Applied Genetics, 1996,93:9-14
    68. Lender E S, Green P, Abrahamson J, Mapmaker: An interactive computer for constrcting primary genentics linkage maps of experimental and natural populations[J]. Genetics , 1987 ,1:174-182
    69. Levan A, Fredga K, Sandberg A A. Nomenclature for centromeric position on chromosomes[J]. Hereditas, 1964, 52:201-220
    70. Liang G H. Diallel analysis of agronomic characters in. grain sorghum, Sorghum vulgare Pers[J]. Canad. J. Genet. Cytol. 1967(9): 269-276
    71. Linnaeus C (afterwards Linne C von). Hortus cliffortianus[M]. 1737,468-469
    72.Marks C F,Townshend J L.Multiplication of the root lesion nematode Pratylynchus penetrans under orchard cover crops[J].Canadian Journal of Plant Science,1973,53:187-188
    73.McClure J E,Harvey C.Use of radiophosphorus in nleasuring root growth of sorghum[J].Agron.J.1962,62:457-459
    74.Menkir Abebe,Goldsborough P,Gebisa E.RAPD based assessment of genetic diversity in cultivated races of Sorghum[J].Crop Science.1997,37:564-569
    75.Menz M A,Klein R R,Mullet J E,Obert J A,Unruh N C,Klein D E.A high density genetic map ofsorghum bicolor(L.)Moench based on 2926 AFLP,RFLP,and SSR markers[J].Plant Mol Bio,2002,48:483-499
    76.Millan T,Osuna F,Cobos S.Using RAPDs to study phylogenetic relationship in Rosa[J].Theoretical and Applied Genetics,1996,92:273-277
    77.Millana T,Rubiob J,Iruelab M,et al.Markers associated with Ascochyta blight resistance in chickpea and their potential in marker-assisted selection[J].Field Crops Research,2003,(84):373-384
    78.Ming R,Brewbaker J L,Pratt R C,Musket T,McMullen M D.Molecular mapping of a major gene conferring resistance to maize mosaic virus[J].Theor Appl Genet,1997,(95):271-275
    79.Moench C.Methodus plantas horti botanici et agri[M].1794,207
    80.Munz P A,Keck D D.A California Flora(with Supplement by P.A.Munz)[M].University of California Press.Berkeley,California.1973
    81.Murty B R.Classification and cataloguue of world collection of Sorghum[J].Indian J Genet,1967,27:1-74
    82.Nei M and Li W H.Mathematical model for studying genetic variation in terms of restriction endonuclease[J].Proceedings of the National Academy of Sciences of the USA,1979,76:5269-5273
    83.Nei M.Analysis of gene diversity in subdivided populations[J].Proc.Natl.Acad.Sci.USA,1973,70:3321-3323
    84.Neuffer M G.,Jones L and Zuber M S.The Mutants of Maize[M],S.Matthias and H.Hamilton,eds(Madison,WI:Crop Science Society of America).1968
    85.Niehaus M H,Pickett R C.Heterosis and combining ability in a diallel cross in Sorghum vulgate Pers[J].Crop Sci.1966(2):33
    86.Nosberger V J.The effect of heterosis on the growth of maize.Thesis Separatobdruck aus Schweizerische landwirtschaftliche Forschung[J].Band Ⅸ,Heft.1970,3/4:235-287
    87.Oh B J,Frederiksen R A,Magill C W.Identification of molecular markers linked to head smut resistance gene(Shs)in sorghum by RFLP and RAPD anaiyses[J].Phytopathology,1994,84:830-833
    88.Oliver A L,Pedersen J F,Grant R J and Klopfenstein T J.Comparative Effects of the Sorghum bmr-6 and bmr-12 Genes:I.Forage Sorghum Yield and Quality[J].Crop Sci,2005,45(6):2234-2239
    89.Pammi S,K Schertz,G Xu,et al.Random amplified polymorphic DNA markers in sorghum[J].Theor Appl Genet,1994,89:80-88
    90.Pedersen J F,Funnell D L,Toy J J,Oliver A L and Grant R J.Registration of Seven Forage Sorghum Genetic Stocks Near-Isogenic for the Brown Midrib Genes bmr-6 and bmr-12 [J]. Crop Sci, Jan 2006, 46:490-491
    91. Pedersen J F, Toy J J, Johnson B. Natural outcrossing of Sorghum and sudangrass in the central great plains[J]. Crop Science, 1998,38(4): 937-939
    92. Pedersen J F, Toy J J. Forage yield, quality, and fertility of sorghum × sudan grass hybrids in A1 and A3 cytoplasm[J]. Crop Science, 1997, 37(6): 1973-1975
    93. Pereira M G, Lee M, Bramel C P, Woodman W, Doebley J, Whitkus R. Construction of an RFLP map in sorghum and comparative mapping in maize [J]. Genome, 1994, 37:236-243
    94. Persoon C H. Synopsis plantarum[M]. 1805, 1,101
    95. Pilonel C. Involvement of cinnamyl-alcohol dehydrogenase in the control of lignin formation in Souhum bicolor L [J]. Moench. Planta, 1991,185: 538
    96. Porta G B. Neapolitani villae[M], 1592, 865
    97. Porter K S, Axtell J D, Lechtenberg V L, Colenbrander V F. Phenotype, fiber composition, and in vitro dry matter disappearance of chemically induced brown midrib (bmr) mutants of sorghum [J]. Crop Sci, 1978, 18:205-209
    98. Prevost A, Wilkinson M J. A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars[J].Theor Appl Genet,1999,98:107-112.
    99. Quinby J R, Liang G H. Leaf number and duration to floral initiation and flowering of sorghum parents and hybrids[J]. Can. J. Genet. Cytol. 1969, 11:275-280
    100. Quinby J R. Leaf and panicle size of sorghum parents and hybrids[J]. Crop Sci, 1970, 10(3):251-253
    101. Quinby J R. Manifestations of hybrid vigor in sorghum[J]. Crop Sci. 1963(3): 288
    102. Quinby J R. The maturity genes of sorghum[M]. In Advances in. Agronomy. A.G Norman, Ed. Academic Press, New York. and London. 1967, 19: 267-305
    103. Ruel J. De natura stirpium[M]. 1537, 320
    104. Saghai Maroof M A, Soliman K M, Jorgenson R A, Allard R W. Ribosomal DNA spacer length polymorphism in barley: Mendelian inheritance, chromosomal location and population dynamics [J]. Proc Natl Acad Sci USA 1984, 81:8014-8018
    105. Sattell R, Dick R, Ingham R E, McGrath D. Sudangrass and sorghum-sudangrass hybrids {Sorghum bicolor L)[M]. in Sattell, R. ed. Using cover crops in Oregon. Oregon State University Extension Service Publication EM 8704. 1998, 49-50
    106. Schloss S J, S E Mitchell, G M White, R Kukatla, J E Bowers, A H Paterson, S Kresovich. Characterization of RFLP probe sequences for gene discovery and SSR development in Sorghum bicolor(L.) Moench [J]. Theor Appl Genet, 2002(105): 912-920
    107. Shull G H. Beginnings of the heterosis concept.-48 In: J. W. Gowen, editor. Heterosis[M]. Ames: Iowa State College Press. 1952, 14
    108. Shull G H. Duplicate genes for capsule form in Bursa bursapastoris. Z. Indukt. Abstammungs Verebringsl[J]. 1914, 12:97-149
    109. Sibout R, Eudes A, Pollet B, Goujon T, Mila I, Granier F, Seguin A, Lapierre C, Jouanin L. Expression pattern of two paralogs encoding cinnamyl alcohol dehydrogenases in Arabidopsis. Isolation and characterization of the corresponding mutants [J]. Plant Physiol ,2003,132:848-860
    110.Sieglinger J B.Leaf number of sorghum stalks[J].Agron J,1936,28:636-642
    111.Smith J R C,Smith O S.Variation in Kafirin and alcoho-sobuble glutelin chromatograms of sorghum inbred lines revealed by reversed-phase high-performance liquid chromatography[J].Theeor Appl Genet,1988,76:97-107
    112.Sheath P H A,sokal R R.Numerical taxonomy[M].Freeman.San Francisco,1973
    113.Snowden J D.The Cultivated Races of Sorghum[M].Adlard & Son Ltd.,London.1936,1-274
    114.Stebbins G L.Chromosomal Evolution in Higher Plants[M].London:Edward Arnold Ltd.1971
    115.Stephens J S,Quinby J R,Bulk emasculation of sorghum flowers[J].J.Ameri.Soc.Agron.1933(25):233-234
    116.Stickler F C,and Pauli A W.Influence of date of planting on yield and yield components in grain sorghum[J].Agron.J.1961,53:20-22
    117.Sun Y,Skinner D Z,Liang G H,Hulbert S H.Phylogenetic analysis of Sorghum and related taxa using internal transcribed spacers of nuclear ribosomal DNA[J],Theor Appl Genet,1994:89:26-32
    118.Tao Y Z,Hardy A,Drenth J,Henzell RG,Franzmann BA,Jordan DR,Butler DG.Identifications of two differentmechanisms for sorghum midge resistance through through QTL mapping[J].Theor Appi Genet,2003,107:116-122
    119.Tao Y Z,Henzell R G,Jordan D R,Butler D G,Kelly A M,Mclntyre C L.Identification ofgenomic regions associated with stay green in sorghum by testing RILs in mutiple environments[J].Theor Appl Genet,2000,100:1225-1232
    120.Tao Y,J M Manners,M M Ludlow et al.DNA polymorphisms in grain sorghum(Sorghum bicolor (L.)Moench)[J].Theor Appl Genet,1993,86:679-688
    121.Tao Y Z,Jordan D R,Henzell R G,Mclntyre C L.Identification ofgenomic regions for rust resistance in sorghum[J].Euphytica,1998,103:287-292
    122.Tavares R,Aubourg S,Lecharny A,Kreis M.Organization and structural evolution of four multigene families in Arabidopsis thaliana:AtLCAD,AtLGT,AtMYST and AtHD-GL2[J].Plant Mol Biol,2000,42:703-717
    123.Tinker N A,Fortin M G,Mather D E.Random amplified polymorphisms DNA and pedigree relationships inspring barley[j].Theor Appl Genet,1993,85:976-984
    124.Tuinstra M R,Grote EM,Goldsbrough PB,Ejeta G.Identification of quantitative trait loci associatedwith pre-flowering drought tolerance in sorghum[J].Crop Sci,1996,36:1337-1344
    125.Vaiman D,Mercier D,Moazai-goudarzik.1994.A set of 99 cattle microsatellite,characterization,synteny mapping and polymorphism[J].Mammalian Genome,5:288-297
    126.Vasconcelos J T,Green L W,McCollum Ⅲ F T,Bean B W,Van Meter R.Performance of crossbred stress grazing photoperiod sensitive and nonphotperiod sensitive Sorghum Sudangrass hybrids[J].Journal of Animal Science;2003,Supplement 2,Vol.81,103
    127.Vierling R A,Z Xiang,G P Joshi,et al,Genetic diversity among elite sorghum lines revealed by restriction fragment length polymorphisms and random amplified polymorphic DNAs[J].Theor Appl Genet,1994,87:816-882
    128.Vignols F,Rigau J,Torres M A,Capellades M,Puigdomenech P.The brown-midrib3(bm3)mutation in maize occurs in the gene encoding caffeic acid O-methyl transferase[J].Plant Cell, 1995,7:407-416
    129.Wang Y R,Yu L,Nan Z B,Liu Y L.Vigor tests used to rank seed lot quality and predict field emergence in four forage species[J].Crop Science,2004,44(2):535-541
    130.Widstrom N W,Butron A,Guo BZ,et al.Control of preharvest aflatoxin contamination in maize by pyramiding QTL involved in resistance to ear-feeding insectsand invasion by Aspergillus spp[J].Europ.Agronomy,2003,(19):563-572
    131.Wood A J,Saneoka H,Rhodes D,Joly R J,Goldsbrough P B.Betaine aldehyde dehydrogenase in Sorghum[J].Plant Physiology,1996,110:1301-1308
    132.Wu Y Q,Huang Y.An SSR genetic map of Sorghum bicolor(L.) Moench and its comparison to a published genetic map[J].Genome,2007,50(1 ):84-89
    133.Yanagihara S,McCouch S R,Ishikawa K,Ogi Y,Maruyama K,and Ikehashi H.Molecuular analysis of the inheritance of the S-5 locus conferring wide compatibility in indica/japonica hybrids office(O.sativa L.)[J].Theor Appl Genet,1995,90:182-188
    134.Yang W P,de Oliveira A C,Godwin I.Comparison of DNA marker technologies in characterizing plant geneme diversity:variability in Chinese sorghums[J].Crop Sci,1996,36:1669-1676
    135.Young N D.A cautiously optimistic vision for marker-assisted breeding[J].Mol breeding,1999,(5):505-510
    136.Yu Y G,Saghai Maroof M A,Buss G R,Maughan P J,Tolin S A.RFLP and microsatellite mapping of a gene for soybean mosaic virus resistance[J].Phytopathology.1994,84:60-64
    137.Yu Z H,D J Mackill,J M Bonman,and S D Tanksley.Tagging genes for resistance in rice via linkage to RFLP markers[J].Theor.Appl.Genet.1991,81:471-476
    138.Zaitlin D,DE Mars S,Ma Y.Linkage of rhm,a recessive gene for resistance to southem corn leaf blight to RFLP marker loci in maize(Zea Mays)seedings[J].Genome,1993,36:555-564
    139.Zhang G,Lu Y,Huang N.Molecular analysis of introgressed chromosome,segments in a set of near-isogenic lines of rice for fertility-restoring genes[j].Rice Genet Newslett,1994,11:147-149
    140.Zhang Q,Gao Y J,Yang S H,Ragab R A,Saghai Maroof M A,Li Z B.A diallel analysis of heteroisis in elite hybrid rice based on RFLPs and microsatellites[J].Theor Appl Gente,1994,89:185-192
    141.柴琦,王彦荣,孙建华.坪用草地早熟禾28个品种扩展性的比较研究[J].草业学报,2002,11(4):81-87
    142.陈斌.星天牛属的数值分类研究初探(鞘翅目:天牛科)[J].动物分类学报,1989,14(1):96-103.
    143.程庆军,张福耀,平俊爱,杜志宏,王立新.高粱杂交草的特点及其栽培技术[J].作物杂志,2001,(3):34-35
    144.程泽强.高粱牧草的品种特性及栽培技术要点[J].河南农业科学,2001,(10):120-125
    145.丁春邦,周永红,杨瑞武,张利,郑有良.应用RAPD分子标记探讨拟鹅观草属的种间关系[J].草业学报,2005,14(1):38-43
    146.高士杰.关于高粱与苏丹草间杂交种命名问题商榷[J].杂粮作物,2005,25(5):304
    147.高卫华,支中生,张恩厚,武双喜,韩杰.蜀黍属两个杂交种与其亲本染色体核型分析[J].中国草地,2002,24(4):68-71
    148.何忠效,张树政.电泳(第二版)[M].北京:科学出版社.1999,284,296-298
    149.贺昌锐,宋运淳,刘立华.高粱不同品种的核型分析[J].武汉植物学研究,1997, 15(3):277-278
    150.贺昌锐.高粱不同品种染色体G-带带型的比较[J].湖北三峡学院学报,1999,21(5):64-67
    151.惠大丰,姜长鉴.统计分析系统SAS软件实用教程[M].北京:北京航空航天大学出版社,1996:38-61
    152.贾恩吉,何文安,王蕴波,王春生,陈学求.中国高粱胞质雄性不育系“吉农105”的研究.Ⅰ过氧化物酶同工酶分析[J].吉林农业大学学报,1997,19(4):20-23
    153.康林,邓琼,金显忠.丝克高粱和假高粱的氰化物含量比较测定[J].植物检疫,1999,13(5):289-290
    154.李宝升.介绍一种高产优质的青饲料品种皖草2号[J].北京农业,2000,(5):30-31
    155.李根英,Susanne Dreisigacker,Marilyn L,Warburton,夏先春,何中虎,孙其信.小麦指纹图谱数据库的建立及SSR分子标记试剂盒的研发[J].作物学报,2006,32(12):1771-1778
    156.李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000,134-137
    157.李懋学,张赞平.作物染色体及其研究技术[M].北京:中国农业出版社,1996,98-102
    158.李晓辉,李新海,高文伟,田清震,李明顺,马凤鸣,张世煌.玉米杂交种DNA指纹图谱及其在亲子鉴定中的应用[J].作物学报,2005,31(3):386-391
    159.李扬汉.植物学[M].上海科学技术出版社,1978
    160.李玥莹,赵姝华,杨立国.高粱抗蚜基因的RAPD分析[J].生物技术,2002,12(4):6-8
    161.李玥莹,赵姝华,杨立国.高粱抗蚜基因的分子标记的建立[J].作物学报,2003,29(4):534-540
    162.李玥莹,赵姝华,马纯艳.对高粱BTAM428×ICS-12B杂交F3代及部分抗感品种的SCAR分析[J].生物技术,2005,15(1):11-13
    163.李宗贤.杂交高粱的胚根优势优势及在种子工作中的利用[J].山西农业科学,1983,11:16-17
    164.梁凤山,罗耀武,陈荣敏.同源四倍体高粱与约翰逊草种间杂交及其细胞遗传学研究[J],河北农业大学学报,1999,22(1):1-5
    165.梁凤山,罗耀武,朱志明.同源四倍体高粱与约翰逊草种间杂种细胞学特性的相关研究[J].华北农学报,2001,16(2):8-11
    166.梁前进,彭奕欣,余秋梅.野生鲫和五个金鱼品种的判别分析和聚类分析[J].水生生物学报,1998,22(3):236-243
    167.粱祖铎.饲料生产学fM].北京:农业出版社.1972,67,151
    168.刘冲,王曙霞,任云英,陈锦秀,葛才林,薄天岳.“夏光”、“早夏16”甘蓝杂交种DNA指纹图谱的构建[J].上海农业学报,2006,22(1):31-33
    169.刘欣.高粱属分类学的科学演变[J].辽宁农业科学,1999(5):28-33
    170.卢庆善.高粱学[M].北京:中国农业出版社,1999,1-45,32-39,61-63,169-171,224-225,239,507-514
    171.逯晓萍.高丹草遗传图谱构建及重要农艺性状的基因定位研究[D].内蒙古农业大学,博士学位论文,2005
    172.罗彦长,王守海,李成荃,王德正,吴爽,杜士云.应用分子标记辅助选择培育抗稻白叶枯病光敏核不育系3418S[J].作物学报,2003,29(3):402-407
    173.马鸿图,罗耀武.见盖钧镒主编.作物育种学各论[M].北京:中国农业出版社,1997,287-294,310-312
    174.孟钢.“先锋”高丹草--饲用高粱和苏丹草杂交品种.世界农业,2003,6:46-48
    175.南京农学院.饲料生产学[M].北京:中国农业出版社.1980.134-135.151-164
    176.南京农业大学.土壤农化分析(第二版)[M].北京:中国农业出版社.1996,210-273
    177.潘世全,谢凤周.辽饲杂一号的选育报告[J].辽宁农业科学,1990(3):24
    178.宋高友,苏益民,陆伟.甜高粱的开发利用[C].全国高粱学术研讨会论文选编.1996:109-113
    179.苏加楷.优良牧草栽培技术[M].北京:中国农业出版社.1977,104
    180.孙守钧,王云,郑根昌,张云华,李凤山.高粱-苏丹草杂交种的应用可行性研究及其选育[J].草业学报,1999,8(3):39-45
    181.汪家灼,陈佳敏,张淑霞,赵强,郑淑云,李凤学.速生、优质的高产牧草--健宝牧草[J].种子,2002,3:90-91
    182.汪劲松.植物分类系统与进化原理[M].北京:科学出版社,1979
    183.王富德,廖嘉玲.试谈中国高粱栽培种的分类[J].辽宁农业科学,1981,(2):18-22
    184.王和平,张福耀,程庆军,平俊爱,杜志宏,郭玉兰,王晋中.高粱-苏丹草杂交草的研究与利用[J].杂粮作物,2000,20(4):20-23
    185.王六英,林小虎,易津.不同类型苏丹草染色体数目及核型分析研究[J].内蒙古草业,1999,5:17-19
    186.王述明,潭富娟,胡家蓬.小豆种质资源同工酶遗传多样性分析与评价[J].中国农业科学,2002,35(11):1311-1318
    187.王学德,李悦有.彩色棉雄性不育系、保持系和恢复系的选育及DNA指纹图谱的构建[J].浙江大学学报(农业与生命科学版),2002,28(1):1-6
    188.王中仁.植物等位酶分析[M]北京:科学出版社,1996
    189.王忠.植物生理学[M].北京:中国农业出版社.2002,168-169
    190.魏臻武.利用SSR、ISSR和RAPD技术构建苜蓿基因组DNA指纹图谱[J].草业学报,2004,13(3):62-67
    191.乌仁其木格,易津,门中华,乔枫,林小虎.不同类型苏丹草同工酶多型性研究[J],内蒙古草业.1999,5:20-27
    192.吴国芳,冯志坚,马炜梁.植物学(下册)[M].北京:人民教育出版社,1982
    193.吴渝生,杨文鹏,郑用琏.3个玉米杂交种和亲本SSR指纹图谱的构建[J].作物学报,2003,29(4):496-500
    194.徐冠仁.利用雄性不育系选育杂种高粱[J].中国农业科学,1962(2):15-20
    195.徐吉臣,Weerasuriya Y M,Bennetzen J L.高粱(Sorghum bicolor)分子图谱的构建及寄生草(Striga asiatica)萌发诱导物基因的定位[J].遗传学报,2001,28(9):870-876
    196.徐克学,李德中.我国人参属数量分类研究初试[J].植物分类学报,1983,21(1):34-41
    197.薛薇.统计分析与SPSS的应用[M].北京:中国人民大学出版社,2001,224-236
    198.鄢锡勋.高粱细胞质雄性不育杂交第一代利用的研究[J].中国农业科学,1963(1):20-23
    199.杨纪珂,赵伦一.作物育种[M].合肥:安徽科学技术出版社,1987,350-352
    200.于卓,刘永伟,赵晓杰,马艳红,李小雷,赵娜.高粱11A与3种苏丹草杂交种F_1代的农艺特性及细胞遗传学研究[J].草业学报,2006,15(1):90-96
    201.于卓,马艳红,赵晓杰,赵娜,李小雷.高粱11A与3种苏丹草杂种F_2代的生育细胞遗传学及同工酶分析[J].中国草地,2006,28(1):1-6
    202.詹秋文,林平,李军,钱章强.高粱-苏丹草杂交种研究与利用前景[J].草业学报,2001,10(2):56-61
    203.詹秋文,林平,钱章强.皖草3号的选育及其特征特性[J].作物杂志,2006.4:35-36
    204.詹秋文,钱章强.高粱-苏丹草杂交种的选育和利用[J].种子,1996,(6):12-14
    205.詹秋文,钱章强.高粱与苏丹草杂种优势利用的研究[J].作物学报,2004,30(1):73-77
    206.张桂莲,张金屯,程林美.山西南部山地白羊草群落的数量分类和排序[J].草业学报,2003,12(3):63-69
    207.张继益,蒋观敏,罗耀武.高粱同源四倍体及其杂交种的细胞遗传学研究[J].华北农业报,1997,12(3):1-6
    208.张建全,王彦荣.苏丹草品种纯度鉴定技术的研究--过氧化物酶同功酶标记[J].草业学报,2002,11(2):95-99
    209.张守栋,王庆亚,顾德兴.繁缕和无瓣繁缕六个居群的数值分析[J].云南植物研究,2002,24(2):185-190
    210.张文毅.高粱杂种优势利用研究与进展[M].东南大学出版社,1994
    211.张志鹏,朱翠云,王艳秋,朱凯.饲用高粱杂交种辽饲杂4号选育报告[J].杂粮作物,2005,25(3):145-14
    212.张宗文.红花种质资源的同工酶遗传多样性及分类研究[J].植物遗传资源科学,2000,1(4):6-13
    213.赵坚义,Becker H C.同工酶分子标志研究中国和欧洲栽培油菜的遗传差异[J].作物学报,1998,24(2):213-220
    214.周竹青,朱旭彤,王维金.影响小麦粒重的农艺性状,生理指标的主成分分析[J].生物数学学报,2002,17(1):92-96
    215.朱蓓蕾.动物毒理学[M].上海:上海科学技术出版社.1989:106-109
    216.邹喻苹,葛颂.新一代分子标记-SNPs及其应用[J].生物多样性,2003,11(5):370-382

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700