用户名: 密码: 验证码:
大豆黄酮对仔猪肠道微生物的影响和雌马酚产生菌的分离及其特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大豆黄酮作为一种植物雌激素对人和动物的健康和生长有良好促进作用,因此开发利用黄酮类化合物正成为当前食品业与畜牧业的一个热点。许多报道表明,大豆黄酮的生物活性更多的是由其代谢终产物雌马酚来实现的,与大豆黄酮苷元相比,雌马酚与雌激素受体结合的亲和力、抗氧化活性、抗前列腺癌作用更强。而且雌马酚在体内相当稳定,不再发生降解,因此要想充分发挥大豆黄酮的生物学作用,必须使其尽可能转化成雌马酚,但雌马酚只能由肠道细菌特异性产生。许多学者认为,大豆黄酮对动物的生理效应在很大程度上决定于动物自身的肠道微生物菌群,但现有报道表明只有30-40%的人体内定植能够产生雌马酚的细菌,迄今为止,国内外有关大豆黄酮降解菌的研究多集中在人和小鼠上,而且分离获得的肠道内大豆黄酮降解菌只有少数几种,这其中的瓶颈在于大豆黄酮降解菌的分离条件(包括厌氧条件与分离培养基等)十分苛刻,如何突破这一瓶颈,大量分离肠道内具有降解大豆黄酮能力的微生物,从而全面了解大豆黄酮这一功能性物质在肠道内的降解过程,以及更深入地阐明大豆异黄酮在体内降解和发挥生理作用的形式,是该领域亟待解决的问题。本研究为阐明上述研究中的部分问题,采用动物试验、体外分离培养技术与分子生物学手段,研究了大豆黄酮对仔猪肠道微生物区系的影响、二花脸猪粪样菌群对大豆黄酮的代谢能力;并从低成本筛选的角度入手,获取了一种可大量富集大豆黄酮降解菌的培养基,在此基础上,从猪粪样中分离到数株降解大豆黄酮产生雌马酚的菌株,研究了这些降解大豆黄酮产雌马酚细菌的生理特性。试验结果阐明了大豆黄酮对仔猪肠道微生物区系的作用效应,揭示了仔猪肠道内产雌马酚微生物种类及其与宿主间的关系,同时也为肠道雌马酚产生菌的进一步研究拓宽了思路。
     1大豆黄酮对仔猪肠道微生物区系的影响
     选取江苏某猪场产期相近、胎次相似数目相当的杜/长/大三元杂交仔猪6窝,随机分为两组,每组三窝。一组为对照组,另一组为处理组,在7、9、11d对照组每头猪强饲脱脂乳1 mL、2 mL、3 mL,处理组每头猪强饲含大豆黄酮(10 mg/L)的脱脂乳1 mL、2 mL、3 mL。两组均于21d断奶。于14、21、24、35 d每窝各屠宰一头,无菌采集十二指肠、空肠、回肠、盲肠、结肠和直肠食糜。食糜细菌16S rRNA基因序列的V6-V8可变区经PCR扩增,扩增产物经DGGE电泳后再进行多样性分析,并对特殊条带进一步克隆测序。结果发现饲喂大豆黄酮后,处理组仔猪各肠段的DGGE条带数均高于对照组,盲肠、结肠和直肠中细菌的多样性指数增加;对照组中出现的3条优势条带在处理组中消失,经克隆测序后与GenBank登录序列比较,发现它们分别与Clostridium thermocellum,Lactobacillus pontis,Streptococcus sp.最相似。与对照组相比,在35d时处理组大肠中出现3条优势条带,经克隆测序后与GenBank登录序列比较,发现它们分别与Butyrate-producing bacterium SL7/1,Clostridium butyricum(NCIMB8082),Ruminococcus obeum clone 1-4最相似,相似性分别为95%,95%和96%。因此大豆黄酮可使仔猪大肠的微生物区系多样性增加,并且可选择性地促进某些菌群的富集。
     2体外培养研究二花脸猪粪样菌群对大豆黄酮的降解规律
     通过体外培养研究了不同日龄3窝(A、B、C)二花脸猪的粪样菌群对大豆黄酮的降解和雌马酚的产生规律。每窝各含1头母猪和3头仔猪。通过HPLC测定培养液中大豆黄酮和雌马酚的含量,并通过DGGE图谱分析每窝猪的粪样菌群的变化规律。结果表明12头二花脸猪中有8头猪的粪样菌群可将大豆黄酮降解成雌马酚。在3窝二花脸猪中,A窝母猪粪样菌群不能代谢大豆黄酮,但在其断奶后的两头仔猪粪样培养液中检测到雌马酚;B窝和C窝母猪粪样培养液中均检测到较高含量的雌马酚,在仔猪粪样培养液中发现B窝有1头仔猪,C窝有3头仔猪均检测到雌马酚。通过DGGE指纹图谱分析,每窝二花脸猪粪样培养液中可检测到雌马酚的猪的粪样细菌菌群之间的相似性均大于60%,高于它们与未检测到雌马酚的猪的粪样菌群的相似性。提示,二花脸猪粪样菌群中存在可降解大豆黄酮产生雌马酚的微生物。
     3产雌马酚微生物培养基的筛选及猪粪样中雌马酚产生菌的分离与鉴定
     为富集仔猪粪样中能够代谢大豆黄酮产雌马酚的微生物,本研究对三种不同培养基(M1、M2、M3)进行了筛选,并在获得其中一种可富集雌马酚产生菌的培养基的基础上,对仔猪粪样中的雌马酚产生菌进行了分离鉴定。结果发现,M1培养基中富集的微生物可以降解大豆黄酮产生大量的雌马酚。进一步对培养基M1中富集的微生物进行了分离鉴定,获得了3株(D1、D2、D3)能够代谢大豆黄酮产雌马酚的纯菌,通过革兰氏染色进行形态学观察和进一步作生理生化鉴定后发现D1和D2为Eubacterium属,D3为Enterococcus faecalis。系统进化树分析结果表明,D1与SNU-Julong732位于一个簇内,D2与SNU-NiuO16位于同一个簇内。通过体外厌氧培养进一步比较了雌马酚产生菌D1的代谢性质。结果发现补充葡萄糖、麦芽糖、果糖、菊粉、乙酸和丁酸的基础培养基均能促进菌株D1生长,其中果寡糖和菊粉比葡萄糖能更好促进菌株D1生长,并且添加寡糖组比单糖组能提高D1产雌马酚的浓度。短链脂肪酸乙酸和丁酸不能明显促进D1的生长,但能促进其产雌马酚的浓度;而乳酸对雌马酚的产生有抑制作用。以上结果说明通过该方法筛选的培养基能够有效的分离可将大豆黄酮转化成雌马酚的微生物,并且添加寡糖能促进雌马酚的产生。
     4体外继代培养研究仔猪粪样大豆黄酮降解菌群的变化规律
     采用体外继代培养法,结合PCR-DGGE技术,研究了二花脸仔猪粪样中大豆黄酮降解菌群的变化规律,并对富集培养液中的菌群进行了克隆测序。结果表明,二花脸仔猪粪样中微生物菌群在体外继代培养40代后,粪样菌群仍具有降解大豆黄酮产雌马酚的能力;PCR-DGGE的分析结果表明,随继代培养次数的增加,培养液中微生物区系的DGGE图谱上的条带数逐渐变少,一些条带消失,这些条带编号为A1,A2,A3,A4和A5,经克隆和切胶测序结果表明,A1与Megasphaera elsdenii strain YJ-4有91%的相似性,A2与Megasphaera elsdenii strain 5T有99%的相似性,A3与Clostridium sp.cTPY-17有87%的相似性,A4与Succinivibrio dextrinosolvens有96%的相似性,A5与Bacteroides sp.MANG有94%的相似性。而部分条带一直存在逐渐成为优势菌群。这些条带编号为QE3、QE4、QE7、QE8和QJ7。16SrRNA基因测序结果表明,QE3与Coporococcus comes strain ATCC 27758有92%的相似性;QE4与Clostridium bacterium JN18_V41_S具有93%的相似性;QE7与Eubacterium callanderi有99%的相似性;QE8与Clostridium glycyrrhizinilyticum有94%的相似性;QJ7与Bifidobacterium pseudolongum subsp.globosum strain 7#-3-7有94%的相似性。以上结果说明,混合粪样中存在一些难以分离到且在大豆黄酮降解中起重要作用的微生物,同时添加大豆黄酮可起到体外富集大豆黄酮降解菌作用。
     本文通过在体和体外试验研究了大豆黄酮与猪消化道微生物之间的相互作用,结果发现在在体试验中仔猪饲喂大豆黄酮后,其后肠微生物区系的多样性增加,且部分微生物明显得到富集;体外培养发现二花脸猪粪样菌群具有降解大豆黄酮产生雌马酚的能力;选择针对不同的菌群的培养基来筛选雌马酚产生菌,结果发现培养基M1中富集的细菌具有高产雌马酚能力;利用该培养基分离到3株可直接降解大豆黄酮产生雌马酚的细菌,通过体外发酵研究菌株D1对不同底物的代谢能力,结果发现寡糖可提高其产雌马酚的能力;将粪样菌群体外继代培养40代后发现其仍具有较高的产雌马酚能力,这提示在混合菌群中存在某些菌可能在大豆黄酮转化成雌马酚的过程中起关键作用。
Daidzein is one of the major metabolites from isoflavones,and it can be further metabolized into equol with more estrogenic activity by intestinal microorganisms. However,little information is available on the daidzein effect on the intestinal microflora of animals,and only a few intestinal bacteria have so far been identified to metabolize daidzein.In the present work,a PCR/DGGE approach was used to investigate the effect of daidzein on the gastrointestinal bacterial community of piglets.For the first time this study investigated the possibility of conversion of daidzein to equol by pig fecal microflora. Three selective media used for enrichment of three large groups of bacteria were then compared for equol production and subsequently for the isolation of equol-producing bacteria from pig faecal materials.This dissertation was described in the following five sections.
     1 Effect of daidzein on the intestinal microflora of piglets
     Six litters of piglets were randomly allocated into two groups:the control and the treatment.Each group had three litters.The piglets of the treatment group were fed with daidzein orally on Day 7,9 and 11.They were all weaned on Day 21.One piglet of each group was slaughtered on Day 14,21,24 and 35,respectively.The digesta of duodenum, jejunum,ileum,caecum,colon and rectum were collected and used for DNA extraction and followed by PCR/DGGE analysis.The diversity of intestinal microbial populations of the piglets was determined based on the shannon's index.The 16S rRNA sequences of intestinal bacterial species were analysed.Piglets of the treatment group showed a higher bacterial diversity and more DGGE bands compared with that of the control on Days 24,35. Three DGGE bands existing in the control disappeared in the treatment group.The three clones corresponding to the three bands had their sequences most closely related to species of Clostridium thermocellum,Lactobacillus pontis and Streptococcus sp.,respectively.The other three DGGE bands were present only in the large intestine of piglets in the treatment group,and their corresponding clones had their 16S rRNA gene sequences most closely related to species of Butyrate-producing bacterium SL7/1,Clostridium butyricum, Ruminococcus obeum,respectively.The results suggested that daidzein could increase the diversity of the piglets intestinal bacterial community,and stimulate some specific bacteria to grow.
     2 In vitro fermentation reveals the conversion of daidzein to equol by fecal microflora of Erhualian pigs
     The possibility of conversation of daidzein to equol by fecal microflora of Erhualian pigs was investigated by in vitro culture with fecal sample as inoculum.Faecal samples of three litters(A,B,C) of Erhualian pigs were collected.Each litter includes the sow and three piglets.Faecal samples were used to inoculate culture bottles with and without daidzein.After 48 h incubation,the cultures were taken to measure equol and daidzein concentrations by HPLC,and to analyze the microflora by PCR/DGGE.Results showed that microflora of eight pigs from the total 12 Erhualian pigs could transform daidzein into equol.For litter A,microflora of two piglets could metabolize daidzein to produce equol. For litter B,microflora of sow and one piglet could metabolize daidzein to produce equol. For litter C,microflora of sow and all the piglets could metabolize daidzein to produce equol.DGGE profiles revealed that in each litter,the pigs that could transform daidzein to equol showed higher similarities,while they had lower similarities to those that did not produce equol.The results showed that faecal microflora of Erhualian pigs had the ability to transform daidzein to equol.
     3 Medium selection for the isolation of equol-produciug bacterial strains from cultures of pig faeces
     Three selective media were compared for equol production using faeces from the Erhualian piglets which could transform daidzein into equol during in vitro fermentation as inoculum.Subsequently,three single bacterial strains capable of transforming daidzein into equol were isolated by using the selected medium.The bacterial strains were then identified using morphorlogical and biochemical parameters and by 16S rRNA gene sequence analysis.Results showed that among the three selective media,equol was detected only in the medium M1,which was selective medium for butyrate-producing bacteria,suggesting that butyrate-producing bacteria may transform daidzein to equol.Three single bacterial strains(D1,D2,D3) capable of transforming daidzein into equol in their pure cultures were then isolated using medium M1.At the genus level,D1 and D2 were both identified as Eubacterium sp.,while D3 as Enterococcus sp.based on morphological and physiological characteristics.The 16S rRNA gene sequence analysis showed that strains D1 and D2 were most closely related to previous daidzein-metabolisming bacteria isolated from humen and ruman faecal sample,respectively.Strain D3 was most closely related to Enterococcus faecium with sequence similarity as 97%.Strain D1 was further investigated in its characteristics of growth and equol production in vitro fermentation system.The results showed that the basal media supplemented with glucose,maltose,FOS,inulin,could stimulate the growth of strain D1,and media supplemented with FOS and inulin better supported it to grow.FOS and inulin could stimulate equol production.Media supplemented with acetate,butyrate and lactate failed to stimulate the growth of strain D1. But media supplemented with acetate and butyrate could stimulate equol production, whereas it was found that adding lactate was inhibitory for equol production.The results demonstrated that the present approach using a simple medium enabled to isolate bacterial strains capable of transforming daidzein into equol.The stains D1,D2 and D3 isolated could directly transforme daidzein into equol and oligosaccharide supplemented into the basal medium could stimulate the productiong of equol.
     4 The variation of faecal microorganisms of Erhualian pigs after being subcultured forty times in vitro
     Microflora community change in the Erhualian pig facece and its equol production during subcultures was investigated.The results showed that the faecal bacteria were still able to transform daidzein into equol after being subcultured forty times.PCR/DGGE analysis showed that the number of DGGE bands decreased with the culture times increasing.Some DGGE bands in the culture disappeared,their 16S rRNA sequences most close to species of Megasphaera elsdenii strain YJ-4(91%),Megasphaera elsdenii strain 5T(99%),Clostridium sp.cTPY-17(87%),Succinivibrio dextrinosolvens(96%), Bacteroides sp.MANG(94%),respectively.Other bands enriched after 40 subcultures.The dominant bands remained in the culture after 40 subculturing had their 16S rRNA sequences most close to species of Coporococcus comes strain ATCC 27758(92%), Clostridium bacterium JN18_V41_S(93%),Eubacterium callanderi(99%), Bifidobacterium pseudolongum subsp,globosum strain 7#-3-7(94%),respectively.The results indicated that though some bacterial strains could not directly transform daidzein into equol,they play an important role during the time of daidzein being metabolized into equol.
引文
1.Akaza H,Miyanaga N,Takashima N,et al.Is daidzein non-metabolizer a high risk for prostate cancer? A case-controlled study of serum soybean isoflavone concentration[J].Jpn J Clin Oncol,2002,32:296-300
    2.Akaza H,Miyanaga N,Takashima N,et al.Comparisons of percent equol producers between prostate cancer patients and controls:case-controlled studies of isoflavones in Japanese,Korean and American residents[J].Jpn J Clin Oncol,2004,34:86-89
    3.Akiyama T,Ishida J,Nakagawa S,et al.Genistein,a specific inhibitor of tyrosinespecific protein kinases[J].J Biol Chem,1987,262(12):5592-5595
    4.Aldercreutz H,Honjo H,Higtashi A,et al.Urinary excretion of lignans and isoflavonoid phytoestrogens in Japanese men and women consu(?)ng a traditional Japanese diet[J].Am J Clin Nutr,1991,54:1093-1100
    5.Aldercreutz H,Fotsis T,Lampe J,et al.Quantitative determination of lignans and isoflavones in plasma of omnivorous and vegetarian women by isotope-dilution gas chromatography-mass spectrometry[J].Scand J Clin Lab Investig,1993,53:5-18
    6.Anderson JJB,Anthony M,Messina M,et al.Effects of phyto-estrogens on tissues[J].Nutr Res Rev,1999,12:75-116
    7.Arai Y,Ueham M,Sato Y et al.Comparison of isoflavones among dietary intake,plasma concentration and urinary excretion for accurate estimation of phytoestrogen intake[J].J Epedemiol,2000,10:127-135
    8.Arora A,Nair MG,Strasburg GM.Antioxidant activities of isoflavones and their biological metabolites in a liposomal system[J].Arch Biochem Biophys,1998,356(2):133-141
    9.Atkinson C,Berman S,Humbert O,et al.In vitro incubation of human feces with daidzein and antibiotics suggests interindividual differences in the bacteria responsible for equol production[J].J Nutr,2004,134:596-599
    10.Aukje S,Hub PJM,Noteborn,et al.Comparison of Caco-2,IEC-18 and HCEC cell lines as a model for intestinal absorption of genistein,daidzein and their glycosides[J].Environ Toxicol Pharmacol,2004,16:131-139
    11.Ausubel FM,Brent R,Kingston RE,et al.Current protocols in Molecular Biology[M].Greene Publishing Associates and Wiley Interscience,New York,1993
    12.Barcenilla A,Pryde S,Martin JC,et al.Phylogenetic relationships of butyrate-producing bacteria from the human gut[J].Appl Environ Microbiol,2000,66:1654-1661
    13. Barnes S, Grubbs C, Setcbell KD, et al. Soybeans inhibit mammary tumors in model of breast cancer [J]. Prog Clin Biol Res, 1990, 347:239-253
    
    14. Barnes S. The chemopreventive properties of soy isoflavonoids in animal models of breast cancer [J]. Breast Cancer Res Treat, 1997,46(2-3): 169-179
    
    15. Bingham SA, Atikinson C, Liggins J, et al. Phyto-oestrogens: Where are we now? [J]. Br J Nutr, 1998, 79:393-406
    
    16. Blaier RM, Appt SE, Franke AA, et al. Treatment with antibiotics reduces plasma equol concentration in cynomolgus monkeys(Macaca fascicularis) [J]. J Nutr, 2003, 133:2262-2267
    
    17. Blaut M, Schoefer L, Braune A. Transformation of flavonoids by intestinal microorganisms [J]. Int J Vitam Nutr, 2003,2:79-87
    18. Bowey E, Adlercreutz H, Rowland I. Metabolism of isoflavones and lignans by the gut microflora: a study in germ-free and human flora associated rats [J]. Food Chem Toxicol, 2003,41:631-636
    19. Cai Q. Effect of dietary genistein on antioxidation enzyme activities in sencar mece [J]. Nutr Cancer, 1996,25:1-7
    20. Carrao-panizzi MCC, Kiamura K. Isoflavone content in Brazlian soybean cultivars [J]. Breeding Sci, 1995,45:259-300
    21. Chang HC, Churchwell MI, Delclos KB, et al. Mass spectrometric determination of genistein tissue distribution in diet-exposed Sprague-Dawley rats [J]. J Nutr, 2000,130:1963-1970
    22. Collier CT, Smirichy MR, Albin DM, et al. Molecular ecological analysis of porcine ideal microbiota response to antimicrobial growth promoters [J]. J Anim Sci, 2003, 81(12):3035-3045
    23. Day AJ, Dupont MS, Ridley S, et al. Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver beta-glucosidase activity [J]. FEMS Microbiol Lett, 1998, 436: 71-75
    24. Decroos K, Vanhemmens S, Cattoir S, et al. Isolation and characterization of an equol-producing mixed microbial culture from a human faecal sample and its activity under gastrointestinal conditions [J]. Arch Microbiol, 2005,183:45-55
    25. Decroos K, Eeckhaut E, Possemiers S, et al. Administration of equol-producing bacteria alters the equol production status in the stimulator of the gastrointestinal microbial ecosystem(SHIME) [J]. J Nutr, 2006,136:946-952
    26. Dickinson JM. In vitro metabolism of formononetion and biochanin A in bovine rumen fluid [J]. J Anim Sci, 1988,66:1969-1973
    27. Frankenfeld CL, Atkinson C, Thomas WK, et al. Familial correlations, segregation analysis, and nongenetic correlates of soy isoflavone-metabolizing penotypes [J]. Exp Biol Med, 2004, 229:902-913
    28.Frankenfeld CL,McTieman A,Tworoger SS,et al.Serum steroid hormones,sex hormonebinding globution concentrations,and urinary hydroxylated estrogen metabolites in post-menopausal women in relation to daidzein-metabolizing phenotypes[J].J Steroid Biochem Mol Biol,2004,88:399-408
    29.Fujioka M,Uehara M,Wu J,et al.Equol,a metabolite of daidzein,inhibits bone loss in ovariectomized mice[J].J Nutr,2004,134:623-627
    30.Gaynor ML.Isoflavones and the prevention and treatment of prostate disease:Is there a role?[J].Cleveland Clin J Med,2003,70(3):204-216
    31.Gong JH,Forster RJ,Yu H,et al.Diversity and phylogenetic analysis of bacteria in the mucosa of chichen ceca and comparison with bacteria in the cecal lumen[J].FEMS Microbiol Lett,2002,208:1-7
    32.Greiner LL,Stahly TS,and Stabel TJ.The effect of dietary soy genistein on pig growth and viral replication during a viral challenge[J].J Anita Sci,2001a,79:1272-1279
    33.Greiner LL,Stably TS and Stabel TJ.The effect of dietary soy daidzein on pig growth and viral replication during a viral challenge[J].J Anim Sci,2001b,79:3113-3119
    34.Gu L,House SE,Prior RL,et al.Metabolic phenotype of isoflavones differ among female rats,pigs monkeys,and women.[J].J Nutr,2006,136(5):1215-1221
    35.Han ZK,Wang GJ,Yao W,et al.Isoflavonic phytoestrogens-new probiotics for farm animals:a review on research in China[J].Curt Issu Intest Microbiol,2006,7:53-60
    36.Han ZK,Wang GJ.Studies of phytoestrogen(daidzein) affecting on growth and sex hormone levels in broiler[J].World Conference on Animal Production,1993,302
    37.Hane BG,Jager K,Drexler H.The persons product-moment correlation coefficient is better suited for identification of DNA fingerprint profiles than band matching algorithms[J].Electrophoresis,1993,14:967-972
    38.Helms JR,Gallaher DD.The effect of dietary soy protein isolate and genistein on the development of preneoplastic lesions(Aberrant Crypts) in rats[J].J Nutr,1995,125:802S
    39.Hom Ross PL,Barnes S,Lee M,et al.Assessing phytoestrogen exposure in epidemiologic studies:development of a database[J].Cancer Causes Control,2000,11(4):289-298
    40.Hom-Ross PL,John EM,Lee M,et al.Phytoestrogen consumption and breast cancer risk in a multiethnic population:the Bay Area Breast Cancer Study[J].Am J Epidemiol,2001,154(5):434-441
    41.Honma Y,Okabe-Kado J,Kasukabe T,et al.Inhibition of abl oncogene tyrosine kinase induces erythroid differentiation of human myelogenous leukemia K562 cells[J].Jpn J Cancer Res,1990,
    42. Honma Y, Okabe-Kado J, Kasukabe T, et al. Induction by some protein kinase inhibitors of differentiation of a mouse megakaryoblastic cell line established by coinfection with Abelson murine leukemia virus and recombinant SV40 retrovirus [J]. Cancer Res, 1991, 51 (17):4649-4655
    43. Hungate RE, Smith W, Clarke RTJ. Suitability of butyl rubber stoppers for closing anaerobic roll culture tubes [J]. J Bacteriol, 1966,91(2):908-909
    44. Hur HG, Lay JO Jr, Beger RD, et al. Isolation of human intestinal bacteria metabolizing the natural isoflavone glycosides daidzin and genistin [J]. Arch Microbiol, 2000, 174:422-428
    45. Hur HG, Beger RD, Heinze TM, et al. Isolation of an anaerobic intestinal bacterium capable of cleaving the C-ring of the isoflavonoid daidzein [J]. Arch Microbiol, 2002,178:8-12
    46. Hutchins AM, Slavin JL, Lampe JW. Urinary isoflavonoid phytoestrogen and lignan excretion after consumption of fermented and unfermented soy products [J]. J Am Diet Assoc, 1995, 95:545-551
    47. Hwang J, Sevanian A, Hodis HN, et al. Synergistic inhibition of LDL oxidation by phytoestrogens and ascorbic acid[J]. Free Radic Biol Med, 2000,29:79-89
    48. Hwang J, Wang J, Morazzoni P, et al. The phytoestrogen equol increases nitric oxide availability by inhibitiong superoxide production: an antioxidant mechanism for cell-mediated LDL modification [J]. Free Radic Biol Med, 2003, 34:1271-1282
    49. Ingram D, Sanders K, Kolybaba M, et al. Case-control study of phyto-oestrogens and breast cancer [J]. Lancet, 1997, 350:990-994
    50. Jiang F, John EM, Lee M, et al. Cardiovascular Protective Effects of synthetic isoflavone derivatives in apolipoprotein E-deficient mice [J]. J Vasc Res, 2003,40: 276-284
    51. Jianning P, Schuhmacher US, Upmeier A, et al. Toxicokinetics of the phytoestrogen daidzein in female DA/Han rats [J]. Arch Toxicol, 2000, 74: 421-430
    52. Kaldas RS. Reproduction and general metabolic effects of phytoestrogens in mammals [J]. Reprod Toxicol Rev, 1989, 3(2): 81-89
    53. Kang JS, Yoon YD, Han MH, et al. Equol inhibits nitric oxide production and inducible nitric oxide synthase gene expression through down-regulating the activation of Akt [J]. Int Immunol, 2007, 7:491499
    54. Kelly GE, Nelson C, Waring MA, et al. Metabolites of dietary (soya) isoflavones in human urine [J]. Clin Chim Acta, 1993, 223:9-22
    55. Kelly GE, Joannou GE, Reeder AY, et al. The variable metabolic response to dietary isoflavones in humans [J]. Proc Soc Exp Biol Med, 1995,208:40-43
    56. Keohavong P, Thilly WG Fidelity of DNA polymerases in DNA amplification [J]. Proceed Nat Acad Sci,1989,86:9253-9257
    57.King RA,Bursil DB.Plasma and urinary kinetics of the isoflavones daidzein and genistein after a single soy meal in humans[J].Am J Clin Nutr,1998,67:867-872
    58.Kitamura K,Lgita K,Kikuchi A,et al.Low isoflavone content in some early maturing cultivars,so-called "Summer types soybean"[J].J Breed,1991,41:651-654
    59.Konstantinov SR,Zhu WY,Williams BA,et al.Effect of fermentable carbohydrates on piglet faecal bacterial communities as revealed by denaturing gradient gel electrophoresis analysis of 16S ribosomal DNA[J].FEMS Microbiol Ecol,2003,43:225-235
    60.Kowalchuk GA,Stephe JR,Boer De WJ,et al.Analysis of ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments[J].Appl Environ Microbiol,1997,63:1489-1497
    61.Krishnamurty HG,Cheng KJ,Jones GA,et al.Identification of products produced by the anaerobic degradation of rutin and related flavonoids by Butyrivibrio sp.C3[J].Can J Microbiol,1970,16:759-767
    62.Kuhnl G,Ren M,Schneider F,et al.Effects of daidzein supplementation to the diet of pregnant sows on maternal performance and neonatal piglet growth[J].J Anita Sci,2002,80(Suppl.1):209
    63.Lamartiniere CA,Murrill WB,Manzolillo PA,et al.Genistein alters the ontogeny of mammary gland development and protects against chemically-induced mammary cancer in rats[J].Exp Biol Med,1998,217:358-364
    64.Lamartiniere CA.Timing of exposure and mammary cancer risk[J].J Mammary Gland Biol Neoplasis,2002,7:67-76
    65.Lampe JW,Karr SC,Hutchins AM,et al.Urinary equol excretion with a soy challenge:influence of habitual diet[J].Proc Soc Exp Biol Med,1998,217:335-339
    66.Lane DJ.16S/23S rRNA sequencing.In:Nucleic Acid Techniques in Bacterial Systematics[M].J.Wiley and Sons,Chichester,1991.115-175
    67.Lee SJ,Ahn JK,K.im SH,et al.Variation in isoflavone of soybean cultivars with location and storage duration[J].J Agric Food Chem,2003,51(11):3382-3389
    68.Lisa C,Appelt,Marla M.Soy induces phase Ⅱ enzymes but does not inhibit dimethylbenz anthracene-induced carcinogenesis in female ratsl,2,3[J].J Nutr,1999,129:1820-1826
    69.Longland A,Theodorou MK,Sanderson R,et al.Non-starch polysaccharide composition and in vitro fermentability of tropical forage legumes varying in phenolic content[J].Anim Feed Sci Technol,1995,55:161-177
    70. Lu LJ, Anderson KE. Sex and long-term soy diets affect the metabolism and excretion of soy isoflavones in humans [J]. Am J Clin Nutr, 1998, 68: 1500S-1540s
    71. Ludwig W, Strunk O, Westram R, et al. ARB: a software environment for sequence data. 2002, http://www.arbhome.de
    72. Lundh T. Metabolism of estrogenic isoflavones in domestic animals [J]. Proc Soc Exp Bio Med, 1995,208(1):33-39
    73. Lydeking-Olsen E, Jensen J-BE, Setchell KDR, et al. Isoflavone-rich soymilk prevents bone-loss in the lumbar spine of postmenopausal women [J]. J Nutr, 2002, 132:581S
    74. Mao SY, Zhu WY, Wang QJ, et al. Effect of daidzein on in vitro fermentation by microorganisms from the goat rumen [J]. Anim Feed Sci Tech, 2007,136:154-163
    75. Matsukawa Y, Marui N, Sakai T, et al. Genistein arrests cell cycle progression at G2-M [J].Cancer Res, 1993, 53(6): 1328-1331
    76. Messina M. Soy intake and cancer risk: A review of the in vitro and in vivo data [J]. Nutr Cancer, 1994,21:113-131
    77. Meyer BJ, Larkin TA, Owen AJ, et al. Limited lipid-lowering effects of regular consumption of whole soybean foods [J]. Ann Nutr Metab, 2004,48:67-78
    78. Minamida K, Tanaka M, Abe A, et al. Production of equol from daidzein by gram-positive rod-shaped bacterium isolated from rat intestine [J]. J Biosci Bioeng, 2006,102(3):247-250
    79. Mitchell JH, Gardner PT, McPhail DB, et al. Antioxidant efficacy of phytoestrogens in chemical and biological model systems [J]. Arch Biochem Biophys, 1998, 360:142-148
    80. Montesi A, Garcia-Albiach R, Pozuelo MJ, et al. Molecular and microbiological analysis of caecal microbiota in rats fed with diets supplemented either with prebiotics and probiotics [J]. Int J Food Microbiol, 2005,98:281-289
    81. Murkies AL, Wilcox G, Davis SR. Clinical review 92: Phytoestrogens [J]. J Clin Endocrinol Metab, 1998, 83:297-303
    82. Muyzer G, de Waal EC, Uitterlinden AG Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes encoding for 16S rRNA [J]. Appl Enviorn Microbiol, 1993 , 59: 695-700
    83. Muyzer G, Smalla K. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology [J]. Anton Leeuw, 1998, 73:127-141
    84. Myers RM, Fischer SG, Lerman LS, et al. Nearly all single base substitutions in DNA fragments joined to a GC-clamp can be detected by denaturing gradient gel electrophoresis [J]. Nucl Acids Res, 1985(a),13:3131-3145
    85.Myers RM,Fischer SG,Lerman LS,et al.Modification of the melting properties of duplex DNA by attachment of a GC-rich DNA sequence as determined by denaturing gradient gel electrophoresis[J].Nucl Acids Res,1985(b),13:3111-3129
    86.Naim M,Gestetner B,Zilkah S,et al.Soy isoflavones characterization determination and antifungal activity[J].J Agric Food Chem,1974,22(5):806-810
    87.Niculescu MD,Pop EA,Fischer LM,et al.Dietary isoflavones differentially induce gene expression changes in lymphocytes from postmenopausal women who form equol as compared with those who do not[J].J Nutr Biochem,2007,18:380-390
    88.Nubel U,Engelen B,Felske A,et al.Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacilllus polymyxa detected by temperature gradient gel electrophoresis[J].J Bacteriol,1996,178:5636-5643
    89.Ohta A,Uehara M,Sakai K,et al.A combination of dietary fructooligosaccharides and isoflavone conjugates increases femoral bone mineral density and equol production in ovariectomized mice[J].J Nutr,2002,132:2048-2054
    90.Ozasa K,Nakao M,Watanabe Y,et al.Serum phytoestrogens and prostate cancer risk in a nested case-control study among Japanese men[J].Cancer Sci,2004,95:65-71
    91.Payne RL,Bidner TD,Southern LL,et al.Dietary effect of soy isoflavones on growth and carcass Waits of commercial broiler[J].Poultry Sci,2001,80:1201-1207
    92.Payne RL,Bidner TD,Southern LL,et al.Effects of dietary soy isoflavones on growth,carcass traits,and meat quality in growing-finishing pigs[J].J Anim Sci,2001,79:1230-1239
    93.Pereira MA,Barnes LH,Rassman VL,et al.Use of azoxymethane-induced foci of gberrant crypts in rat colon to identify potential cancer chemopreventive agents[J].Carcinogenesis,1994,15:1049-1054
    94.Pryde SE,Richardson AJ,Stewart CS,et al.Molecular analysis of the microbial diversity present in the colonic wall,colonic lumen,and cecal lumen of a pig[J].Appl Environ Microbiol,1999,65:5372-5377
    95.Rafii F,Hotchkiss C,Heinze TM,et al.Variations in metabolism of the soy isoflavoid daidzein by human intestinal microfloras from different individuals[J].Arch Microbiol,2003,180:11-16
    96.Raffi F,Hotchkiss C,Heinze TM,et al.Metabolism of daidzein by intestinal bacteria from rhesus monkeys(Macaca mulatta)[J].Comp Med,2004,54:165-169
    97.Rowland I,Wiseman H,Sanders T,et al.Metabolism of oestrogens and phytoestrogens:role of the gut microflora[J].Biochem Soc Trans,1999,27:304-308
    98. Rowland IR, Wiseman H, Sanders TA, et al. Interindividual variation in metabolism of soy isoflavones and lignans: influence of habitual diet on equol production by the gut microflora [J]. Nutr Cancer, 2000, 36:27-32
    99. Sanguinetti CJ, Neto ED, Simpson AJ. Rapid silver staining and recovery of PCR products separated on ployacrylamide gels [J]. Biotechniques, 1994, 17:914-921
    100. Santegoeds CM, Nold SC, Ward DM. Denaturing gradient gel electrophoresis used to monitor the enrichment culture of aerobic chemoorganotrophic bactena from a hot spring cyanobacterial mat [J]. Appl Environ Microbiol, 1996, 62:3922-3928
    101. Schneider H, Blaut M. Anaerobic degradation of flavonoids by Eubacterium ramulus [J]. Arch Microbiol, 2000,173:71-75
    102. Schneider H, Schwiertz A, Collis MD, et al. Anaerobic transformation of quercetin-3-glucoside by bacteria from the human intestinal tract [J]. Arch Microbiol, 1999,171:81-91
    103. Schneider H, Simmering R, Hartmann L, et al. Degradation of quercetin-3-glucoside in gnotobiotic rats associated with human intestinal bacteria [J]. J Appl Microbiol, 2000, 89:1027-1037
    104. Schoefer L, Braune A, Blaut M. A fluorescence quenching test for the detection of flavonoid transformation [J]. FEMS Microbiol Lett, 2001, 204:277-280
    105. Schoefer L, Mohan R, Braune A, et al. Anaerobic C-ring cleavage of genistein and daidzein by Eubacterium ramulus [J]. FEMS Microbiol Lett, 2002, 208:197-202
    106. Schoefer L, Mohan R, Schwiertz A, et al. Anaerobic degradation of flavonoids by Clostridium orbiscindens [J]. Appl Environ Microbiol, 2003, 69:5849-5854
    107. Sekiguchi H, Tomioka N, Nakahara T, et al. A single band does not always represent single bacterial strains in denaturing gradient gel electrophosis analysis [J]. Biotechnol Lett, 2001, 23:1205-1208
    108. Setchell KDR, Adlercreutz H. Mammalian lignans and phyto-oestrogens recent studies on their formation, metabolism and biological role in health and disease [M]. In Role of the Gut Flora in Toxicity and Cancer. Rowland, led, pp315-345, Academic Press: London 1988
    109. Setchell KDR. Phytoestrogens: the biochemistry, physiology, and implications for human health of soy isoflavones [J]. Am J Clin Nutr, 1998, 68:1333S-1346S
    110. Setchell KD. Absorption and metabolism of soy isoflavones from food to dietary supplements and adults to infants [J]. J Nutr, 2000,130: 654S-655S
    111. Setchell KD, Brown NM, Desai P, et al. Bioavailability of pure isoflavones in health humans and analysis of commercial soy isoflavone supplements [J]. J Nutr, 2001, 131: 1362S-1373S
    112. Shannon CE, Weaver W. The mathematical theory of communication [C]. Urbana: University of Illinois Press,1963
    113.Sharma OP,Adlercreulz H,Strandberg JD,et al.Soy of dietary source plays a preventive role against the pathogenesis of prostatitis in rats[J].Steroid Biochem Mol Biol,1992,43(6):557-564
    114.Shu XO,Jin F,Dai Q,et al.Soyfood intake during adolescence and subsequent risk of breast cancer among Chinese women[J].Cancer Epidemiol Biomarkers Prey,2001,10:483-488
    115.Simmering R,Kleessen B,Blaut M.Quantification of the flavonoid-degrading bacterium Eubacteriurn ramulus in human fecal samples with a species-specific oligonucleotide hybridization probe[J].Appl Environ Microbiol,1999,65:3705-3709
    116.Simmering R,Pforte H,Jacobasch G,et al.The growth of the flavonoid-degrading intestinal bacterium,Eubacterium ramulus,is stimulated by dietary flavonoids in vivo[J].FEMS Microbiol Ecol,2002,40:243-248
    117.Simpson JM,McCracken VJ,White BA,et al.Application of denaturant gradient gel electrophoresis for the analysis of the porcine gastrointestinal microbiota[J].J Microbiol Meth,1999,36:167-179
    118.Slavin JL,Karr SC,Hutchins AM,et al.Influence of soybean processing habitual diet,and soy dose on urinary isoflavonoid excretion[J].Am J Clin Nutr,1998,68:1492S-1495S
    119.Song TT,Hendrich S,Murphy PA.Estrogenic activity of glycitein,a soy isoflavones[J].J Agric Food Chem,1999,47(4):1607-1610
    120.Suau A,Bonnet R,Sutren M,et al.Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut[J].Appl Environ Microbiol,1999,65:4799-4807
    121.Surendra PV,Barry RG.Effect of soy-detrived isoflavone on the induced growth of MCF-7 cells by estrogenic environmental chemical[J].Nun.Cancer,1998,30(3):232-239
    122.Suzukik,Koike H,Matsui H,et al.Genistein,a soy isoflavone,induces glutathione peroxidase in the human prostate cancer cell lines LNCaP and PC-3[J].Int J Cancer,2002,99(6):846-852
    123.Tamura M,Hirayama K,Itoh K,et al.Effects of soy protein-isoflavone diet on plasma isoflavone and intestinal microflora in adult mice[J].Nutr Res,2002,22:705-713
    124.Tamura M,Tsushida T,Shinohara K.Isolation of an isoflavone-metabolizing,Clostridium-like bacterium,strain TM-40,from human faeces[J].Anaerobe,2007,13:32-35
    125.Tew BY,Xu X,Wang H J,et al.A diet high in wheat fiber decreases the bioavailability of soybean isoflavones in a single meal fed to women[J].J Nutr,1996,126:871-877
    126.Todaka E,Sakurai K,Fukata H,et al.Fetal exposure to phytoestrogens -The difference in phytoestrogen status between mother and fetus[J].Environ Res,2005,99:195-203
    127. Tsangalis D, Ashton JF, McGil AEJ, er al. Enzymlc transformation of isoflavone phytoestrogens in soymilk by β -glucosidase producing Bifidobacteria [J]. J Food Sci, 2002, 67:3103-3113
    128. Ueno T, Uchiyama S, Kikuchi N. The role of intestinal bacteria on biological effects of soy isoflavones in humans [J]. J Nutr, 2002,132:594S
    129. Vanhoutte T, Huys G, De Brandt E, et al. Temporal stability analysis of the microbiota in human feces by denaturing gradient gel electrophoresis using universal and group-specific 16S rRNA gene primers [J]. FEMS Mcirobiol Ecol, 2004,48:437-446
    130. Van Soest PJ. Nutritional ecology of the ruminant [D]. Cornell University Press, USA, 1994
    131. Verdrengh M, Collins LV, Bergin P, et al. Phytoestrogen genistein as an anti-staphylococcal agent [J]. Micobes Infect, 2004, 6:86-92
    132. Wang G, Kuan SS, Francis OJ, et al. A simplified HPLC method for the determination of phytoestrogen in soybean and its processed products [J]. J Agric Food Chem, 1990,38:185-188
    133. Wang GJ, Ke YY, Han ZK. Anti-aging effect of daidzein in aging mice [J]. International conference on diet and prevention of cancer, 1999, Tampere, Finland Abstract book ,4:22
    134. Wang HJ, Murphy PA. Isoflavone composition of American and Japanese soybeans in Iowa: Effects of variety, crop year, and location [J]. J Agric Food Chem, 1994,42(8): 1674-1677
    135. Wang HJ, Murphy PA. Mass balance study of isoflavones during soybean processing [J]. J Agric Food Chem, 1996,44(8): 2377-2383
    136. Wang X, Heazlewood SP, Krause DO, et al. Molecular characterization of the microbial species that colonize human ileal and colonic mucosa by using 16S rRNA gene sequence analysis [J]. J Appl Microbiol, 2003,95:508-520
    137. Wang XL, Hur HG, Lee JH, et al. Enantioselective synthesis of S-equol from dihydrodaidzein by a newly isolated anaerobic human intestinal bacterium [J]. Appl Environ Microbiol, 2005a, 71:214-219
    138. Wang XL, Shim KH, Hur HG, et al. Enhanced biosynthesis of dihydrodaidzein and dihydrogenistein by a newly isolated bovine rumen anaerobic bacterium [J]. J Biotechnol, 2005b, 115:261-269
    139. Ward DM, Santegoeds CM, Nold SC, et al. Biodiversity within hot spring microbial mat communities: molecular monitoring of enrichment cultures [J]. Anton Van Leeuw, 1997, 71:143-150
    140. Wei H, Bowen R, Cai Q, et al. Antioxidant and antipromotional effects of the soybean isoflavone genistein[J]. Proc Soc Exp Biol Med, 1995, 208:124-130
    141. Wilson KH, Blitchington RB. Human colobic biota studied by ribosomal DNA sequence analysis [J]. Appl Environ Microbiol, 1996, 62:2273-2278
    142.Wu AH,Wan P,Hankin J.et al.Adolescent and adult soy intake and risk of breast cancer in Asian-Americans[J].Carcinogenesis,2002,23:1491-1496
    143.Xu X,Wang HJ,Murphy PA,et al.Daidzein is more bioavailability soybean isoflavone than is genistein in adult women[J].J Nutr,1994,124:825-832
    144.Xu X,Harris KS,Wang H J,et al.Bioavailability of soybean isoflavones depends upon gut microflora in women[J].J Nutr,1995,125:2307-2315
    145.Yao W,Zhu WY,Han ZK,et al.Daidzein increased the diversity but not the composition of the Lactobacillus community in piglet digesta during in vitro fementation as revealed by DGGE and dilution PCR[J].Reprod Nun- Dev,2004,44(suppl.1):S17-18
    146.Yueh TL,Chu HY.The metabolic fate of daidzein[J],Sci Sin,1977,20:513-521
    147.Zhu WY,Williams BA,Akkermans ADL.Development of the microbial commubity in weaning piglets[J].Reprod Nutr Develop,2000,40:180
    148.Zhu WY,Mao SY,Wang QJ,et al.Effects of daidzein on in vitro fermentation of micro-organisms from the goat rumen[J].Reprod Nutr Dev,2002,42(Suppl):S71
    149.Zhu WY,Williams BA,Konstantinov SR,et al.Analysis of 16S rDNA reveals bacterial shift during in vitro fermentation of fermentable carbohydrate using piglet faeces as inoculum[J].Anaerobe,2003,9:175-180
    150.Zigova J,Sturdik E,Vandak D,et al.Butyric acid production by Clostridum butyricum with integrated extraction and pertraction[J].Process Biochem,1999,34:835-843
    151.Zoetendal EG,Akkermans ADL,de Vos WM.Temperature gradient gel electrophoresis analysis from human fecal samples reveals stable and host specific communities of active bacteria[J].Appl Environ Microbiol,1998,64:3854-3859
    152.陈杰,杨国宇,韩正康.大豆黄酮对反刍动物血清睾酮和瘤胃消化代谢的影响[J].江苏农业研究,1999,20(2):17-19
    153.崔洪斌.大豆生物活性物质的开发与应用(第一版)[M].北京:中国轻工业出版社,2001:144-203
    154.戴大临,张清敏主编.生物医学电镜样品制备方法[M].天津:天津大学出版社,1993
    155.东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社,2001:310-320
    156.高峰,周光宏,韩正康.大豆黄酮对雏公鸡生产性能和机体免疫的影响[J].中国家禽,2000,22(10):8-9
    157.郭慧君,韩正康,王国杰.日粮中添加大豆黄酮对大鼠生长性能和有关内分泌的影响[J].南京农业大学学报,2001,24(4):59-61
    158.郭慧君,韩正康,王国杰.日粮添加大豆黄酮对去势仔猪生长性能及其有关内分泌的影响[J]. 中国畜牧杂志,2002,38(2):17-18
    159.郭晓红,阎芳,赵恒寿.大豆黄酮对肉仔鸡生长相关激素水平与免疫机能的影响[J].中国兽医学报,2005,25(4):394-396
    160.韩正康.异黄酮植物雌激素—大豆黄酮对雄性动物生长及其有关内分泌的研究[J].畜牧与兽医,1999,31(1):1-2
    161.杭苏琴,毛胜勇,黄瑞华,等.断奶仔猪饲喂甘露寡糖后粪样菌群的变化[J].农业生物技术学报,2006,14(5):701-705
    162.刘根桃,陈伟华,陈杰,等.妊娠后期母猪饲喂大豆黄酮对哺乳仔猪的肝脏生长激素受体的发育的影响[J].生理通讯,1996,15(增):69
    163.刘根桃,郑元林,陈伟华,等.妊娠后期母猪饲喂大豆黄酮对泌乳性能及初乳中激素水平的影响[J].南京农业大学学报,1999,22(1):69-72
    164.刘燕强,韩正康.异黄酮植物雌激素—大豆黄酮对产蛋鸡生产性能及其血液中几种激素水平的影响[J].中国畜牧学杂志,1998,34(3):9-10
    165.彭向雷,王蕊,王悦,等.大豆异黄酮研究进展[J].中国食品卫生杂志,1998,3:38-41
    166.钱存柔.微生物学实验[M].北京:北京大学出版社.1985:54-55
    167.苏勇,朱伟云.仔猪哺乳期和断奶后胃中细菌和乳酸杆菌菌群的变化[J].肠外与肠内营养,2006,13(1):1-4
    168.孙君明,丁安林.大豆异黄酮含量及影响因素的评价[J].中国粮油学报,1998,4(13):10-13
    169.王国杰,韩正康.红三叶草总异黄酮对小公鸡生长及血液睾酮水平的影响[J].动物学研究,1994,15(3):65-69
    170.杨国宇,陈伟华,陈杰,等.雄性水牛瘤胃内睾酮的检测及变化规律的研究[J].南京农业大学学报,1998,21(1):82-86
    171.姚文,朱伟云,韩正康,等.应用变性梯度凝胶电泳和16S rRNA基因序列分析对山羊瘤胃细菌多样性的研究[J].中国农业科学,2004,37:1374-1378
    172.姚文,朱伟云,毛胜勇.16S rRNA基因技术研究新生腹泻仔猪粪样细菌区系的多样性变化[J].微生物学报,2006,46(1):150-154
    173.尹靖东,齐广海,张萍,等.大豆黄酮对鸡蛋胆固醇及其耐氧化性的影响[J].中国农业科学,2004,37(5):756-761
    174.余小平,糜漫天,朱俊东,等.染料木黄酮对MDA-MB-453乳腺癌细胞VEGF表达的影响[J].营养学报,2005,4:322-324
    175.于卓腾,姚文,毛胜勇,等.大豆黄酮对仔猪肠道微生物区系的影响[J].营养学报,2007,19(1)
    176.张荣庆,韩正康.芒柄花素槲皮素对奶牛初乳中4种酶活力的影响[J].南京农业大学学报,1992,15(3):131-132
    177.张荣庆,韩正康.异黄酮植物雌激素对小鼠免疫功能的影响[J].南京农业大学学报,1993,16(2):64-68
    178.张荣庆,韩正康,陈杰,等.大豆黄酮对母猪免疫功能和血液及初乳中GH、PRL、SS水平的影响[J].动物学报,1995,41(2):201-206
    179.张玉梅.大豆异黄酮的生物利用度[J].国外医学卫生学分册,2001,28(2):104-107
    180.赵志辉,徐银学,陆天水,等.大豆黄酮对2周龄仔猪增重及肝脏GH受体的影响[J].上海交通大学学报(农业科学版),2003,21(1):40-42
    181.周玉传,赵如茜,倪迎东,等.大豆黄酮对绍兴鸭产蛋性能影响及有关中枢机制初探[J].中国农业科学,2004,37(2):296-300
    182.朱伟云,姚文,毛胜勇.变性梯度凝胶电泳法研究断奶仔猪粪样细菌区系变化[J].微生物学报,2003,43(4):503-508
    183.左伟勇,王国杰,韩正康.添喂大豆黄酮对蛋鸡摄食行为及有关内分泌的影响[J].南京农业大学学报,2003,26(3):76-79

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700