用户名: 密码: 验证码:
大菱鲆粘膜及淋巴细胞对迟缓爱德华氏菌免疫应答的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大菱鲆(Scophthalmus maximus)是珍贵的海洋经济鱼类,目前已经在我国大规模养殖。随着高密度工厂化养殖的迅速发展,诸多疾病相继出现,造成了重大的经济损失,其中,腹水病是危害最大的疾病之一,其病原是迟缓爱德华氏菌(Edwardsiella tarda)。目前,对鱼类细菌病的防治方法主要采取频繁使用抗生素及化学药品的方法,其所带来的耐药性、食品及环境安全问题愈加突出。因此,免疫成为防治鱼类细菌性疾病的安全有效方法。本文采用组织制片观察、单克隆抗体免疫组化标记、间接荧光法和流式细胞术等手段,首先,对不同年龄的养殖大菱鲆粘膜及淋巴细胞进行研究,描述并比较了不同年龄大菱鲆的粘膜及免疫组织的细胞学基础;然后,以置备的迟缓爱德华氏菌灭活全菌和主要OPM为抗原,对大菱鲆进行腹腔注射、直接浸泡和肛门灌注免疫接种,以Ig+细胞相对数量及血清特异抗体凝集效价为指标,对大菱鲆粘膜免疫与系统免疫应答进行评价和比较,阐述了大菱鲆粘膜组织具有相对独立的特异性免疫应答功能,以及不同抗原的免疫效果。具体研究内容和结果如下:
     (1)大菱鲆粘膜及免疫组织的细胞学基础研究。组织切片显微观察发现,大菱鲆皮肤、鳃、后肠、头肾和脾中存在淋巴细胞。利用大菱鲆IgM单抗免疫组化标记发现,除皮肤外,鳃、后肠、头肾和脾中均原位存在Ig+细胞,其中,鳃组织中Ig+细胞存在于鳃小片的上皮与支持细胞之间的间隙中,后肠Ig+细胞存在肠道的固有层和粘膜下层中,外周血Ig+细胞主要存在于淋巴细胞群中,脾Ig+细胞分布在实质区,且更倾向于分布在脾窦周围,头肾Ig+细胞无规律地散布于肾组织中。采用间接荧光标记和流式细胞仪对受精后2.5和10月龄大菱鲆的皮肤、鳃、后肠、外周血和头肾中Ig+细胞进行检测、分析后发现,同一年龄大菱鲆的不同组织中Ig+细胞的数量不同,同时,不同年龄鱼的同一组织的Ig+细胞数量也有差异。2.5月龄大菱鲆Ig+细胞分布为:皮肤0.00±0.00%、鳃1.58±0.40%、后肠2.53±0.70%、外周血17.0±0.39%和头肾21.0±1.79%;10月龄鱼Ig+细胞分布为:皮肤0.94±0.74%,鳃1.60±0.71%、后肠3.91±1.06%、外周血28.95±0.39%和头肾21.54±0.90%。
     (2)迟缓爱德华氏菌的分离、鉴定及抗原的制备。从患腹水病大菱鲆体内分离纯化出主要病原菌株,用生化鉴定及16S rRNA基因序列测定和分析方法鉴定为迟缓爱德华氏菌;用0.5%福尔马林灭活法,制备了安全的迟缓爱德华氏菌灭活全菌抗原;用Sarkosyl法,制备了安全的迟缓爱德华氏菌主要OPM抗原。
     (3)大菱鲆粘膜及淋巴细胞对迟缓爱德华氏菌灭活全菌抗原的免疫应答。直接浸泡后,鳃组织中的Ig+细胞数量的出现峰值时间比外周血、头肾组织提前7天,鳃中的Ig+细胞数量极显著高于未免疫组,而外周血和头肾的Ig+细胞数量与未免疫组大菱鲆差异不显著;腹腔注射后,鳃组织Ig+细胞数量的出峰值时间与外周血、头肾相同,鳃中Ig+细胞数量与对照组差异不显著,且极显著低于浸泡免疫组,外周血和头肾的Ig+细胞数量则极显著高于对照组及浸泡免疫组。另外,浸泡免疫后,免疫鱼体针对全菌抗原的血清抗体效价显著高于对照组,且其达到峰值的时间与浸泡免疫后鳃组织中Ig+细胞的峰值时间相同,表明浸泡免疫后大菱鲆的血清特异抗体主要来源于鳃组织中Ig+细胞的特异性免疫应答。
     (4)大菱鲆粘膜及淋巴细胞对不同抗原的免疫应答。用迟缓爱德华氏菌灭活全菌及主要OPM分别对大菱鲆进行腹腔注射、直接浸泡和肛门灌注免疫后发现,注射OPM的大菱鲆外周血中Ig+细胞数量和血清抗体效价均不显著低于注射迟缓爱德华氏菌灭活全菌大菱鲆;浸泡OPM大菱鲆鳃中Ig+细胞数量和血清抗体效价均不显著高于浸泡灭活全菌的大菱鲆,肛门灌注OPM大菱鲆后肠、外周血中Ig+细胞相对数量和血清抗体效价均不显著高于注射灭活全菌大菱鲆。
     本文研究结果表明,粘膜组织具有特异性免疫应答的组织细胞学基础,对抗原可以产生显著的相对独立的特异性免疫应答;大菱鲆体内存在粘膜免疫和系统免疫,不同免疫途径对不同免疫组织的诱导作用不同,浸泡免疫主要诱导体表粘膜组织的免疫应答,而注射免疫则主要诱导系统组织的免疫应答,肛门灌注则可能对肠粘膜和系统免疫组织的诱导作用相近;另外,大菱鲆的粘膜和系统免疫组织对不同抗原的特异性免疫应答水平亦不同。本研究结果对鱼类免疫途径的选择及鱼用疫苗的研制具有重要参考价值。
Turbot (Scophthalmus maximus) is an economically important fish and recently culturing has become popular in China. However, with the development of intensive culture, infectious diseases have become a major obstacle to the cultivation of it and caused a big loss. The swollen abdomen is the most important disease of turbot, and its agent is the Edwardsiella tarda. Problems, such as drug resistance, food and environmental security, have emerged due to over using of aquacultural drug to prevent and cure infectious diseases. Therefore, immunization has become the most important method in preventing and curing fish diseases. In this study, with methods of micro observation, immunohistochemistry, indirect fluorescence analyze technology, flow cytometry and agglutination tires analyze, the lymphoid tissues and cells were observed and compared in mucosal and systemic lymphoid organ in turbot, Ig+ cells and plasma antibody level were measured and compared in unvaccinated turbots and vaccinated ones by inactivated E. tarda and OPM via direct immersion (d.i.), intraperitoneal injection (i.p.) and anal incubation (a.i.). The immune responses were evaluated in mucosal and systemic lymphoid tissues in turbot vaccinated by different antigen via different route. The independent immunological role of mucosal tissues was discussed. The following are the details.
     (1) The tissue observation of mucosal and systemic immune organs of turbot. Lymphocytes presented in skin, gill, hindgut, head kidney, spleen and peripheral blood (PBL) after micro observation to tissue sections. The immunoglobulin-positive cell (Ig+ cell) could be locally observed in these tissues above except in the skin by immunohistochemistry with a monoclonal antibody (mouse-anti-turbot IgM). Ig+ cells of gill were located in filament sinusoid between the epithelial cells and the support cells. Ig+ cells of hindgut presented within the lamina propria or the lower layers of lamina epithelialis. Ig+ cells in PBL often appeared among lymphocytes. Ig+ cells were often distributed throughout the parenchyma in spleen, but tended to concentrate around melano-macrophage centres (MMCs). Ig+ cells scattered in the interstitial tissue in head kidney. The Ig+ cells isolated from skin, gills, hindgut kidney and PBL were measured in healthy turbots (aged 2.5 and 10 months post-fertilization, mpf) by flow cytometry. Results were that the percentage of Ig+ cells respectively was 0±0.00% of skin, 1.58±0.40% of gills, 2.53±0.70% of hindgut, 17.05±0.39% of PBL, 21.06±1.79% of kidney in turbot aged 2.5 mpf and was 0.94±0.74% of skin, 1.60±0.71% of gills, 3.91±1.06% of hindgut, 28.95±0.39% of PBL, 21.54±0.90% of kidney in turbot aged 10 mpf.
     (2) Isolation and identification of E. tarda and preparation of antigens. The main pathogenic bacteria was isolated from turbot suffered swollen abdomen. Biochemical identification and 16S rRNA gene sequence analysis were used to identify the main pathogenic bacteria. The results showed that it was identified as E.tarda. Then the killed cell antigen was prepared with method of 0.5% formalin-killing. The major OPM antigen was also prepared with the extraction method of Sarkosyl. (3) The immune response of mucosal and systemic lymphoid tissues in turbot after immunization with inactivated E. tarda. After d.i., a 7-day advanced phase in peaking time of number of Ig+ cells was observed in gill compared with in PBL or kidney from immunized turbot. A high elevation of number of Ig+ cells was observed in the gill, and this was significantly different from the control group’s. However, a slight elevation in the number of Ig+ cells was observed in the kidney and PBL in vaccinated turbots via bath, and this was insignificantly different from their respective control group’s. After i.p., the peaks of number of Ig+ cells in gills, PBL and kidney reached on the same time point from immunized turbot. A slight elevation of Ig+ cells was observed in the gills from turbot vaccinated by i.p., and the increase was not significant compared with its control’s and was significantly lower than vaccinated turbot via bath. But, a clear increase of the number of Ig+ cells was observed in kidney and PBL in turbot vaccinated by i.p., and a significant difference was observed in the kidney and PBL compared with their respective controls. In addition, the peak of agglutination tire in plasma was on the same time point as the peak of the number of Ig+ cells in gill in turbot vaccinated by d.i, and it was higher significantly than its control’s. This showed that immune response to E .tarda was significant and mainly from gill in turbot vaccinated by d.i..
     (4) The immune response to different antigen in turbot. After immunization with inactivated E. tarda and major OPM via d.i., i.p. and a.i., the followings were obtained: The number of Ig+ cells in PBL and the plasma agglutination tire was respectively insignificantly lower in turbot vaccinated by OPM than in one vaccinated by inactivated E. tarda via i.p.. The number of Ig+ cell in PBL and the plasma agglutination tire was respectively insignificantly higher in turbot vaccinated by OPM than in one vaccinated by inactivated E. tarda via d.i.. The number of Ig+ cell in hindgut and PBL as well as the plasma agglutination tire was respectively insignificantly lower in turbot vaccinated by inactivated E. tarda than in one vaccinated by major OPM via a.i..
     Therefore, our results clearly supported the existence of mucosal and systemic compartments in immune system, and the mucosal compartment had tissue and cell conditions to conduct a independent special immune response to an antigen in turbot. The administration route could play an important role in inducing immune response of the two immune compartments, the d.i mainly elicited mucosal immune, the i.p. could induce a more intensive systemic immune, and the a.i. almost had a same role to induce responses in gut mucosal and systemic tissue. Additionally, the different antigen had different immunological role upon mucosal and systemic compartment in fish. These are essential for designing vaccination strategies in fish.
引文
1.安庆云.免疫学基础.北京:北京科学出版社,1998.
    2.陈昌福,罗宇良,晋研雄,等,2000.不同血清型柱状嗜纤维菌脂多糖对鳜免疫原性影响的研究.华中农业大学学报, 19(3):483-486.
    3.池信才,鄢庆枇,郭国军,等,2007.拮抗菌对病原性溶藻弧菌粘附大黄鱼鳃粘液的影响.厦门大学学报(自然科学版),46(4):560-563.
    4.董传甫,林天龙,龚辉,等,2005.嗜水气单胞菌主要外膜蛋白对欧洲鳗鲡的免疫保护试验,水生生物学报,29(3):286-291.
    5.董传甫,林天龙,许斌福,等,2004.电泳和免疫印迹分析副溶血弧菌和溶藻弧菌主要外膜蛋白和多糖抗原.中国人兽患病杂志,20(7):619-623.
    6.费小红,李楠,申红旗,等,2007.鱼用疫苗的研究概况.水利渔业,27(6):5-8.
    7.华育平,刘红柏,张颖,2005.温度、疾病感染对史氏鲟血清和各组织中溶菌酶水平的影响.东北林业大学学报,第33(3):64-66.
    8.黄新新,陆承平, 2002.迟缓爱德华氏菌全菌及外膜蛋白的免疫比较.免疫学杂志,18 (3):187-191.
    9.黄志坚,何建国,2006.溶藻弧菌外膜蛋白(Va2OMP)的免疫原性及免疫保护性.水产学报,30(4):538-543.
    10.雷霁霖,2006.我国海水鱼类养殖大产业架构与前景展望.海洋水产研究,27(2):2-8.李国平,杨恬, 2001.粘膜免疫系统的研究进展.细胞及分子免疫学杂志, 17(6):594 - 597.
    11.李筠,颜显辉,陈吉祥等,2006.养殖大菱鲆腹水病病原的研究.中国海洋大学学报,36(4):649-654.
    12.刘振兴,张殿昌,龚世园,2007.鱼用免疫佐剂的研究概况.水利渔业,27(2):3-6.
    13.罗晓春,李安兴,谢明权,2005.斜带石斑鱼黏膜免疫系统结构的研究.水生生物学报,29(2):193-198.
    14.罗晓春,谢明权,黄玮,等,2005.鱼类粘膜免疫研究进展.水产学报[J],29(3): 411-416。
    15.孟庆闻,苏锦祥,李婉端.鱼类比较解剖.北京:科学出版社,1987.
    16.莫照兰,徐永立,张培军, 2002.养殖牙鲆鳗弧菌疫苗的研究.海洋科学, 26(4):63-68.
    17.单晓枫,高云航,李影,等,2005.鱼用疫苗研究进展.中国兽药杂志,39(11): 19-22.
    18.孙建和,严亚贤,陈怀青,等, 1996.嗜水气单胞菌亚单位疫苗的研制.中国兽医学报, 16(1):11 - 14.
    19.覃映雪,王军,王世峰,等,2006.哈维氏弧菌TS-628菌株抗原性研究,厦门大学学报(自然科学版),45(3):393-398。
    20.王长法,安利国,杨桂文,等,1996.鱼类免疫球蛋白研究进展.中国水产科学,2:105-107.
    21.王国良,郑天伦,金珊,等, 2003.黑鲷幼鱼腹水病病原菌.中国兽医学报,23(1):33-35.
    22.王辉,安利国,杨桂文,2007.牙鲆不同组织抗菌肽的提取及部分性质检测.水产科学,26(2):87-90.
    23.王利,谢长勇,2005.鱼类疫苗研究进展.动物医学进展, 2003, 24(5): 26-28.
    24.肖慧,李军,王祥红,等,2003.鲈鱼鳗弧菌病疫苗的制备及免疫防治效果.青岛海洋大学学报, 33(2):226-232.
    25.肖显悦,田春雨,李凤,等,2006. DNA疫苗及其在鱼类生产中的应用.生物技术通报(增刊):125-128。
    26.薛淑霞,冯守明,孙金生,2006.海水工厂化养殖大菱鲆和褐牙鲆腹水病病原菌的分离与鉴定.海洋与湖沼, 37(6):548-553.
    27.杨桂文,安利国,1999.鱼类粘液细胞研究进展.水产学报,23(4):405-408.
    28.杨先乐,曹海鹏,2006.我国渔用疫苗的研制.水产学报,30(2):264-269.
    29.俞开康,2005.鱼病发生的原因与健康养殖技术.科学养鱼,2:35-36.
    30.战文斌,等.水产动物病害学.北京:中国农业出版社,2004.
    31.张健东,周晖,陈刚,等,2007.卵形鲳血细胞发生的观察.水生生物学报,31(6):781-785.
    32.朱开玲,陈吉祥,李筠,等,2004.鳗弧菌灭活疫苗对海水养殖大菱鲆的免疫预防研究.高技术通讯, 12:76-81.
    33.周晖,陈刚,张健东,等,2006.斜带石斑血细胞发生的观察.广东海洋大学学报, 26 (4):3 -7.
    34.周丽,刘洪明,战文斌,等,2003.鳗弧菌、溶藻胶弧菌外膜蛋白的分离及特性.中国水产科学,10(1):32-35.
    35. Azad IS, Shankar KM, Mohan CV, Kalita B, 2000. Uptake and processing of biofilm and free- cell vaccines of Aeromonas hydrophila in Indian major carps and common carp following oral vaccination-antigen localization by a monoclonal antibody. Dis Aquat Org, 14:103–8.
    36. Beachey EH, 1981. Bacterial adherence: adhesin receptor interactions mediating the attach- ment of bacteria to mucosal surfaces. Journal of Infectious Diseases, 143:325-345.
    37. Bergsson G, Agerberth B, J?rnvall H, et al.,2005. Isolation and identification of antimicrobial components from the epidermal mucus of Atlantic cod (Gadus morhua). FEBS Journal, 272: 4960–4969.
    38. Bermúdez R, Vigliano F, Marcaccini A et al., 2006. Response of Ig-positive cells to Enteromyxum scophthalmi (Myxozoa) experimental infection in turbot, Scophthalmus maximus (L.): A histopathological and immunohistochemical study. Fish & Shellfish Immunology, 21: 501-512.
    39. Bosi G, Shinn AP, Giari L, et al., 2005. Changes in the neuromodulators of the diffuse endocrine system of the alimentary canal of farmed rainbow trout, Oncorhynchus mykiss (Walbaum), naturally infected with Eubothrium crassum (Cestoda). Journal of Fish Diseases, 28, 703–711.
    40. Cain KD, Jones D, Raison RL, 2000. Characterisation of mucosal and systemic immune response in rainbow trout (Oncorhynchus mykiss) using surface plasmon resonance. Fish Shellfish Immunol, 10:651-666.
    41. Clerton P, Trouaud D, Deschaux P, 1998. The chemiluminescence response of leucocytes isolated from the gut of rainbow trout ( Oncorhynchus mykiss). J . Fish Shellfish Immunol, 8:73—76.
    42. Clerton P, Troutaud D, Verlhac V, et al., 2001. Dietary vitamin E and rainbow trout ( Oncorhynchus mykiss) phagocyte functions : effect on gut and on head kidney leucocytes. J . Fish Shellfish Immunol, 11: 1 - 13.
    43. Constance LR, Ronald VDJ, Raymond EK, 2007. Antibody response of bluegill sunfish during development of acquired resistance against the larvae of the freshwater mussel Utterbackia imbecillis. Developmental and Comparative Immunology, 31: 143–155.
    44. Corbeil S, Kurath G, LaPatra S, 2000. Fish DNA vaccine against infectious hematopoietic necrosis virus: efficacy of various routes of immunisation, Fish Shellfish Immunol, 10 (8): 711–723.
    45. Dalmo RA, Bogwald J, 1996. Distribution of intravenously and perorally administered Aeromonas salmonicida lipopolysaccharide in Atlantic salmon, Salmo salar L. Fish and Shellfish Immunology, 6: 427–441.
    46. Dalmo RA, Ingebrigtsen K,Bogwald J,1997.Non-specific defence mechanisms of fish, withparticular reference to the reticuloendothelial system (RES). J Fish Dis, 20:241-273.
    47. Davidson GA, Ellis A E, Secombes CJ, 1991. Cellar responses of leucocytes isolated from the gut of rainbow trout, ncohynchus mykiss (Walbaum). Journal of Fish Diseases 14: 651-659.
    48. Davidson GA, Ellis AE, Secombes CJ, 1993. Route of immunization influences the generation of antibody secreting cells in the gut of rain bow trout (Oncorhynchus mykiss).Dev Comp Immunol.17:373–6.
    49. Davidson GA, Lin SH, Christopher JS et al., 1997. Detection of specific and‘constitutive’antibody secreting cells in the gills, head kidney and peripheral blood leucocytes of dab (Limanda limanda). Veterinary Immunology and Immunopathology, 58: 363-374.
    50. Delamare-Deboutteville J, Wood D, Barnes AC, 2006. Response and function of cutaneous mucosal and serum antibodies in barramundi (Lates calcarifer) acclimated in seawater and freshwater. Fish & Shellfish Immunology, 21: 92-101.
    51. Duff DCP, 1942. The oral immunization of tuout against Bacterium salmaonicida. J Immune, 44: 87-94.
    52. Ellis AE, 1977. The leucocytes of fish: a review. Journal of Fish Biology, 11: 453–491.
    53. Ellis AE. 1998. Meeting the requirements for delayed release of oral vaccines for fish. Journal of Applied Ichthyology,14:149–52.
    54. Esteve-Gassent MD, Fouz B, Amaro C, 2004. Efficacy of a bivalent vaccine against eel diseases caused by Vibrio vulnificus after its administration by four different routes. Fish & Shellfish Immunology, 16: 93-105.
    55. Fernandez-Alonso M, Rocha A, Coll JM, 2001. DNA vaccination by immersion and ultrasound to trout viral haemorrhagic septicaemia virus, Vaccine, 19 (23–24): 3067–3075.
    56. Flano E, Lo pes-Fierro P, Razquin BE, et al., 1996. In vitro differentiation of eosinophilic granular cells in Renibacterium salmoninarum infected gill cultures from rainbow trout. J. Fish Shellfish Immunol, 6:173– 184.
    57. Flecher TC, Grant PT, 1969. Immunoglobulins in the serum and mucus of the plaice (Pleuronectes platessa). J of Biochem, 18:65.
    58. Fournier-Betz V, Quentel C, Lamour F et al., 2000. Immunocytochemical detection of Ig-positive cells in blood, lymphoid organs and the gut associated lymphoid tissue of the turbot (Scophtalmus maximus). Fish and Shellfish Immunology, 10: 187-202.
    59. Georgopoulou U, Vernier JM, 1986. Local immunological response in the posterior intestinal segment of the rainbow trout after oral administration of macromolecules. Developmental and Comparative Immunology, 10: 529–537.
    60. Grabowski LD, Lapatra SE, Cai KD, 2004. Systemic and mucosal antibody response in tilapia, Oreochromis niloticu(sL.), following immunization with Flavobacterium columnare, Journal of Fish Diseases, 27:573-581.
    61. Gr?ntvedt RN, Espelid S, 2003. Immunoglobulin producing cells in the spotted wolfish (Anarhichas minor Olafsen): localization in adults and during juvenile development. Developmental and Comparative Immunology, 27: 569-578.
    62. Habibur M, Kenji K, 2000. Outer memberance protein of Aeromonas hydrophila induce pro- tective immunity in goldfish, Fish and Shellfish Immunology, 10:379-382.
    63. Hart S, Wrathmell AB, Harris JE, et al., 1988. Gut immunologyn fish: A review. Dev Comp Immunol, 12:453-480.
    64. Hashimoto K, Nakanishi T and Kurosawa Y,1990. Isolation of carp genes encoding major histocompatibility complex class I3 domain. Proceedings of National Academy of Sciences USA, 89:2209–2212.
    65. Hattingh J, Warmelo KV,1975. The cuticular layer of the skin of certain Cyprinidae. Zool African, 10:102-103.
    66. Heidi BT. Huttenhuis, 2005. The ontogeny of the common carp(Cyprinus carpio L.)immune system. PhD Thesis: 57-125, ISBN90-8504-254-2.
    67. Holland JW, Rowley AF, 1998. Study on the eosinophilic granule cells in the gills of the rain- bow touch, Oncorhynchus mykiss. Comp. Biochem. Physiol..120C: 321-328.
    68. Hordvik I, Voie AM, Glette J et al., 1992. Cloning and sequence analysisof two isotypic IgM heavy chain genes from Atlantic samon, Salmo salar L.. Eur J Immunol, 22: 2957-2962.
    69. Hoshina T, 1962. On a new bacteria, Paracolobactrum anguillimortiferum sp. Bull Jpn Soc Sci Fish, 28:162–164.
    70. Huising MO, Guichelaar T, Hoek C, et al., 2003. Increased efficacy of immersion vaccination in fish with hyperosmotic pretreatment. Vaccine, 21: 4178–4193.
    71. Iger Y, Wendelaar Bonga AF, 1994. Cellular aspects of the skin of carp exposed to acidified water. Cell and Tissue Research, 275: 481–492.
    72. Irie T, Watarai Shinobu, Kodama H, 2003. Humoral immune response of carp (Cyprinus carpio) induced by oral immunization with liposome-entrapped antigen. Developmental and Comparative Immunology, 27:413–421.
    73. Itami T, et al., 1988. Purification and characterization on immunoglobulin in skin mucus and serum of ayu. Nippon Suisan Gaakkaish, 54:1611-1617.
    74. Jenkins PG, Wrathmell AB, HarrisJE, et al., 1994. Systemic and mucosal immune response to enterically delivered antigen in Oreochromis mossambicus. Fish Shellfish Immunol4:255-271
    75. Jones DR, Hannan CM, Russel-Jones GJ, et al., 1999.Selective Bcell non-responsiveness in the gut of the rainbow trou (Oncorhynchus mykiss). Aquaculture,172:29-39.
    76. Joosten PHM, Tiermersma E, Threels A, et al., 1997. Oral vaccination of fish against Vibrio anguillarum using alginate microparficles. Fish Shellfish Immunol, 7:471-485.
    77. Jurd RD,1985. Specialisation in the teleost and anuran immune response,A comparative creitque.In Fish Immunology (MJ Manning and MF Tatner eds.), 9-28, Academic Press, INC, London.
    78. Kaattari SL, Evans D, Klemer J, 1998. Varied redox forms of teleost IgM: An alternative to isotypic diversity Immunol, Rev 166:133-142.
    79. Kawai K, Liu Y, Ohnishi K, et al., 2004. Aconserved 37kDa outer membraneprotein of Edwardsiella tarda is an effective vaccine candidate. Vaccine, 22: 3411–3418.
    80. Killie JK, Espelid S, Jorgensen TO, 1991. The humoral immune response in Atlantic salmon (Salmo salar L.) against the hapten carrier antigen NIP-LPH:the effect of determinant (NIP) density and isotype profile of anti-NIP antibodies. Fish Shellfish Immunol, 1:33-46.
    81. Kitani Y, Tsukamoto C, Zhang GH, et al., 2007. Identification of an antibacterial protein as L-amino acid oxidase in the skin mucus of rockfish Sebastes schlegeli. FEBS Journal, 274: 125–136.
    82. Koppang EO, Lundin M, Press CM, et al., 1998. Differing levels of Mhc class IIβchain expression in a range of tissues from vaccinated and non-vaccinated Atlantic salmon (Salmo salar L.). J . Fish Shellfish Immunol, 8: 183 - 196.
    83. LaFrentz BR, LaPatra E, Jones GR, et al., 2002. Characterization of serum and mucosal antibody responses and relative percent survival in rainbow trout, Oncorhynchus mykiss( Walbaum), following immunization and challenge with Flavobacterium psychrophilum. J Fish Dis, 25:703 - 713.
    84. Lange SR, Bambir S, Dodds AW, Magnadottir B, 2004. An immunohistochemical study on complement component C3 in juvenile Atlantic halibut (Hippoglosus hippoglossus L.). Dev Comp Immunol, 28:593-601.
    85. Lefrancois L, 1991. Extrathymic differentiation of intraepithelial lymphocytes: generation of a separate and unique T cell repertoire. J.Immunol Today, 12: 436 - 438.
    86. Lindenstr?m T, Buchmann K, Secombes CJ, 2003. Gyrodactylus derjavini infection elicits IL-1 expression in rainbow trout skin. Fish & Shellfish Immunology, 15:107–115.
    87. Lin SH, Davidson GA, Secombes CJ, et al., 1998. A morphological study of cells isolated from the perfused gill of dab and Atlantic salmon. Journal of Fish Biology, 53: 560–568.
    88. Lin SH, Davidson GA, Secombes CJ, et al., 2000. Use of a lipid-emulsion carrier for immunisation of dab (Limanda limanda)by bath and oral routes: an assessment of systemic and mucosal antibody responses. Aquaculture, 181:11-24.
    89. Lin SH, Ellis A E, Davidson G A, et al., 1999. Migratory, respiratory burst and mitogenic responses of leucocytes isolated from the gills of rainbow trout (Oncorhynchus mykiss). J. Fish Shellfish Immunol, 9: 211 - 226.
    90. Lobb CJ, 1987. Secretory immunity induced in catfish, Ictalurus punctatus, following bath immunization. Developmental and Comparative Immunology,11: 727–738.
    91. Lobb CJ, Clem LW, 1981a. Phylogeny of immunoglobulin structure and function X Humoral immunoglobulins of the sheepshesd, Archosargus probatocephalus. Dev Comp Immunol, 5:271-282.
    92. Lobb CJ, Clem LW, 1981b.The metabolic relationships of the immunoglobulins in fish serum, cutaneous mucus, and bile. J Immunol, 127:1525-1529.
    93. Lobb C J, Clem LW, 1984. Immunoglobulin light chain classes in a teleost fish. J Immunol, 141:1236-1245.
    94. Lobb CJ, Olson MQJ, 1988. Immunoglobuin heavy H chain classes in a teleost fish. J Immunol, 132:1917-1923.
    95. Lumsden JS, Ostland VE, Byrne PJ, et al., 1993. Detection of a distinct gill surface antibody response following horizontal infection and bath challenge of brook trout Salvelinusfontinalis with Flavobactewium branchiophilum, the causative agent of bacterial gill disease. Dis Aquat Organ, 16:21-27.
    96. Lumsden JS, Ostland VE, MacPhee DD et al., 1995. Production of gill associated and serum antibody by rainbow trout (Oncorhynchus mykiss) following immersion immunization with acetone-killed Flavobacterium branchiophilum and the relationship to protection from experimental challenges. Fish & Shellfish Immunology, 5:151-165.
    97. Magnadóttir B, Lange S, Gudmundsdottir S, et al., 2005. Ontogeny of humoral immune parameters in fish. Fish and Shellfish Immunology, 19:429-439.
    98. Magnadóttir B, Lange S, Steinarsson A, et al., 2004. The ontogenic development of innate immune parameters of cod (Gadus morhua L.). Comp Biochem Biophys,139:217-224.
    99. Martin F Polz, Collen M Cavanaugh, 1998. Bias in template-to-product ratios in multitemplate PCR. Appl Environ Microbiol, 64(10): 3724-3730.
    100. Matsunaga T, Rahman A, 2001. In search of the origin of the thymus : the thymus and GALT may be evolutionarily related. Scan Immunol, 53: 1 - 6.
    101. Merino-Contreras ML, Guzman-Murillo MA, Ruiz-Bustos E, et al., 2001. Mucosal immune response of spotted sand bass Paralabrax maculatofasciatus (Steindachner, 1868) orally immunised with an extracellular lectin of Aeromonas veronii. Fish Shellfish Immunol, 11:115-126.
    102. Miller NW, 1998. Immunology of fishes. Leukocytes and their markers. In: Handbook of Vertebrate Immunology (Pastoret P P, Griebel P, Bazin H. and Govaerts A eds.) pp.6–9. London, UK: Academic Press.
    103. Miller NW, Sizemore RC, Clem LW, 1985. The phylogeny of lymphocyte heterogeneity: the cellular response for in vitro antibody responses of channel catfish leukocytes. Journal of Immunology, 133: 2356–2359.
    104. Moore JD, Ototake M, Nakanishi T, 1998. Particulate antigen uptake during immersion immunisation of fish: the effectiveness of prolonged exposure and the roles of skin and gill. J. Fish Shellfish Immunol, 8: 393 - 407.
    105. Morrison RN, Koppang EO, Hordvik I, et al., 2006. MHC class II+ cells in the gills of Atlantic salmon (Salmo salar L.) affected by amoebic gill disease. Veterinary Immunology and Immunopathology, 109: 297–303.
    106. Morrison RN, Schons BA, Nowak BF, 2002. The Antibody Response of Teleost Fish. In: Seminars in Avian and Exotic Pet Medicine, Vol 11, No 1 (January), 2002: pp 46-54. Australia, W.B. Saunders Company.
    107. Mowat A, McI, Vinney J L, 1997. The anatomical basis of intestinal immunity. J Immunol Rev, 156: 145 - 166.
    108. Mulder IE, Wadsworth S, Secombes CJ, 2007. Cytokine expression in the intestine of rainbow trout (Oncorhynchus mykiss) during infection with Aeromonas salmonicida. Fish and Shellfish Immunology, xx:1-13.
    109. Nagashima Y, Kikuchi N, Shimakura K, et al., 2003. Purification and characterization of an antibacterial protein in the skin secretion of rockfish Sebastes schlegeli. Comparative Biochemistry and Physiology Part C, 136: 63–71.
    110. Nakamura O, Matsuoka H, Ogawa T,et al., 2006. Opsonic effect of congerin, a mucosal galectin of the Japanese conger, Conger myriaster (Brevoort). Fish and Shellfish Immunology, 20: 433-435.
    111. Navot N, Kimmel E, Avtalion R R, 2004. Enhancement of antigenuptake and antibody production in goldfish (Carassius auratus) following bath immunizationand ultrasound treatment. Vaccine, 22: 2660–2666
    112. Oda Y, Ichida S, Mimura T, et al., 1984. Purification and characterization of a fish lectin from the external mucus of ophidiidae, Genypterus blacodes. J. Pharmacobiodyn., 7 (9):614-623.
    113. Ototake M, Iwama George K, Nakanishi T, 1996. The uptake of bovineserum albumin by the skin of bath-immunised rainbow trout Oncorhynchus mykiss. Fish Shellfish Immunol, 6(5):321–33.
    114 Padós, Crespo S, 1996. Ontogeny of the lymphoid organs in the turbot Scophthalmus maximus: a light and electron microscope study. Aquaculture, 144: 1 - I6.
    115. Picchietti S, Renata F, Mastrolia TL,et al., 1997. Expression of lymphocyte antigenic determinants in developing gut associated lymphoid tissue of the sea bass Dicentrarchus labrax (L.). Anat Embryol, 196:457–463.
    116. Press CM, 1998a. Immunology of fishes. In: Handbook of vertebrate immunology (Pastoret PP, Griebel P, Bazin H, Govaerts A, eds.). pp.3–62.New York: Academic Press.
    117. Press CM, Evensen ?, 1998b. The morphology of the immune system in teleost fishes. Fish and Shellfish Immunology, 9:308–318.
    118. Quentel C, Vegneulle M, 1997. Antigen uptake and immune responses after oral vaccination. Dev Biol Stand, 90:69–78.
    119. Reite OB, 1998. Mast cells eosinophilic granule cells of teleostean fish: a review focusing on staining properties and functional responses. Fish and Shellfish Immunology, 8: 489–513.
    120. Romano N, Taverne-thiele J J, Van MJC et al., 1997b. Leucocyte subpopulations in developing carp (Cyprinus carpio L.): immunocytochemical studies. Fish and Shellfish Immunology, 7: 439-453.
    121. Rombout JHWM, Blok LJ, Lamers CHJ, et al., 1986. Immunization of carp (Cyprinus carpio) with a Vibrio anguillarum bacterin: Indications for a common mucosal immune system. Dev Comp Immunol, 10:341-351.
    122. Rombout JHWM, Bot HE, Taverne-Thiele AJ, 1989. Immunological importance of the second gut segment of carp. II. Characterisation of mucosal leucocytes. Journal of Fish Biology, 35: 167–178.
    123. Rombout JHWM, Taverne N, van de Kamp M, et al., 1993. Differences in mucus and serum immunoglobulins in carp (Cyprinus carpio L.). Dev Comp Immunol, 17:309-317.
    124. Rombout JHWM, Van Den Berg AA, 1989b.Immunological importance of the second gut segment of carp I. Uptake and processing of antigens by epithelial cells and macrophages. J Fish Biol, 35:13–22.
    125. Rom?ren K, Fjeld XTL, PoleóABS, et al., 2005. Transfection efficiency and cytotoxicity of cationic liposomes in primary cultures of rainbow trout (Oncorhynchus mykiss) gill cells. Biochimica et Biophysica Acta, 1717: 50–57.
    126. Rowley AF, Hunt TC, Page M et al., 1988. Fish.In:VertebrateBlood Cells (Rowley A F and Ratcliffe N A, eds.) pp.19–127.Cambridge, UK: Cambridge University Press.
    127. Santos NMSD, Taverne-Thiele J J, Barnes AC et al.,2001a. Kinetics of juvenile sea bass(Dicentrarchus labrax, L.)systemic and mucosal antibody secreting cell response to different antigens Photobacterium damselae spp.piscicida,Vibrio anguillarum and DNP. Fish and Shellfish Immunology 11:317-331.
    128. Santos NMSD, Taverne-Thiele JJ, Barnes AC et al., 2001b. The gill is a major organ forantibody secreting cell production following direct immersion of sea bass (Dicentrarchus labrax, L.) in a Photobacterium damselae ssp. piscicida bacterin: an ontogenetic study. Fish & Shellfish Immunology, 11: 65-74.
    129. Santos NMSD, Taverne N, Taverne-Thiele JJ et al.,1997. Characterization of monoclonal antibodies specific for sea bass (Dicentrarchus labrax L.) IgM indicates the existence of B cell subpopulations. Fish & Shellfish Immunology, 7: 175-191.
    130. Santos Y, Garca-Marquez S, Pereira PG, et al., 2005. Efficacy of furunculosis vaccines in turbot, Scophthalmus maximus (L.): evaluation of immersion, oral and injection delivery. Journal of Fish Diseases, 28, 165–172.
    131. Scapigliati G, Romano N, Abelli L, 1999. Monoclonal antibodies in fish immunology: identification, ontogeny and activity of T- and B-lymphocytes. Aquaculture, 172:3-28.
    132. Secombes C J, Hardie L J, Daniels G, 1996. Cytokines in fish: an update. Fish and Shellfish Immunology, 6:291–304.
    133. Seltman G, Holst O, 2002. The bacterial cell wall. Berlin, Heidelberg: Springer.
    134. Sibbing FA, et al., 1985. Regional specializations in the eropharyngeal wall and food processing in the carp. Netherland J Zool, 35(3):377-422.
    135. St Louis-Cormier EA, et al., 1984. Evidence for a cutancous secretory immune system in rainbow trout. Dev Comp Immunol, 8: 71-80.
    136. Strand HK, Dalmo RA,1997. Absorption of immunomodulatingβ(1, 3) glucan in yolk sac larvae of Atlantic halibut , Hippoglossus hippoglossus (L.) . J Fish Dis , 20: 41 - 49.
    137. Tamura K, Sakazaki R, McWhorter AC, et al., 1988. Edwardsiella tarda serotyping scheme for international use. J Clin Microbiol, 26: 2343–2346.
    138. Trump GN, et al., 1970. Antibody response of goldfish to bovine serm albumin: Primary and secondary response. Immunology, 19:627.
    139. Vancikova Z, 2002. Mucosal immunity basic principles, ontogeny, cystic fibrosis and mucosal vaccination. Cuur Drug Targets Immune Endocr Metabol Disord, 2 (1) : 83-95.
    140. Vervarcke S, Lescroart O, Ollevier F, Kinget R, Michoel A, 2004b. Vaccination of African catfish with Vibrio anguillarum O2: I. ELISA development and response to IP and immersion vaccination. J Appl Ichtyol, 20:128-133.
    141. Vervarcke S, Ollevier F, Kinget R, Michoel A, 2004a. Oral vaccination of African catfishwith Vibrio anguillarum O2: study on the effect of absorption enhancers in multilayered pellets. Fish Shellfish Immunol,16:407-414.
    142. Vervarcke S, Ollevier F, Kinget R, et al,. 2005. Mucosal response in African catfish after administration of Vibrio anguillarum O2 antigen via different routes. Fish and Shellfish Immunology, 18: 125-133.
    143. Vine NG, Leukes WD, Kaiser H, et al., 2004. Competition for attachment of aquaculture candidate probiotic and pathogenic bacteria on fish intestinal mucus. Journal of Fish Diseases, 27(6) :319 - 326.
    144. Woo PTK, 1992. Immunological responses of fish to parasitic organisms. Annual. Rev. Fish Dis, 2: 339-366.
    145. Xu DH, Klesius PH and Shelby R A, 2002. Cutaneous antibodies in excised skin from channel catfish, Ictalurus punctatus Rafinesque,immune to Ichth-yophthirius multifiliis. Journal of Fish Diseases, 25:45-52.
    146. Yano T,1996. The nonspecific immune system: humoral defense[A]. Iwama G, Nalcanish T. The Fish Immune System[M].London, Academic Press, 105-107.
    147. Zapata A, Diez B, Cejalvo T, et al., 2006. Ontogeny of the immune system of fish. Fish & Shellfish Immunology, 20: 126-136.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700