用户名: 密码: 验证码:
含C、N、O配位原子配合物的合成、结构、超分子组装及其与DNA相互作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了探索DNA的结构信息和生物功能,为药物的设计合成提供理论依据,遴选对肿瘤病毒等细胞具有选择性抑制或杀灭作用的化学药物,本文以过渡金属为核心,选用具有较大芳香体系的双N原子螯合配体邻菲咯啉为主要构筑元件,并辅以其它配体,通过高温高压溶剂热合成和常温液相合成等方法定向合成了十六个含C、N、O配位原子的配合物,用单晶X-射线衍射技术对它们的分子结构、超分子组装进行了表征;用电子吸收光谱和荧光光谱对它们与小牛胸腺DNA的相互作用进行了研究。结果如下:
     1.成功地合成了十六个配合物[Cu(phen)_2]ClO_4 (1)、[Zn(phen)_2(H_2O)Cl]Cl·1.5H_2O (2)、[Zn(phen)_3](ClO_4)2·H_2O·CH_3OH (3)、[Cu(sal)(phen)ClO_4]_2 (4)、[Cu(o-van)(phen)ClO_4]_2 (5)、[Mn(sal)(phen)_2]ClO_4 (6)、[Ni(sal)(phen)_2]NO_3·3H_2O (7)、[Pb(Hsal)_2(phen)]n (8)、[Cu_6(CN)_6(phen)_4]n (9)、[Cu_3(CN)_3(phen)_3]n (10)、Co(NCS)_2(phen)_2 (11)、Mn(NCS)_2(phen)_2 (12)、[Ni(phen)_3][Ni(CN)_4]·3H_2O (13)、{Co(phen)_2[Fe(CN)_4(phen)]_2}·4H_2O (14)、[Cu_2(sal)_2(phen)_2(DMF)](HgI_3)_2 (15)和[Ba(phen)_3(H_2O)][Fe(CN)_5NO]·1.5phen·2H_2O (16),并采用不同的培养方法分别得到了质量较好的单晶,其中十三个配合物未见文献报道。
     2.结构分析表明,配合物4至16是含混合配体的配合物;该类配合物的突出特点是,配体不仅金属中心作用,而且不同的配体之间还相互作用,相互影响,能显著地增加配合物的稳定性和反应选择性。
     3.配合物13至16中分别含有Ni/Ni双金属中心,Fe-Co-Fe三核,2Cu/2Hg双核四金属中心和聚Ba-Fe金属中心。这些体系的合成和性质研究不仅有助于加深对“活性中心”电子与立体结构、结构与功能相关性的理解,而且对于分子生物工程的实施和模型化合物的发展也都具有重要的理论和现实意义。
     4.首次系统研究了邻菲咯啉分子间的π-π堆积作用模式,详细讨论了十六个配合物中三十多种π-π堆积作用。
     5.研究了配合物中丰富的C-H???O、O-H???O、O-H???Cl、O-H???N、C-H???N、O-H???N等氢键作用和S···π弱作用。这些研究有助于人们对药物分子与受体,生物活性小分子与蛋白质,酶与底物等相互识别过程的理解。
     6.光谱结果表明,配合物2和10与DNA的作用是沟槽方式;配合物15为静电与插入方式的协同作用;其它配合物表现为中等强度的插入结合。
     7.十六个配合物都能与DNA发生不同强度的作用,其强弱受金属中心(种类、配位环境、配位数),配体(种类和个数),超分子组装方式等因素的影响。
     研究金属配合物的结构信息以及它们与DNA结合选择性及相互作用机理对进一步探讨不同结构和性质的分子与核酸作用模式及其生物活性具有深远的意义,能使人们从分子水平理解疾病的发病机制,并通过分子设计来寻找有效的治疗药物,对阐明抗肿瘤和抗病毒药物的作用机理、致癌物的致癌机理、药物的筛选等都具有非常重要的意义。
In order to explore structural information and biological function of DNA and to obtain the new effective chemical druggery, a series of complexes containing C, N, and O coordination atoms has been synthesized under the solvothermal conditions or in the solution at room temperature. The complexes are composed of transition metals as the cores and phenanthroline as the principal ligand. Their structures are characterized by elemental analysis and single-crystal X-ray diffraction, and supramolecular assemblies are researched. The interactions of complexes with CT-DNA are studied using absorption and fluorescence spectrum titration measurements. The main results are as follow:
     1. Sixteen complexes [Cu(phen)_2]ClO4 (1)、[Zn(phen)_2(H2O)Cl]Cl·1.5H2O (2)、[Zn(phen)_3](ClO4)_2·H2O·CH3OH (3)、[Cu(sal)(phen)ClO4]2 (4)、[Cu(o-van)(phen)ClO4]2 (5)、[Mn(sal)(phen)_2]ClO4 (6)、[Ni(sal)(phen)_2]NO3·3H2O (7)、[Pb(Hsal)_2(phen)]n (8)、[Cu6(CN)6(phen)4]n (9)、[Cu3(CN)_3(phen)_3]n (10)、Co(NCS)_2(phen)_2 (11)、Mn(NCS)_2(phen)_2 (12)、[Ni(phen)_3][Ni(CN)4]·3H2O (13)、{Co(phen)_2[Fe(CN)4(phen)]2}·4H2O (14)、[Cu2(sal)_2(phen)_2(DMF)](HgI3)_2 (15) and [Ba(phen)_3(H2O)][Fe(CN)5NO]·1.5phen·2H2O (16) have been synthesized successfully, and their single crystals obtained. Thirteen of them have not been reported up to now.
     2. The results show that complexes from 4 to 16 are composed of the mixture ligands. There exist interactions not only between metal ions and ligands, but also among the different ligands, which makes the complexes more stable and more selective.
     3. The two metal centers of Ni/Ni, multiclear of Co-Fe-Co, binuclear of 2Cu/2Hg, and polynuclear of Ba-Fe are found in the complexes from 13 to 16. The research on these metal systems are very important to the biological system.
     4. Theπ-πstacking mode of phenanthroline is firstly constructed, and more than thirty modes are observed and discussed in detailed.
     5. Abundant hydrogen bonds including C-H…O、O-H…O、O-H…Cl、O-H…N、C-H…N、O-H…N bonds and S···πweak interaction are found in complexes.
     6. Electronic absorption spectrum titration studies of the interaction between complexes with DNA show the groove binding mode for 2 and 10, the cooperative modes of electrostatic and intercalative binding for 15, and the typical intercalative binding modes with middle-intensity for other complexes.
     7. All the complexes can interact with DNA, and the interactions are influenced by the metal ions (the type, coordination environment and the coordination number), ligands (the type and the number), the assembly modes and other factors. The results reveal that most of the complexes are good intercalaters to DNA, which is important for designing of antitumor drugs and antivirus drugs.
引文
[1] The Cambridge Crystallographic Data Center. The Cambridge Structural Database version 5.29. Cambridge, 2008.
    [2] Bailey N.A., Fenton D.E., Franklin M.V., et al. Ternary complexes of copper(II) with mixedacetylacetonate and nitrogen–containing ligands. J. Chem. Soc., Dalton Trans., 1980, 984–990.
    [3] Huang L.W., Yang C.J., Lin K.J. Toward the Design and Synthesis of Lithium–Ion Intercalation into a Coordinationπ–πFramework Host. Chem. Eur. J., 2002, 8(2): 396–400.
    [4] Buttery J.H.N, Mutrofin S., C.Plackett N., et al. Complexes of Group I Salts with N,N’–Aromatic Bidentate Ligands, of 1:1 Salt:Base Ratio. Z. Anorg. Allg. Chem., 2006, 632(10–11): 1809–1828.
    [5] Ma C., Chen F., Zhang X. et al. Tetraaqua(1,10–phenanthroline–κ2N,N')manganese(II) sulfate dihydrate. Acta Crystallogr., 2002, C58(7): m401–403.
    [6] Tsymbarenko D.M., Korsakov I.E., Kaul A.R., et al. Bis(1,10–phenanthroline)(2,2,6,6–tetramethylheptane–3,5–dionato)potassium(I) benzene sesquisolvate. Acta Crystallogr., 2007, E63: m2195–2196.
    [7] Simmons C.J., Alcock N.W., Seff K., et al. A fluxional pseudo–Jahn–Teller complex: the structure of (acetato)bis(1,10–phenanthroline)copper(II) perchlorate, [Cu(C12H8N2)2(C2H3O2)]ClO4, at 298 and 173 K. Acta Crystallogr., 1985, B41: 42–46.
    [8] Nakai H., Deguchi Y. The Crystal Structure of Monoaquobis(1,10–phenanthroline)copper(II) Nitrate, [Cu(H2O)(phen)2](NO3)2 Bull. Chem. Soc. Jpn., 1975, 48(9): 2557–2560.
    [9] Liang Y., Wang Z., Jin L., et al. Eu(ABA)(phen)2(H2O)3](ClO4)3·3phen·4.5H2O (1) and [Eu(Val)(phen)2(H2O)3](ClO4)3·3phen·2H2O (2) Supramolecular formation by aromatic ring stacking and hydrogen bonding in lanthanide(III) complexes with amino acids and 1,10–phenanthroline J. Mol. Struct., 2002, 616(1–3),231–239.
    [10] Qian C., Wang B., Xin Y., et al. Studies on organolanthanide complexes. Part 56. Formation of ion–pair complexes [Na·3phen]+[Ln(C5H5)3Cl]–·phen (Ln = La, Pr or Nd; phen = 1,10–phenanthroline) and crystal structure for Ln = Pr. J. Chem. Soc., Dalton Trans., 1994, 2109–2112.
    [11] Bombieri G., Bruno G., Grillone M.D., et al. Tris(1,10–phenanthroline)potassium tetraphenylborate, [K(C12H8N2)3][B(C6H5)4]. Acta Crystallogr., 1984, C40: 2011–2014.
    [12] Engelhardt L.M., Kepert D.L., Patrick J.M., et al. Lewis–Base Adducts of Lead(II) Compounds. II. Nine–Coordinate Capped Square–Antiprism Stereochemistry, [M(bidentate)4(unidentate)], in Tetrakis(1,10–phenanthroline)(perchlorato–O)lead(II)Perchlorate Aust. J. Chem., 1989, 42(2): 329–334.
    [13] Suescun L., Mombru A.W., Mariezcurrena R.A. Tris(1,10–phenanthroline)nickel(II)dinitrate thiourea monohydrate, [Ni(C12H8N2)3](NO3)2.CH4N2S.H2O. Acta Crystallogr., 1999, C55:1991–1993.
    [14] Ejsmont, K., Wasielewski M., Zaleski J. Tris(1,10–phenanthroline)zinc(II) dichromate tetrahydrate. Acta Crystallogr., 2002, E58: m200–202.
    [15] Rutherford T.J., Pellegrini P.A., Aldrich–Wright J., et al. Isolation of Enantiomers of a Range of Tris(bidentate)ruthenium(II) Species Using Chromatographic Resolution and Stereoretentive Synthetic Methods. Eur. J. Inorg. Chem., 1998, 11: 1677–1688.
    [16] Skelton B.W., Waters A.F., White A.H. Synthesis and Structural Systematics of Nitrogen Base Adducts of Group 2 Salts. VII. Some Complexes of Group 2 Metal Halides With Aromatic N,N'–Bidentate Ligands. Aust. J. Chem., 1996, 49(1): 99–115.
    [17] Tai X.S., Yin J., Hao M.Y. Tetrakis(1,10–phenanthroline)calcium(II) bis(perchlorate) 4–(dimethylamino)benzaldehyde disolvate. Acta Crystallogr., 2007, E63: m1827–1828.
    [18] Kon A.Yu., Bourshteyn I.F. Kristallokhim. Neorg. Soedin, 1976, 150.
    [9] Engelhardt L.M., Kepert D.L., Patrick J.M., White A.H. Lewis–Base Adducts of Lead(II) Compounds. II. Nine–Coordinate Capped Square–Antiprism Stereochemistry, [M(bidentate)4(unidentate)], in Tetrakis(1,10–phenanthroline)(perchlorato–O)lead(II) Perchlorate. Aust. J. Chem., 1989, 42(2): 329–334.
    [20] Minacheva L.Kh., Skogareva L.S., Razgonyaeva G.A., et al. Perchlorate Cerium(III) Complexes with 1,10–Phenanthroline; Crystal Structure of [Ce(C12H8N2)4(CH3CN)2](ClO4)3 3CH3CN. Russ. J. Inorg. Chem., 1997, 42(12): 1828–1837.
    [21] Shannon R.D. Crystal Physics, Diffraction, Theoretical and General Crystallography. Acta Crystallogr., 1976, A32(5): 751–767.
    [22] Schilt A.A. Analytical Applications of 1,10–Phenanthroline and Related Compounds. Oxford, Pergamon Press, 1969.
    [23] Gladiali S., Chelucci G., Soccolini F., et al. Opically active phenanthroline in asymmetric catalysis I. Enantio selective transfer hydrolgenation of acetophenore by rhodium/alkyl phenanthroline catalysts. J. Organomet. Chem., 1989, 370(1): 285–294.
    [24] Hartshorn R.M., Barton J.K. Novel Dipyridophenazine Complexes of Ruthenium (II):Exploring Luminescent Reporters of DNA. J. Am. Chem. Soc., 1992, 114: 5919–5925.
    [25] Tzelis D., Tor Y., Failla S., et al. Simple One–Step Synthesis of 3–Bromoand 3.8–Dibromo–1.10–Phenanthroline, Fundamental Building Blocks in the Design of Metal Chelates. Tetrahedron Letters, 1995, 36(20): 3489–3490.
    [26] Beer R.H., Jimenez J. Syntheses of 2.9–Bis(halomethyl)–1,10–phenanthrolineas Potential Robust Ligands for Metal Oxidation Catalysts. J. Org. Chem., 1993, 58: 1746–1747.
    [27] Bawendi M.G., Steigerwald M L., Brus L.E. The Quantum Mechanics of Larger Semiconductor Clusters ("Quantum Dots"). Annual Rev. Phys. Chem., 1990, 41: 477–496.
    [28] Bawendi M.G., Wilson W.L., Rothberg L. Electronic structure and photoexcited–carrier dynamics in nanometer–size CdSe clusters. Phys. Rev. Lett., 1990, 65(13): 1623–1626.
    [29] Murry C.B., Kagan C.R., Bawendi M.G. Self–Organization of CdSe Nanocrystallites into Three–Dimensional Quantum Dot Superlattices. Science, 1995, 270: 1335–1338.
    [30] Rossetti R., Hill R., Gibson J.M., et al. Excited electronic states and optical spectra of ZnS and CdS crystallites in the≌15 to 50? size range: Evolution from molecular to bulk semiconducting properties. J. Chem. Phys., 1985, 82(1): 552–559.
    [31] Dakternieks D., Orlandini A., Sacconi L. Synthesis and structural characterization of an unexpected 1:1 adduct of nickel diacetyl–bisbenzoylhydrazonate with o–Phenanthroline. Inorg. Chim. Acta, 1978, 29: 205–206.
    [32] Bailey N.A., Fenton D.E., Franklin M.V., et al. Ternary complexes of copper(II) with mixed acetylacetonate and nitrogen–containing ligands. J. Chem. Soc., Dalton Trans., 1980, 6: 984–990.
    [33] Simmons C.J., Alcock N.W., Seff K., et al. A fluxional pseudo–Jahn–Teller complex: the structure of (acetato)bis(1,10–phenanthroline)copper(II) perchlorate, [Cu(C12H8N2)2(C2H3O2)]ClO4, at 298 and 173K. Acta Crystallogr., 1985, B41: 42–46.
    [34] Dunaj–Jurco M., Potocnak I., Cibik J., et al. Mixed–valence Cu(I)–Cu(II) complexes. Structure of cyanobis(1,10–phenanthroline) copper(II) bis(cyano) (1,10–phenanthroline) cuprate(I) pentahydrate. Acta Crystallogr., 1993, C49(8): 1479–1482.
    [35] Sigman D.S. Nuclease activity of 1,10–phenanthroline–copper ion. Acc. Chem. Rev.,1986, 19 (6): 180–186.
    [36] Chao H., Ye B.H., Li H., Zhou J.Y., Ji L.N. Synthesis electrochemical and spectroscopicproperties of ruthenium(II)complexes containing 1,3–bis([1, 10]–phenanthroline–[5,6– d]imidazo–2–yl)benzene. Polyhedron, 2000, 19(16–17): 1975–1983.
    [37] Ma W., Cao E., Zhang J., et al. Phenanthroline–Cu complex mediated cheluminesence of DNA and its potential use in antioxidation evaluation. Photochem. Photobiol. B., 1998. 44(1): 63–68.
    [38]刘育,尤长城,张衡益.超分子化学–合成受体的分子识别与组装.天津:南开大学出版社, 2001.
    [39] Pederson, C.J., Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc. 1967, 89(26): 7017–7036.
    [40] Dietrich B., Lehn J.M., Sauvage J.P. Diaza–polyoxa–macrocycles et macrobicycles. Tetrahedron Lett., 1969, 10(34): 2885–2888.
    [41]吴成泰.冠醚化学.北京:科学出版社,1992.
    [42] Lehn J.M., Atwood J.L., Davies L.E.D., et al. Comprehensive Supramolecular Chemistry. Vol. 1–11. Pergamon, 1996.
    [43]刘育,张衡益,李莉等.纳米超分子化学.北京:化学工业出版社,2004.
    [44]张群.论氢键的生物学意义.安庆:安庆师院学报(自然科学版),1995,1(1): 7–11.
    [45]杨华,汪成,王冰.晶体结构中的氢键类型.化学与粘合, 2003, 4: 186–189.
    [46] Lough A.J., Parks R. X-H□M Hydrogen bond (X = O , N; M = Metal Atom). J. Am. Chem. Soc, 1994, 116: 8356–83641.
    [47] Steiner Dr.T. The Hydrogen Bond in the Solid State. Angew. Chem. Int. Ed. 2002, 41: 48–76.
    [48] Hunter C.A., Sanders J.K.M. The Nature ofπ–πInteractions. J. Am. Chem. Soc., 1990, 112(14): 5525–5534.
    [49] Janiak C.A. critical account onπ–πstacking in metal complexes with aromatic nitrogen–containing ligands. J. Chem. Soc., Dalton Trans., 2000, 21: 3885–3896. [50高希珂.萘并冠醚配合物的合成、晶体结构、性质和超分子化学: [硕士学位论文].聊城:聊城大学, 2005.
    [51]魏开举.新型含N,O配体构筑的分子建筑及功能配合物的控制组装: [博士学位论文].合肥:中国科技大学, 2005.
    [52] Bi W.H., Sun D.F., Cao R., et al. Hydrothermal Synthesis and Crystal Structure of [Mn(phen)–(m–phth)]n (phen=1,10–phenanthroline, m–phth=isophthalate. Chin. J. Chem.,2004, 22(3): 271–274.
    [53]孙杰,林建利,郑岳青. [Cu(phen)2Cl](OH)5.5H2O的合成和晶体结构(phen = 1,10–phenanthroline).宁波大学学报(理工版),2001, 14(2): 13–17.
    [54] Ma, J.C., Dougherty, D.A. The Cation–Pi Interaction. Chem. Rev., 1997, 97: 1303-1324.
    [55] Ting A.Y., Shin I., Lucero C. Energetic Analysis of an Engineered Cation– Interaction in Staphylococcal Nuclease. J. Am. Chem. Soc. 1998, 120(28): 7135–7136.
    [56] Wu Z., Demma M., Strickland C.L. Farnesyl Protein Transferase: Identification of K164 and Y300 as Catalytic Residues by Mutagenesis and Kinetic Studies. Biochemistry, 1999, 38(35): 11239–11249.
    [57]闫有旺.化学学科的前沿–超分子化学.化学教学, 2003, (11): 32–33.
    [58] Barton J.K. Metals and DNA molecular left–handed complements. Science, 1986, 233: 727–734.
    [59]计亮年,黄锦汪,莫庭焕等.生物无机化学导论.广州:中山大学出版社, 2001, 9–15.
    [60]鲁惠丽.稀土及过渡金属药物配合物与核酸的作用机理研究: [博士学位论文].兰州:兰州大学, 2006.
    [61]杨培菊.金属配合物与DNA的相互作用: [硕士学位论文].兰州:西北师范大学,2005.
    [62]徐春,何品刚,方禹之.溴化乙锭标记DNA电化学探针的研究.高等学校化学学报, 2000, 21: 1187–1190.
    [63]凌连生,何治柯,曾云鹗.脱氧核糖核酸荧光探针的研究进展.分析化学, 2001, 29: 721–724.
    [64] Zhou Y.L., Shun N.M., Li Y.Z., et al. Improved fluorometric DNA determination based on the interaction of the DNA/Polycation complex with Hoechst33258. Microchim. Acta, 2004, 144: 191–197. 65 Rehmann J.P., Barton J.K. Proton NMR studies of tris phenanthroline metal complexes bound to oligonucleotides:structural characterizations via selective paramagnetic relaxation. Biochemistry, 1990, 29: 1701–1704.
    [66] Friedman A.E., Chambron J.C., Sauvage J.P., et al. Molecular“light switch”for DNA: [Ru(bpy)2–(dppz)]2+. J. Am. Chem. Soc., 1990, 112: 4960–4963.
    [67] Styanarayana S., Dabrowiak J.C., Chaires J.B. NeitherΔ–norΛ= tris(phenanthroline)- tuthenium(III)binds to DNA by classical intercalation. Biochemstry, 1992, 31: 9319–9322.
    [68]周春琼,高飞,李树娥等. Eu(III)与Hbbimp的配合物的合成、表征及与活化磷酸二酯键BDNPP的水解动力学研究.中国稀土学报, 2003, 21(5): 499–503.
    [69] Mark E.B., Adrianne K.T., Lawrence Q.J., et al. Double–strand hydrolysis of plasmid by dicerium complexes at 37 oC. J. Am. Chem. Soc., 2001, 123: 1898–1901.
    [70] Wall M., Rosemary C.H., Chin J. Double lewis acid activation in phosphate diester cleavage. Angew. Chem. Int. Ed. Engl., 1993, 32(11): 1633–1637.
    [71] Rosenberg B., Van L., Krigas T. Inhibition of Cell Division in Escherichia coli by Electrolysis Products from a Platinum Electrode. Nature, 1965, 205: 698–699.
    [72] Vilaplana–Serrano R., Basallote M.G., Ruiz–Valero C., et al. Synthesis and X–ray structural study of a novel ruthenium(III)–ethylenediaminetetraacetate complex. The first compound showing an unusual coordination site for a carboxylic (glycine) group. J. Chem. Soc., Chem. Comm., 1991, 2: 100–101.
    [73] Clarke M.J. Ruthenium metallopharmaceuticals. Coord. Chem. Rev., 2002, 232(1–2): 69–93.
    [74]李晓滨,陈兴安.柠檬酸镧对人肺癌PG细胞,人胃癌BGC–823细胞的作用.中国稀土学报, 2000, 8(2): 156–159.
    [75]栗建林,张丽帼.混合轻稀土抑制小鼠肺腺癌及机理的研究.卫生毒理学杂志, 1997, 11(3): 158–160.
    [76] Reedijk J. Improved understanding in platinium antitumour chemistry. Chem. Commun.1996:801~806.
    [77] Roat R.M., Jerardi M.J., Kopay C.B., et al. Platinum(II) complexes catalyze reactions between platinum(IV) complexes and 9–methylxanthine. J. Chem. Soc., Dalton Trans., 1997, 3615–3621.
    [78] Mcaffrey L.J, Henderson W., Nicholson B.K., et al. Platinum(II), palladium(II), and nickel(II) thiosalicylate complexes. J. Chem. Soc., Dalton Trans., 1997, 2577–2586.
    [79] Blaha L., Lukes I., Rohovec J., et al. Complexes of platinum(II) and palladium(II) with aminomethylphosphonic acid and glycylaminomethylphosphonic acid . J. Chem. Soc., Dalton Trans., 1997, 2621–2628.
    [80] Cavaglioni A., Cini R. The first crystal structure of a rhodium complex with the antileukaemic drug purine–6–thione; synthesis and molecular orbital investigation of new organorhodium(III) compounds. J. Chem. Soc., Dalton Trans, 1997: 1149–1158.
    [81] Ceci E., Cini R., Konopa J., et al. Coordination and peri–Carbon Metalation of 1–Nitro–9–[(2–aminoethyl)amino]acridines toward Platinum(II). Evidences for Hydrogen Bonding between Endocyclic N(10)H and Chloride Ion. Inorg. Chem., 1996, 35(4): 876–882.
    [82] Stemp E.D.A., Arkin M.R., Barton J.K. Oxidation of Guanine in DNA by Ru(phen)2(dppz)3+ Using the Flash–Quench Technique. J. Am. Chem. Soc., 1997, 119(12): 2921–2925.
    [83] Holmlin R.E., Stemp E.D., Barton J.K. Ru(phen)(2)dppz(2+). Luminescence: Dependence on DNA Sequences and Groove–Binding Agents. Inorg. Chem., 1998, 37: 29–34.
    [84]张黔玲,刘剑洪,任祥忠,等.多吡啶钴(III)配合物与Zn2+形成的新型“关–开”荧光探针.无机化学学报,2006,22(5):885–889.
    [85] Jin L., Yang P. Binding studies of DNA with Co (III) coordination compound. Chin. J. Chem., 1997, 15(2): 107–113.
    [86] Jin L., Yang P. The interaction of Cobalt (III) mixed–ligand coordination compound with calf thymus DNA. Chin. J. Chem., 1997, 8(6): 551–552.
    [87] Jin L., Yang P. Studies on the Binding of Tris(1,10-phenanthroline) Nickel(II) to Calf Thymus DNA. Chem. Res. Chin. Univ., 1997, 13(3), 201–206.
    [88] Jin L., Yang P. Synthesis, Characterization and DNA-Binding Studies of Nickel(II) Mixed-Polypyridyl Complex. Chem. Res. Chin. Univ., 1998, 14(1), 12-16.
    [89]张黔玲,刘剑洪,徐宏,等.镍(II)多吡啶配合物的合成及其插入配体的形状对键合DNA的影响.中山大学学报(自然科学版),2003,42(13):21–25.6
    [90]张黔玲,刘剑洪,张培新,等.配体形状对多吡啶铜(II)配合物与DNA作用的影响.无机化学学报,2005,21(3):344–348.
    [91]宋玉民,康敬万,高锦章.钴(III)配合物与DNA作用的研究.无机化学学报,2000,16(1):53–57.
    [92]李红,乐学义,计亮年,等.邻菲咯啉–铜(II)–L–亮氨酸配合物与DNA的结合,化学学报,2003,61(12):847–850.
    [93]李红,乐学义,吴建中等.铜(II)邻菲咯啉蛋氨酸配合物与DNA相互作用的研究.化学学报,2003,61(2):245–250.
    [94]张荣丽,朱俊杰,赵广超,等. Cu(phen)2+2和Cu(bpy)2+2与6–巯基嘌呤、腺嘌呤相互作用的研究.高等学校化学学报,1998,19(9):1363–1368.
    [95]万荣,赵刚,陈晶等.人工核酸切割试剂研究进展.科学通报, 2000, 45(8): 785–798.
    [96] Breslow R. Bifunction acid–base catalysis by imidazole groups in enzyme mimic. J. Mol. Cataly. 1994, 91(2): 161–174.
    [97]朱兵,赵大庆,倪嘉缵.稀土及其配合物对核酸的断裂作用.化学进展, 1998, 10(4): 395–404.
    [98]沈先荣,韩玲.化学合成的DNA定位断裂工具.生物化学和生物物理进展, 1993, 20(5): 343–346.
    [99]刘长林,徐辉碧,周井炎.特异识别和切割DNA的过度金属配合物.化学通报, 1995, 8: 26–31.
    [100] Ishikawa Y, Morishita Y, Yamamoto T, et al. Oxidative and Random cleavage of DNA by the novel iron hydroperoxide intermediate. Chem. lett.,1998, 39–40.
    [101] Sigman D.S., Graham D.R., Daurora V., et al. Oxygen–dependent cleavage of DNA by the 1,10–phenanthroline cuprous complex. J Biol. Chem., 1979, 254(24): 12269–12272.
    [102] Reed C.J., Douglas K.T. Chemical cleavage of plasmid DNA by glutathione in the presence of Cu(II)ions. The Cu–thiol system for DNA strand scission. J. Biochem., 1991, 275: 601–603.
    [103]杨频,高飞.生物无机化学原理.北京:科学出版社, 2002.
    [104] Sitlani A., Long E.C., Pyle A.M., et al. DNA Photocleavage by Phenanthrenequinone Diimine Complexes of Rhodium(III): Shape–Selective Recognition and Reaction. J Am. Chem. Soc., 1992, 114: 2303–2312.
    [105]宋玉民,康敬万,高锦章.钴III配合物与DNA作用研究.无机化学学报, 2000, 1(16): 53–57.
    [106] Jeung C.S., Kim C.H., Min K., et al. Hygrolysis of Plasmid DNA Catalyaed by Co(III)Complex of Cyclen Attached to Polystyrene. Bioorg. Med. Chem. Lett.,2001,11:2401–2404.
    [107] Komiyama M., Matsumura K., Matsumoto Y. Unprecedentedly fast hydrolysis of the RNA dinucleoside monophosphates ApA and UpU by rare earth metal ions. J. Chem. Soc., Chem. Commun., 1992, 640–641.
    [108] Matsumura K., Komiyama M. Enormously fast RNA hydrolysis by lanthanide(III)ions under physiological conditions: eminent candidates for novel tool of biotechnology. J. Biochem., 1997, 122: 387–394.
    [109] Zeng X.P., Xi Z., Kappen L.S., et al. Double–stranded damage of DNA–RNA hybrids by neocarzinostatin chromophore:selective c–1’chemistry on the RNA strand. Biochemistry, 1995, 34(38): 12435–12444.
    [110]张蓉颖,庞代文,蔡汝秀. DNA与其靶向分子相互作用研究进展.高等学校化学学报, 1999, 20: 1210–1217.
    [111] Shultz P. G.,Taylor J.S.,Dervan P.B. Design synthesis of a sequence–specific DNA cleaving molecule. (Distamycin–EDTA)iron(II). J. Am. Chem. Soc.,1982, 104(24): 6861–6863.
    [112] Yang P.,Song A.X.,Fan X.Y. Mechanism of cleaving DNA through hydrolysis of a novel complex of Mg containing dien ligand. Chin. Chem. Lett.,2000,11(l): 35–36.
    [1] Schilt A.A. Analytical Applications of 1,10–Phenanthroline and Related Compounds. Oxford, Pergamon Press, 1969.
    [2] Gladiali S., Chelucci G., Soccolini F., et al. Opically active phenanthroline in asymmetric catalysis I. Enantio selective transfer hydrolgenation of acetophenore by rhodium/alkyl phenanthroline catalysts. J. Organomet. Chem., 1989, 370(1): 285–294.
    [3] Hartshorn R.M., Barton J.K. Novel Dipyridophenazine Complexes of Ruthenium(II): Exploring Luminescent Reporters of DNA. J. Am. Chem. Soc., 1992, 114: 5919–5925.
    [4] Tzelis D., Tor Y., Failla S., et al. Simple One–Step Synthesis of 3–Bromoand 3.8–Dibromo–1.10–Phenanthroline, Fundamental Building Blocks in the Design of Metal Chelates. Tetrahedron Letters., 1995, 36(20): 3489–3490.
    [5] Beer R.H., Jimenez J. Syntheses of 2.9–Bis(halomethyl)–1,10–phenanthrolineas Potential Robust Ligands for Metal Oxidation Catalysts. J. Org. Chem., 1993, 58: 1746–1747.
    [6] Bawendi M.G., Steigerwald M L., Brus L.E. The Quantum Mechanics of LargerSemiconductor Clusters ("Quantum Dots"). Annual Rev. Phys. Chem., 1990, 41: 477–496.
    [7] Bawendi M.G., Wilson W.L., Rothberg L. Electronic structure and photoexcited–carrier dynamics in nanometer–size CdSe clusters. Phys. Rev. Lett., 1990, 65(13): 1623–1626.
    [8] Murry C.B., Kagan C.R., Bawendi M.G. Self–Organization of CdSe Nanocrystallites into Three–Dimensional Quantum Dot Superlattices. Science, 1995, 270: 1335–1338.
    [9] Rossetti R., Hill R., Gibson J.M., et al. Excited electronic states and optical spectra of ZnS and CdS crystallites in the≌15 to 50? size range: Evolution from molecular to bulk semiconducting properties. J. Chem. Phys., 1985, 82(1): 552–559.
    [10] Dakternieks D., Orlandini A., Sacconi L. Synthesis and structural characterization of an unexpected 1:1 adduct of nickel diacetyl–bisbenzoylhydrazonate with o–Phenanthroline. Inorg. Chim. Acta, 1978, 29: 205–206.
    [11] Bailey N.A., Fenton D.E., Franklin M.V., et al. Ternary complexes of copper(II) with mixed acetylacetonate and nitrogen–containing ligands. J. Chem. Soc., Dalton Trans., 1980, 6: 984–990.
    [12] Simmons C.J., Alcock N.W., Seff K., et al. A fluxional pseudo–Jahn–Teller complex: the structure of (acetato)bis(1,10–phenanthroline)copper(II) perchlorate, [Cu(C12H8N2)2– (C2H3O2)]ClO4, at 298 and 173K. Acta Crystallogr., 1985, B41: 42–46.
    [13] Dunaj–Jurco M., Potocnak I., Cibik J., et al. Mixed–valence Cu(I)–Cu(II) complexes. Structure of cyanobis(1,10–phenanthroline) copper(II) bis(cyano) (1,10–phenanthroline) cuprate(I) pentahydrate. Acta Crystallogr., 1993, C49(8): 1479–1482.
    [14]宋玉民,康敬万.钴(III)配合物与DNA的作用研究.无机化学学报, 2000, 16(1): 53–57.
    [15] Chen H.L., Yan G.P. A Novel Cobalt (III) Mixed–polypyridy Complex: Synthesis characterization and DNA binding. Chin. J. Chem., 2002, 20(6): 1529–1535.
    [16]汪中明,林华宽. 2,9–二甲基–1,10–邻菲咯啉的l–缬氨酸衍生物的合成表征及其镧(III)配合物与DNA .化学学报, 2000, 58 (10): 1264–1269.
    [17] Jin L. and Yang P. Synthesis and DNA–Binding Studies of a Nickel(II) Coordination Compound. Microchem. J., 1998, 58: 144–150.
    [18] Liansheng L.S., Song G.W., He Z.K., et al. A novel method to determine DNA by use of molecular“lingt switch of Ru(phen)2(dppz)2+. Microchem. J., 1999, 63(3): 356–364.
    [19] Kumar R.S., Sasikala K., Arunachalam S. Luminescence quenching of Ru(phen)32+ by some polymer–cobalt(III)complexes–Effect of micelles and DNA. J. Chem. Sci., 2007, 119(3): 231–236.
    [20] Zhang Q.L., Liu J.G. Effect of intramolecular hydrogen–bond on the DNA–binding and photocleavage properties of polypyridy cobalt(III) complexes. J. Inorg. Chim. Acta, 2002, 339: 34–40.
    [21] Pope, L.M., Reich K.A., Graham, D.R., et al. Products of DNA cleavage by the 1,10–phenanthroline–copper complex. Inhibitors of Escherichia coli DNA polymerase I. J. Biol. Chem., 1982, 257, 12–21.
    [22] Kuwabara M., Yoon C., Goyne T. Nuclease activity of 1,10–phenanthroline–copper ion: reaction with CGCGAATTCGCG and its complexes with netropsin and EcoRI. Biochemistry, 1986, 25(23): 7401–7408.
    [23] Johnson, G..R.A., Nazhat, N.B. Kinetics and mechanism of the reaction of the bis(1,10–phenanthroline)copper(I) ion with hydrogen peroxide in aqueous solution. J. Am. Chem. Soc., 1987, 109(7): 1990–1994.
    [24] Yamamoto, K., Kawahishi, S. Hydroxyl free radical is not the main active species in site–specific DNA damage induced by copper (II) ion and hydrogen peroxide. J. Bio. Chem., 1989, 264: 15435–15440.
    [25] Holmlin R.E., Stemp E.D.K. Ru(phen)2dppz2+ luminescene: dependence on DNA sequences and groove–binding agents. Inorg. Chem.,1998, 37(1): 29–34.
    [26] Schmittel M.,Ammon H., W?hrle C. Tris–(1,10–phenanthroline) iron(II) complexes–broad variat ion of the redox potential by 4,7–substitution at the phenanthroline ligands. Chem. Ber., 1995, 128(7): 845–850.
    [27] Sigman D.S. Nuclease activity of 1,10–phenanthroline–copper ion. Acc. Chem. Rev.,1986, 19(6): 180–186.
    [28] Chao H., Ye B.H., Li H., Zhou J.Y., Ji L.N. Synthesis electrochemical and spectroscopic properties of ruthenium(II)complexes containing 1,3–bis([1,10]–phenanthroline–[5,6– d]imidazo–2–yl)benzene. Polyhedron, 2000, 19(16–17):1975–1983.
    [29] Ma W., Cao E., Zhang J., et al. Phenanthroline–Cu complex mediated cheluminesence of DNA and its potential use in antioxidation evaluation. Photochem. Photobiol. B., 1998. 44(1):63–68.
    [30]袁彩霞,杨频.二氯邻菲咯啉合钴与DNA的相互作用研究.山西大学学报(自然科学版), 2004, 27(2): 163–166
    [31]李玲,宋公武. Fe(phen)3Cl3的合成及其与DNA的作用的光谱性质.湖北大学学报(自然科学版), 2002, 24(4): 332–334.
    [32] Bruker, SMART and SAINT. Bruker Axs Inc., Madison, WI, USA, 1999.
    [33] Sheldrick, G.M. SHELXS–97 and SHELXL–97. Program for Crystal Structure Analysis. Germany: University of G?ttingen, G?ttingen, 1997.
    [34] Marmur J. A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol. 1961, 3: 208–218.
    [35] Reichmann M.E., Rice S.A., Thomas C.A., et al. A Further Examination of the Molecular Weight and Size of Desoxypentose Nucleic Acid. J. Am. Chem. Soc., 1954, 76: 3047–3053.
    [36] The Cambridge Crystallographic Data Center. The Cambridge Structural Database version 5.29. Cambridge, 2008.
    [37] Yu J.H., Xu J.Q., Han L., et al. Hydrothermal Syntheses, Supramolecular Structures and the Third–order Non–linear Optical Properties of Three Copper(I) Halide Amine Complexes Connected via Secondary Bonding Interactions. Chin. J. Chem., 2002, 20(9): 851–857.
    [38] Healy P.C., Engelhardt L.M., Patrick V.A., et al. Lewis–base adducts of Group 1B metal(I) compounds. Part 19. Crystal structures of bis(1,10–phenanthroline)copper(I) perchlorate and dibromocuprate(I). J. Chem. Soc., Dalton Trans., 1985, 12: 2541–2545.
    [39] Hunter C.A., Sanders J.K.M. The Nature ofπ–πInteractions. J. Am. Chem. Soc., 1990, 112(14): 5525–5534.
    [40] Dou J.M., Gao X.K., Dong F.Y., et al. One– or two–dimensional 2,3–naphtho crown ether complexes [Na(N15C5)]2[M(SCN)4] and [K(N18C6)]2[M(SCN)4] (M = Pd, Pt) constructed byπ–πstacking interactions. J. Chem. Soc., Dalton Trans., 2004, 16: 2918–2922.
    [41] Tysoe S.A., Morgan R.J., Baker A.D., et al. Spectroscopic Investigation of Differential Binding Modes ofΔ– andΔ–Ru(bpy)2(ppz )2+ with Calf Thymus DNA. J. Phys. Chem., 1993, 97(8): 1707–1711.
    [42] Mahadevan S., Palaniandavar M. Spectroscopic and Voltammetric Studies on Copper Complexes of 2,9–Dimethyl–1,10–phenanthrolines Bound to Calf Thymus DNA. Inorg.Chem., 1998, 37: 693–700.
    [43] Pyle, A.M., Rehmann, J.P., Meshoyrer, R. et al. Mixed–Ligand Complexes of Ruthenium(II): Factors Governing Binding to DNA. J. Am. Chem. Soc., 1989, 111(8): 3051–3058.
    [44] Zhang S., Zhu Y., Tu C., et al. A novel cytotoxic ternary copper(II) complex of 1,10–phenanthroline and l–threonine with DNA nuclease activity. J. Inorg. Biochem., 2004, 98(12): 2099–2106.
    [45] Gao F., Chao H., Zhou F., et al. DNA interactions of a functionalized ruthenium(II) mixed–polypyridyl complex [Ru(bpy)2ppd]2+. J. Inorg. Biochem, 2006, 100(9): 1487–1494.
    [46] Vaidyanathan V.G., Nair B.U. Photooxidation of DNA by a cobalt(II) tridentate complex. J. Inorg. Biochem., 2003, 94: 121–126.
    [47] Mesmaeker A.K.D., Orellana G., Barton J.K., et al. Ligand–Dependent Interaction of Ruthenium(II) Polypyridyl Complexes with DNA Probed by Emission Spectroscopy. Photochem. Photobiol., 1990, 52: 461–472.
    [48]卢圣栋.现代分子生物学实验技术.北京:高等教育出版社,1993.
    [49] Kumar C.V., Barton J.K., Turro M.J. Photophysics of ruthenium complexes bound to double helical DNA. J. Am. Chem. Soc., 1985, 107(19): 5518–5523.
    [50] Baguley B.C., Lebret M. Quenching of DNA–ethidium fluorescence by amsacrine and other antitumor agents: a possible electron–transfer effect. Biochemistry, 1984, 23(5): 937–943.
    [51] Stern O., Volmer M. Uber die Abklingungszeit der Fluoreszenz. Phys. Z. 1919, 20: 183–188.
    [52] Niu W.J., Wong E.H., Weisman G.R., et al. Two Novel Zinc(II) Complexes of the 1,8–Cross–Bridged Cyclam Ligand and their Structures. Inorg. Chem. Commun., 1999, 2: 361–363
    [53] Garcia–Martin J., Lopez–Garzon R., Godino–Salido M.L., et al. Adsorption of Zn2+ and Cd2+ from aqueous solution onto a carbon sorbent containing a pyrimidine–polyamine conjugate as ion receptor. Eur. J. Inorg. Chem., 2005, 15: 3093–3103.
    [54] Marandi F., Soudi A.A., Morsali A., et al. Zinc(II) and cadmium(II) complexes of the 3–(2–pyridyl)–5,6–diphenyl–1,2,4–triazine (PDPT) ligand, structural studies of [Zn(PDPT)2Cl(ClO4)] and [Cd(PDPT)2(NO3)(ClO4)] . Z. Anorg. Allg. Chem., 2005, 631(15): 3070–3073.
    [55] Li L.C., Liao D.Z., Wang G.L., et al. Preparation and crystal structure of a heterobinuclearCopper(II)–Zinc(II) complex withμ–oxamido ligand. Chinese J. Struct. Chem., 1991, 10: 151–154.
    [56] Xu G.F., Liu Z.Q., Zhou H.B, et al. Heteropolymetallic Supramolecular Solid–State Architectures Constructed from Dicyanoaurate Ion, Phen, and 3d Metals. Aust. J. Chem., 2006, 59(9): 640–644.
    [57] Vijayalakshmi R., Kanthimathi M., Subramanian V., et al. Interaction of DNA with [Cr(Schiff base)(H2O)2]ClO4. Biochem. Biophys. Acta, 2000, 1475: 157–162.
    [58] Strekowski L., Wilson B. Noncovalent interactions with DNA: an overview. Mutat. Res., 2007, 623: 3–13.
    [59]杨培菊.金属配合物与DNA的相互作用:[硕士学位论文].西安:西北师范大学,2005.
    [60] Strekowski L., Harden D.B., Wydra R.L., et al. Molecular basis for potentiation of bleomycin–mediated degradation of DNA by polyamines. Experimental and molecular mechanical studies. J. Mol. Recognit., 1989, 2(4): 158–166.
    [61] Nelson S.M., Ferguson L.R., Denny W.A. Non–covalent ligand/DNA interactions: minor groove binding agents. Mutat. Res., 2007, 623(1–2): 24–40.
    [62] Boger D.L., Fink B.E., Brunette S.R., et al. A Simple, High–Resolution Method for Establishing DNA Binding Affinity and Sequence Selectivity. J. Am. Chem. Soc., 2001, 123 (25): 5878–5891.
    [63] Ejsmont K., Wasielewski M., Zaleski J. Tris(1,10–phenanthroline)zinc(II) dichromate tetrahydrate. Acta Crystallogr., 2002, E58: m200–202.
    [64]谢爱理,周康靖.四核环状钒氧酸三邻菲罗啉合锌合成、单晶结构及电化学行为.化学学报, 1997, 55(9): 853–859.
    [65] Janiak C.A. critical account onπ–πstacking in metal complexes with aromatic nitrogen–containing ligands. J. Chem. Soc., Dalton Trans., 2000, 21: 3885–3896.
    [1]唐振球.对羟基苯甲醛的制备及提高其得率的研究.沈阳化工, 1987, (6): 11–14.
    [2]汪元博.酉旨化氧化法合成水杨醛: [硕士学位论文].天津:天津大学化工学院, 2007.
    [3]许涛,李连之,冀海伟.邻香草醛缩羟胺席夫碱的合成与表征.合成化学,2004, 12(1): 22–24.
    [4] Buijs W., Comba P., Corneli D., et al. Structural and mechanistic studies of the copper(II)–assisted ortho–hydroxylation of benzoates by trimethylamine N–oxide. J. Organomet. Chem., 2002, 641: 71–80.
    [5] Tan X.S., Tang W.X., Chen J. SYNTHESIS, PROPERTIES AND STRUCTURE OF [MnIII(sal)(bpy)(MeOH)Cl]?MeOH (sal = salicylate, bpy = bipyridyl, MeOH = CH3OH). Polyhedron, 1996, 15(2): 2087–2091.
    [6]张存根,冷拥军,顾建明,等. Schiff碱与锰(III)的单核和双核配合物的合成与结构.无机化学学报. 1999, 15(5): 583–589.
    [7] Zhu L.G., Kitagawa S. The dimeric and two–dimensional copper(II) complexes constructed from salicylic acid and 4,4’–bipyridine. Inorg. Chem. Commun., 2003, 6: 1051–1055.
    [8] Devereux M., McCann M., Casey M.T., et al. Binuclear and polymeric manganese(II) salicylate complexes: synthesis, crystal structure and catalytic activity of [Mn2(Hsal)4(H2O)4] and [{Mn2(sal)2(Hsal)(H2O)–(H3O)(py)4·2py}n](H2sal = salicylic acid, py = pyridine). J. Chem. Soc., Dalton Trans., 1995, 771–776.
    [9] Boutilier K., MacGillivray L.R., Subramanian S. J. Ionic liquid mediated preparation and X–ray crystal structure of [1–methylimidazolium]2[cis–MoO2(salicylato–O1,O2)2]. Crystallogr., Spectrosc. Res., 193, 23: 773–778.
    [10] Jian F., Wang Z., Chen Wei, Bis(1–methylimidazole–N3)bis(salicylato–O,O')copper(II). Acta Crystallogr., 1999, C55: 1228–1230.
    [11] Edwards D.A., Mahon M.F., Paget T.J. The bis(η–cyclopentadienyl)titanium(IV)–salicylate system revisited and the characterisation of two 3,5–di–t–butylsalicylate analogues. The molecular structure of [Cp2Ti(sal)], (sal = O2CC6H4O2?). Trans. Met. Chem., 2001, 26: 116–119.
    [12]柳翠英,刘培漫.铜(II)的N(2–羟基乙基)水杨醛亚胺配合物的合成及抑菌活性.山东医科大学学报,1994,32(2): 171–173.
    [13]梁芳珍. 5–溴水杨醛硫代双酰腙及其Cu(II)配合物的合成、表征及抑菌活性.应用化学, 2003, 20(7): 693–695.
    [14]张邦乐,何炜,王多宁. 3,5–二硝基水杨醛缩甘氨酸铜(II)配合物的合成、表征及其抗O2活性.西北药学杂志, 2000, 15(4): 175–176.
    [15]孙妩媚,杨旭武,张航国,等.稀土水杨酸配合物的光谱性质.光子学报, 2006, 35(10): 1593–1596.
    [16]普绍平,李学杰,等.具有抗癌活性的铂配合物.中国专利,200410021819, 2004–12–29.
    [17] Li M., Zou J.Z., Xu Z., et al. X–ray crystal structure, spectral and magnetic properties of a mixed–ligand dinuclear complex [Cu(Phen)(Sa)(ClO4)]2. Polyhedron, 1995, 14(5): 639–642.
    [18] Wu H.Y., Feng Y.F., Wang S.R., et al. (4–Bromo–2–formylphenolato)perchlorato (1,10–phenanthroline)copper(II). Acta Cryst., 2006, C62: m358–m359.
    [19] The Cambridge Crystallographic Data Center. The Cambridge Structural Database version 5.29. Cambridge, 2008.
    [20] Bruker, SMART and SAINT. Bruker Axs Inc., Madison, WI, USA, 1999.
    [21] Sheldrick, G. M. SHELXS–97 and SHELXL–97. Program for Crystal Structure Analysis. Germany: University of G?ttingen, G?ttingen, 1997.
    [22] J. Marmur. A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol., 1961, 3: 208–218.
    [23] Reichmann M.E., Rice S.A., Thomas C.A., et al. A Further Examination of the Molecular Weight and Size of Desoxypentose Nucleic Acid. J. Am. Chem. Soc., 1954, 76: 3047–3053.
    [24] Madalan A.M., Kravtsov V.C., Pajic D., et al. Chemistry at the apical position of square–pyramidal copper(II) complexes: synthesis, crystal structures, and magnetic properties of mononuclear Cu(II), and heteronuclear Cu(II)–Hg(II) and Cu(II)–Co(II) complexes containing [Cu(AA)(BB)]+ moieties (AA=acetylacetonate, salicylaldehydate; BB= 1,10–phenanthroline, Me2bipy = 4,4′–dimethyl–2,2′–bipyridine). Inorg. Chim. Acta, 2004, 357(14): 4151–4164.
    [25] Janiak C.A. critical account onπ–πstacking in metal complexes with aromatic nitrogen–containing ligands. J. Chem. Soc., Dalton Trans., 2000, 21: 3885–3896.
    [26] Tysoe S.A., Morgan R.J., Baker A.D., et al. Spectroscopic Investigation of Differential Binding Modes ofΔ– andΔ–Ru(bpy)2(ppz )2+ with Calf Thymus DNA. J. Phys. Chem., 1993, 97(8): 1707–1711.
    [27] Pyle, A.M.; Rehmann, J.P.; Meshoyrer, R., et al. Mixed–Ligand Complexes of Ruthenium(II): Factors Governing Binding to DNA. J. Am. Chem. Soc., 1989, 111(8): 3051–3058.
    [28] Zhang S., Zhu Y., Tu C., et al. A novel cytotoxic ternary copper(II) complex of 1,10–phenanthroline and l–threonine with DNA nuclease activity. J. Inorg. Biochem., 2004, 98(12): 2099–2106.
    [29] Gao F., Chao H., Zhou F., et al. DNA interactions of a functionalized ruthenium(II) mixed–polypyridyl complex [Ru(bpy)2ppd]2+. J. Inorg. Biochem, 2006, 100(9): 1487–1494.
    [30] Vaidyanathan V.G., Nair B.U. Photooxidation of DNA by a cobalt(II) tridentate complex. J. Inorg. Biochem., 2003, 94: 121–126.
    [31] Mesmaeker A.K.D., Orellana G., Barton J.K., et al. Ligand–Dependent Interaction of Ruthenium(II) Polypyridyl Complexes with DNA Probed by Emission Spectroscopy. Photochem. Photobiol., 1990, 52: 461–472.
    [32]卢圣栋.现代分子生物学实验技术.北京:高等教育出版社,1993. [33 Kumar C.V., Barton J.K., Turro M.J. Photophysics of ruthenium complexes bound to double helical DNA. J. Am. Chem. Soc., 1985, 107(19): 5518–5523.
    [34] Baguley B.C., Lebret M. Quenching of DNA–ethidium fluorescence by amsacrine and other antitumor agents: a possible electron–transfer effect. Biochemistry, 1984, 23(5): 937–943.
    [35] Stern O., Volmer M. Uber die Abklingungszeit der Fluoreszenz. Phys. Z., 1919, 20: 183–188.
    [36] Sun M., Wang J.L., Duan Y.Q., et al. Synthesis and Structure of Bis–(o–vanillin)di–pyridine Nickel(II)–pyridine Dihydrate. Chin. J. Struct. Chem., 2001, 20(1): 8–11.
    [37] Lin H., Su H., Feng Y. Long. Crystal structure of bis(bis(3–methoxysalicylaldehydato) copper(II)) hexakis(adamantylammonium) hexaperchlorate dihydrate, [{Cu(C8H7O3)2}2] (C10H15NH3)6(ClO4)6?2H2O. Z. Kristallogr., New Cryst. Struct., 2006, 221(2): 1267–1749.
    [38] Jorgensen W.L., Severance D.L. Aromatic–aromatic interactions: free energy profiles for the benzene dimer in water, chloroform, and liquid benzene. J. Am. Chem. Soc., 1990, 112(12): 4768– 4774.
    [39] Das G., Shukla F., Mandal S., et al. Syntheses and X–ray Structures of Mixed–Ligand Salicylaldehyde Complexes of Mn(III), Fe(III), and Cu(II) Ions: Reactivity of the Mn(III) Complex toward Primary Monoamines and Catalytic Epoxidation of Olefins by the Cu(II) Complex. Inorg. Chem., 1997, 36(3): 323–329.
    [40] Dou J.M., Gao X.K., Dong F.Y., et al. One– or two–dimensional 2,3–naphtho crown ether complexes [Na(N15C5)]2[M(SCN)4] and [K(N18C6)]2[M(SCN)4] (M = Pd, Pt) constructed byπ–πstacking interactions. J. Chem. Soc., Dalton Trans., 2004, 16: 2918-2922.
    [41] Rowland R.S., Taylor R. Intermolecular Nonbonded Contact Distances in Organic Crystal Structures: Comparison with Distances Expected from van der Waals Radii. J. Phys. Chem. 1996, 100(18): 7384–7391.
    [42] Hunter C.A., Sanders J.K.M. The Nature ofπ–πInteractions. J. Am. Chem. Soc., 1990, 112(14): 5525–5534.
    [43] Stewart J.M., Lingafelter E.C., Breazeale J.D. The crystal structure of di-aqua-bis(salicylaldehydato)nickel. Acta Crystallogr., 1961, C14: 888–891.
    [44] Shannon R.D. Crystal Physics, Diffraction, Theoretical and General Crystallography. Acta Crystallogr., 1976, A32(5): 751–767.
    [45] Shimoni–Livny L., Glusker J.P., Bock C.W. Lone Pair Functionality in Divalent Lead Compounds. Inorg. Chem. 1998, 37(8): 1853–1867.
    [46] Hu M.L., Lu Y.P., Zhang H.M., et al. Synthesis and crystal structure of two novel PbII compounds of [Pb(endc)2(phen)]n and [Pb(endc)(phen)?3H2O]2. Inorg. Chem. Commun., 2006, 9(9): 962–965.
    [47] Li X.H., Yang S.Z. Bis(μ–2–sulfonatobenzoato)bis[(1,10–phenanthroline)lead(II)] dihydrate. Acta Crystallogr., 2004, C60(9): m423–m425.
    [1] Chen X.B., Li Y.Z., You X.Z. Hydrothermal synthesis of the fist two–dimensional folded layerformed by a cyano–bridged one–dimensional chain joined by Cu(I)–Cu(I) bonding. Appl.Organomet. Chem., 2006, 20(5): 305–309.
    [2] Dyason J.C., Healy P.C., Engelhardt L.M. Lewis–base adducts of Group 1B metal(I)compounds. Part 17. Synthesis and crystal structures of adducts of copper(I) cyanide withnitrogen bases. J. Chem. Soc., Dalton Trans., 1985, (4): 839–844.
    [3] Abrahams B.F., Hoskins B.F., Liu J. The archetype for a new class of simple extended 3Dhoneycomb frameworks. The synthesis and x–ray crystal structures ofCd(CN)5/3(OH)1/3.1/3(C6H12N4), Cd(CN)2.1/3(C6H12N4), and Cd(Cn)2.2/3H2O. tBuOH(C6H12N4 = hexamethylenetetramine) revealing two topologically equivalent butgeometrically different frameworks. J. Am. Chem. Soc., 1991, 113(8), 3045–3051.
    [4] Park K.M., Iwamoto T. The metal complex host catena–[(1, 2–diaminopropane)–cadmium(II)tetracyanonickelate(II)] which provides channel cavities for straight– and branched–chainaliphatic guests. J. Chem. Soc., Dalton Trans., 1993, 1875–1881.
    [5] Liu J.T., Ng S.W. catena–Poly[tri–μ–cyano–1,10–phenanthroline–2N,N'–tricopper(I)]. ActaCryst., 2006, E629: m2005–m2007.
    [6] Kabe?ová, M.; Bo?a, R.; Meln?k, M. et al. Bonding properties of thiocyanate groups incopper(II) and copper(I) complexes. Coord. Chem. Rev., 1995, 140: 115–135.
    [7] (a) Ferlay, S., Francese, G., Schmalle, H. W. et al. A new bidimensional compound containing(μ–thiocyanate)(bpy) copper(II) molecules: synthesis, crystal structure and magneticproperties of [Cu(bpy)(NCS)2]n (bpy = 2,2′–bipyridyl). Inorg. Chim. Acta, 1999, 286(1–2):108–113. (b) Smith D.L., Saunders V.I. The structure and polytypism of theβmodificationof copper(I) thiocyanate. Acta Crystallogr., 1981, B37(10): 1807–1812.
    [8] Zhu, D.Z. Song, X.M. Dou, J.M. et al. One–dimensional Chain Dibenzo–18–crown–6Complex: [K(DB18–C–6)]2[Pt(SCN)6]·2H2O·C2H4Cl2 Assembled by Cation–πInteractions.Chin. J. Inorg. Chem., 2002, 18(7): 697–702.
    [9]李大成,窦建民,王大奇,等.苯并18–冠–6与M2[Pt(SCN)6](M=Na, K)配合物的合成、结构.化学学报,2003, 61(1): 110–116.
    [10] Li, D.C.; Li, Z.X.; Dou, J.M.; Wang, D. Q. One–dimensional Chain Crown Ether Complexes. Synthesis and Crystal Structure of Benzo–18–Crown 6 Complexes with Na2[M(SCN)4] (M = Pd, Pt) J. Inclusion Phenom. Macrocyclic Chem., 2004, 46(1–2): 83–88.
    [11] Dou, J.M., Liu, Y., Zhu, L.Y. et al. Cation–πinteractions. synthesis and crystal structure of palladium complex: [K(DB18C6)]2[Pd(SCN)4]. Chin. Chem. Lett., 2000, 11(5): 463–466.
    [12] Yong, W., Dou, J.M., Zhu, D.Z. et al. Cation–πinteractions in [Na(dibenzo– 18–crown–6)]2[Pd(SCN)4]. Acta Crystallogr., 2001, E57: m127–m129.
    [13] Zhu, D.Z., Wang, T., Song, X.M.二维网状冠醚配合物–苯并15–冠–5、二苯并18–冠–6与Na2[Pt(SCN)6]配合物的合成与结构.化学学报,2002, 60(5): 910–916.
    [14]张子红,窦建民,刘颖,等.苯并15–冠–5与Na2[M(SCN)4](M=Pd,Pt)配合物的合成与结构.化学学报,2002, 60(9): 1649–1655.
    [15] Dou J.M., Gao X.K., Dong F.Y., et al. One– or two–dimensional 2,3–naphtho crown ether complexes [Na(N15C5)]2[M(SCN)4] and [K(N18C6)]2[M(SCN)4] (M = Pd, Pt) constructed byπ–πstacking interactions. J. Chem. Soc. Dalton Trans., 2004, 16: 2918–2922.
    [16] The Cambridge Crystallographic Data Center. The Cambridge Structural Database version 5.29. Cambridge, 2008.
    [17] Botoshanskii M.M., Krasnova N.F., Simonov Yu.A. et al. Crystal and molecular structure of monodimethylglyoxima tobis (o–phenanthroline) cobalt(III) thiocyanate dihydrate. Zh. Strukt. Khim., 1979, 20(6): 900–905.
    [18] Bruker, SMART and SAINT. Bruker Axs Inc., Madison, WI, USA, 1999.
    [19] Sheldrick, G. M. SHELXS–97 and SHELXL–97. Program for Crystal Structure Analysis. Germany: University of G?ttingen, G?ttingen, 1997.
    [20] Marmur J. A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol., 1961, 3: 208–218.
    [21] Reichmann M.E., Rice S.A., Thomas C.A., et al. A Further Examination of the Molecular Weight and Size of Desoxypentose Nucleic Acid. J. Am. Chem. Soc., 1954, 76: 3047–3053.
    [22] Colacio E., Dominguez–Vera J.M., Lloret F. Hydrothermal Syntheses, Crystal Structures, and Properties of Two–Dimensional Homo– and Heterometallic Cyanide–Bridged Complexes: [Cu2(CN)2(bpym)] and [Fe(bipy)2(CN)4Cu2] (bpym = 2,2'–Bipyrimidine, bipy = 2,2'–Bipyridine). Inorg. Chem., 2003, 42(13): 4209–4214.
    [23] Yu J.H., Xu J.Q., Yang Q.X., et al. Hydrothermal synthesis, crystal structure and third–order non–linear optical property of a novel one–dimensional copper(I) cyanide–organodiimine coordination polymer [Cu6(CN)6(phen)4]n (phen=1,10– phenanthroline). J. Mol. Struct., 2003, 658(1–2): 1–7.
    [24] Nord G., Matthes H., Acta Chem. Scand., 1974, A28: 13.
    [25] Lopez–Cueto G., Casado–Riobo J.A. Enhanced decompositions of some cyano complexes during diode array spectrophotometric measurements. Talanta, 1979, 26(2): 127–132.
    [26] He X., Lu C.Z., Yuan D.Q. Synthesis and Crystal Structures of Four Cyanide–Bridged Coordination Polymers. Eur. J. Inorg. Chem., 2005, 2005(11): 2181–2188.
    [27] Coles M.P., Hitchcock P.B. Synthesis and X–ray crystal structure of polymeric and dimeric copper(I) cyanide complexes incorporating a bicyclic guanidine ligand. Polyhedron, 2001, 20(24–25): 3027–3032.
    [28] Chesnut D.J., Kusnetzow A., Zubieta J. Solid state coordination chemistry of the copper cyanide–organoamine system: hydrothermal synthesis and structural characterization of [{Cu2(bpy)2(CN)}2Cu5(CN)7]·0.17H2O. J. Chem. Soc., Dalton Trans., 1998, 4081–4084.
    [29] Mehrotra P.K., Hoffmann R. Cu(I)–Cu(I) Interactions. Bonding Relationships in dl0–d10 Systems. Inorg. Chem., 1978, 17(8): 2187–2189.
    [30] Janiak C.A. critical account onπ–πstacking in metal complexes with aromatic nitrogen–containing ligands. J. Chem. Soc., Dalton Trans., 2000, 21: 3885–3896.
    [31] Oxtoby N.S., Blake A.J., Champness N.R., et al. The role of 1,2,4,5–tetrazine rings inπ–πstacking interactions. Cryst. Eng. Comm., 2003, 5: 82–86.
    [32] Tysoe S.A., Morgan R.J., Baker A.D., et al. Spectroscopic Investigation of Differential Binding Modes ofΔ– andΛ–Ru(bpy)2(ppz )2+ with Calf Thymus DNA. J. Phys. Chem., 1993, 97(8): 1707–1711.
    [33] Pyle, A.M., Rehmann, J.P., Meshoyrer, R. et al. Mixed–Ligand Complexes of Ruthenium(II): Factors Governing Binding to DNA. J. Am. Chem. Soc., 1989, 111(8): 3051–3058.
    [34] Liu Z.-Q., Li Y.-T., Wu Z.-Y., et al. A two-dimensional copper(II) polymer with bridgingμ-trans-oxamidate andμ2-picrate ligands: Synthesis, crystal structure and DNA binding studies. Inorg. Chim. Acta, 2008, 361: 226–232.
    [35] Zhang S., Zhu Y., Tu C., et al. A novel cytotoxic ternary copper(II) complex of1,10–phenanthroline and l–threonine with DNA nuclease activity. J. Inorg. Biochem., 2004, 98(12), 2099–2106.
    [36] Gao F., Chao H., Zhou F., et al. DNA interactions of a functionalized ruthenium(II) mixed–polypyridyl complex [Ru(bpy)2ppd]2+. J. Inorg. Biochem., 2006, 100(9): 1487–1494.
    [37] Vaidyanathan V.G., Nair B.U. Photooxidation of DNA by a cobalt(II) tridentate complex. J. Inorg. Biochem., 2003, 94: 121–126.
    [38] Mesmaeker A.K.D., Orellana G., Barton J.K., et al. Ligand–Dependent Interaction of Ruthenium(II) Polypyridyl Complexes with DNA Probed by Emission Spectroscopy. Photochem. Photobiol., 1990, 52: 461–472.
    [39] Kumar C.V., Barton J.K., Turro M.J. Photophysics of ruthenium complexes bound to double helical DNA. J. Am. Chem. Soc., 1985, 107(19): 5518–5523.
    [40] Baguley B.C., Lebret M. Quenching of DNA–ethidium fluorescence by amsacrine and other antitumor agents: a possible electron–transfer effect. Biochemistry, 1984, 23(5): 937–943.
    [41] Stern O., Volmer M. Uber die Abklingungszeit der Fluoreszenz. Phys. Z., 1919, 20: 183–188.
    [42] (a) Falk M. Spectroscopic confirmation of orientational disorder of the cyanide groups in sodium cyanide dihydrate, NaCN?2H2O. Can. J. Chem., 1981, 59(8): 1267–1269. (b) Emokpae T.A., Ukwuaze A.C., Walton D.R.M., et al. The Structure of a Novel Copper(I) Cyanide Complex with Dimethylsulphoxide, (CuCN)2.2DMSO. Synth. React. Inorg. Met.–Org. Nano–Met. Chem., 1986, 16(3): 387–396.
    [43] Mao H., Zhang C., Xu C. Self–assembly of three hetero– and homopolynuclear cyanide bridged complexes of FeII–CuI and CuI: hydrothermal syntheses, structural characterization and properties. Inorg. Chim. Acta, 2005, 358(6): 1934–1942.
    [44] Vijayalakshmi R., Kanthimathi M., Subramanian V., et al. Interaction of DNA with [Cr(Schiff base)(H2O)2]ClO4. Biochem. Biophys. Acta, 2000, 1475: 157–162.
    [45] Strekowski L., Wilson B. Noncovalent interactions with DNA: an overview. Mutat. Res., 2007, 623: 3–13.
    [46] Nelson S.M., Ferguson L.R., Denny W.A. Non–covalent ligand/DNA interactions: minor groove binding agents. Mutat. Res., 2007, 623(1–2): 24–40.
    [47] Boger D.L., Fink B.E., Brunette S.R., et al. A Simple, High–Resolution Method for Establishing DNA Binding Affinity and Sequence Selectivity. J. Am. Chem. Soc., 2001,123(25): 5878–5891.
    [48] Hazell A., McGinley J., McKenzie C.J. Dichlorobis(1,10–phenanthroline–N,N')cobalt(II)– Acetonitrile (1/1.5). Acta Crystallogr., 1997, C53: 723–725.
    [49] Veidis M.V., Dockum B., Charron F.F. et al. Molecular structures of cis–bis–isothiocyanato bis–2,2′–bipyridyl manganese II and cobalt II. Inorg.Chim. Acta, 1981, 53: L197–L199.
    [50] Rowland, R.S., Taylor, R. Intermolecular Nonbonded Contact Distances in Organic Crystal Structures: Comparison with Distances Expected from van der Waals Radii. J. Phys. Chem. 1996, 100: 7384–7391.
    [51] Lemke, M., Knoch, F., Kisch, H. Structure of the ion–pair charge–transfer complex (methylviologen)2+ [Pd(mnt)2]2–. Acta Crystallogr., 1993, C49(9): 1630–1632.
    [52] Ramakrishna B.L., Manoharan P.T. Structural and Magnetic Investigations on the CT Ion–Radical Salt (p–(Dimethylamino)phenyl)dimethylammonium Bis(maleonitril– edithiolato)nickelate(III). Inorg. Chem., 1983, 22(15): 2113–2123.
    [53] Holleman S.R., Parker O.J., Breneman G.L. cis–Diisothiocyanatobis(1,10– phenanthroline)manganese(II), [Mn(NCS)2(C12H8N2)2]. Acta Crystallogr., 1994, C50(6): 867–869.
    [1] Leoni P., Vichi E., Lencioni S., et al. Hemilabile Phosphines by Methyl Acrylate Insertion into the P–H Bonds of Palladium(I)–Coordinated Secondary Phosphines. Labile Anion (X = OTf) vs PO–Chelate Coordination (X = BF4) in Pd2(μ–PR2)(PR2R')2(X) (R = But, R' = CH2CH2COOMe; X = OTf, BF4). Organometallics, 2000, 19(16): 3062–3068.
    [2] Tang J.K., Wang H.M., Cheng P., et al. Synthesis, crystal structure and magnetic properties of ferromagnetically coupled trinuclear copper(II) complex with 4–(isopropylamino)–1,2,4–triazole as bridging ligands. Polyhedron, 2001, 20(7–8): 675–680.
    [3] Xu Z., Thompson L.K., Black D.A., et al. N–N Bridged dinuclear complexes with Mn(II), Ni(II), Cu(II), Zn(II) and Cd(II); examples with antiferromagnetic and ferromagnetic coupling. J. Chem. Soc., Dalton Trans., 2001, 2042–2048.
    [4] Solomon E.I., Eilcox D.E. Magneto–Structure Coorelations in Bioinorganic Chemistry Magneto–Structral Coorelations in Exchange Coupled Systems. Dordreeht, Netherlands: Willett R.D., et al. 1985, 463–496.
    [5] Holm R.H. Chemical Approachs to Bridged Biolgical Metal Assemblies. Pure& Appl. Chem.,1995, 67: 217–224.
    [6] Spiro T.G., Copper Proteins, Wiley, New York, 1981.
    [7] Okawa H., Sakiyama H. binuclear Mn Complexes as Functional Models of Mn Catalse, Pure & Appl. Chem., 1995, 67(2): 273–280.
    [8]王国明.桥联多核配合物的合成、表征及相关性能的研究: [硕士学位论文].曲阜:曲阜师范大学, 2003.
    [9]吴建中.多核配合物与核酸作用的研究.无机化学学报, 2000 ,16(5): 697–700.
    [10] Holtz, K.M., Kanthrowitz, E.R. The mechanism of the alkaline phosphatase reaction: insights from NMR, crystallography and site–specific mutagenesis. FEBS Lett., 1999, 462(1): 7–11.
    [11] Lindqvist Y., Johansson E., Kaija H., et al. Three–dimensional structure of a mammalian purple acid phosphatase at 2.2 ? resolution with aμ–(hydr)oxo bridged di–iron center. J. Mol. Bio., 1999, 291(1): 135–47.
    [12] Desai N.A., Shankar V. Single–strand–specific nucleases. FEMS Microbiol. Rev., 2003, 26(5), 457–491.
    [13] Horton, N., Perona, J.J. Crystallographic snapshots along a protein–induced DNA–bending pathway. Proc. Natl Acad. Sci., U.S.A., 2000, 97(11): 5729–5734.
    [14]魏毅斌.邻菲咯琳铜及非环状多胺双核铜配合物的合成、结构与核酸酶活性研究: [博士学位论文].山西:山西大学,2005.
    [15] Bruker, SMART and SAINT. Bruker Axs Inc., Madison, WI, USA, 1999.
    [16] Sheldrick, G.M. SHELXS–97 and SHELXL–97. Program for Crystal Structure Analysis. Germany: University of G?ttingen, G?ttingen, 1997.
    [17] Marmur J.A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol., 1961, 3: 208–218.
    [18] Reichmann M.E., Rice S.A., Thomas C.A., et al. A Further Examination of the Molecular Weight and Size of Desoxypentose Nucleic Acid. J. Am. Chem. Soc., 1954, 76: 3047–3053.
    [19] Li Y.–G., Lu Y., Luan G.–Y., et al. Hydrothermal syntheses and crystal structures of new cage–like mixed–valent polyoxovanadat. Polyhedron, 2002, 21(25–26): 2601–2608.
    [20] Wang C., Peng Z., Guo W., et al. A novel mixed–valence Ni(mnt)2 salt: synthesis and crystal structure of [Ni(phen)3]2[Ni(mnt)2]3·2DMF (phen=1,10′–phenathroline, MNT = 1,2–dicyanovinylene–1,2–dithiolato, DMF = N,N–dimethylformamide). J. Mol. Struct., 20004, 702(1–3): 1–7.
    [21] PaharováJ., ?ernák J., Bo?a R., et al. Preparation, structure and magnetic properties of two tetracyanonickellates: one–dimensional Ni(dien)(mea)Ni(CN)4 and ionic [Ni(aepn)2][Ni(CN)4]·H2O. Inorg. Chim. Acta, 2003, 346: 25–31.
    [22] Janiak C.A. critical account onπ–πstacking in metal complexes with aromatic nitrogen–containing ligands. J. Chem. Soc., Dalton Trans., 2000, 21: 3885–3896.
    [23] Alcock, N.W., Barker, P.R., Haider, J.M. Red and blue luminescent metallo–supramolecular coordination polymers assembled throughπ–πinteractions. J. Chem. Soc., Dalton Trans., 2000, 1447–1462.
    [24] Nishio, M. CH/πhydrogen bonds in crystals. Cryst. Eng. Comm., 2004, 6: 130–158.
    [25] Reger, D.L., Gardinier, J.R., Semeniuc. R.F., et al. Silver complexes of 1,1’,3,3’–tetrakis(pyrazol–1–yl)propane: the“quadruple pyrazolyl embrace”as a supramolecular synthon. Dalton Trans., 2003, (9): 1712–1718.
    [26] Müller–Dethlefs, K., Hobza, P. Noncovalent interactions: a challenge for experiment and theory. Chem. Rev., 2000, 100(1): 143–168.
    [27] Ribas, J., Cubero, E., Luque, F.J., et al. Theoretical Study of Alkyl–πand Aryl–πInteractions. Reconciling Theory and Experiment. J. Org. Chem., 2002, 67(20): 7057–7065.
    [28] Vangala, V.R., Bhogala, B.R., Dey, A., et al. Correspondence between molecular functionality and crystal structures. Supramolecular chemistry of a family of homologated aminophenols. J. Am. Chem. Soc., 2003, 125(47): 14495–14509.
    [29] Tysoe S.A., Morgan R.J., Baker A.D., et al. Spectroscopic Investigation of Differential Binding Modes ofΔ– andΔ–Ru(bpy)2(ppz )2+ with Calf Thymus DNA. J. Phys. Chem., 1993, 97(8): 1707–1711.
    [30] Zhang S., Zhu Y., Tu C., et al. A novel cytotoxic ternary copper(II) complex of 1,10–phenanthroline and l–threonine with DNA nuclease activity. J. Inorg. Biochem., 2004, 98(12): 2099–2106.
    [31] Gao F., Chao H., Zhou F., et al. DNA interactions of a functionalized ruthenium(II) mixed–polypyridyl complex [Ru(bpy)2ppd]2+. J. Inorg. Biochem., 2006, 100(9): 1487–1494.
    [32] Vaidyanathan V.G., Nair B.U. Photooxidation of DNA by a cobalt(II) tridentate complex. J. Inorg. Biochem., 2003, 94: 121–126.
    [33] Mesmaeker A.K.D., Orellana G., Barton J.K., et al. Ligand–Dependent Interaction of Ruthenium(II) Polypyridyl Complexes with DNA Probed by Emission Spectroscopy. Photochem. Photobiol., 1990, 52: 461–472.
    [34] Kumar C.V., Barton J.K., Turro M.J. Photophysics of ruthenium complexes bound to double helical DNA. J. Am. Chem. Soc., 1985, 107(19): 5518–5523.
    [35] Baguley B.C., Lebret M. Quenching of DNA–ethidium fluorescence by amsacrine and otherantitumor agents: a possible electron–transfer effect. Biochemistry, 1984, 23(5): 937–943.
    [36] Stern O., Volmer M. Uber die Abklingungszeit der Fluoreszenz. Phys. Z. 1919, 20: 183–188.
    [37] Zhan S., Meng Q., You X., et al. The properties, crystal and molecular structure of cis–dicyano–bis(1,10–phenanthroline)iron(II) trihydrate. Polyhedron, 1996, 15(15): 2655–2658.
    [38] Nieuwenhuyzen M., Bertram B., Gallagher J.F., et al. Dipotassium (2,2'–Bipyridyl– N,N')tetracyanoferrate(II) 2.5–Hydrate, K2[Fe(bpy)(CN)4].2.5H2O. Acta Crystallogr., 1998, C54: 603–606.
    [39] Vannerberg N.G. Acta Chem. Scand., 1972, 26: 2863.
    [40] Yilmaz V.T., Demir S., Andac O., et al. Mixed–Ligand Metal Succinate Complexes with 1,10–Phenanthroline and Ethylenediamine: Synthesis, Characterization, Spectroscopic and Thermal Studies. Crystal Structure of Succinatocobalt(Ii) Complex with Phenanthroline. J. Coord. Chem., 2002, 55(8): 863–872.
    [41] Hunter C.A., Sanders J.K.M. The Nature ofπ–πInteractions. J. Am. Chem. Soc., 1990, 112(14): 5525–5534.
    [42] Gupta T., Dhar S., Nethaji M., et al. Bis(dipyridophenazine)copper(II) complex as major groove directing synthetic hydrolase. J. Chem. Soc., Dalton Trans., 2004, 1896–1900.
    [43] Peng B., Chao H., Sun B., et al. Synthesis, DNA–binding and photocleavage studies of cobalt(III) mixed–polypyridyl complexes: [Co(phen)2(dpta)]3+ and [Co(phen)2(amtp)]3+. J. Inorg. Biochem., 2007, 101(3): 404–411.
    [44] Yang C.–T., Vetrichelvan M., Yang X., et al. Syntheses, structural properties and catecholase activity of copper(II) complexes with reduced Schiff base N–(2–hydroxybenzyl)–amino acids. Dalton Trans., 2004, (1): 113–121.
    [45] Beurskens, P.T., Bosman, W.P.J.H., Cras, J.A. Crystal and molecular structure of 3,5–bis(N,N–diethylimonium)–1,2,4–trithiolane–tetraiododi–μ–iododiinercurate(II). J. Chem. Crystallogr., 1972, 2(4), 183–188.
    [46] Contreras, J.G., Seguel, G.V., Honle, W. Tetpylammonium triiodomercurate(II). Structural and vibrational spectra. J. Mol. Struct., 1980, 68: 1–9.
    [47] Goggin, P.L., King, P., Mcewan, D.M., et al. Vibrational spectroscopic studies of tetra–n–butylammonium trihalogenomercurates; crystal structures of [NBun4](HgCl3) and[NBun4](HgI3). J. Chem. Soc., Dalton. Trans., 1982, 875–882.
    [48] Zhang Q., Zhang F., Wang W., et al. Synthesis, crystal structure and DNA binding studies of a binuclear copper(II) complex with phenanthroline. J. Inorg. Biochem., 2006, 100: 1344–1352.
    [49] Clemente–Leon M., Coronado E., Galan–Mascaros J.R., et al. Bimetallic Cyanide–Bridged Complexes Based on the Photochromic Nitroprusside Anion and Paramagnetic Metal Complexes. Syntheses, Structures, and Physical Characterization of the Coordination Compounds [Ni(en)2]4[Fe(CN)5NO]2[Fe(CN)6]·5H2O, [Ni(en)2][Fe(CN)5NO]·3H2O, [Mn(3–MeOsalen)(H2O)]2[Fe(CN)5NO], and [Mn(5–Brsalen)]2 [Fe(CN)5NO]. Inorg. Chem., 2001, 40: 87–94.
    [50] Shyu H.L., Wei H.H., Wang Y. Preparation, characterization and crystal structure of [Ni(bpy)3][Fe(CN)5(NO)]3H2O and one–dimensional cyano–bridged [Ni(en)2Fe(CN)5(NO)]H2O. Inorg. Chim. Acta, 1997, 258(1): 81–86.
    [51]陈小明,蔡继文.单晶结构分析原理与实践.北京:科学出版社, 2004.
    [52] Mondal N., Saha M.K., Mitra S., et al. Synthesis, characterization and crystal structure of cyano–bridged dinuclear copper–iron complexes. Polyhedron, 2000, 19(16–17): 1935–1939.
    [53] Yuan A.H., Lu L.D., Shen X.P., et al. Synthesis, crystal structure and magnetic properties of a two–dimensional mixed–valence assembly [Fe(salen)]2[Fe(CN)5NO]. Transition Met. Chem., 2003, 28(2): 163–167.
    [54] Esteban D., Platas–Iglesias C., Avecilla F., et al. Barium(II) thiocyanate templating Schiff–base lateral macrobicycles derived from 1,10–diaza–15–crown–5. Polyhedron, 2005, 24(2): 289–294.
    [55] Avecilla F., Esteban D., Platas–Iglesias C., et al. A barium perchlorate complex with a lateral macrobicycle derived from 1,10–diaza–15–crown–5 containing a phenol Schiff base spacer. Acta Crystallogr., 2003, C59(3): m93–m94.
    [56] The Cambridge Crystallographic Data Center. The Cambridge Structural Database version 5.29. Cambridge, 2008.
    [57] Longridge J.J., Rawson J.M., Davies J.E. A mixed cation ternary nitroprusside : [(CH3)4N][Na][Fe(CN)5(NO)].2.5H2O. Acta Crystallogr., 1997, C53(1): 15–17.
    [58] Chowdhury S.R., Komiyama T., Yukawa Y., et al. The first heterobimetallic one dimensionalcyano bridged nitrosyl complex containing an alkaline earth metal: synthesis, characterization and crystal structure of the complex [Sr(Phen)2(DMF)2][Fe(NO)(CN)5]. Inorg. Chem. Commun., 2004, 7: 1117–1121.
    [59] Selim M., Chowdhury S.R., Mukherjea K.K. DNA binding and nuclease activity of a one–dimensional heterometallic nitrosyl complex. Int. J. Biol. Macromol., 2007, 41: 579–583.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700