用户名: 密码: 验证码:
聚古罗糖醛酸硫酸酯及其寡糖的制备、结构与活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尿路结石症是一种具有高复发率的常见疾病。尿大分子抑制物,特别是糖胺聚糖(Glycosaminoglycans,GAGs),在抑制尿路结石的形成中发挥着重要的作用,GAGs及其类似物在临床上潜在的应用前景受到了人们广泛的关注。本论文选择以海洋褐藻中分离得到的聚古罗糖醛酸(Polyguluronate,PG)为分子骨架,经硫酸酯化修饰成功制备了一种具有高电荷密度和强聚阴离子性质的GAGs类似物――聚古罗糖醛酸硫酸酯(Polyguluronate sulfate,PGS),并采用多种现代仪器分析方法对PGS的化学结构进行了确证。经对PGS的抗尿路结石活性和安全性进行评价,PGS在尿路结石症的预防和治疗方面显示出了良好的应用前景。另外,本论文还采用多种方法制备了具有不同硫酸基取代度和不同聚合度的PGS寡糖,并对PGS寡糖与成纤维细胞生长因子(FGF)及其受体(FGFR)的结合活性进行了评价。
     本论文以褐藻酸为原料,经酸水解、pH分级和纯化制备得到了聚古罗糖醛酸,分别采用三氧化硫-三甲胺、三氧化硫-吡啶和氯磺酸-甲酰胺三种硫酸酯化方法制备得到了PGS。经对三种制备方法的特点进行比较,发现三氧化硫-吡啶法反应条件温和,操作简单、硫酸酯基的取代度高,适合于PGS的制备。经对PGS的结构分别采用UV、IR、GC、CD、1H-NMR、13C-NMR、1H-1H COSY、1H-13C HMQC等现代仪器分析技术并结合化学方法进行分析,证实硫酸酯化反应是发生在了聚古罗糖醛酸的C2和C3位;经采用SYBYL分子模拟软件对PGS的分子构象进行模拟,结果表明PGS是一个具有较大柔性的长链分子,在水溶液中分子形成卷曲状态,并可自由摆动。对PGS分别在高温、高湿和强光照射实验条件下的质量稳定性进行考察,结果表明PGS具有较好的质量稳定性,但提示PGS的保存应尽量避免高温和高湿环境。
     本论文分别采用喂食乙二醇致大鼠肾结石和植入锌粒致大鼠膀胱结石两种动物模型,对PGS的抗尿路结石活性进行了评价。结果表明:PGS在50和100mg/Kg剂量下,可明显降低大鼠肾结石中肾草酸和肾钙的含量,对肾脏结石的沉积、肾脏病变具有明显的改善作用,对乙二醇致大鼠肾结石和植入性膀胱结石的形成均具有明显的预防和治疗作用。另外,采用棉球肉牙肿模型大鼠对PGS进行评价,结果表明PGS还具有明显的抗炎作用。急性毒性研究结果表明:PGS具有良好的安全性,对小鼠口服给药的最大耐受量为25g/kg;对小鼠静脉注射PGS的LD50为6.29g/kg。
     本论文分别采用自由基降解法、固相酸解法和PG寡糖修饰法制备了具有不同硫酸酯基取代度的PGS寡糖。固相酸解法是首次将732#酸性树脂应用于硫酸多糖的降解,研究表明该方法不仅可对PGS进行有效降解,而且在降解过程中不产生无机盐杂质,避免了寡糖与无机盐二次的分离,但在降解过程中有较明显的硫酸酯基脱落,适合制备具有较低硫酸酯基取代度的PGS寡糖。自由基降解法和PG寡糖修饰法适合制备具有高硫酸酯基取代度的PGS寡糖,但这种高硫酸酯基取代度PGS寡糖的分离较为困难。采用Bio-Gel P6凝胶层析柱,可对固相酸解法制备的寡糖进行良好的分离,并得到了13个寡糖组分F1-F13。经采用ESI-MS分析,证实F1-F13分别为聚合度1-13的PGS寡糖。PGS寡糖与FGF-FGFR1c的结合活性研究结果表明:不同聚合度的PGS寡糖对FGF-FGFR1c具有不同的结合能力,其中与FGF1-FGFR1c和FGF19-FGFR1c结合的最小结构片段分别为PGS4糖和PGS12糖;与FGF7-FGFR1c的结合能力随PGS寡糖聚合度的增加而增加。
     另外,为改善PGS的口服吸收和提高生物利用度,本论文还对PGS脂质体的制备方法进行了研究,采用反相蒸发法制备的PGS包封率可达39.13%。同时,本论文还建立了一种适合于PGS脂质体包封率测定的HPGPC方法。
     本论文各项研究结果,对下一步PGS的临床应用研究具有较重要的指导意义和参考价值。不同聚合度PGS寡糖的制备及结构分析,不仅为PGS的构效关系研究提供了良好的基础,而且还为进一步探讨硫酸寡糖与和FGF-FGFR相关疾病如肿瘤等的相互关系研究提供了基础。
Urolithiasis is a common disorder with a high recurrence rate. Urinary macromolecules, especially glycosaminoglycans (GAGs) play important roles as inhibitors of urinary stone formation. GAGs and their analogues have attracted considerable interest as potential and promising drug candidates for the prevention and treatment of urolithiasis. Polyguluronate sulfate (PGS) as an analogue of GAGs, which has high charge density and strong polyanionic property, is prepared by chemical sulfation of polyguluronate (PG) that separated from alginate. The structure of PGS is characterized by modern analytical techniques. Results of antiurolithiatic activity and safety of PGS show a good prospect on the prevention and treatment of urolithiasis. PGS oligosaccharides with different degrees of sulfate substitution and different polymerization degrees are prepared by several methods, and their activities on the incorporation with fibroblast growth factors (FGF) and fibroblast growth factor receptors (FGFR) are assayed also in this paper.
     PG is obtained by pH-fractionated precipitation from the hydrolysate of alginate. PGS is prepared by chemical sulfation of PG with sulfur trioxide trimethylamine complex (SO3-TMA) method, sulfur trioxide pyridine complex (SO3-Py) method and chlorosulfonic acid-foramide method, respectively. Compared with other methods, the reaction condition of SO3-Py method is mild, and it is simple and suitable to prepare PGS with high degree of sulfate substitution. The structure of PGS is characterized by UV, IR, GC, CD, 1H-NMR, 13C-NMR, 1H-1HCOSY, 1H-13C HMQC and other chemical analyses. Sulfation is demonstrated to occur at the C-2 and C-3 positions of the guluronic acid residues. Molecular conformation simulated by Sybyl software show that PGS is a flexible long chain molecule. PGS molecule is a random coil and can sway freely in water solution. The quality stability of PGS are tested under high temperature, high humidity and strong light, respectively. Results show that PGS exhibits a good quality stability, but it should keep away from high temperature and high humidity.
     Antiurolithiatic activities of PGS are assayed on two experimental urolithiasis models in rats. The contents of renal oxalate and calcium in ethylene glycol-induced nephrolithiasic rats are decreased significantly, and the renal crystal deposition and pathological changes are improved after administration of PGS at dose-levels of 50 and 100 mg/kg. The formation of zinc disc implant-induced urinary bladder stones in rats are inhibited considerably after administration of PGS at dose-levels of 50 and 100 mg/kg. PGS exhibits good effects both on the prevention and the treatment of urolithiasis. In addition, PGS exhibits considerable anti-inflammatory activity in the cotton pellet-induced granuloma in rats. Acute toxicity results of PGS show that it is a safe drug candidate. The intravenous LD50 in mice is 6.29 g/kg, and the oral maximum tolerance values of LPGS in mice is 25 g/kg.
     PGS oligosaccharides with different degrees of sulfate substitution and different polymerization degrees are prepared by free radical degradation, solid phase acid degradation and by chemical sulfation of PG oligosaccharides, respectively. 732# resin as a solid phase acid is used for the degradation of sulfated polysaccharides at firstly in this paper. Not only PGS can be degraded effectively by the solid phase acid method, but also there are no salt impurities exist in PGS oligosaccharides. The difficulty of separation between oligosaccharides and salt is avoided by the solid phase acid method, but the PGS oligosaccharides are desulfated obviously. So, the solid phase acid method is suitable to prepare PGS oligosaccharides with low degrees of sulfate substitution. The free radical degradation and chemical sulfation of PG oligosaccharides method are suitable to prepare PGS oligosaccharides with high degrees of sulfate substitution, but it is difficult to separate these PGS oligosaccharides. PGS oligosaccharides prepared by solid phase acid method are separated by Bio-Gel P6 column, and thirteen oligosaccharide fractions (F1-F13) are obtained. The polymerization degree of F1-F13 is one to thirteen, respectively, demonstrated by ESI-MS analysis. Results of PGS oligosaccharides incorporated with FGF-FGFR1c show that the least segments of PGS oligosaccharides to incorporate with FGF1-FGFR1c and FGF19-FGFR1c are PGS4 and PGS12, respectively. The ability of PGS oligosaccharides to incorporate with FGF7-FGFR1c is increased when the polymerization degree is increased.
     In addition, PGS liposomes are prepared by different methods in order to improve oral absorption and bioavailability of PGS. The encapsulation efficiency of PGS liposomes prepared by reverse-phase evaporation is up to 39.13%. A HPGPC method is established also for the determination of encapsulation efficiency of PGS liposomes.
     All results on PGS above are important and useful to guide the further clinical research of PGS. Preparation and structure analysis of PGS oligosaccharides with different polymerization degrees have provide a base not only for the research on structure-activity relationship of PGS, but also for further research on the relationship of sulfated oligosaccharides with some diseases, such as cancer, which are relevant to FGF-FGFR.
引文
1. Colella J, Kochis E, Galli B, et al. Urolithiasis/nephrolithiasis: what's it all about? Urologic nursing, 2005, 25(6):427-449.
    2. Gambaro G, Favaro S, D Angelo A. Risk for renal failure in nephrolithiasis. American journal of kidney diseases, 2001, 37(2):233-243.
    3. Araujo Viel T, Diogo Domingos C, da Silva Monteiro A P, et al. Evaluation of the antiurolithiatic activity of the extract of Costus spiralis Roscoe in rats. J Ethnopharmacol, 1999, 66(2):193-198.
    4.刘岩峰,吴晓宇.泌尿系结石在中国的流行病学特点.中国社区医师(综合版), 2005, 7(9):4-5.
    5.欧阳健明.枸橼酸盐抑制泌尿系结石形成的化学基础.无机化学学报, 2004, 20(12):1377-1382.
    6. Sarica K. Pediatric urolithiasis: etiology, specific pathogenesis and medical treatment. Urological research, 2006, 34(2):96-101.
    7. Trinchieri A. Epidemiological trends in urolithiasis: impact on our health care systems. Urological research, 2006, 34(2):151-156.
    8. Abdel-Halim R E. Urolithiasis in adults. Clinical and biochemical aspects. Saudi medical journal, 2005, 26(5):705-713.
    9. Robertson W G, Peacock M, Heyburn P J et al. Risk factors in calcium stone disease of the urinary tract. British Journal of Urology, 1978, 50(7):449-454.
    10. Smith L H. Pathogenesis of renal stones. Mineral and electrolyte metabolism, 1987, 13(4): 214-219.
    11. de Bruijn W C, Boeve E R, van Run P R, et al. Etiology of experimental calcium oxalate monohydrate nephrolithiasis in rats. Scanning microscopy, 1994, 8(3) 541-550.
    12.邓春华,孙祥宙.泌尿系统结石的诊断和治疗进展.新医学, 2003, 34(8):515-516.
    13. Atala A, Steinbock G S. Extracorporeal shock-wave lithotripsy of renal calculi. American journal of surgery. 1989, 157(3):350-358.
    14. Ceylan K, Sunbul O, Sahin A, et al. Ureteroscopic treatment of ureteral lithiasis with pneumatic lithotripsy: analysis of 287 procedures in a public hospital.Urological research. 2005, 33(6):422-425.
    15. Costa-Bauza A, Perello J, Isern B, et al. An experimental study on residual lithiasis after shock wave lithotripsy. Urological Research, 2005, 33(1):51-56.
    16. Borghi L, Meschi T, Amato F, et al. Urinary volume, water and recurrences in idiopathic calcium nephrolithiasis: a 5-year randomized prospective study.The Journal of urology, 1996, 155(3):839-843.
    17. Mattle D, Hess B. Preventive treatment of nephrolithiasis with alkali citrate-a critical review. Urological Research, 2005, 33(2):73-79.
    18. Kohri K, Garside J, Blacklock N J. The role of magnesium in calcium oxalate urolithiasis. British Journal of Urology, 1988, 61(2):107-115.
    19. Ohkawa M, Tokunaga S, Nakashima T, et al. Thiazide treatment for calcium urolithiasis in patients with idiopathic hypercalciuria. British journal of urology, 1992, 69(6):571-576.
    20. Yasui T, Sato M, Fujita K, et al. Effects of allopurinol on renal stone formation and osteopontin expression in a rat urolithiasis model. Nephron, 2001, 87(2):170-176.
    21.曹正国,刘继红,鲁德曼,等.泽泻提取物不同组分对尿草酸钙结石形成的实验研究.中国中药杂志, 2003, 28(11):1072-1075.
    22.王萍,沈玉华,谢安建,等.金钱草提取液对尿液中草酸钙晶体生长的影响.安徽大学学报(自然科学版), 2006, 30(1):80-84.
    23. Gyory A Z, Ashby R. Calcium salt urolithiasis. Review of theory for diagnosis and management. Clinical Nephrology, 1999, 51(4):197-208.
    24. Siener R, Hesse A. Recent advances in nutritional research on urolithiasis. World Journal of Urology, 2005, 23(5):304-308.
    25. Ochmanski W, Kmiecik J, Sulowicz W. Analysis of chemical composition of urinary stones. International Urology and Nephrology, 1999, 31(6):743-750.
    26. Grases F, Villacampa A I, Costa-Bauza A, et al. Uric acid calculi: types, etiology and mechanisms of formation. Clinica Chimica Acta, 2000, 302(1-2):89-104.
    27. Grases F, Costa-Bauza A, Garcia-Ferragut L. Biopathological crystallization: a general view about the mechanisms of renal stone formation. Advances in Colloid and Interface Science, 1998, 74:169-194.
    28.王延华,王卫东.泌尿结石形成的物理化学机理及其预防.昭乌达蒙族师专学报, 2001, 22(4):82-87
    29. Nancollas G H, Smesko S A, Campbell A A, et al. Physical chemical studies of calcium oxalate crystallization. American Journal of Kidney Diseases, 1991, 17(4):392-395.
    30. Finlayson B. Physicochemical aspects of urolithiasis. Kidney International, 1978, 13(5): 344-360.
    31. Gill W B, Silvert M A, Roma M J. Supersaturation levels and crystallization rates of calcium oxalate from urines of normal humans and stone formers determined by a carbon-14 oxalate labelled technique. Investigative Urology, 1974, 12(3):203-209.
    32. de Bruijn W C, Boeve E R, van Run P R, et al. Etiology of calcium oxalate nephrolithiasis in rats. I. Can this be a model for human stone formation? Scanning Microscopy, 1995, 9(1):103-114.
    33. de Bruijn W C, Boeve E R, van Run P R, et al. Etiology of calcium oxalate nephrolithiasis in rats. II. The role of the papilla in stone formation. Scanning Microscopy, 1995, 9(1):115-125.
    34. Grover P K, Ryall R L, Marshall V R. Calcium oxalate crystallization in urine: role of urate and glycosaminoglycans. Kidney International, 1992, 41(1):149-154.
    35. BUTT A J. Role of protective urinary colloids in prevention of renal lithiasis. The Journal of urology, 1952, 67(4):450-459.
    36. Robertson W G, Peacock M, Nordin B E. Inhibitors of the growth and aggregation of calcium oxalate crystals in vitro. Clinica Chimica Acta, 1973, 43(1):31-37.
    37. Hansen N M, Felix R, Bisaz S, et al. Aggregation of hydroxyapatite crystals. Biochimica et biophysica acta, 1976, 451(2):549-559.
    38. Ryall R L, Harnett R M, Marshall V R. The effect of urine, pyrophosphate, citrate, magnesium and glycosaminoglycans on the growth and aggregation of calcium oxalate crystals in vitro. Clinica Chimica Acta, 1981, 112(3):349-356.
    39. Rodgers A L, Jappie D. Studies on the role of urinary macromolecules in urolithiasis: review of methodologies and a proposal for a standard reference crystallization system. Scanning Microscopy, 1996, 10(2):535-546.
    40. Azoury R, Goldwasser B, Wax Y, et al. Evaluation of the relative inhibitory potential of fractionated urinary macromolecules. Urological research,1985,13(4):199-205.
    41.邓岗,单俊伟,耿美玉,等. Tamm-Horsfall Protein(THP)与尿路结石症.医学综述, 2000, 6(2):58-59.
    42. Asplin J R, Arsenault D, Parks J H, et al. Contribution of human uropontin to inhibition of calcium oxalate crystallization. Kidney International, 1998, 53(1):194-199.
    43. Coe F L, Nakagawa Y, Asplin J, et al. Role of nephrocalcin in inhibition of calcium oxalate crystallization and nephrolithiasis. Mineral and Electrolyte Metabolism, 1995, 20(6):378-384.
    44. Doyle I R, Ryall R L, Marshall V R. Inclusion of proteins into calcium oxalate crystals precipitated from human urine: a highly selective phenomenon. Clinical chemistry, 1991, 37(9):1589-1594.
    45.郝川.尿大分子物与草酸钙结石研究进展.国外医学(泌尿系统分册), 1995, 15(5):213-215.
    46. Erturk E, Kiernan M, Schoen S R. Clinical association with urinary glycosaminoglycans and urolithiasis. Urology, 2002, 59(4):495-499.
    47.钟玖平,欧阳健明.酸性粘多糖影响草酸钙结石形成的研究进展.中国药物化学杂志, 2002, 12(5):305-309
    48.陈焱,刘春晓.酸性粘多糖与尿石形成.国外医学(泌尿系统分册), 1998, 18(4):188-190.
    49. Hesse A, Wuzel H, Vahlensieck W. Significance of glycosaminoglycans for the formation of calcium oxalate stones. American Journal of Kidney Diseases, 1991, 17(4):414-419.
    50. Caudarella R, Stefani F, Rizzoli E, et al. Preliminary results of glycosminoglycans excretion in normal and stone forming subjects: relationship with uric acid excretion. The Journal of urology, 1983, 129(3):665-667.
    51. Shum D K Y, Gohel M D I. Separate effects of urinary chondroitin sulfate and heparan sulfate on the crystallization of urinary calcium oxalate: differences between stone formers and normal control subjects. Clinical Science, 1993, 85(1):33-39.
    52. Foye W O. Sulfur compounds in therapy: radiation-protective agents, amphetamines, and mucopolysaccharide sulfation. The Annals of pharmacotherapy, 1992, 26(9):1144-1147.
    53.邓穗平,欧阳健明.肝素和硫酸乙酰肝素抑制草酸钙结石形成的化学基础.化学世界, 2006, 47(8):500-503.
    54. Cao L C, Deng G, Boeve E R, et al. Does urinary oxalate interfere with the inhibitory role of glycosaminoglycans and semisynthetic sulfated polysaccharides in calcium oxalate crystallization? European urology, 1997, 31(4):485-492.
    55. Baggio B, Gambaro G, Marchini F, et al. Correction of erythrocyte abnormalities in idiopathic calcium-oxalate nephrolithiasis and reduction of urinary oxalate by oral glycosaminoglycans. Lancet, 1991, 338:403-405.
    56.殷钢,刘玉强.泌尿系统结石的形成机制.山东医药, 2002, 42(11):56-57.
    57.辛殿旗,华道宥,姜丽.复发性草酸钙结石与尿内酸性粘多糖的关系.中华泌尿外科杂志, 1997, 18(8) :493-494.
    58. Gill W B, Jones K W, Ruggiero K J. Protective effects of heparin and other sulfated glycosaminoglycans on crystal adhesion to injured urothelium. The Journal of urology, 1982, 127(1):152-154.
    59. Pantazopoulos D, Karagiannakos P, Sofras F, et al. Effect of drugs on crystal adhesion to injured urothelium. Urology, 1990, 36(3):255-259.
    60. Kohjimoto Y, Ebisuno S, Tamura M, et al. Interactions between calcium oxalate monohydrate crystals and Madin-Darby canine kidney cells: endocytosis and cell proliferation. Urological Research, 1996, 24(4):193-199.
    61. Alkibay T, Karabas O, Hizel N, et al. Urinary glycosaminoglycan excretion following extracorporeal shock wave lithotripsy. International urology and nephrology, 1993, 25(4):321-326.
    62.李浩勇.中药泽泻抑制尿草酸钙结石形成的研究进展.国外医学(泌尿系统分册), 2003, 23(1):59-61.
    63.张石生,刘国栋,何家杨,等.胖大海抑制草酸钙结晶形成的实验结果与临床观察.中华泌尿外科杂志, 1996, 17(1):51-53.
    64.陈焱,刘春晓,张积仁.茯苓多糖防石作用的实验研究.中华泌尿外科杂志, 1999, 20(2):114-115.
    65. Anderson V R, Perry C M. Pentosan polysulfate: a review of its use in the relief of bladder pain or discomfort in interstitial cystitis. Drugs, 2006, 66(6):821-835.
    66. Fellstrom B, Backman U, Danielson B, et al. Treatment of renal calcium stone disease with the synthetic glycosaminoglycan pentosan polysulphate. World journal of urology, 1994, 12(1):52-4.
    67. Cao L C, Boeve E R, Schroder F H, et al. The effect of two new semi-synthetic glycosaminoglycans (G871, G872) on the zeta potential of calcium oxalate crystals and on growth and agglomeration. The Journal of urology, 1992, 147(6):1643-1646.
    68. Boeve E R, Cao L C, Deng G, et al. Effect of two new polysaccharides on growth, agglomeration and zeta potential of calcium phosphate crystals. Journal of Urology, 1996, 155(1):368-373.
    69.邓岗,耿美玉,管华诗,等.大鼠口服古糖酯后尿液中糖胺聚糖的变化及其对一水草酸钙晶体抑制活性的影响.青岛海洋大学学报(自然科学版), 1999, 29(4):627-632.
    70.何家扬,周任远,王文章.防石多糖对受损膀胱粘膜的保护作用.临床泌尿外科杂志, 2000, 15(11):511-513.
    71. Tostes V, Martinusso C A, Werneck C C, et al. Low-molecular-weight dextran sulfate prevents experimental urolithiasis in rats. Clinica Chimica Acta, 2004, 341:147-155.
    72. Shanmugam M, Mody K H. Heparinoid-active sulphated polysaccharides from marine algae as potential blood anticoagulant agents. Current Science, 2000, 79(12):1672-1683.
    73. Ikeda A, Takemura A, Ono, H. Preparation of low-molecular weight alginic acid by acid hydrolysis. Carbohydrate Polymers, 2000,42(4):421-425.
    74.纪明侯.海藻化学.北京:科学出版社, 1997, 231-233.
    75. Windhues T, Borchard W. Effect of acetylation on physico-chemical properties of bacterial and algal alginates in physiological sodium chloride solutions investigated with light scattering techniques. Carbohydrate Polymers, 2003, 52(1):47-52.
    76. Haug A, Larsen B, Smidsroed O. Sequence of uronic acid residues in alginic acid. Acta Chemica Scandinavica, 1967, 21(3):691-704.
    77. Llanes F, Ryan D H, Marchessault R H. Magnetic nanostructured composites using alginates of different M/G ratios as polymeric matrix. International Journal of Biological Macromolecules , 2000, 27(1):35-40.
    78. Chang P S, Mukerjea R, Fulton D B, et al. Action of Azotobacter vinelandii poly-b-D-mannuronic acid C-5-epimerase on synthetic D-glucuronans. Carbohydrate Research, 2000, 329(4):913-922.
    79. Atkins E D, Nieduszynski I A, Mackie W, et al. Structural components of alginic acid. II. Crystalline structure of poly a-L-guluronic acid. Results of x-ray diffraction and polarized infrared studies. Biopolymers, 1973, 12(8):1879-1887.
    80. Haug A, Larsen B, Smidsroed O. A study of the constitution of alginic acid by partial acid hydrolysis. Acta Chemica Scandinavica, 1966, 20(1):183-190.
    81. Anzai H, Uchida N, Nishide Eiichi. Determination of D-mannuronic to L-guluronic acids ratio in acid hydrolysis of alginate under improved conditions. Nippon Suisan Gakkaishi, 1990, 56(1):73-81.
    82. Simpson N E, Stabler C L, Simpson C P, et al. The role of the CaCl2-guluronic acid interaction on alginate encapsulated betaTC3 cells. Biomaterials, 2004, 25(13):2603-2610.
    83. Nishizawa M, Iwata K, Yamagishi T, et al. Effect of depolymerized sodium alginate on the serum and liver cholesterol levels in cholesterol-fed rats. Nippon Kasei Gakkaishi, 1997, 48(8):695-698.
    84.钱风云,傅德贤,欧阳藩.海带多糖生物功能研究进展.中国海洋药物, 2003, 91(1):55-59.
    85.罗善高.藻酸双酯钠的临床应用.医学文选, 2001, 20(3):379-380.
    86. Yao Z A, Wu H G, Han B Q, et al. The antithrombotic action of propylene glycol mannite sulfate (PGMS). Pharmacological Research, 2006, 53(2):166-170.
    87.张平,夏泉,赵新民.甘糖酯的药理及临床应用研究进展.江苏药学与临床研究, 2001, 9(1):36-38.
    88.王春玲,张全斌.褐藻多糖硫酸酯抗凝血活性的研究.中国海洋药物杂志, 2005, 24(5):36-38.
    89. Sano Y. Antiviral activity of alginate against infection by tobacco mosaic virus. Carbohydrate Polymers, 1999, 38(2):183-186.
    90.辛现良,丁华,耿美玉,等.海洋硫酸多糖911抗艾滋病毒作用及其机理研究——体内对猴免疫缺陷病毒(SIV)增殖的影响.中国海洋药物, 2000,19(6):4-8.
    91.辛现良,耿美玉,管华诗,等.海洋硫酸多糖911抗AIDs作用机制的初步探讨.中国海洋药物, 2000,19(4):15-18.
    92.李德远,徐现波,熊亮等.海带的保健功效及海带生理活性多糖研究现状.食品科学, 2002, 23(7): 151-154.
    93. Fujihara M, Nagumo T. The effect of the content of D-mannuronic acid and L-guluronic acid blocks in alginates on antitumor activity. Carbohydrate Research, 1992, 224:343-347.
    94. Fujihara M, Nagumo T. An influence of the structure of alginate on the chemotactic activity of macrophages and the antitumor activity. Carbohydrate Research, 1993, 243(1): 211-216.
    95. Son E W, Rhee D k, Pyo S. Antiviral and tumoricidal activities of alginate-stimulated macrophages are mediated by different mechanisms. Archives of Pharmacal Research, 2003, 26(11):960-966.
    96. Hu X k, Jiang X L, Hwang H M, et al. Antitumour activities of alginate-derived oligosaccharides and their sulphated substitution derivatives. European Journal of Phycology , 2004, 39(1):67-71.
    97.宫晓黎,孙晓晖,等.寡聚甘露糖醛酸铁对骨髓造血作用的观察.泰山医学院学报, 2001, 22(2): 129-130.
    98. Stabler C, Wilks K, Sambanis A. Constantinidis I The effects of alginate composition on encapsulated betaTC3 cells. Biomaterials, 2001, 22(11):1301-1310.
    99. Ueyama Y, Ishikawa K, Mano T, et al. Usefulness as guided bone regeneration membrane of the alginate membrane. Biomaterials, 2002, 23(9):2027-2033.
    100. Ueyama Y, Koyama T, Ishikawa K, et al. Comparison of ready-made and self-setting alginate membranes used as a barrier membrane for guided bone regeneration. Journal of Materials Science: Materials in Medicine, 2006, 17(3):281-288.
    101. Kawada A, Hiura N, Shiraiwa Masakazu, et al. Stimulation of human keratinocyte growth by alginate oligosaccharides, a possible co-factor for epidermal growth factor in cell culture. FEBS Letters, 1997, 408(1):43-46.
    102.祝玲,程璐,蔡俊鹏.褐藻胶寡糖潜在药用价值的研究进展.中药材, 2006, 29(9):993-996.
    103. Hien N Q, Nagasawa N, Tham L X, et al. Growth-promotion of plants with depolymerized alginates by irradiation. Radiation Physics and Chemistry, 2000, 59(1):97-101.
    104.刘斌,王长云,张洪荣,等.海藻多糖褐藻胶生物活性及其应用研究新进展.中国海洋药物, 2004, 23(6):36-41.
    105.张春雪,王苹,袁晓燕,等.新型药物释放材料褐藻酸盐纤维的制备研究.天津理工学院学报, 2004, 20(1):82-84.
    106. Vacanti C A, Bonassar L J. An overview of tissue engineered bone. Clinical orthopaedics and related research, 1999, 367(Sup.l):S375-381.
    107. Wang W J, Wang X H, Feng Q L, et al. Sodium alginate as a scaffold material for hepatic tissue engineering. Journal of Bioactive and Compatible Polymers, 2003, 18(4):249-257.
    108. Stevens M M, Qanadilo H F, Langer R, et al. A rapid-curing alginate gel system: utility in periosteum-derived cartilage tissue engineering. Biomaterials, 2003, 25(5):887-894.
    109. Murata Y, Sasaki N, Miyamoto E, et al. Use of floating alginate gel beads for stomach-specific drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2000, 50(2):221-226.
    110. Klock G, Pfeffermann A, Ryser C, et al. Biocompatibility of mannuronic acid-rich alginates. Biomaterials, 1997, 18(10):707-713.
    111. King A, Lau J, Nordin A, Sandler S, Andersson A. The effect of capsule composition in the reversal of hyperglycemia in diabetic mice transplanted with microencapsulated allogeneic islets. Diabetes Technol Ther. 2003;5(4):653-63.
    112. Reis C P, Neufeld R J, Ribeiro A J, et al. Design of insulin-loaded alginate nanoparticles: influence of the calcium ion on polymer gel matrix properties. Chemical Industry & Chemical Engineering Quarterly, 2006, 12(1):47-52.
    113. Kobak V V, Sutkevich M V. Non-Stoichiometric Binding of Lead(II) Ions by Sodium Alginate. Journal of Inorganic Biochemistry, 1996, 61(15): 221-226.
    114. Khotimchenko M, Serguschenko I, Khotimchenko Y. Lead absorption and excretion in rats given insoluble salts of pectin and alginate. International Journal of Toxicology. 2006, 25(3):195-203.
    115.钟慧闽,刘善坤,姚萍,等.复方褐藻胶胶囊治疗幽门螺旋杆菌阳性的胃炎、消化性溃疡的疗效观察.中国海洋药物, 1998, 17(3):50-52.
    116.赵峡,于广利,李少平,等.几种海藻多糖硫酸酯碱式铝盐的制备.青岛海洋大学学报(自然科学版), 2002, 32(3): 385-390.
    117.李八方,陈桂东,毛文君.几种膳食纤维对实验性糖尿病大鼠治疗效果的比较研究.营养学报, 1998, 21(1):59-64.
    118. Toida T, Chaidedgumjorn A, Linhardt R J. Structure and bioactivity of sulfated polysaccharides. Trends in Glycoscience and Glycotechnology, 2003, 15(81):29-46.
    119. Faaij R A, Srivastava N, Van Griensven J M T, et al. The oral bioavailability of pentosan polysulfate sodium in healthy volunteers. European Journal of Clinical Pharmacology, 1999, 54(12):929-935.
    120. Anderson V R, and Perry C M. Pentosan polysulfate: a review of its use in the relief of bladder pain or discomfort in interstitial cystitis.Drugs,2006,66(6):821-835.
    121. Hartman N R, Johns D G, Mitsuya H. Pharmacokinetic analysis of dextran sulfate in rats as pertains to its clinical usefulness for therapy of HIV infection. AIDS Research and Human Retroviruses,1990,6(6):805-812.
    122. Wells C L, Rhame F S. Effect of oral dextran sulfate on the mouse intestinal tract. Journal of acquired immune deficiency syndromes, 1990,3(4):361-365.
    123.王长云,管华诗.多糖抗病毒作用研究进展II.硫酸多糖抗病毒作用.生物工程进展, 2000, 20(2):3-8.
    124. Bagasra O, Whittle P, Heins B, et al. Anti-human immunodeficiency virus type 1 activity of sulfated monosaccharides: comparison with sulfated polysaccharides and other polyions. The Journal of infectious diseases, 1991, 164(6):1082-1090.
    125. Moriya T, Saito K, Kurita H, et al. A new candidate for an anti-HIV-1 agent: modified cyclodextrin sulfate (mCDS71). Journal of Medicinal Chemistry, 1993, 36(11):1674-1677.
    126. Nyberg K, Ekblad M, Bergstrom T, et al. The low molecular weight heparan sulfate-mimetic, PI-88, inhibits cell-to-cell spread of herpes simplex virus. Antiviral Research, 2004,63(1): 15-24.
    127. Ueno M, Nakasaki T, Adachi Iisao, et al. Oral administration of liposomally-entrapped heparin. Effect of surface charge of liposome on gastro-intestinal absorption. Yakuzaigaku, 1987, 47(1):56-60.
    128. Sagrista M L, Mora M, De Madariaga M A. Surface modified liposomes by coating with charged hydrophilic molecules. Cellular & Molecular Biology Letters, 2000, 5(1):19-33.
    129.翟光喜,陈国广,赵焰,等.低分子肝素纳米脂质体的制备及大鼠口服吸收.中国药科大学学报, 2002, 33(3):200-202.
    130. Bagasra O, Whittle P, Heins B, et al.Anti-human immunodeficiency virus type 1 activity of sulfated monosaccharides: comparison with sulfated polysaccharides and other polyions. The Journal of infectious diseases, 1991,164(6):1082-1090.
    131. Katsuraya K, Shibuya T, Inazawa K, et al. Synthesis of Sulfated Alkyl Malto-oligosaccharides with Potent Inhibitory Effects on AIDS Virus Infection. Macromolecules, 1995, 28(20):6697-700.
    132.张惟杰.糖复合物生化研究技术.第二版.杭州:浙江大学出版社, 1999, 133-135.
    133. Chandia N P , Matsuhiro B and Vasquez A. E. Alginic acids in Lessonia trabeculata: characterization by formic acid hydrolysis and FT-IR spectroscopy. Carbohydrate Polymers, 2001, 46(1): 81-87.
    134. Anders K and Satish K S. Acid hydrolysis of sulphated polysaccharides. Desulphation and the effect on molecular mass, 1999, 38(1):7-15.
    135. Ovalle R, Soll C E, Lim F, Systematic analysis of oxidative degradation of polysaccharides using PAGE and HPLC–MS. Carbohydrate Research, 2001, 330(1):131-139.
    136.姬胜利,陈亮珍,石峰,等.过氧化氢降解肝素制备肝素寡糖的工艺研究.中国医药工业杂志, 2004, 35(10):590-591.
    137. Schweikert C, Liszkay A, Schopfer P. Polysaccharide degradation by Fenton reaction- or peroxidase-generated hydroxyl radicals in isolated plant cell walls. Phytochemistry, 2002, 61(1):31-35.
    138. Ovalle R, Soll C E, Lim F, Systematic analysis of oxidative degradation of polysaccharides using PAGE and HPLC–MS. Carbohydrate Research, 2001, 330(1):131-139.
    139.姚婉生,王雪,侯海荣,等.几丁寡糖制备的研究进展.山东科学, 2006, 19(3):27-31.
    140. Zhang Z Q, Yu G L, Guan H H, et al. Preparation and structure elucidation of alginate oligosaccharides degraded by alginate lyase from Vibrio sp. 510. Carbohydrate Research, 2004, 339(8):1475-1481.
    141. Hu X K, Jiang X L, Hwang H M. Purification and characterization of an alginate lyase from marine Bacterium Vibrio sp. mutant strain 510-64. Current microbiology, 2006, 53(2):135-140. 141
    142. Rehm B H A. Alginate lyase from Pseudomonas aeruginosa CF1/M1 prefers the hexameric oligomannuronate as substrate. FEMS Microbiology Letters, 1998, 165(1):175-180.
    143.宋凯,于文功,韩峰,等.海洋弧菌褐藻胶裂解酶的分离纯化及性质.生物化学和生物物理学报, 2003, 35(5): 473-477.
    144.韩永萍,林强.壳聚糖降解制备低聚壳聚糖和壳寡糖的研究进展.食品科技, 2006, 31(7):35-38.
    145.于广利,管华诗, Robert J L,等.硫酸皮肤素寡糖的分离与制备.中国海洋大学学报(自然科学版), 2001, 31(6):849-854.
    146. Wasikiewicz J M, Yoshii F, Nagasawa N, et al. Degradation of chitosan and sodium alginate by gamma radiation, sonochemical and ultraviolet methods. Radiation Physics and Chemistry, 2005, 73(5):287-295.
    147.龙德武,吴国忠,秦宗英,等.辐射法降解壳聚糖及其抑菌性能的研究.高分子材料科学与工程, 2005, 21(6):240-242.
    148.李坚斌,李琳,李冰,等.超声降解多糖研究进展发进展.食品工业科技, 2006, 27(9):181-184.
    149. Roy I, Mondal K, Gupta M N. Accelerating enzymatic hydrolysis of chitin by microwave pretreatment. Biotechnol Prog, 2003, 19(6):1648-1653.
    150.张真庆,江晓路,管华诗.寡糖的生物活性及海洋性寡糖的潜在应用价值.中国海洋药物, 2003, 22(3):51-56.
    151. Seo P, Locke C F. Current and potential uses of low molecular weight heparin: a review and an economic analysis. The American journal of managed care, 2000, 6(4):498-506.
    152. Dinwoodey D L, and Ansell J E. Heparins, Low-Molecular-Weight Heparins, and Pentasaccharides. Clinics in Geriatric Medicine, 2006, 22(1): 1-15.
    153. Zuniga E A, Matsuhiro B, Mejias E. Preparation of a low-molecular weight fraction by free radical depolymerization of the sulfated galactan from Schizymenia binderi (Gigartinales, Rhodophyta) and its anticoagulant activity. Carbohydrate Polymers, 2006, 66(2):208-215.
    154. Wall D, Douglas S, Ferro V, et al. Characterisation of the Anticoagulant Properties of a Range of Structurally Diverse Sulfated Oligosaccharides Thrombosis Research, 2001, 103(4):325-335.
    155. Khachigian L M, Parish C R. Phosphomannopentaose sulfate (PI-88): heparan sulfate mimetic with clinical potential in multiple vascular pathologies. Cardiovascular Drug Reviews, 2004, 22(1):1-6.
    156.郭丽民,张汝学,贾正平.寡糖的药理作用和机制研究进展.中成药, 2006, 28(9):1353-1356.
    157. Zhou G F, Sheng W X, Yao W H, et al. Effect of low molecularλ-carrageenan from Chondrus ocellatus on antitumor H-22 activity of 5-Fu. Pharmacological Research, 2006, 53(2): 129-134.
    158. Yuan H, Song JM, Li XG, et al. Immunomodulation and antitumor activity ofκ-carrageenan oligosaccharides. Cancer Letters, 2006, 243(2): 228-234.
    159. Du Y G, Gu G F, Hua Y X, et al. Synthesis and antitumor activities of glucan derivatives. Tetrahedron, 2004, 60(30):6345-6351.
    160. Parish C R, Freeman C, Brown K J, et al. Identification of sulfated oligosaccharide-based inhibitors of tumor growth and metastasis using novel in vitro assays for angiogenesis and heparanase activity. Cancer Research, 1999, 59(14):3433-3441.
    161. Katsuraya K, Nakashima H, Yamamoto N, et al. Synthesis of sulfated oligosaccharide glycosides having high anti-HIV activity and the relationship between activity and chemical structure. Carbohydrate Research, 1999, 315(3-4):234-242.
    162. Liu H Y, Geng M Y, Xin X L, et al. Multiple and multivalent interactions of novel anti-AIDS drug candidates, sulfated polymannuronate (SPMG)-derived oligosaccharides, with gp120 and their anti-HIV activities. Glycobiology,2005, 15(5):501-510.
    163. Vives, R R, Imberty A, Sattentau Q J, et al. Heparan Sulfate Targets the HIV-1 Envelope Glycoprotein gp120 Coreceptor Binding Site. Journal of Biological Chemistry, 2005, 280(22): 21353-21357.
    164. Nyberg K, Ekblad M, Bergstrom T, et al. The low molecular weight heparan sulfate-mimetic, PI-88, inhibits cell-to-cell spread of herpes simplex virus. Antiviral Research, 2004,63(1): 15-24.
    165. McEver R P. Selectin-carbohydrate interactions during inflammation and metastasis. Glycoconjugate Journal, 1997, 14(5):585-591.
    166. Nelson, R M, Cecconi O, Roberts W G. et al. Heparin oligosaccharides bind L- and P-selectin and inhibit acute inflammation. Blood, 1993, 82(11):3253-3258.
    167. Ji S L, Du H Y, Chi Y Q, et al. Effects of dermatan sulfate derivatives on platelet surface P-selectin expression and protein C activity in blood of inflammatory bowel disease patients. World Journal of Gastroenterology, 2004, 10(23):3485-3489.
    168. Zemaniv F, Benisvy D, Galy-Fauroux I, et al. Low-molecular-weight fucoidan enhances the proangiogenic phenotype of endothelial progenitor cells. Biochemical Pharmacology, 2005, 70(8): 1167-1175.
    169. Campo C, Molinari J F, Ungo J, et al. Molecular weight-dependent effects of nonanticoagulant heparins on allergic airway responses. Journal of Applied Physiology, 1999, 86(2):549-557.
    170.曹红,张世玲,姬胜利,等.硫酸寡糖对豚鼠气管平滑肌的作用.中国生化药物杂志, 2003, 24(6):283-285.
    171. Atmani F. Medical management of urolithiasis, what opportunity for phytotherapy? Frontiers in Bioscience, 2003, 8(sup):507-514.
    172. Daudon M, Bader C A, Jungers P. Urinary calculi: review of classification methods and correlations with etiology. Scanning Microscopy, 1993, 7(3):1081-1106.
    173.毕殿洲.药剂学.第四版.北京:人民卫生出版社, 2000, 79-80.
    174.中华人民共和国药典委员会编.原料药与药物制剂稳定性试验指导原则.中华人民共和国药典(二部).北京:化学工业出版社, 2005,附录176-179.
    175. Wu S J, Chun M W, Shin K H, et al. Chemical sulfonation and anticoagulant activity of acharan sulfate. Thrombosis research, 1998, 92(6):273-281.
    176. Liu G G, Borjihan G, Baigude H, et al. Synthesis and anti-HIV activity of sulfated astragalus polysaccharide. Polymers for Advanced Technologies, 2003, 14(7):471-476.
    177. Han F, Yao W B, Yang X B,et al. Experimental study on anticoagulant and antiplatelet aggregation activity of a chemically sulfated marine polysaccharide YCP. International journal of biological macromolecules, 2005, 36(4):201-207.
    178. Guan H S. Low molecular weight sulfated polysaccharides and uses thereof. USP 5646130, 1997.
    179.赵峡,苗辉,范慧红,等.用GPC法测定硫酸多糖911的分子量和分子量分布.青岛海洋大学学报(自然科学版), 2000, 30(4):623-626.
    180. Komatsu H, Takahata T, Tanaka M, et al. Determination of the molecular-weight distribution of low-molecular-weight heparins using high-performance gel permeation chromatography. Biological & Pharmaceutical Bulletin, 1993, 16(12):1189-1193.
    181.中华人民共和国药典委员会编.肝素钠.中华人民共和国药典(二部).北京:化学工业出版社, 2005, 271-272.
    182. Silvestri L, Hurst R, Simpson L, et al. Analysis of sulfate in complex carbohydrates. Analytical Biochemistry, 1982, 123(2):303-309.
    183.吕志华,赵峡,徐家敏.几丁糖酯原料药稳定性研究.青岛海洋大学学报(自然科学版), 2001, 31(6):842-848.
    184.吕志华,赵峡,于广利,等.硫酸多糖电泳方法的研究.中国生化药物杂志, 2002, 23(1):17-18.
    185. Dace R, Mcbride E, Brooks K, et al. Comparison of the anticoagulant action of sulfated and phosphorylated polysaccharides. Thrombosis Research, 1997, 87(1):113-121.
    186. Vongchan P, Sajomsang W, Kasinrerk W, et al. Anticoagulant activities of the chitosan polysulfate synthesized from marine crab shell by semi-heterogeneous conditions. ScienceAsia, 2003, 29(2):115-120.
    187. Sanghi R, Dhar D N. Structure elucidation of bacterial polysaccharides by NMR and mass spectrometry. A review. Journal of Scientific & Industrial Research, 2001, 60(6):463-492.
    188. Poveda A, Santamaria M, Bernabe M, et al. Studies on the structure and the solution conformation of an acidic extracellular polysaccharide isolated from Bradyrhizobium. Carbohydrate Research, 1997, 304(3-4):209-217.
    189.中华人民共和国药典委员会编.电泳法.中华人民共和国药典(二部).北京:化学工业出版社, 2005,附录31-33.
    190.郑瑞津,吕志华,于广利,等.褐藻胶M/G比值测定方法的比较.中国海洋药物, 2003, 22(6):35-37.
    191. Morris E R, Rees D, Thom D. Characterization of polysaccharide structure and interactions by circular dichroism. Order-disorder transition in the calcium alginate system. J. Chem. Soc.Chem. Commun, 1973, 245-246.
    192. Grueneberg S. A QSAR model derived from a homology model: A strategy to include structural information in ligand-based design. QSAR & Combinatorial Science, 2005, 24(4):517-526.
    193. Grasdalen H, Larson B and Smidsrod O. 1H-NMR study of the composition and sequence of uronate residues in alginates. Carbohydrate Research, 1979, 68: 23-31.
    194. Grasdalen H, Larson B, Smidsrod O. 13C-NMR Studies of monomeric composition and sequence in alginate. Carbohydrate Research, 1981, 89, 179-191.
    195. Compton B J, Siuzdak G. Mass spectrometry in nucleic acid, carbohydrate and steroid analysis. Spectroscopy, 2003, 17(4):699-713.
    196. Hjerde T, Stokke B T, Smidsrod O, et al. Free-radical degradation of triple-stranded scleroglucan by hydrogen peroxide and ferrous ions. Carbohydrate Polymers, 1998, 37(1):41-48.
    197. Luppi E, Cesaretti M, Volpi N. Purification and Characterization of Heparin from the Italian Clam Callista chione. Biomacromolecules, 2005, 6(3):1672-1678.
    198. Ziegler A, Zaia J. Size-exclusion chromatography of heparin oligosaccharides at high and low pressure. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences, 2006, 837(1-2):76-86.
    199. Zhang Z Q, Yu G L, Zhao X, et al. Sequence Analysis of Alginate-Derived Oligosaccharides by Negative-Ion Electrospray Tandem Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2006, 17(4):621-630.
    200. Yu G L, Zhao X, Yang Bo, et al. Sequence Determination of Sulfated Carrageenan-Derived Oligosaccharides by High-Sensitivity Negative-Ion Electrospray Tandem Mass Spectrometry. Analytical Chemistry, 2006, 78(24):8499-8505.
    201.吴世容,李志良,李根容,等.生物质谱的研究及其应用.重庆大学学报, 2004, 27(1):123-127.
    202. Shimizu A, Nakanishi T, Miyazaki A. Detection and characterization of variant and modified structures of proteins in blood and tissue by mass spectrometry. Mass Spectrometry Reviews , 2006, 25(5):686-712.
    203.林常青.质谱在多糖结构分析中的应用. 2005, 11(3):221-227.
    204. Robbe C, Michalski J C, Capon C. Structural determination of O-glycans by tandem mass spectrometry. Methods in Molecular Biology, 2006, 347:109-123.
    205. Chai W G, Piskarev V, Lawson A M. Negative-ion electrospray mass spectrometry of neutral underivatized oligosaccharides. Analytical Chemistry, 2001, 73(3):651-657.
    206. Chai W G, Luo J L, Lim C K, et al. Characterization of Heparin Oligosaccharide Mixtures as Ammonium Salts Using Electrospray Mass Spectrometry. Analytical Chemistry, 1998, 70(10):2060-2066.
    207. Marie P J, Coffin J D, Hurley M M. FGF and FGFR signaling in chondrodysplasias and craniosynostosis. Journal of Cellular Biochemistry, 2005, 96(5):888-896.
    208. Fang J W, Huang S L, Liu H S, et al. Role of FGF-2/FGFR signaling pathway in cancer and its signification in breast cancer. Chinese Science Bulletin, 2003, 48(15):1539-1547.
    209.范洪宽,周慧,李惟.成纤维细胞生长因子与其受体相互作用及其抑制剂的研究进展.生物化学与生物物理进展, 2001, 28(2):338-341.
    210. Prenen J A C, Boer P, Van Leersum L, et al. Urinary oxalate excretion, as determined by isotope dilution and indirect colorimetry. Clinica Chimica Acta, 1983, 127(2):251-261.
    211. Yamaguchi S, Wiessner J H, Hasegawa A T, et al. Study of a rat model for calcium oxalate crystal formation without severe renal damage in selected conditions. International Journal of Urology, 2005, 12(3):290-298.
    212. Vargas R, Perez R M, Perez S, et al. Antiurolithiatic activity of Raphanus sativus aqueous extract on rats. Journal of ethnopharmacology,1999,68(1-3):335-338.
    213. Satoh M, Munakata K, Kitoh K, et al. A newly designed model for infection-induced bladder stone formation in the rat. The Journal of urology, 1984, 132(6):1247-1249.
    214. Ismail T S, Gopalakrishnan S, Begum V H, et al. Anti-inflammatory activity of Salacia oblonga Wall. and Azima tetracantha Lam. Journal of ethnopharmacology, 1997, 56(2):145-152.
    215. Rosiello A P, Essigmann J M, Wogan G N. Rapid and accurate determination of the median lethal dose (LD50) and its error with a small computer. Journal of Toxicology and Environmental Health, 1977, 3(5-6):797-809.
    216. McDowell L M, Frazier B A, Studelska D R, et al. Inhibition or Activation of Apert Syndrome FGFR2 (S252W) Signaling by Specific Glycosaminoglycans. Journal of Biological Chemistry, 2006, 281(11):6924-6930.
    217. Cao LC, Boeve ER, de Bruijn WC, et al. Glycosaminoglycans and semisynthetic sulfated polysaccharides: an overview of their potential application in treatment of patients with urolithiasis. Urology, 1997, 50(2):173-183.
    218. Tungsanga K, Sriboonlue P, Futrakul P, et al. Renal tubular cell damage and oxidative stress in renal stone patients and the effect of potassium citrate treatment. Urological Research, 2005, 33(1):65-69.
    219. Jeffers M, LaRochelle W J, Lichenstein H S. Fibroblast growth factors in cancer: Therapeutic possibilities. Expert Opinion on Therapeutic Targets, 2002, 6(4):469-482.
    220. Spivak-Kroizman T, Lemmon M A, Dikic I, et al. Heparin-induced oligomerization of FGF molecules is responsible for FGF receptor dimerization, activation, and cell proliferation. , Cell, 1994, 79(6):1015-1024.
    221. Wu Z L, Zhang L J, Yabe T, et al. The Involvement of heparan sulfate (HS) in FGF1/HS/FGFR1 signaling complex. Journal of Biological Chemistry, 2003, 278(19): 17121-17129.
    222. Ornitz D M, Herr A B, Nilsson M, et al. FGF binding and FGF receptor activation by synthetic heparan-derived di- and trisaccharides. Science, 1995, 268(5209):432~436.
    223. Kazakov S, Levon K. Liposome-nanogel structures for future pharmaceutical applications. Current Pharmaceutical Design, 2006, 12(36):4713-4728.
    224. Fan M H, Xu S Y, Xia S Q, et al. Effect of Different Preparation Methods on Physicochemical Properties of Salidroside Liposomes. Journal of Agricultural and Food Chemistry, 2007, 55(8):3089-3095.
    225. Xia S Q, Xu S Y, Zhang X M. Optimization in the Preparation of Coenzyme Q10 Nanoliposomes. Journal of Agricultural and Food Chemistry, 2006, 54(17):6358-6366.
    226. Pham H L, Shaw P N, Davies N M. Preparation of immuno-stimulating complexes (ISCOMs) by ether injection. International Journal of Pharmaceutics, 2006, 310(1-2):196-202.
    227. Huang Y Z, Gao J Q, Liang W Q, et al. Preparation and characterization of liposomes encapsulating chitosan nanoparticles. Biological & Pharmaceutical Bulletin, 2005, 28(2):387-390.
    228.翟光喜,王唯红,赵焰,等.低分子肝素柔性纳米脂质体的研究.山东大学学报(医学版), 2002, 40(3):240-242.
    229. Utkhede D, Wu M, Chew N, et al. Preparation, characterization and 99mTc radiolabeling of polyethylene glycol-coated vesicles. Journal of Liposome Research, 1996, 6(2):497-514.
    230. Liu D X, Huang L. Size homogeneity of a liposome preparation is crucial for liposome biodistribution in vivo. Journal of Liposome Research, 1991, 2(1):57-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700