用户名: 密码: 验证码:
陶瓷纤维摩擦材料的制备及摩擦机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,公路、铁路交通的发展加速了汽车、火车等运输机械高速重载化的进程,从而对制动装置中摩擦材料的性能提出了更高的要求。车辆行驶速度的提升要求摩擦材料能够在较宽的速度、温度范围内具有稳定的摩擦性能。石棉材料由于耐热性能好,产量丰富,机械性能优良,与树脂基体匹配良好等特点,广泛应用于早期摩擦材料的配方中。但是由于石棉材料对于人体的健康存在危害,能引起环境污染,国内外广泛开展了无石棉摩擦材料的研究。主要的无石棉摩擦材料有铸铁摩擦材料、半金属摩擦材料、陶瓷型摩擦材料等。其中陶瓷型摩擦材料配方为无金属或少金属原材料,能够很好解决半金属及铸铁材料的锈蚀、摩擦噪音等问题,因而得到了各国摩擦材料研究领域的重视。新型摩擦材料的开发往往具有很强的经验依赖性,且评定摩擦材料配方需要考虑的因素包括力学性能、摩擦学性能、成本等诸多方面,给新型摩擦材料的研究与应用带来了一定困难。本文根据国际上摩擦材料研究及应用情况,主要从新型陶瓷材料配方的开发、优化、摩擦材料综合性能评定、摩擦磨损机制、摩擦过程热—力耦合作用等方面进行了研究。采用冷压成型、热压固化、后处理的方法制备了陶瓷型摩擦材料,测试了摩擦材料密度、冲击强度、硬度等力学性能,利用定速式摩擦磨损试验机测试陶瓷型摩擦材料摩擦系数、磨损率等摩擦学性能,并根据黄金分割法、模糊理论、灰色相关理论得到了优化的摩擦材料配方,利用扫描电子显微镜观察摩擦材料磨损表面形貌,讨论了陶瓷型摩擦材料磨损机制,利用有限元方法对陶瓷型摩擦材料摩擦热—力耦合过程进行了模拟,并在定速式摩擦磨损试验机上测试摩擦材料摩擦过程中摩擦表面温度变化情况。通过模拟结果与定速摩擦温升试验对比,发现模拟结果与试验结果较好吻合,证明有限元方法在摩擦材料摩擦过程热—力耦合分析的可行性,为新型摩擦材料配方的开发、摩擦材料磨损机制的研究提供了理论与试验依据。
     增强纤维是摩擦材料原材料最重要的组成部分,与材料的摩擦磨损性能、机械强度等密切相关。摩擦材料中增强纤维的作用主要是使材料具有一定的强度和韧性,使材料能够承受摩擦制动瞬时的冲击、剪切、拉伸等机械作用而不至于出现裂纹、断裂、崩缺等机械损伤。陶瓷型摩擦材料中经常使用的增强材料有陶瓷纤维、玻璃纤维、碳纤维、钛酸钾晶须、芳纶浆粕等,这些纤维材料能够满足具有足够强度、韧性;良好的摩擦磨损性能;较好的耐热性;合理的硬度等基本要求。本文采用硅氧铝陶瓷纤维、碳纤维、钛酸钾晶须作为主要材料,研究开发陶瓷型摩擦材料。硅氧铝陶瓷纤维具有熔点高、高温力学性能优良、密度低等特点,广泛应用于耐热、耐高温等领域,而在摩擦材料领域内的应用较少。摩擦材料配方中一般含有十几种甚至几十种原材料,各种原材料具有不同的作用。并且摩擦材料需要考察的性能指标包括力学性能、摩擦学性能、成本等诸多因素。因此,新型摩擦材料配方的开发往往具有很强的经验依赖性。本文为开发新型摩擦材料提供了一种定量计算的方法,并成功研制出一种新型陶瓷型摩擦材料配方。具体步骤为:首先进行增强纤维的选择。在半金属摩擦材料的基础上,添加硅氧铝陶瓷纤维,与钢纤维混杂作为增强材料,腰果壳油改性酚醛树脂与丁腈橡胶共混作为基体,添加适当摩擦性能改性剂,制备出新型摩擦材料,并测试摩擦磨损性能,分析了硅氧铝陶瓷纤维含量对摩擦材料摩擦磨损性能的影响。结果表明硅氧铝陶瓷纤维可以作为摩擦材料的增强材料,添加少量的陶瓷纤维能够明显的改善半金属摩擦材料的摩擦磨损性能,由于陶瓷纤维能够提高摩擦系数稳定性,特别是高温下摩擦系数稳定性,陶瓷纤维可以作为增强材料应用于高性能陶瓷型摩擦材料的生产。当半金属摩擦材料配方中陶瓷纤维含量超过5wt.%时,摩擦材料的稳定系数和变化系数不随其含量的增加而明显变化,摩擦材料的恢复性系数逐渐变小,磨损率显著增加,表明硅氧铝陶瓷纤维超过一定含量时会使摩擦材料的恢复性变差,使摩擦材料的磨损率增大,主要原因是陶瓷纤维在摩擦力作用下断裂后形成的短陶瓷纤维在摩擦表面形成磨粒,增大了摩擦材料的磨粒磨损。因此在应用陶瓷纤维作为摩擦材料增强剂的同时应适当增加减磨的摩擦性能调节剂。
     碳纤维是由不完全石墨结晶沿着纤维轴向排列的一种多晶的新型无机非金属材料,具有“乱层石墨”结构,在陶瓷型摩擦材料中能够同时起到增强材料与固体润滑剂的作用。碳纤维具有低密度、高强度、高模量、耐高温、抗化学腐蚀、低电阻、高导热、低热膨胀、耐化学腐蚀等特性,比强度和比模量优于其他无机纤维。六钛酸钾晶须导热系数小,且具有负温度系数,化学性能稳定,耐强酸,强碱且无毒害,力学性能极高,适合显微增强,制造精、薄、形状复杂、表面光洁度要求高的精密部件。本文用陶瓷纤维、碳纤维和钛酸钾晶须作为增强材料,腰果壳油改性酚醛树脂与丁腈橡胶共混作为基体粘结剂,添加适量摩擦性能调节剂与空间填料开发高性能陶瓷型摩擦材料。然后,在前期工作基础上采用黄金分割法设计9组陶瓷型摩擦材料初选配方,用正交试验法安排试验考察陶瓷纤维、碳纤维、钛酸钾晶须含量对于摩擦材料综合性能的影响。考核指标运用模糊理论综合考虑摩擦材料力学、摩擦学、成本等因素。利用灰色相关性理论分析三种增强材料含量对于摩擦材料综合性能影响的敏感度,得到三种纤维含量对摩擦材料综合性能影响的敏感度序列。根据敏感度序列对正交试验优选出的1组摩擦材料初选配方按照黄金分割法进行调整得到4组优选配方,再次根据模糊理论综合考察各优选配方力学、摩擦学、成本等因素,计算优选各配方模糊综合评价值,从而得到最优化的陶瓷型摩擦材料配方。
     由于摩擦力的作用,摩擦材料在制动过程中表面温度迅速升高,导致摩擦材料磨损表面受力状态改变。温度过高会引起摩擦材料基体树脂的降解甚至发生粘流,引起摩擦系数的热衰退现象。同时由于摩擦材料磨损表面及近表面区域的温度场、应力场的改变会直接影响摩擦材料的疲劳磨损程度,对摩擦材料摩擦过程中表面温度场与应力场状态的预测对于提高摩擦材料的性能具有重要意义。本文在非平衡态热力学理论基础上,采用有限元方法将摩擦材料导热方程离散化,对陶瓷型摩擦材料摩擦过程表面温度分布及应力分布情况进行模拟,并用定速温升试验对模拟结果进行验证。结果表明:在摩擦材料工作过程中,刹车片前端温度明显高于后端,在表面存在温度梯度,且随着制动压力的提高,摩擦表面最高温度相应提高,表面温度梯度越大。随着制动摩擦时间的推移,摩擦材料表面沿着滑动方向所受的剪切力逐渐增大,制动压力越大,剪切力越大,且增长速度越快。定速摩擦温升试验中,摩擦衬片材料表面温度随着制动摩擦时间的推移逐渐升高,随着制动压力的提高,摩擦表面温度上升速度加快。对比有限元模拟结果发现,模拟表面温度高于定速摩擦升温试验结果,主要是由于有限元模拟过程中忽略了摩擦热以空气对流、辐射、磨损微粒温升等形式的耗散。有限元模拟结果与试验结果中温度随时间的变化趋势基本相同。要得到更加准确的模拟结果,要在模型中增加材料的磨损、化学变化等因素。
In recent years, the development of highway and railway has accelerated the process of high speed and loading of transport machines, which deserves higher properties of the friction material in the brake system. Higher speed of vehicles needs stable properties of the friction material in a comparatively larger scale of speed and temperature. Due to its good heat resistant performance, abundance of output, fine mechanical property and favorable matching with resin matrix, asbestos is widely applied in early formulations of friction materials. But because of the harm it has to man’s health and the environmental pollution it may cause, many studies have been conducted on asbestos-free friction materials. There are mainly cast iron, semi-metal and ceramic friction materials. The formulations of ceramic friction materials are metal-free raw materials which can well solve the problems of corrosion and friction noise of semi-metal and cast iron materials. So, ceramic materials have been given much attention in the friction material study in many countries. The development of new friction materials tends to rely much on experience and the assessment of the formulations of friction materials involve many factors such as mechanical properties, friction properties, cost, etc, causing some difficulties in the study and application of new friction materials. This dissertation, based on the study and application of friction materials in the world, is a study on new friction materials from the aspects of development, optimization, assessment of integrated properties of friction materials, friction wear mechanism and coupling of thermal and strength, etc. Ceramic friction materials are prepared by pre-modeling, hot-press and post-cure. The mechanical properties of the friction materials such as density, strength, hardness, are tested. Friction tester with constant speed is used to test tribological properties of friction coefficient, wear rate, etc. Formulations of optimized friction materials are obtained according to golden section method, fuzzy theory and grey system theory. The physiognomy of wear face is observed with scan electron microscopy (SEM). The wear mechanism of ceramic friction materials is discussed. The coupling of thermal and strength of ceramic friction materials is simulated with finite element method (FEM). And the temperature change of the friction face is tested on friction tester with constant speed. The comparison between the simulation result and the friction experiment with constant speed shows the consistency between the two. This proves the feasibility of finite element method in the analysis of coupling of thermal and strength, which provides theoretical and experimental foundation for the development of new friction materials and the study of wear mechanism of friction materials.
     Being the most important constituent of friction materials, fiber is closely related to the friction property and the mechanical strength of the material. Its major function is to create certain strength and toughness in the material so as to make the material endure mechanical processes of instantaneous impacting, shearing, tensile of brake and avoid mechanical damage of crack, failure, collapsing, etc. The frequently used fibers in ceramic friction materials include ceramic fiber, glass fiber, carbon fiber, potassium titanate whisker, Aramid pulp, etc. They have the required properties of sufficient strength, toughness, good performance against friction and wear, better heat resistant performance, reasonable hardness, etc. In this dissertation, alumina silicate fiber, carbon fiber, potassium titanate whisker are used as main materials. Alumina silicate fiber has high melting point, fine mechanical properties at high temperature and low density. It is widely used in high temperature field, but comparatively much less used in friction material field. More than ten or even tens of raw materials are involved in the formulations of friction materials, each of which having its role to play. And the properties considered in friction materials include mechanical property, friction property, cost, etc. So the development of new friction materials relies much on experience. The dissertation provides a quantitative calculating method of the development of new friction materials and successfully develops the formulations of a new type of friction materials. The specific steps are as follows. First, choose the fiber. Hybrid fiber reinforced composite is made by adding alumina silicate fiber to semi-metal friction material. New friction material is prepared by adding adequate modifier to the blended matrix of PF resin modified with cashew oil and nitrile-butadiene rubber (NBR). The friction properties are tested. The effect of alumina silicate fiber content on the friction properties is analyzed. The result shows alumina silicate fiber can be used as the fiber of friction materials and a small quantity of ceramic fiber can obviously improve the friction properties of semi-metal friction material. Ceramic fiber can be applied to the production of high-property ceramic friction materials because of its ability to improve the stability of friction coefficient, especially at high temperature. When the content of ceramic fiber is above 5wt.%, there is no obvious connection between the increase of content and the stability and variability coefficient of the material. But the recovery coefficient decreases and the wear rate increases with the increase of the content of ceramic fiber. This indicates that with the content of alumina silicate ceramic fiber going beyond a certain degree, the recovery coefficient of the friction material becomes worse, which increases in turn the wear rate of the material. This is attributed to the fact that ceramic fibers rupture into short ceramic fibers under the influence of friction and form abrasive grains on the friction interface, which adds to the grain-abrasion of the friction material. Therefore, adequate amount of raw materials with low friction coefficient should be added when ceramic fiber is used as friction reinforcement.
     Carbon fiber is a new kind of polycrystalline inorganic material. The imperfect graphite crystal grows along the direction of fiber axis. And the fiber has the structure of“disordered layer graphite”. The structure can work as reinforcement and solid lubricant. Carbon fiber has the properties of low density, high strength, high modulus, heat and chemical corrosion resistant, etc. Potassium titanate whisker has the properties of high mechanical property, corrosion resistant, stable chemical property, which are suitable for reinforcement, manufacturing exactitude assembly. The high performance ceramic friction material is prepared using ceramic fiber, carbon fiber and potassium titanate whisker as reinforcement, cashew oil modified PF resins and NBR as matrix in the paper.
     Then, golden section method is employed to design 9 original ceramic friction material formulations. Orthogonal experiments are arranged to show the effects of ceramic fiber, carbon fiber and potassium titanate whisker content on the integrated properties of friction material. The fuzzy theory is used to calculate the fuzzy overall merits of formulations including mechanical, tribological properties and cost. The grey system theory is employed to analyze the sensitivities of the contents of there `reinforcements. According to the sequence of sensitivities, the best formulation selected in the 9 original ones is modified based on the method of golden section. Four new formulations of composites are obtained. The grey system theory and fuzzy overall merits are employed again to optimize the formulations, And the best formulation of
     The temperature of friction interface increases rapidly in the process of brake. The increase of temperature induces the change of stress state on the surface of friction material. Excess temperature can cause the degradation of matrix PF which leads to the decrease of friction coefficient. It is important to predict the change of temperature field and stress field of friction material because the state of temperature and stress field can affect the fatigue wear of friction material. On the basis of irreversible thermodynamics, differential equations of thermal conduction are dispersed by FEM. And the distributions of temperature and stress on the surface of friction are simulated. Simulated conclusions are then validated by friction tests with constant speed. It can be conclude that the temperature of the leading edge of friction material is much higher then the other edge in the process of brake. The highest temperature on the friction interface rises with the increase of brake pressure. The results of friction tests with constant speed show that the temperature of brake lining material surface rises with the passage of time. The higher the pressure is, the faster the temperature rises. It can be found that the temperature of friction interface calculated by FEM is higher the temperature measured in friction test. Ignoring the heat dissipation by means of cross-ventilation, radiation and temperature rising of abrasive particles induces the difference between the results of simulation and test. In order to obtain more exact results by means of simulation, wear and chemical reaction of friction material should be taken into account.
     Keywords: ceramic fiber, friction material, friction, wear, finite element method
引文
[1].苏堤,贺安安,李度成,汽车制动摩擦材料的研究.材料与工艺, 1996(11): p. 44-46.
    [2].徐长明, 1997汽车市场预测分析.汽车工业研究, 1997(1): p. 27.
    [3]. Varenberg M., H.G., Etsion I., Different aspects of the role of wear debris in fretting wear[J]. Wear, 2002. 252: p. 902-910.
    [4].杨亚洲,仿生哑铃型黄麻纤维增强摩擦材料.长春:吉林大学, 2006.
    [5].童幸生,陶瓷摩擦副磨损机理的研究.华南理工大学学报(自然科学版), 2001. 29(4): p. 94-97.
    [6].盛钢,马保吉,制动摩擦材料研究的现状与发展.西安工业学院学报, 2000. 20(2): p. 127-133.
    [7]. Lomov S.V., V.I., Model of shear of woven fabric and parametic description of shear resistance of glass woven reinforcements. Composites Science and Technology, 2006. 66: p. 919-933.
    [8]. Berthelot J. M., S.Y., Damping analysis of unidirectional glass and Kevlar fibre composites[J]. Composites Science and Technology, 2004. 64: p. 1261-1278.
    [9]. Hasim P., N.T., Effect of load and speed on the wear behaviour of woven glass fabrics and aramid fibre-reinforced composites. Wear, 2002. 252: p. 979-984.
    [10]. Remond Y., W.C., Two experimental methods to measure the damaged subsurface of carbon-carbon brake discs. Applied Composite Materials, 1999. 6: p. 185-201.
    [11]. Venkataraman B., S.G., The influence of sample geometry on the friction behaviour of carbon-carbon composites. Acta Materialia, 2002. 50: p. 1153-1163.
    [12]. Kim S.J., C.M.H., Lim D.S. et al., Synergistic effects of aramid pulp and potassium titanate whiskers in the automotive friction material. Wear, 2001. 251: p. 1484-1491.
    [13]. Y., L., Asbestos free brakes and dry cluches reinforced with Kevlar aramid fiber. SAE paper, 1980. 800667.
    [14].刘震云,汽车磨擦材料增强纤维研究综述.汽车技术, 1999(1): p. 19.
    [15]. Y., L., A Golden Secition approach to optimization of automotive friction materials. Material Science, 2003. 38: p. 1081-1085.
    [16].杨永连,烧结金属摩擦材料.机械工程材料, 1995. 19(6): p. 18-21.
    [17].陈洁,姚萍屏,熊翔,乔卫东, MoS2在铁基摩擦材料烧结过程中的行为研究.非金属矿, 2003. 26(4): p. 50-52.
    [18]. Chinese Patent CN 1919798A.
    [19]. European Patent EP 0892191 A1.
    [20].尹延会,酚醛树脂高性能化改性研究进展.热固性树脂, 2001. 16(4): p. 29-33.
    [21].赵晓玲,酚醛树脂改性研究的最新进展.现代塑料加工应用, 2003. 15(5): p. 56-60.
    [22].高俊刚,胺改性酚醛树脂的研究.塑料工业, 1994(2): p. 59-62.
    [23].何筑华,硼改性酚醛树脂在摩擦材料上的应用.贵州化工, 1999(3): p. 11-12.
    [24].欧阳兆辉,钼改性酚醛树脂胶粘剂的研究.化工进展, 2005. 24(8): p. 901-904.
    [25].刘晓洪,原位聚合法制备钼酚醛树脂纳米复合材料的研究.塑料工业, 2004. 32(7): p. 18-19.
    [26].周重光,有机硅改性酚醛树脂热稳定性的研究.高分子材料科学与工程, 2000. 16(1): p. 164-165.
    [27].陆怡平,酚醛树脂增韧改性及其在摩擦材料中的应用.非金属矿, 1998. 12(3): p. 54-56.
    [28]. Locker, K.D., Friction material-an overview. Powder Matellurgy, 1992. 35: p. 253-255.
    [29]. Ludema, K.C., Mechanism-based modeling of friction and wear. Wear, 1996. 200: p. 1-7.
    [30].周仲荣,摩擦学发展前沿.北京:科学出版社, 2006: p. 35-36.
    [31]. Y. Zhang, Y.C., R. He et al., Investigation of tribological properties of brake shoe materials-phosphorous cast irons with different graphite morphologies. Wear, 1993. 166: p. 179-186.
    [32].Л.А.уколов,В.А.Ж.,粉末冶金制动闸瓦与聚合物合成制动闸瓦的摩擦特性比较.国外内燃机车, 2000(3): p. 34-38.
    [33].王京波,高摩合成闸瓦在快速货车上的适用性.铁道机车车辆, 2000(3): p. 8-9.
    [34]. Crosa G., B.I.J.R., Tribology of composites used as frictional materials. Advances in composite tribology, 1993: p. 582-626.
    [35]. Y. Remond, C.W., Two experimental methods to measure the damaged subsurface of carbon-carbon brake discs. Applied Composite Materials, 1999. 6: p. 185-201.
    [36]. B. Venkataraman, G.S., The influence of sample geometry on the friction behaviour of carbon-carbon composites. Acta Materialia, 2002. 50: p. 1153-1163.
    [37].吴培熙,沈健,特种性能树脂基复合材料. 2003,北京:化学工业出版社. 381-395.
    [38]. V., K.I., Some concept and definitions which apply to friction and wear. 1957, Moscow: Acad. Sci. USSR. 12.
    [39]. I.V., K., Calculation of wear rate. Trans. ASME. J. of Basic Engng. Ser D, 1965. 87: p. 785-790.
    [40]. A.R. AbuBakar, H.O., Wear prediction of friction material and brake squeal using the finite element method. Wear, 2007. doi:10.1016/j.wear.2007.08.015.
    [41]. Podra P., A.S., Simulating sliding wear with finite element method. Tribology International, 1999. 32: p. 71-81.
    [42]. Oqvist, M., Numerical simulations of mild wear using updated geometry with different step size approaches. Wear, 2000. 249: p. 6-11.
    [43]. McColl I R., D.J., Leen S B., Finite element simulation and experimental validation of fretting wear. Wear, 2004. 256: p. 1114-1127.
    [44].方亮,杜道山,张晓峰等.,三体磨损中材料塑性变形磨损的数值模拟.西安交通大学学报, 2003. 37(3): p. 268-272.
    [45]. Popov V L., P.S.G., GervE A., Wear in combustion engines: experment and simulation on a basis of movable cellular automaton method. Physical Meso-Mechanics, 2001. 4(4): p. 71-80.
    [46]. M. Mueller, G.P.O., Cellular automata method for macroscopic surface and friction dynamics in brake systems. Tribology International, 2007. 40: p. 942-952.
    [47]. Cheng K., L.X., Ward R. et al., Modeling and simulation of the tool wear in nanometric cutting. Wear, 2003. 255: p. 1427-1432.
    [48]. F., A.J., Contact and rubbing of flat surfaces. J. Appl. Phys., 1953. 24(8): p. 981-988.
    [49]. I.G, G., Contact Mechanics in Tribology. 1998: Kluwer Academic Publishers.
    [50]. Regel R.V, S.A.I., Tomashevsky E. E., Kinetics Foundation of Strength of Solids, Moscow: (I.R.) Nauka.
    [51].莫易敏,史玉升,邹岚等, BP神经网络理论对磨损自补偿过程的预测.润滑与密封, 1998. 6: p. 6-9.
    [52].徐建生,赵源,神经网络对磨损自补偿摩擦副磨合过程的预测.润滑与密封, 2000. 5: p.11-13.
    [53].伍朝阳,刘伯威,刘咏等,基于神经网络的树脂基摩擦材料摩擦因数的预测模型.粉末冶金材料科学与工程, 2006. 11(5): p. 272-276.
    [54]. S.M. Roberts, J.K., Y.L. Liu et al., Prediction of damage evolution in forged aluminium metal matrix composites using a neural network approach. Journal of Materials Processing Technology, 1998. 80-81: p. 507-512.
    [55].马丽扬,系统论. 1987,石家庄:河北人民出版社.
    [56]. Nicolis G., P.I., Self-organization in Non-equilibrium System: From Dissipative Structure to Order through Fluctuations. 1977, New York: Join Wiley & Sons Inc.
    [57].哈肯,协同学. 1984,北京:原子能出版社.
    [58].翟玉生,应用摩擦学. 1996,东营:石油大学出版社.
    [59]. Andrew J. Gellman, J.S.K., The current status of tribological surface science. Tribology Letters, 2001. 10(1-2): p. 39-44.
    [60]. Mikael Eriksson, F.B., Staffan Jacobson, Surface characterization of brake pads after running under silent and squealing conditions. Wear, 1999. 232: p. 163-167.
    [61]. D. Bettge, J.S., Quantitative description of wear surfaces of disc brakes using interference microscopy. Wear, 2001. 248: p. 121-127.
    [62]. Mikael Eriksson, F.B., Staffan Jacobson, On the nature of tribological contact in automotive brakes. Wear, 2002. 252: p. 26-36.
    [63].张明喆,杨晓红,刘勇兵,摩阻材料的摩擦学.汽车工艺与材料, 1999(9): p. 22-23.
    [64]. P.G. Sanders, T.M.D., R. H. Basch, A reduced-scale brake dynamometer for friction characterization. Tribology International, 2001. 34: p. 609-615.
    [65]. M. Eriksson, A.L., S. Jackbson, A study of the influence of humidity on the friction and squeal generation of automotive brake pads. Proc. Instn. Mech. Engrs. Part D, 2001. 215(329-341).
    [66].陈海燕,纤维增强树脂基摩擦材料性能及其摩擦学研究. 2003,山东大学:济南.
    [67].吴人洁,高聚物的表面与界面. 1998,科学出版社:北京. p. 226-240.
    [68].尼科里斯,普利高津,探索复杂性. 1992,成都:四川教育出版社.
    [69].曾丹苓,工程非平衡热动力学. 1991,北京:科学出版社.
    [70]. B.E., K., Wear--An entropy Production Model. Wear, 1980. 58: p. 325.
    [71]. A., Z., A Thermodynamical Model of Contact, Friction and Wear, I. Governing Equations. Wear, 1987. 114(2): p. 135-168.
    [72]. A., Z., A Thermodynamical Model of Contact, Friction and Wear, II. Constitutive Equations for Materials and Linearized Theories. Wear, 1987. 114(2): p. 169-197.
    [73]. A., Z., A Therodynamical Model of Contact, Friction and Wear, III. Constitutive Equations for Friction, Wear and Frictional Heat. Wear, 1987. 114(2): p. 199-221.
    [74].戴振东,王珉,薛群基,摩擦体系热力学引论. 2002,北京:国防工业出版社.
    [75].杨曼绢, ABAQUS用户材料子程序开发及应用. 2005,华中科技大学:武汉.
    [76].郭新涛,复合材料摩擦片热衰退机理初步研究.玻璃钢/复合材料, 2002. 6(15-16).
    [77].石志刚,国外汽车摩擦材料工业的新进展.非金属矿, 2001. 24(2): p. 52-53.
    [78].贺福,王茂章,碳纤维及其复合材料. 1997,北京:科学出版社. 150-160.
    [79]. P. E. Vickers, M.F.F., L. Boniface et al., A small area xps study of the fracture surface of a thermoplastic-modified CFRP. Journal of Materials Science, 2001. 36: p. 2323-2327.
    [80]. P. Filip, L.K., M. A. Wright, Automotive Brake Lining Characterization Proceedings of 15th Annual SAE Brake Colloquium 1997, SAE, Warrendal, PA,1997. p. 41-61.
    [81]. Pugh, K., Brake linings-the past, present and future. Ind. Miner., 1991(March).
    [82]. Bijwe, J., Composites as friction materials: recent developments in non-asbestos fiber reinforced friction materials-a review. Polym. Comp., 1997. 18(3(June)).
    [83]. L.G. Hayer, A.b., G.T. Neilsen, P.Morgen, Tribological properties of automotive disc brakes with solid lubricants. Wear, 1999. 232: p. 168-175.
    [84]. H. Jang, K.K., S.J.Kim, et al., The effect of metal fibers on the friction performance of automotive brake friction materials. Wear, 2004. 256: p. 406-414.
    [85]. Cho M. H., K.D.S.e.a., Effects of ingredients on tribological characteristics of a brake lining: an experimental case study. Wear, 2005. 258(11-12): p. 1682-1687.
    [86].吴人洁,复合材料. 2000,北京:清华大学出版社.
    [87]. Zhao U.H., W.G.J., Effective elastic moduli of carbon reinforced composites. J. Mech. Phys. Solids, 1990. 38: p. 379-404.
    [88]. R.M., C., A critical evaluation for a class of micromechanics models. J. Mech. Phys. Solids, 1990. 38: p. 379-404.
    [89]. Wu L.Z., M.S.H., Du S. Y., The overall response of composite materials with inclusions. Int. J. Solids & Struct, 1997. 34: p. 3021-3039.
    [90].杜善义,吴林志,含球夹杂复合材料的力学性能分析.复合材料学报, 1994. 11(1): p. 105-111.
    [91]. Japan Patent JP 06248091.
    [92]. Japan Patent JP 08291223.
    [93]. Japan Patent JP 08337660.
    [94]. Japan Patent JP 0912735.
    [95]. Japan Patent JP 0931214.
    [96]. S.J. Kim, M.H.C., D.-S. Lim, H. Jang, Synergistic effects of aramid pulp and potassium titanate whiskers in the automotive friction material. Wear, 2001. 251(1484-1491).
    [97].王燕,廖功雄,蹇锡高等, PPESK/TK/石墨复合材料的摩损性能研究.工程塑料应用, 2006. 34(4): p. 4-6.
    [98].武俊宇,曾荣树,倪文等,高钙粉煤灰在建材行业的研究进展.硅酸盐通报, 2007. 26(4): p. 751-759.
    [99].熊党生,粉煤灰填充聚氯乙烯复合材料的摩擦学特性研究.摩擦学学报, 2003(23): p. 154-157.
    [100]. V.M. Malhotra, P.S.v., M.A. Wright, Effects of fly ash and bottom ash on the frictional behavior of composites[J]. Fuel, 2002(81): p. 235-244.
    [101]. Samrat Mohanty, Y.P.C., Development of fly ash-based automotive brake lining. Tribology International, 2007(40): p. 1217-1224.
    [102]. Hee K.W., F.P., Performance of ceramic enhanced phenolic matrix brake lining materials for automotive brake linings. Wear, 2005(259): p. 1088-1096.
    [103].赵海君,严云,胡志华,粉煤灰基地聚混凝土性能的研究.粉煤灰综合利用, 2007(4): p. 18-20.
    [104].方萍,方正,活化粉煤灰用作水泥混合材料的研究.粉煤灰综合利用, 2007(2): p. 25-26.
    [105].曾天敏,杨桓,利用粉煤灰烧制陶粒的实验研究.粉煤灰, 2007(3): p. 28-32.
    [106].宋巨龙,钱富才,基于黄金分割的全局最优化方法.计算机工程与应用, 2005. 4: p. 94-95.
    [107].关淮海,黄金分割优选法的应用.安徽农业技术师范学院学报, 2000. 14(2): p. 80.
    [108].郑少华,姜奉华,试验设计与数据处理. 2004,北京:中国建材工业出版社.
    [109].韩翎,陶瓷摩擦材料配方的优化. 2006,北京化工大学:北京.
    [110]. N., C.J., Experimental strategies for combinatorial and high-throughput materials development. Acc. Chem. Res., 2001. 34(213-221).
    [111].刘英,王凤岐,产品稳健设计响应面模型的实验设计.机械设计与制造, 2005. 7: p. 34-36.
    [112].杨俊英,王晓波,王孙准,拉丁方设计及其统计分析方法.新乡医学院学报, 2000. 17(3): p. 224-226.
    [113].邓聚龙,灰色系统理论教程. 1986,武汉:华中理工大学出版社.
    [114].吴红秀,碳纤维复合摩擦材料的研究. 1998,北京化工大学:北京.
    [115].王新华,制动摩擦材料摩擦学性能的灰色分析与预测.石油机械, 1999. 27(10): p. 5-7.
    [116].朱文坚,王涛,无石棉摩阻材料配方的优化设计.润滑与密封, 1997. 4: p. 52-54.
    [117].曹献坤,杨晓燕,新型摩擦材料配方设计及优化.非金属矿, 2004. 27(4): p. 50-54.
    [118].屈钧利,工程结构的有限元方法. 2004,西安:西北工业大学出版社.
    [119].翁荣周,传热学的有限元方法. 2000,广州:暨南大学出版社.
    [120].姚仲鹏,王瑞君,张习军,传热学. 1995,北京:北京理工大学出版社.
    [121].袁伟,鼓式制动器温升计算模型及其应用研究. 2003,长安大学:西安.
    [122]. L.鲁道夫,汽车制动系统的分析和设计. 1985,北京:机械工业出版社.
    [123]. Day, A.J., T.J. Newcomb, The Dissipation of Friction Energy from the Interface of an Annular Disc Brake. Proc. Instn. Mech. Engrs., 1984. 198D(11): p. 201-209.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700