用户名: 密码: 验证码:
脉冲磁致振荡凝固细晶技术基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文提出了一种全新的凝固组织细化技术——脉冲磁致振荡凝固细晶技术。采用自行研发的脉冲磁致振荡实验系统和EMV定向凝固实验台,结合微分热分析技术,全面研究了脉冲磁致振荡对金属凝固组织和凝固行为的影响,获得了脉冲磁致振荡细化金属凝固组织的作用规律,揭示了脉冲磁致振荡细化金属凝固组织的本质。
     应用经典电动力学理论及声学理论分析了脉冲磁致振荡作用下纯金属的凝固过程,提出了脉冲磁致振荡下液态金属凝固过程及凝固组织细化模型。脉冲电磁场与其在金属熔体表面产生的感应电流共同作用,产生洛伦兹力f=J×B,该力垂直于试样侧表面而指向试样轴心。由于电流的“趋肤效应”,凝固表面发生振荡。同时,由于固相电导率成倍增加,感应电流在晶核中强度增加,由此在晶核上产生一个由外向里的力,该力将促使从凝固表面脱落的自由晶核向熔体运动。当晶核运动到一定深度离开了趋肤效应区后,由于运动速度减慢而聚集,原来尺寸较小的晶核就可能形成多孔组织。当该组织的尺度与脉冲磁致振荡的振动波长相当时,它会反射脉冲磁致振荡产生的振动波,而获得相应的压力并使晶核得以继续向熔体内部运动。当晶核运动到熔体内部时,由于周围液体温度较高,可能被熔化为若干更小的晶核,由此增加了液态金属中晶核的数目,从而形成等轴晶组织。
     系统研究了浇注后不同冷却阶段脉冲磁致振荡处理对纯铝凝固组织的影响。实验结果显示,在脉冲磁致振荡孕育处理、脉冲磁致振荡凝固处理以及脉冲磁致振荡全程处理三种技术条件下,后两者对纯铝组织的细化效果较佳,可以获得细小等轴晶。通过隔离网实验发现,明显的组织细化效果出现在靠近处理表面的隔离网外区域,而隔离网内熔体的凝固组织没有明显变化。由此得出振荡细化核心的来源是振荡处理时从处理区域表面的型壁上异质形核后脱落的晶核,也即振荡产生的结晶雨作用。通过系统的实验建立了平均晶粒尺寸与脉冲磁致振荡参数的定量关系,证明脉冲磁致振荡的表面振动以及振荡波的传播所产生的声压是晶核迁移的动力。通过对不同屏蔽条件的熔体施加脉冲磁致振荡,发现当凝固外壳或铸型的电导率较凝固熔体小时,其对脉冲磁致振荡的屏蔽作用是较小的,当凝固外壳或铸型的电导率较凝固熔体大时,将对脉冲磁致振荡形成一定的屏蔽作用,但如果适当提高脉冲磁致振荡的处理强度,也能产生较好的细化效果。
     研究表明,脉冲磁致振荡能够明显细化锡锑合金的凝固组织,使晶粒尺寸变小,同时减弱了宏观偏析。对脉冲磁致振荡作用下锡锑合金凝固组织中β相的研究表明,铸锭中的β相在脉冲磁致振荡作用下尺寸变小,而且脉冲磁致振荡强度越高,晶粒尺寸减小越显著,晶粒数量增多,分布弥散。说明脉冲磁致振荡可以促进晶核增殖,从而大大细化组织。
     脉冲磁致振荡对铁素体不锈钢凝固组织具有显著细化作用。在一定的范围内增大处理频率和强度参数,脉冲磁致振荡对铁素体不锈钢凝固组织的细化效果及等轴晶区面积迅速递增。在适当的参数条件下等轴晶区比例可以达到100%。当脉冲磁致振荡参数过大时,由于焦耳热过大,铁素体不锈钢凝固组织细化效果反而变差。
     通过脉冲磁致振荡作用下的定向凝固实验研究,发现在同一温度梯度和晶体生长速度下,随着磁致振荡强度的增加,铝铜合金定向凝固组织中的柱状晶数增多,柱状晶一次枝晶间距变小。实验发现,脉冲磁致振荡可以加速固液界面的平界面(?)胞状界面(?)胞枝界面的转化。分析认为导致界面失稳的主要原因是由脉冲磁致振荡产生的剪切力对柱状晶的作用。
In this paper,a new developed technique,pulse magneto oscillation(PMO),was introduced.The effects of PMO on the solidification structures and behavior of metals were systematically studied by employing thermal analysis and directional solidification techniques. The experimental devices were combined with the self-developed facilities including high voltage pulse power source,solidification tester and EMV directional solidification device etc.As a result, the regularity of structure evolution under the influence of PMO was obtained,and the mechanism of structure refinement was discussed.
     Based on the analysis of solidification process of pure metals by classical electrodynamics and acoustics,the model about the molten metals and mechanism of solidification structure refinement under PMO was presented.Generally,Lorentz force f=J×B can be generated due to the combined effects of pulsed magnetic field and the induced current.This force orients from the surface to the inside of the specimen,causing an intense oscillation on the surface of melt on account of the "skin effect" of current.Meanwhile,a pulsed force from surface to inside was produced on the nucleus owing to the extremely high difference between conductance of the solid and liquid of the metal and thereby an increase of the induced current appeared.As a result,the free nucleus fell from the surface were forced to move inside.When the original small nucleus moved deeper enough out of the area of the "skin effect" area,they moved slowly and got together to form the nucleus clusters with many holes.As the size of these nucleus clusters exceeds exceeded some critical size which is was bigger enough to reflect the oscillation wave,nucleus clusters could be forced to move into the melt by the press of the wave.When the nucleus clusters reaches reached inside of the melt,it might be melt into some smaller nucleus because of around higher temperature of the melt around it and therefore the number of the nucleus in the melt was increased and equiaxed crystals were formed.
     The PMO was applied at three different stages during the cooling process of aluminum melt, i.e.incubation period,solidification stage and whole course from melt to total solid.The results showed that optimum refinement was achieved by second and third processes,with a change from coarse columnar crystals to fine equiaxed ones.In the experiment with stainless steel net in the melt,the solidification structure refinement appeared between the stainless steel net and the surface,but inside the stainless steel net the solidification structure was coarse columnar crystals. It was deemed that the reason of solidification structure refinement was the increasing of nucleus inside the melt which fell off from the mould wall into the surface near the place treated by PMO, i.e.crystal rain effect was produced by the oscillation.Based on another systemic experimental result,the quantificational relation between the average grain size and the PMO parameters was established.It was found that the press produced by oscillation wave resulted from the surface oscillation of the PMO promoted the nucleus inside.In different shield condition experiments treated by the PMO,the results showed that the shield effect was less with the smaller conductance of mould and greater with the bigger conductance of model than the melted metal, but the solidification structure could be refined if the intensity of the PMO was increased.
     It was shown that the solidification structure was obviously refined and the macro-segregation was improved by PMO treatment.The study about the effect of PMO on theβphase of the solidification structure of Sn-10.4%Sb indicated that the size of theβphase in the cast ingot diminished.Clearly,the more intensity of the PMO,the more obviously diminished effect was achieved.It is reasonable to come to the conclusion that the PMO can break the dendrite and multiply the nucleus,and therefore largely refine solidification structure.
     In normal solidification condition,PMO can obviously refine the macrostructure of ferrite stainless steel.When the treatment frequency and intensity of PMO was increased the size of equiaxed grains was correspondingly decreased and the equiaxed grain area was increased.In an optimal intensity range,the proportion of the equiaxed grains can reach as high as 100%.The macrostructure became coarse again when the intensity of pulse magneto oscillation was reasonably increased because the Joule heart produced by pulse magneto oscillation was too much to solidify.
     Besides,the directional solidification under the effect of PMO was carried out.As the increase of magnetic intensity,the amount of grains was increased and the space between the first dendrite arm spacing of columnar grain was decreased at a given temperature gradient and crystal growing rate.The results showed that the PMO could accelerate the transformation of the liquid-solid interface in the mode of plane interface(?)cell interface(?)cell/dendrite interface.It was deemed that this transformation was resulted from the effect of cut force of PMO on the columnar grains.
引文
[1]Abramov O V,Ultrasound in Liquid and Solid Metals,CRC Press,1994,290.
    [2]傅恒志,魏炳波,郭景杰凝固科学技术与材料[J].中国工程科学,2003,5(8):1.
    [3]赵宇光,梁云虹,秦庆东,周伟等外场在材料制备和加工过程中的应用[J].铸造,2004,53(4):257.
    [4]张勤,崔建忠,电磁震荡下半连铸Al合金凝固组织的细化机制[J].中国有色金属学报,2003,13(6):1500.
    [5]ZHANG Haibo,ZHAI Qijie,QI Feipeng,GONG Yongyong.Effect of side transmission of power ultrasonic on the structure of AZ81 magnesium alloy[J].The Chinese Journal of Nonferrous Metals.2004,2(14):302.
    [6]陈玉喜等.材料成型原理[M].北京:中国铁道出版社,2002.
    [7]仇圣桃,陶红标.复式结晶器传热特征及其对铸坯凝固组织的影响[J].钢铁研究学报,2005,17(4):30.
    [8]黄良余.铝及其合金的晶粒细化处理简述.特种铸造及有色合金[J],1997,3:41.
    [9]翟启杰,邢长虎,赵沛,等.微区成分扰动生核处理基础研究[J].钢铁,2002,37(6):39.
    [10]王家炘,黄积荣,林建生.金属的凝固及其控制[M].北京:机械工业出版社.1983.
    [11]W.J.Boettinger,S.R.Coriell,A.L.Greer,et al.Solidification Microstructures:Recent Developments,Future Directions[J].Acta Mater.2000,48:43.
    [12]Dhindaw,Brij K.International Conference on Solidification Science and Processing:outlook for the 21st century.Science Publishers,2001.
    [13]Flemings Merton C.Proceedings of the Merton C.Flemings Symposium on Solidification and Materials Processing.TMS,2001.
    [14]Campbell,John.Modeling of casting,welding,and advanced solidification processes Ⅶ. Minerals,Metals & Materials Society,1995.
    [15]何树先.铝合金的熔体温度处理和电脉冲处理研究[D].上海:上海交通大学,2000:6.
    [16]A.A.Wheeler.The effect of an electric field on the morphological stability of the crystal-melt interface of a binary alloy[J].J.Cryst.Growth,1990,100:78.
    [17]H.Conrad.Influence of an electric or magnetic field on the liquid~solid transformation in materials and on the microstructure of the solid[J].Mater.Sci.and Eng.,2000,A287:205.
    [18]O.V.Abramov,V.O.Abramov,B.B.Straumal,W.Gust.Hypereutectic Al-Si based alloys with a thixotropic microstructure produced by ultrasonic treatment[J].Materials & Design,1997,18:323.
    [19]翟启杰,龚永勇,戚飞鹏等.改善金属凝固组织的功率超声导入法.中国专利:CN1478624,2004.
    [20]戚飞鹏,高守雷,翟启杰等.超声功率对锡锑合金凝固组织的影响[J],上海大学学报,2003,9(1):43.
    [21]李朝霞.电磁铸造铝板坯的凝固过程和变形控制研究:[D].大连:大连理工大学.2001.
    [22]Radjai A,Miwa K.Structural refinement of metallic alloys by electromagnetic vibrations[J].International Journal of Cast Metals Research,2002,15(4):465.
    [23]B.I.Butakov,M.B.Stolyar,Yu.G.Ovchinnikov,et al.External physical actions on structure and properties of metals and alloys[J].Tyazheloe Mashinostroenie,2002,(3):9.
    [24]Furuhashi S,Yoshida M,Tanaka T.Control of early solidification by the use of high frequency electromagnetic field in the continuous casting of steel[J].Tetsu To Hagane 1998,84(9):625.
    [25]Radjai A,Miwa K.Effects of the intensity and frequency of electromagnetic vibrations on the microstructural refinement of hypoeutectic Al-Si alloys[J].Metallurgical and Materials Transactions A.2000,31(3):755.
    [26]Radjai A,Miwa K,Nishio T.An investigation of the effects caused by electromagnetic vibrations in a hypereutectic Al-Si alloy melt[J].Metallurgical and Materials Transaetions A,1998,29(5):1477.
    [27]Vives C.Effects of forced electromagnetic vibrations during the solidification of aluminum alloys. 1.Solidification in the presence of crossed alternating electric fields and stationary magnetic fields[J].Metallurgical and Materials Transactions B,1996,27(3):445.
    [28]Garnier M.Technological and economical challenges facing EMP in next century[C].The 3~(rd) international symposium on EPM.Nagoya:The Iron and Steel Institute of Japan,2000:3.
    [29]简柏敦.导电与导磁物质中的电磁场[M].北京:人民教育出版社,1981.
    [30]黄席椿。电磁能与电磁力[M].北京:人民教育出版社,1981.
    [31][美].H.A.豪斯,J.R.梅尔彻著.江家麟,周佩白,钱秀英等译.电磁场与电磁能[M].北京:高等教育出版社.1992.
    [32]郭硕鸿.电动力学(第二版)[M].北京:高等教育出版社.1997.
    [33]魏宸官.电流变技术——机理-材料-工程应用[M].北京:北京理工大学出版社.2000.
    [34]Y.Dabo,H.Nguyen Thi,S.R.Coriell,et al.Microsegregation in Peltier interface demarcation[J].Journal of Crystal Growth,2000,216:483.
    [35]Hans Conrad.Influence of an electric or magnetic field on the liquid-solid transformation in materials and on the microstructure of the solid[J].Materials Science and Engineering,Aug 2000,A287:205.
    [36]常国威,王建中.金属凝固过程中的晶体生长与控制[M].北京:冶金工业出版社,2002.
    [37]Asai S.Birth and Recent Activities of Electromagnetic Processing of Materials[J].ISIJ International,1989,29(12):981.
    [38]闵乃本.晶体生长的物理基础[M].上海:上海科学技术出版社,1982.
    [39]Misra A K.Effect of Electric Potentials on Solidification of Near Eutectic Pb-Sb-Sn Alloy[J].Materials Letters,1986,4(3):176.
    [40]Misra A K.A Novel Solidification Technique of Metals and Alloys:Under the Influence of Applied Potential[J].Metallurgical Transactions A,1985,8(16A):1354.
    [41]Wheeler A A,Coriell S R,McFadden G B,et al.The effect of an electric field on the morphological stability of the crystal-melt interface of a binary alloy[J].Journal of Crystal Growth,1988,88:1.
    [42]Coriell S R,McFadden G B,Wheeler A A,et al.The effect of an electric field on the morphological stability of the crystal-melt interface of a binary alloy,Ⅱ.Joule heating and thermoelectric effects[J].Journal of Crystal Growth,1989,94:334.
    [43]顾根大.电场作用下金属定向凝固行为的研究[D].哈尔滨:哈尔滨工业大学,1989.
    [44]Ahmed S,Bond R,McKannan E C.Solidification processing superalloys in an electric field[J].Advanced Materials and Processes,1991,10:30.
    [45]Ahmed S,McKannan E C.Control of γ' morphology in nickel base superalloys through alloy design and densification processing under electric field[J].Materials Science and Technology,1994,11(10):941.
    [46]李辉,边秀房,刘相法.电流处理对铝合金组织及性能的影响[J].特种铸造及有色合金,1996.3:8.
    [47]常国威,袁军平,王自东等.电流密度对定向凝固组织中柱状晶间距的影响[J].金属学报,2000,36(1):30.
    [48]Nakada M,Shiohara Y,Flemings M C.Modification of Solidification Structures by Pulse Electric Discharging[J].ISIJ International,1990,30(1):27.
    [49]Li Jianming,Li Shengli,Lin Hantong,et al.Modification of Solidification Structures by Pulse Electric Discharging[J].Scripta Metallurgica et Materialia,1994,31(12):1691.
    [50]Barnak J P,Sprecher A F,Conrad H.Colony(grain) Size Reduction in Eutectic Pb-Sn Castings by Electroplusing[J].Scripta Metallurgica et Materialia,1995,32(6):879.
    [51]鄢红春,何冠虎,周本濂等.脉冲电流对Sn-Pb台金凝固组织的影响[M].金属学报,1997,33(4):352.
    [52]秦荣山,周本濂.直接晶化法制备块状纳米材料的探索Ⅱ脉冲电流作用下金属熔体结晶晶粒尺寸的理论估算[J].材料研究学报,1997,11(1):69.
    [53]訾炳涛,巴启先,崔建中,等.强脉冲电磁场对金属凝固组织影响的研究[J].物理学报,2000,5:1010.
    [54]王建中.电脉冲孕育处理技术研究及液态金属团簇结构假说[D].北京:北京科技大学,1998.
    [55]何树先,王俊,孙宝德等.高密度脉冲电流对过共晶Al-Si合金凝固组织的影响[J].中国有 色金属学报,2002,12(2):275.
    [56]何树先,王俊,周尧和.高密度脉冲电流对A 356铝合金低温熔体凝固组织的影响[J].金属学报,2002,38(5):379.
    [57]肖蕴华,杨菲,原正兴等.脉冲电流处理对ZA12合金凝固组织和力学性能的影响[J].热处理工艺,2002,6:32.
    [58]肖蕴华,高明,杨菲,等.电脉冲时间对铸造ZA12合金凝固组织和性能的影响[J].热处理工艺,2004,1:38.
    [59]甘长红,廖希亮,翟启杰等.脉冲电流对亚共晶Al-Si合金凝固组织的影响[J].铸造技术.2006,3(27):252.
    [60]方燕,廖希亮,翟启杰等.中频低压脉冲电流对纯铝凝固组织的影响[J].特种铸造及有色合金,2006,03:141.
    [61]Xiliang Liao,Oijie Zhai.Refining mechanism of the electric current pulse on the solidify-cation structure of pure aluminum[J].Acta Matcrialia,2007,55:3103.
    [62]唐勇.电脉冲作用下液态金属结构及其对碳钢凝固组织改善的研究[D].北京:北京科技大学,2000.
    [63]王静松,薛庆国,王建中等.脉冲电场处理对铁液凝固过程石墨化的影响[J].铸造,2001,50(11):677.
    [64]赵昱祥,苍大强,王建中.脉冲电压对GCr_(15)轴承钢凝固组织的影响[J].北京科技大学学报,2002,12(1):21.
    [65]范金辉,华勤,翟启杰等.脉冲电流对过奥氏体不锈钢凝固组织的影响[J].钢铁,2003,38(5):44.
    [66]范金辉,李仁兴,翟启杰等.脉冲电流对过共晶灰口铸铁凝固组织的影响[J].钢铁研究学报,2004,16(5):59.
    [67]温宏权,马新建,周月明等.脉冲电流对碳钢凝固组织的影响[J].宝钢技术,2004,6:51.
    [68]李玲珍,宗燕宾,崔衡等.电脉冲改善HRB335钢宏观凝固组织的作用[J].北京科技大学学报,2004,26(5):478.
    [69]Seki M,Kawamura H,Sanokawa K.Natural convection of mercury in a magnetic field paralel to the gravity[J].Journal of Heat Transfer,Transactions ASME,1979,101(2):227.
    [70]贺幼良,杨院生,胡壮麒.电磁场作用下的金属凝固与成形[J].材料导报,2000,14(7):3.
    [71]周尧和,胡壮麒,介万奇.凝固技术[M].北京:机械工业出版社,1998.
    [72]Utech U P,Fleming M C.Thermal convection in metal crystal growth:effect of a magnetic field[J].Trans.Metal.Soc.AIME,1965,233:156.
    [73]Uhlmann D R,Seward T P,Chalmers B.The effect of magnetic fields on the structure of metal alloy castings[J].Trans.Metall.Soc.AIME,1966,236(4):527.
    [74]Asai S.Effects of electric and magnetic forces on the solidified structures[J].Trans ISIJ,1978,64(1):34.
    [75]Umeda T.Effects of direct magnetic field on solidified structure[A].ISIJ ed.Report of the 11th meeting of Solidification Committee Joint[C].Soc,On iron and steel basic research,1975.
    [76]王艳,边秀房,徐昌业等.直流磁场作用下Al-18Si合金凝固行为[J].金属学报,2000,36(2):159.
    [77]班春燕.磁场作用下铝合金的微观结构[J].东北大学学报(自然科学版),2002,23(8):779.
    [78]Vives Charles,Perry Christian.Effects of magnetically damped convection during the controlled solidification of metals and alloys[J].International Journal of Heat and Mass Transfer,1987,30(3):479.
    [79]韩至成.电磁冶金学[M].北京:冶金工业出版社,2001:10.
    [80]王红霞.旋转磁场对Pb-Sn-Sb三元合金凝固结晶过程的影响[J].铸造设备研究.2000,1:30.
    [81]徐林.水平旋转磁场对Sn-Sb二元合金偏析行为的影响[J].铸造设备研究,1996,3:3.
    [82]Ohtsuka H,Wada H.Effects of High Magnetic Field on Martensitic Transformation and Its Reverse Transformation in Fe-basedalloys[J].Journal of Physique,2003,112(4):349.
    [83]王强,王春江,庞雪君,赫冀成.利用强磁场控制过共晶铝硅合金的凝固组织[J].材料研究学报,2004,6:568.
    [84]连峰,李廷举.磁场和变质处理对初晶Si形状和分布的影响[J].特种铸造及有色合金,2005,12:759.
    [85]李喜,任忠鸣,王晖,邓康,徐匡迪.强磁场下Al-Ni合金凝固初生相Al_3Ni的取向行为[J].中国有色金属学报,2006,03:476.
    [86]任忠鸣,李喜,邓康,王晖,壮云乾.Solidification structures of Bi-Mn alloys under a high magnetic field[J].上海大学学报(自然科学英版),2006,1:74.
    [87]Garnier M.Technological and economical challenges facing EMP in next century[C].The 3~(rd) international symposium on EPM.Nagoya:The Iron and Steel Institute of Japan,2000:3.
    [88]葛丰德,何洪亮,霍树海.脉动磁场铸造[J].机械工程学报,1989,3:1.
    [89]葛丰德.电磁场对铝合金凝固过程的影响[J].哈尔滨科技大学学报,1983,1:70.
    [90]訾炳涛,崔建忠,巴启先.脉冲电流和脉冲磁场作用下LY12铝合金凝固组织比较[J].热加工工艺,2000,4:3.
    [91]巴启先,崔建忠,訾炳涛.一种细化金属凝固组织的新方法[J].高技术通讯,2000,07:9.
    [92]班春燕,崔建忠,巴启先等.强脉冲磁场对LY12铝合金组织结构的影响[J].特种铸造及有色合金,2002,4:12.
    [93]宁志良,徐志辉,梁维中等.脉动磁场对Al-Cu合金热裂的影响[J].中国有色金属学报,1997,7(1):129.
    [94]LI Qiu-shu,LIU Liqiang,ZHAI Qiojie.Analysis of graphite morphology of gray cast iron in pulse magnetic field[J].Journal of Iron and Steel Research,2005,12(2):45.
    [95]LI Qiu-shu,LI Hai-bin,ZHAI Qi-jie.Structure evolution and solidification behavior of austenitic stainless steel in pulsed magnetic field[J].Journal of Iron and Steel Research,2006,13(5):69.
    [96]李秋书.脉冲磁场凝固细晶技术基础研究[D].上海大学博士学位论文,2005.
    [97]Crossley F A,Fisher R D,Metacalfe A G.Viscous shear as an agent for grain refinement in cast metal[J].Trans.Metall.Soc.AIME,1961,221:419.
    [98]Cole G S,Casey K W,Boiling G F.Solidification of inoculated aluminum ingots[J].Met.Trans.,1970,1(5):1413.
    [99]Asai Shigeo,Yasui Kenji,Muchi lwao.Effects of electromagnetic forces on solidified structure of metal[J].Transactions of the Iron and Steel Institute of Japan,1978,18(12):754.
    [100]Morando R,Biloni H,Cole G S,Boiling G F.Development of macrostructure in ingots of increasing size[J].Met.Trans.,1970,1(5):1407.
    [101]Radjai Alireza,Miwa Kenji,Nishio Toshiyuki.Investigation of the effects caused by electromagnetic vibrations in a hypereutectic Al-Si alloy melt[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1998,29(5):1477.
    [102]Radjai Alireza,Miwa Kenji.Effects of the intensity and frequency of electromagnetic vibrations on the microstructural refinement of hypoeutectic Al-Si alloys[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,2000,31(3):755.
    [103]Vives Charles.Effects of forced electromagnetic vibrations during the solidification of aluminum alloys:Part Ⅱ.Solidification in the presence of collinear variable and stationary magnetic fields[J].Metallurgical and Materials Transactions B:Process Metallurgy and Materials Processing Science,1996,27(3):457.
    [104]Boesch W,In:Superalloys,supercomposites and superceramie(Tien J K,Caufield T Eds),Boston:Academic Press,1989,1.
    [105]M.麦克莱恩著,陈石卿,陈荣章译.定向凝固高温材料[M].北京:航空工业出版社,1988.
    [106]Fu Hengzhi,Li Jianguo,Mao Xiemin,et al.In:Shi Changxu,Li Hengde,Alexandcr S.Proceediligs of the 1th pacific rim international conference on andanced materials and processing.The Minerals,Metals and Materials Society,1992,157.
    [107]Lux B,Haour G,Mollard F.Dynamic undercooling of superalloys[J].Metall,1981,35(12):1235.
    [108]李双明,张丰收,郝启堂.高温合金电磁软接触近净成形定向凝固研究[J].材料科学与 工艺,2001,9(2):185.
    [109]Li F,Regel L L,Wilcox W R.The influence of electric current pulse on the micro-structure of the MnBi/Bi eutectic[J].Journal of Crystal Growth,2001,223:251.
    [110]Lucien N B,Richard N G.The effect of an electric current on rod-eutectic solidifi- cation in Sn-0.9wt%Cu alloys[J].Materials Science and Engineerin g,1997,A238:176.
    [111]郭丽丽,王倩,常国威.脉冲电流对Al-5.6%Cu合金柱状晶间距的影响[J].铸造,2004,53(7):531.
    [112]万钢,武保林,赵玉华等.脉冲电流对Zn-42%Al合金定向凝固行为的影响[J].铸造技术,2006,26(12):1124.
    [113]陈文杰,廖希亮,甘长红等.脉冲电流对Al-4.5%Cu合金定向凝固组织的影响[J].特种铸造及有色合金,2006,26(8):522.
    [114]Xiliang Liao,Qijie Zhai,Changjiang Song,et al.Effects of electric current pulse on stability of solid/liquid interface of Al-4.5 wt.%Cu alloy during directional solidification[J].Materials Science and Engineering A,2007,466:56.
    [115]赵志龙,张蓉,刘林等.强脉冲磁场中Al-Cu定向凝固组织的演化[J].材料研究学报,2005,19(2):207.
    [116]牛晓武,赵志龙,刘林.强脉冲磁场对Al—Cu共晶合金定向凝固组织的影响[J].热加工工艺,2006,5(1):4.
    [117]翟启杰,龚永勇,高玉来等.脉冲磁致振荡细化金属凝固组织的方法及其装置.中国专利:CN1757463,2006.
    [118]陈国呈.大电流能量技术与应用[M].北京:科学技术出版社,2004:88.
    [119]季诚昌.巨磁致伸缩材料TbDyFe的定向凝固与取向生长[D].上海交通大学博士学位论文.2003:40.
    [120]大野笃美.金属凝固学[M].唐彦斌,张正德译.北京:机械工业出版社,1983.
    [121]李庆春.铸件形成理论基础[M].哈尔滨:哈尔滨工业大学,1980.
    [122]Ohno Atsumi,Motegi Tetsuichi,Nagai Kenichi.Solidification of undercooled metals[J].Journal of the Japan Institute of Metals,1976,140(3):251.
    [123]Ohno Atsumi,Motegi Tetsuichi,Ishibashi Kenji.Effect of rotation of mold and electromagnetic stirring on the structure of Aluminum ingots[J].Journal of the Japan Institute of Metals,1977,41(6):545.
    [124]Ohno A,Motegi T.Formation mechanism of equiaxed zones in cast metals[J].AFS International Cast Metals Journal,1977,12(1):28.
    [125]Ohno A,Soda H.Effect of the surface vibration on the structure of ingots[J].Tran Iron Steel Inst Jap,1970,110(6):442.
    [126]Ohno A,Motegi T,Soda H.Origin of the equiaxed crystal in casting[J].Trans Iron Steel Inst Jap,1971,110(1):18.
    [127]高守雷.功率超声对金属凝固组织的影响[D].上海大学硕士学位论文,2004.
    [128]屠世润,高越等编译.金相原理与实践[M].北京:机械工业出版社,1990:257.
    [129]W.J.Boettinger,S.R.Corielll,A.L.Greer,et al.Solidification microstructures:recent developments,future directions[J].Acta Mtaer,2000,48:43.
    [130]陈光,李建国,傅恒志.先进定向凝固技术[J].材料导报,1999,13(5):5.
    [131]王自东,永利,常国威等.扰动对单相合金定向凝固固液界面生长形态的影响[J].北京科技大学学报,1997,19(6):560.
    [132]郭太明,李晨希.定向凝固过程中的不规则固液界面形貌[J].人工晶体学报,2003,32(5):495.
    [133]周尧和,胡壮麒,介万奇.凝固技术[M],北京:机械工业出版社,1998.
    [134]W.Kurz and D.J.Fisher.Fundamentals of solidification[M].Switzerland Trans Tech.1984.
    [135]廖希亮.脉冲电流对金属凝固组织的影响[D].上海:上海大学博士学位论文,2007.
    [136]于金江.高梯度定向凝固共晶高温合金的组织与性能[D].西北工业大学博士学位论文,2001:31.
    [137]Trivedi R,Kurz W.Dendritic growth[J].International Materials Reviews,1994,39(2):49.
    [138]胡汉起.金属凝固原理[M].北京:机械工业出版社,2000:205.
    [139]W.K.Kurz,D.J.Fisher.Dendrite growth at the limit of stability:Tip radius and spacing[J].Acta Metall.,1981,29:11.
    [140]R.Trivedi.Theory of dendritic growth during the directional solidification of binary alloys [J].Cryst.Growth,1980,49:219.
    [141]胡汉起.金属凝固[M].北京:冶金工业出版社,1985:163.
    [142]Tiller W A,Jackson K A,Rutter J W,et al.The redistribution of solute atoms during the solidification of metals[J].Acta Metall,1953,1:428.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700