用户名: 密码: 验证码:
印染废水处理机理与技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了提高印染废水的处理效率,本研究提出了一套新的研究思路及工艺,即在常规的处理技术基础上,使其功能集约化,将复杂的印染废水处理工艺缩合成“综合池+反应器”技术。首先将印染废水中的染料按其水溶性分为亲水性和疏水性两大类。在亲水性染料中选取具有代表性的活性染料2种、直接染料2种、酸性染料2种以相同的条件进行配水,以相同的实验条件采用该技术进行实验研究,并找出最佳反应条件及参数。然后,在疏水性染料中选取分散性染料2种、硫化染料1种进行混凝实验,对混凝剂的种类及投加量分别进行了实验确定,最后利用该技术和染料配水实验所得的参数,对两类具有代表性的实际印染生产废水进行了实验研究及工程实例分析。
     使用该技术对活性染料配水、直接染料配水和酸性染料配水实验结果表明,在综合池中:FeSO4的投加量为30 mg/L,最佳停留时间有所不同,三种染料配水的最佳停留时间依次为7h、8h和9h,COD去除率依次为48.7%、47.4%、43.2%,色度的去除率依次为52.3%、52.6%、51.9%。在2~9h内,三种染料配水的pH值均随HRT的延长而逐渐降低。在反应器中:三种染料配水的最佳停留时间为6~8h,COD去除率依次为65.6%、68.4%、64%,色度的去除率依次为74.5%、74.7%、76.3%。疏水性染料的混凝实验结果表明,复合混凝剂对COD与色度的去除效果明显好于PAC和PFS,因此,复合混凝剂是本次实验的首选。当原水COD为832.3~876.0mg/L、色度为804~820倍时,对分散红配水和分散蓝配水,复合混凝剂的最佳投加量均为200mg/L,而对硫化黑配水,复合混凝剂的最佳投加量均为150mg/L。复合混凝剂对三种疏水性染料的去除效果由好到坏的顺序依次是硫化黑配水(对COD的去除率为63.1%,对色度的去除率为89.0%)、分散蓝配水(对COD的去除率为47%,对色度的去除率为79.8%)、分散红配水(对COD的去除率为43.3%,对色度的去除率为75.0%)。采用该技术对实际生产废水的实验结果表明,以活性染料为主的印染废水当进水的COD平均值为630.7mg/L、色度平均值为397.1倍时,出水的COD平均值为79.9mg/L、色度平均值为38.2倍。以分散染料为主的印染废水,当进水的COD平均值为966.6mg/L、色度平均值为455.9倍时,出水的COD平均值为89.4mg/L、色度平均值为31.4倍。通过工程实例分析得出,该技术是实际可行的。
     本研究是将印染废水按亲水性和疏水性加以分类研究,其创新在于,在综合池中加入硫酸亚铁,在溶解氧小于0.5mg/L条件下,使其在产生水解酸化作用的同时,产生Fe2+与水溶性的染料等污染物质络合反应和还原反应,同时,铁离子参与了生化反应,对生化反应起到催化和促进作用。将铁的水解产物产生的化学絮凝作用同生物絮凝、生物化学作用有机结合在一起,在短时间内显著地增加了COD和色度的去除率,并提高了染料废水的可生化性,为后续的好氧生物处理创造了有利条件,提高了生物处理效率。简化了工艺形式,将传统的物理+化学+生物分别在不同的单元进行简化为“综合池+反应器”技术,该技术工艺简短,处理效率高,可广泛应用于印染废水的处理。
In order to improve the treatment efficiency of dying and print wastewater, a new idea and technology were introduced in this thesis, that are, based on the traditional treatment technologies, integrating the different functions into a comprehensive system by the process of the comprehensive tank plus reaction tank, At first, the dyes were categorized according to water affinity and hydrophobicity. the every two kinds of active dye、directive dye and acid dye among the affinity dyes were chosen to do distribution experiments, in order to obtain the optimism reaction condition and parameter, the experiments were done by using the process of comprehensive tank plus reaction tank. Meanwhile the two kinds of dispersed dyes and one kind of sulfur dye among the hydrophobicity were chosen to do coagulation experiments, in order to obtain optimism coagulant and dosing amount. Finally, the two kinds of typical dying and print wastewater were chosen to do the experiments with the optimism parameter which were obtained by experiments, in the end, there were cases studies to be discussed.
     The experiments results of active dyes、directive dyes and sulfur dyes indicated that the optimism amount of FeSO4 is 30mg/l, and the optimism detention period in comprehensive tank are 7h、8h、9h respectively, the removal rate of COD are 48.7%、47.4% 43.2% respectively, the removal rate of chromaticity color are 52.3%、52.6% and 51.9% respectively. PH are decreasing with HRT period. In the reaction tank, the optimize detention period is 6-8h, the removal rate of COD are 65.6%、68.4% and 64% respectively, the removal rate of chromaticity color are 74.5%、74.7% and 76.3% respectively.
     The experiments results of hydrophobicity dyes indicated that the mixed coagulant is the optimism coagulant and when COD and chromaticity color of wastewater are 832.3-876.0 mg/l and 804-820 times, the optimism dosing amount is 200mg/l in both dispersed red dye and dispersed blue dye distribution, but in the sulfur black dye distribution, the optimism dosing amount is 150mg/l, the sequence of treatment efficiency are sulfur dye distribution better than dispersed blue dye better than dispersed red dye.
     The experiments results of wastewater treatment of active dyes from manufacturing indicated that the COD and chromaticity color of the outlet are 79.9mg/l and 38.2 times respectively when the COD and chromaticity color of the inlet are 630.7mg/l and 397.1 times respectively. Meanwhile, The experiments results of wastewater treatment of dispersed dyes from manufacturing indicated that the COD and chromaticity color of the outlet are 89.4mg/l and 31.4 times respectively when the COD and chromaticity color of the inlet are 966.6mg/l and 455.9times respectively. By the case study discussions, the results showed that the process of comprehensive tank plus reaction tank is a practicable treatment method.
     The feature of the study is that the water affinity and hydrophobicity of dye were categorized, and the innovation points of the study are: in the comprehensive tank, Fe2+ was adding into the system, when the DO is less than 0.5mg/l, the hydrolytic action was going and the complexation reaction and reaeration reaction were going as well between Fe2+ and dyes. In the meantime, Fe2+took part in the biological reaction, so the multifunction of hydrolytic、chemical coagulation and biological reaction were conducted, in the very short period, the removal rate of COD and chromaticity color were improved significantly.
     A kind of effective and practicable treatment method was given in the study for the treatment of dying and print manufacturing wastewater.
引文
[1]王琳,王宝贞.分散式污水处理与回用[M].北京:化学工业出版社,2003.5.
    [2]王宝贞,王琳.水污染治理新技术-新工艺新概念新理论[M].北京:科学出版社,2004.1.
    [3]国大非.印染废水处理技术综述.北方环境,2004,29(6):53~54.
    [4]姜方新,兰尧中.印染废水处理技术研究进展.云南师范大学学报,2002,22(2):24~27.
    [5]刘志伟.印染废水处理技术研究的进展.广州环境科学,2000,15(2):8~11.
    [6]陆瑞才,计兵,韩志萍等.印染废水处理技术研究进展.绍兴文理学院学报,2002,22(3):58~62.
    [7]张宇峰,滕洁,张雪英等.印染废水处理技术的研究进展.工业水处理,2003,23(4):23~26.
    [8]明银安,陆晓华.印染废水处理技术进展.工业安全与环保,2003,29(8):16~18.
    [9]侯文俊,余健.印染废水处理工艺进展.工业用水与废水,2004,35(2):57~60.
    [10]俞卫阳.印染废水处理技术及进展.杭州化工,2005,35(2):9~14.
    [11]张林生.印染废水处理技术及典型工程[M].北京:化学工业出版社,2005.8.
    [12]李家珍.染料染色工业废水处理[M].北京:化学工业出版社,1998.5.
    [13]杜仰民.印染废水铁盐絮凝脱色的研究.给水排水,1992,8(5):20~22
    [14]肖锦.我国絮凝剂发展现状与对策.现代化工,1997,17(12):6~9
    [15]苏玉萍,奚旦立.活性染料印染废水混凝脱色研究.上海环境科学,1999,18(2):88~90
    [16]苏威.无机絮凝剂发展与建议.工业水处理,1993,13(1):3~6
    [17]甘光奉,甘莉.高分子絮凝剂研究进展.工业水处理,1999,19(2):6~7
    [18]蔡晓,洪金德.聚铁处理印染废水实验研究.华侨大学学报(自然科学版),1998,19(2):189~192.
    [19]贺启环,张勇.处理印染废水的复合混凝剂研究进展.工业水处理,2002,22(4):l~4.
    [20]苏玉萍,林颖,奚旦立等.以活性染料为主要成分的印染废水的混凝脱色试验.化工环保,2000,20(2):7~l0.
    [21]李硕文,陈扬,戴育红.聚硅酸硫酸铝制备及在染色废水中应用研究.环境科学研究,1994,7(3):3l~35.
    [22]郭雅妮,李海红,同帜.聚硅酸铝絮凝剂处理印染废水的研究.西北大学学报(自然科学版),2004,34(5):567~570.
    [23]王燕,高宝玉.聚合铝基复合絮凝剂脱色性能的初步研究.环境化学,2004,23(3):3l0~3l3.
    [24]余跃,冯晖,杨文忠.高效絮凝剂的实验研究.化工时刊.2004,18(7):50~52.
    [25]宫克,张桂兰,窦艳梅.复合型絮凝剂在印染废水处理中的研究.沈阳大学学报,2001,13(4):32~34.
    [26]吴焱凌,赵君科,黄明万.几种有色废水混凝脱色实验研究-PAC与PAA复配法处理印染废水研究.四川环境,1998,17(1):38~41.
    [27]汤心虎,尹华,谭淑英.无机/有机复合絮凝剂对碱性玫瑰精B的脱色研究.环境科学与技术,2003,26(3):41~44.
    [28]崔淑兰,王峰云.铁屑-双氧水氧化法处理印染废水.环境保护,1990,12:10~11.
    [29]陈芳艳,唐玉斌.Fenton试剂氧化处理印染废水.抚顺石油学院学报,2002,22(3):l9~21.
    [30]陈文松,韦朝海.Fenton氧化一混凝法处理印染废水的研究.工业水处理,2004,24(4):39~41.
    [31] Kuo W.G.Decolorizing t1、e wastewater with Fenton’S reagent[J]、wat、Res,1992,26(7):881—886.
    [32]卢宁川,府灵敏.臭氧处理印染废水的方法研究.江苏环境科技,2002,15(2):1~2.
    [33]马志毅,张国洪.处理染色废水专用活性炭研究.环境科学学报,1997 (3):328~333.
    [34]刘玉真,岳钦艳,李倩等.PDMDAAC阳离子膨润土处理染料废水的研究.环境化学,2004,23 (1):102~104.
    [35] Ja-Hyunbae. Adsorption of anionic dye and surfactant from water onto organo-morillonite. Separation Science and Technology, 2003,35(3):353-365.
    [36] Ramakrishna K R, Viraraghavant T. Dye Removal uasing low cost adsorbents. Water Science Technology, 1997,36(2):189-196
    [37]郭向利,魏亚东,尹光福.新型印染废水脱色材料的研究.材料工程,2006:113~116.
    [38]张旋,姜洪雷,曲和玲.印染废水处理技术的研究进展.山东轻工业学院学报,2007,21(1):73~76.
    [39]徐瑞银,王殿芳.用于染料废水光降解处理的催化剂及其作用机制.北京石油化工学院学报.2004,l2(2):26~31.
    [40]张会芳,文晨.TiO2光催化分解酸性G和活性艳红K-2G的研究.化工时刊,2004.18(1):37~39.
    [41]朱永法.多空薄膜型光催化剂及其环境净化研究.宁夏大学学报(自然科学版),2001,22(2):2l7~2l8.
    [42]涂代惠.史长林.TiO2膜光催化氧化法深度处理印染废水.中国给水排水,2003.19(2):53~55.
    [43]陈晓青,刘崎.钛/铟复合材料的光催化性能研究.工业水处理,2004.24(10):39~41.
    [44]刘崎,陈晓青.掺镧纳米二氧化钛的光催化性能研究.上海化工.2004,(4):l0~l2.
    [45]唐受印,戴友芝等编.水处理工程师手册[M].北京:化学工业出版社,2000.4.
    [46]严煦世,范瑾初.给水工程[M].北京:中国建筑工业出版社,1996.
    [47]张自杰.排水工程(下册)[M].北京:中国建筑工业出版社,2003.1.
    [48]余兆丰,余志荣.污水处理组合工艺及工程实例[M].北京:化学工业出版社,2003.4.
    [49]金一中,魏岩岩.水解酸化-SBR工艺处理印染废水的研究.中国环境科学,2004,24(4):489~491.
    [50]郑祥,刘俊新.厌氧反应器与好氧MER组合工艺处理毛纺印染废水试验研究.环境科学,2004,25(5):102~105.
    [51]洪俊明,洪华生.A/O-MER组合工艺处理活性染料废水.印染.2004,(20):8~10.
    [52]肖文胜,徐文国.水解酸化俚气生物滤池处理印染废水试验研究.北京理工大学学报.2004,24(11):l 009~l 0l1.
    [53]李茵,奚旦立.兼氧一好氧工艺处理染料废水的研究.环境科学研究.2003,16(2):39~42.
    [54]刘帅霞,邢天来.兼氧酸化水解一好氧生物处理纺织印染废水生产性研究.中原工学院学报.2004,l5(3):20~22.
    [55]梁威,胡洪营.印染废水生物强化处理技术研究进展.环境污染治理技术与设备.2004,5(1):8~l1.
    [56]骆丽君.水解一好氧一混凝气浮工艺处理印染废水.印染.2004,(20):20~22.
    [57]鲁秀国,倪世清.水解酸化一好氧氧化一化学氧化一吸附工艺处理印染废水.环境污染与防治,2004,26(4):296~297.
    [58]付永胜,鄂铁军.水解酸化-UASB-SBR组合法处理印染废水.化工环保,2002,22(6):155~157.
    [59]刘帅霞,何松.水解酸化-生物接触氧化工艺处理印染废水.中国给水排水,2002,18(11):75~76.
    [60]李旭东,杨俊仕,李国欣,等.活性污泥-接触氧化处理印染废水.环境工程,2003,21(1):21~22.
    [61]肖利,陈季华,刘振鸿.缺氧-好氧-压滤-富氧生物炭处理印染废水.中国给水排水,2002,18(8),72~73.
    [62]彭继伟,邵云海,王军波.改良厌氧-生物接触氧化处理纺织印染废水.工业水处理,2002,22(7):46~48.
    [63]黄其明,许晓峰,陆芳.水膜除尘-水解酸化-接触氧化处理印染废水.中国给水排水,2003,9(4):84~85.
    [64]温学友,张燕君,杨景亮.接触氧化-电解工艺处理印染废水.环境工程,2003,21(4):18~19.
    [65]祁佩时,李欣,程树辉.水解-混凝-复合生物池工艺处理印染废水的工程应用.给水排水,2003,29(3):44~47.
    [66]郑广宏,乔俊莲,顾国维.水解-接触氧化-活性炭工艺处理印染废水.中国给水排水,2003,19(9):71~72.
    [67]司朝晖,李立丽.混凝-生物膜曝气-氧化塘法处理印染废水.中国给水排水,2003,19(5):89~90.
    [68]沈耀良,王宝贞.废水生物处理新技术理论与应用,1999.8.
    [69]冯敏.工业水处理技术[M].海洋出版社,1997.1.
    [70]杨岳平.废水处理工程及实例分析[M].北京:化学工业出版社,2003.1.
    [71]刘凡清,范德顺.固液分离与工业水处理[M].北京:中国石化出版社,2001.5.
    [72]丁忠浩.有机废水处理技术与应用[M].北京:化学工业出版社,2002.5.
    [73]徐新华,宋爽.工业废水中专项污染物处理手册[M].北京:化学工业出版,2001.4.
    [74]余阳,汪永辉.某活性染料印染废水处理系统的优化改造.环境污染治理技术与设备.2004,5(4):91~94.
    [75] Transenviro, inc., CASSTM (Cyclic Activated Sludge System) general process description Package
    [76] Larry D. Benefield and Clifford W. Randall. Biological Procss Design for Wastewater Treatment Prentice Hall. Inc, Englewood Cliffs,1980
    [77] P.F. Cooper. B. Atkinson. Biological Fluidised Bed Treatment OF Water AND Wastewater. Water Research center, 1981
    [78] IP Siebritz, GA Ekama and GVR Marais. A Parametric Model for Biological Excess Phosphorus Removal. Water Science and Technology,1983
    [79] Hasegawa T, Onitsuka T, Suzuki M et al. New Polysilicic Acid Coagulants and their Properties. Water Supply.1990, 8
    [80] AWW Coagulation Committee Report. Coagulation as an Integrated Water Treatment Process. J. Am. Water Works Assoc.1989
    [81] Thomas D. Brock, Biology of microorganisms. 4th ed. 1997
    [82] Arora M L, Barth E F, Umphres M B. Technology evaluation of sequencimg batch reactors[J]. Journal WPCF, 1985
    [83]毕东苏,李咏梅.印染废水处理工艺挖潜探讨及实例分析.给水排水,2004,30(5):48~51.
    [84]陈鸿林,张长寿.混凝沉淀一二氧化氯氧化法处理印染废水.化工环保,1999,19(4):223.
    [85]范迪,王琳,王娟.新型复合混凝脱色剂处理印染废水试验研究.环境科学,2007,28(6):1285~1289.
    [86]张楠.染料废水的脱色研究[J].南京理工大学学报,1997,21(6):513~516.
    [87]杜鸿章,尹承龙.难降解高浓度有机废水催化湿式氧化净化技术:Ⅱ反应工艺条件的研究.水处理技术,1997,23(2):83~87.
    [88]范迪,王娟.SEJF多功能水处理器及其在印染废水处理中的应用.环境工程学报,2007,1(4):74~77.
    [89]国家环保局《水和废水监测分析方法》编委会.水和废水监测分析方法[M].第三版.北京:中国环境科学出版社,1997.
    [90]孔庆安,吴奇等,印染废水的脱色机理.《中国给水排水》,1995,11(3)P31~33

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700