用户名: 密码: 验证码:
含ACC脱氨酶PGPR分离及提高植物抗逆性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从含1-氨基环丙烷-1-羧酸(ACC)脱氨酶的植物促生菌(PGPR)分离及特性鉴定入手,对其提高植物抗盐、抗旱、抗涝、抗石油污染胁迫性进行了研究,为油污染海岸带的植物修复奠定了基础,同时也为日益严重的盐渍化、干旱、水涝、油污染土壤提供了一种环境友好、经济有效提高作物产量的方法。
     本文以ACC为唯一氮源,从油污染盐生植物翅碱蓬的根际土中快速分离得到4株含ACC脱氨酶活性的PGPR,经16s rDNA序列分析,鉴定为来自不同的属,分别为假单胞菌属S1,柠檬酸杆菌属S2,肠杆菌属S3,克雷伯氏菌属S4。
     生长曲线测定结果表明,4株分离菌株在以ACC为唯一氮源的0-3%NaCl或pH=7.5-8.5的ADF培养液中均能不同程度的生长,菌株间的生长差异程度与其ACC脱氨酶活性相一致,其中菌株S1的ACC脱氨酶活性最高。研究发现,pH=8.5或3%NaCl的盐分对菌株ACC脱氨酶活性有一定的抑制作用。
     无菌育种袋和未灭菌土壤盆栽试验结果表明,4株分离菌株均能不同程度地提高燕麦或黑麦草初生苗的抗盐性,其中菌株S1最显著,10g/kg NaCl比无NaCl时促生作用更大。Pearson相关性分析结果表明,ACC脱氨酶活性与植物生长参数之间具有极显著的正相关性,是缓解促生的主要因素而非植物生长素IAA。
     植物促生菌S1、S3和恶臭假单胞菌UW4,无论单菌接种还是双菌接种,均能显著地提高翅碱蓬抗盐抗旱抗涝性,双菌接种比单菌接种对提高抗盐性更显著,但单菌S1对缓解翅碱蓬受干旱或水涝胁迫的促生作用与双菌接种无显著差异。
     无论是燕麦还是黑麦草,盐、水涝或石油污染胁迫对植物地下根系的不利影响均大于对地上植株的影响,但接种植物促生菌S1均能显著地提高植物抗逆性,大大提高燕麦或黑麦草根际土的总石油烃降解率。胁迫动态跟踪试验结果表明,Fv/Fm值变化趋势与地上株高变化趋势均相符,故光系统Ⅱ(PSⅡ)的光化学效率——Fv/Fm值可以作为PGPR提高植物抗逆性的动态诊断指标。
Isolation and identification of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase-containing plant growth-promoting rhizobacteria (PGPR), and enhancement of resistance to salt, drought, flooding and petroleum stress in plants were studied, which layed a foundation for phytoremediation of oil-contaminated coastal zone, and served as an environmentally-friendly and economical alternative to the enhancement of crop production in increasingly saline, dry, inudant and oil-contaminated soils.
     Four strains of ACC deaminase-containing PGPR were isolated from the oil-contaminated rhizosphere soils of Suaeda heteroptera Kitag, a kind of salty plant, based on the ability to utilize ACC as a sole nitrogen source. These four isolates were identified as Pseudomonas sp. S1, Citrobacter sp. S2, Enterobacter sp. S3 and Klebsiella sp. S4 by 16s rDNA sequence analysis.
     The results from the growth curve showed that these four bacterial isolates unequally grew in DF salts minimal medium with ACC at 0-3% NaCl or pH 7.5-8.5, among of which, Pseudomonas sp. S1 had the highest ACC deaminase activity. The growth of the bacterial isolates was in agreement with their ACC deaminase activity. ACC deaminase activity of the bacterial isolates was inhibited at either 3% NaCl or pH 8.5.
     The results from either gnotobiotic growth pouch assay or unsterilized soil pot trial showed that these four bacterial isolates unequally enhanced resistance to salt stress in oat(Avena saliva) or annual ryegrass(Lolium multiflorum) seedlings. Among these four bacterial isolates, S1 was the most effective. Compared with control (no NaCl), more plant growth promotion was observed under 10 g/kg NaCl stress. The greatly significant positive correlations between ACC deaminase activity and plant growth parameters tested were observed by Pearson correlation analysis. The results also showed that ACC deaminase, not indole-3-acetic acid (IAA), may be the primary factor for plant growth promotion.
     Inoculation with either one or two of three PGPR (S1, S3 and Pseudomonas putida UW4) significantly enhanced resistance to salt, drought and flooding stress in Suaeda heteroptera Kitag. Compared with inoculation with two PGPR, inoculation with single PGPR more significantly enhanced Suaeda heteroptera Kitag salt-resistance. But inoculation with S1 showed no significant difference from inoculation with two PGPR on the enhancement of either drought or flooding resistance in Suaeda heteroptera Kitag.
     Deleterious effects of salt, flooding and petroleum stress on the roots were more than those on the aboveground parts of either oat or annual ryegrass. But inoculation with S1 significantly enhanced plant stress resistance, and greatly enhanced total petroleum hydrocarbons (TPH) removal efficiency from the rhizosphere soils of either oat or annual ryegrass. The results from the stress kinetics showed that change trend of Fv/Fm, the quantum efficiency of open photosystemⅡ, was in agreement with that of aboveground length, which may imply that Fv/Fm may be used as a dynamic diagnostic index for enhancement of stress resistance in plant inoculated with PGPR.
引文
[1]Sharifi M,Ghorbanli M,Ebrahimzadeh H.Improved growth of salinity-stressed soybean after inoculation with salt pre-treated mycorrhizal fungi.Journal of Plant Physiology,2007,164(9):1144-1151.
    [2]Kaya C,Tuna A L,Ashraf M,et al.Improved salt tolerance of melon(Cucumis melo L.) by the addition of proline and potassium nitrate.Environmental and Experimental Botany,2007,60(3):397-403.
    [3]Glenn E P,Brown J J,Blumwald E J.Salt Tolerance and Crop Potential of Halophytes.Critical Reviews in Plant Sciences,1999,18(2):227-255.
    [4]Bacilio M,Rodriguez H,Moreno M,et al.Mitigation of salt stress in wheat seedlings by a gfp-tagged Azospirillum lipoferum.Biology and Fertility of Soils,2004,40:188-193.
    [5]苏永全,吕迎春.盐分胁迫对植物的影响研究简述.甘肃农业科技,2007,3:23-27.
    [6]Cattivelli L,Rizza F,Badeck F W,et al.Drought tolerance improvement in crop plants:An integrated view from breeding to genomics.Field Crops Research,2008,105(1-2):1-14.
    [7]Mahajan S,Tuteja N.Cold,salinity and drought stresses:An overview.Archives of Biochemistry and Biophysics,2005,444(2):139-158.
    [8]Reddy A R,Chaitanya K V,Vivekanandan M.Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants.Journal of Plant Physiology,2004,161(11):1189-1202.
    [9]冯道俊.植物水涝胁迫研究进展.中国水运,2006,6(10):253-254.
    [10]孔红岭,孙明高,孔艳菊等.盐分、干旱及其交叉胁迫对皂角幼苗生长性状的影响.中南林业科技大学学报(自然科学版),2007,27(1):55-59.
    [11]时明芝,周保松.植物涝害和耐涝机理研究进展.安徽农业科学,2006,34(2):209-210.
    [12]蔺昕,李培军,台培东等.石油污染土壤植物-微生物修复研究进展.生态学杂志,2006,25(1):93-100.
    [13]Huang X-D,El-Alawi Y,Gurska J,et al.A multi-process phytoremediation system for decontamination of persistent total petroleum hydrocarbons(TPHs) from soils.Microchemical Journal,2005,81(1):139-147.
    [14]Germida J J,Frick C M,Farrell R E,et al.Phytoremediation of oil-contaminated soils.Developments in Soil Science,2002:169-186.
    [15]Dowry R A,Shaffer G P,Hester M W,et al.Phytoremediation of small-scale oil spills in fresh marsh environments:a mesocosm simulation.Marine Environmental Research,2001,52(3):195-211.
    [16]Carman E P,Crossman T L,Gatliff E G.Phytoremediation of No.2 Fuel Oil-Contaminated Soil.Journal of Soil Contamination,1998,7(4):455-456.
    [17]吕志萍,程龙飞.石油污染土壤中石油含量对玉米的影响.油气田环境保护,2001,11(1):36-37.
    [18]Glick B R,Patten C L,Holguin G D M,et al.Biochemical and genetic mechanisms used by plant growth-promoting bacteria.London:Imperial College Press,1999.
    [19]Karlidag H,Esitken A,Turan M,et al.Effects of root inoculation of plant growth promoting rhizobacteria(PGPR) on yield,growth and nutrient element contents of leaves of apple.Scientia Horticulturae,2007,114(1):16-20.
    [20]Mena-Violante H G,Olalde-Portugal V.Alteration of tomato fruit quality by root inoculation with plant growth-promoting rhizobacteria(PGPR):Bacillus subtilis BEB-13bs.Scientia Horticulturae,2007,113(1):103-106.
    [21]Orhan E,Esitken A,Ercisli S,et al.Effects of plant growth promoting rhizobacteria(PGPR) on yield,growth and nutrient contents in organically growing raspberry.Scientia Horticulturae,2006,111(1):38-43.
    [22]Esitken A,Pirlak L,Turan M,et al.Effects of floral and foliar application of plant growth promoting rhizobacteria(PGPR) on yield,growth and nutrition of sweet cherry.Scientia Horticulturae,2006,110(4):324-327.
    [23]Probanza A,Lucas Garcia J A,Ruiz Palomino M,et al.Pinus pinea L.seedling growth and bacterial rhizosphere structure after inoculation with PGPR Bacillus(B.licheniformis CECT 5106 and B.pumilus CECT 5105).Applied Soil Ecology,2002,20(2):75-84.
    [24]Burdman S J,urkevitch E,Okon Y,et al.Recent advances in the use of ptant growth promoting Rhizobacteria(PGPR) in agriculture.Microbial Interactions in Agriculture and Forestry,Location,2000.
    [25]Nelson L.M.Plant growth promoting rhizobacteria(PGPR) Prospects for new inoculants.Crop Management,2004,32(5):321-327.
    [26]莫文萍.棉花解盐促生菌的筛选及其解盐促生机理的初步研究:(硕士学位论文).石河子:石河子大学,2006
    [27]Lin Q,Mendelssohn I A,Suidan M T,et al.The dose-response relationship between No.2 fuel oil and the growth of the salt marsh grass,Spartina slterniflors.Marine Pollution Bulletin,2002,44(9):897-902.
    [28]卡恩.种子萌发的生理生化.北京:农业出版社,1990.
    [29]Maricle B R,Cobos D R,Campbell C S.Biophysical and morphological leaf adaptations to drought and salinity in salt marsh grasses.Environmental and Experimental Botany,2007,60(3):458-467.
    [30]Parida A E,Das A B.Salt tolerance and salinity effects on plants:a review.Ecotoxicology and Environmental Safety,2005,60(3):324-349.
    [31]Munns R.Physiological processes limiting plant growth in saline soils:some dogmas and hypotheses.Plant Cell and Environment,1993,16:15-24.
    [32]赵可夫,范海.盐生植物及其对盐渍生境的适应生理.北京:科学出版社,2005:121-173.
    [33]孙梅霞,祖朝龙,徐经年.干旱对植物影响的研究进展.安徽农业科学,2004,32(2):365-367.
    [34]Cramer G R,Bowman D C,Kinetics J L.Cell-wall proteins induced by water deficit in bean(phaseolus valgaoris L.) seedings.Plant Physiology and Biochemistry,1995:107-119.
    [35]李连朝,王学臣.水分亏缺对植物细胞壁的影响及其与细胞延伸生长的关系.植物生理学通讯,1996,32(5):321-327.
    [36]Martinez J P,Silva H,Ledent J F,et al.Effect of drought stress on the osmotic adjustment,cell wall elasticity and cell volume of six cultivars of common beans (Phsseolus vulgaris L.).European Journal of Agronomy,2007,26(1):30-38.
    [37]Krause G,Weis F.Chlorophyll fluorescence and photosynthesis:The basics.Ann Rev Plant Physiol Plant Mol Biol,1991(42):313-349.
    [38]Pilet O E,Saugy M.Effect of applied and endogenous indol-3-acetic acid on maize root growth.Planta,1985,164:254-258.
    [39]赵可夫.植物对水涝胁迫的适应.生物学通报,2003,38(12):11-14.
    [40]Chen H,Qualls R G,Blank R R.Effect of soil flooding on photosynthesis,carbohydrate partitioning and nutrient uptake in the invasive exotic Lepidium latifolium.Aquatic Botany,2005,82(4):250-268.
    [41]Pezeshki S R.Wetland plant responses to soil flooding.Environmental and Experimental Botany,2001,46(3):299-312.
    [42]Wu Q S,Xia R X.Arbuscular mycorrhizal fungi influence growth,osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions.Journal of Plant Physiology,2006,163(4):417-425.
    [43]程国玲.矿物油污染土壤的菌根生物修复研究:(博士学位论文).哈尔滨:东北林业大学,2004
    [44]Baker J M.Growth stimulation following oil pollution.The Ecological Effects of Oil Pollution on Littoral Communities.lnstitute of Petrolum,Location,1971.
    [45]Klokk T.Effects of oil pollution on the germination and vegetative growth of five species of vascular plant.Oil and Petrochemical Pollution,1984,2(1):25-30.
    [46]Friedman A R,Baker B J.The evolution of resistance genes in multi-protein plant resistance systems.Current Opinion in Genetics & Development,2007,17(6):493-499.
    [47]Yoshida K.Plant biotechhology-Genetic engineering to enhance plant salt tolerance.Journal of Bioscience and Bioengineering,2002,94(6):585-590.
    [48]鲁刚宁.植物抗性与农业.中国科技信息,2006(3):73-79.
    [49]Dring M J,Callow J A.Stress Resistance and Disease Resistance in Seaweeds:The Role of Reactive Oxygen Metabolism.in Advances in Botanical Research:Academic Press,2005:175-207.
    [50]Al-Karaki G N.Nursery inoculation of tomato with arbuscular mycorrhizal fungi and subsequent performance under irrigation with saline water.Scientia Horticulturae,2006,109(1):1-7.
    [51]Munier L C,Deneux M S,Mustin C,et al.Selenium bioavailability and uptake as affected by four different plants in a loamy clay soil with particular attention to mycorrhizae inoculated ryegrass.Journal of Environmental Radioactivity,2007,97(2-3):148-158.
    [52]Subramanian K S,Santhanakrishnan P,Balasubramanian P.Responses of field grown tomato plants to arbuscular mycorrhizal fungal colonization under varying intensities of drought stress.Scientia Horticulturae,2006,107(3):245-253.
    [53]Tahmatsidou V,O'sullivan J,Cassells A C,et al.Comparison of AMF and PGPR inoculants for the suppression of Verticillium wilt of strawberry(Fragaris x ananassa cv.Selys).Applied Soil Ecology,2006,32(3):316-324.
    [54]Lingua G,Franchin C,Todeschini V,et al.Arbuscular mycorrhizal fungi differentially affect the response to high zinc concentrations of two registered poplar clones.Environmental Pollution,In Press,Corrected Proof:158.
    [55]Pozo M J,Azcon-Aguilar C.Unraveling mycorrhiza-induced resistance.Current Opinion in Plant Biology,2007,10(4):393-398.
    [56]Miransari M,Bahrami H A,Rejali F,et al.Using arbuscular mycorrhiza to reduce the stressful effects of soil compaction on corn(Zea mays L.) growth.Soil Biology and Biochemistry,2007,39(8):2014-2026.
    [57]Wang F Y,Lin X G,Yin R.Inoculation with arbuscular mycorrhizal fungus Acaulospora mellea decreases Cu phytoextraction by maize from Cu-contaminated soil.Pedobiologia,2007,51(2):99-109.
    [58]Janouskova M,Vosatka M,Rossi L,et al.Effects of arbuscular mycorrhizal inoculation on cadmium accumulation by different tobacco(Nicotiana tabacum L.) types.Applied Soil Ecology,2007,35(3):502-510.
    [59]Joshee N,Mentreddy S R,Yadav A g.Mycorrhizal fungi and growth and development of micropropagated Scutellaria integrifolia plants.Industrial Crops and Products,2007,25(2):169-177.
    [60]Trotta A,Falaschi P,Cornara L,et al.Arbuscular mycorrhizae increase the arsenic translocation factor in the As hyperaccumulating fern Pteris vittata L.Chemosphere,2006,65(1):74-81.
    [61]Uhlmann E,Gorke C,Petersen A,et al.Arbuscular mycorrhizae from arid parts of Namibia.Journal of Arid Environments,2006,64(2):221-237.
    [62]Janouskova M,Pavlikova D,Macek T,et al.Influence of arbuscular mycorrhiza on the growth and cadmium uptake of tobacco with inserted metallothionein gene.Applied Soil Ecology,2005,29(3):209-214.
    [63]Tao L,Zhiwei Z.Arbuscular mycorrhizas in a hot and arid ecosystem in southwest China.Applied Soil Ecology,2005,29(2):135-141.
    [64]Hildebrandt U,Regvar M,Bothe H.Arbuscular mycorrhiza and heavy metal tolerance.Phytochemistry,2007,68(1):139-146.
    [65]王桂君,张丽辉,赵骥民.盐性条件下的AM真菌以及AM真菌提高植物耐盐性研究.长春师范学院学报,2004,23(4):64-68.
    [66]袁丽环,闫桂琴.VA菌根对植物抗性的影响研究进展.科技情报开发与经济,2007,17(11):172-174.
    [67]贺学礼,赵丽莉,李英鹏.NaCl胁迫下AM真菌对棉花生长和叶片保护酶系统的影响.生态学报,2005,25(1):188-193.
    [68]Maxwell K,Johnson G N.Chlorophyll fluorescence-a practical guide.Journal of Experimental Botany,2000,51(345):659-668.
    [69]Sultana N,Keda T,Itoh R.Effect of NaCl salinity on photo synthesis and dry matter accumulation in developing rice grain.Environmental and Experimental Botany,1999,42:211-220.
    [70]郭春芳,孙云.叶绿素荧光动力学在植物抗性生理研究中的应用.福建教育学院学报,2006.7:120-122.
    [71]李晓,冯伟,曾晓春.叶绿素荧光分析技术及应用进展.西北植物学报,2006,26(10):2186-2196.
    [72]赵丽英,邓西平,山仑.渗透胁迫对小麦幼苗叶绿素荧光参数的影响.应用生态学报,2005,16(7):1261-1264.
    [73]Kloepper Jw L T,Teintze M.Enhanced plant growth by siderphones produced by plant growth promoting rhizobacteria.Nature 1980,286 885-886.
    [74]Schippers B,Bakker A W,Backker P A.Interactions of deleterious and beneficial rhizosphere microoganisms.Annual Review of Phytopathology,1987,25 339-358.
    [75]胡江春,薛德林,马成新.植物根际促生菌(PGPR)的研究与应用前景.应用生态学报,2004,15(10):1963-1966.
    [76]戴梅,宫象辉,丛蕾等.PBPR制剂研发现状与发展趋势.山东科学,2006,19(6):45-48.
    [77]黄晓东,季尚宁,Glick B R.植物促生菌及其促生机理.现代化农业,2002,7:13-15.
    [78]Glick B R,Liu C,Ghosh S,et al.Early development of canola seedlings in the presence of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2.Soil Biology and Biochemistry,1997,29(8):1233-1239.
    [79]蔡磊,李文鹏,张克勤.高效解磷菌株的分离、筛选及其对小麦苗期生长的促进作用研究.2002,33(1):44-46.
    [80]丁延芹,杜秉海.玉米根际细菌中PGPR的筛选及初步鉴定.土壤肥料,2001,3:41-43.
    [81]江月,周建刚,邹煜平等.一种有固氮能力的节杆菌菌株的分离和初步鉴定.华中师范大学学报,2004,38(2):210-214.
    [82]蒋宝贵,赵斌一.磷解钾自生固氮菌的分离筛选及鉴定.华中农业大学学报,2005, 23(1):43-48.
    [83]莫文萍,郑元元,岳海涛.棉花解盐促生菌的筛选及其作用机理的初步研究.石河子大学学报,2006,24(1):32-36.
    [84]王春霞,周启.棉花根际促生菌的分离和筛选.华中农业大学学报,1996,5(3):233-236.
    [85]姚拓,龙瑞军,王刚等.兰州地区盐碱地小麦根际联合固氮菌分离及部分特性研究.土壤学报,2004,41(3):444-448.
    [86]Penrose D M,Glick B R.Levels of ACC and related compounds in exudates and extracts of canoda seeds treated with ACC deaminase - containing plant growthpromoting bacteria.Canadian Journal of Microbiology,2001,47:368-372.
    [87]Shah S,Li J,Moffatt B A,Glick B R.Isolation and characterization of ACC deaminase genes from two different plant growth-promoting rhizobacteria.Canadian Journal of Microbiology,1998,44:833-843.
    [88]Penrose D M,Glick B R.Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria.Physiologia Plantarum,2000,118:10-15.
    [89]Jacobson C B,Pasternak J J,Glick B R.Partial purification and characterization of 1-aminocyclopropane-1-carboxylate deaminase from the plant growth promoting rhizobacterium Pseudomonas putida GR12-2.Canadian Journal of Microbiology,1994,40:1019-1025.
    [90]Glick B R,Penrose D M,Li J.A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria.Theory in Biology,1998,190:63-68.
    [91]Grichko V P,Glick B R.Amelioration of flooding stress by ACC deaminase -containing plant growth-promoting bacteria.Plant Physiology and Biochemistry,2001,39(1):11-17.
    [92]Solis-Dominguez F A,Gonzalez-Chavez M C,Carrillo-Gonzalez R,et al.Accumulation and localization of cadmium in Echinochloa polystachya grown within a hydroponic system.Journal of Hazardous Materials,2007,141(3):630-636.
    [93]Li J,Ovabin D H,Charles T C,et aI.An ACC deaminase minus mutant of Enterobacter cloacae UW4 no longer promotes root elongation.Current Microbiology,2000,41:101-105.
    [94] Ma W, Penrose D M, Glick B R. Strategies used by rhizobia to lower plant ethylene levels and increase nodulation. Canadian Journal of Microbiology, 2002, 48(11): 947-954.
    
    [95] Hontzeas N, Saleh S S, Glick B R. Changes in gene expression in canola roots induced by ACC-deaminase-containing plant-growth-promoting bacteria. Molecular Plant-Microbe Interact, 2004, 8:865-871.
    
    [96] Yang S F. Metabolism of 1-aminocyclopropane-l-carboxylic acid in relation to ethylene biosynthesis. Recent Advances in Phytochemistry, 1989, 23:263-287.
    
    [97] Grichko V P, Glick B R. Ethylene and flooding stress in plants. Plant Physiology and Biochemistry, 2001, 39(1): 1-9.
    
    [98] Shaharoona B, Arshad M, Zahir Z A, et al. Performance of Pseudomonas spp. containing ACC-deaminase for improving growth and yield of maize (Zea mays L.) in the presence of nitrogenous fertilizer. Soil Biology and Biochemistry, 2006, 38(9):2971-2975.
    
    [99] Zaidi S, Usmani S, Singh B R, et al. Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere, 2006, 64(6):991-997.
    
    [100] Bashan Y, De-Bashan L E. Fresh-weight measurements of roots provide inaccurate estimates of the effects of plant growth-promoting bacteria on root growth: a critical examination. Soil Biology and Biochemistry, 2005, 37(10):1795-1804.
    
    [101] Belimov A A, Hontzeas N, Safronova V I, et al. Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard {Brassica juncea L. Czern.). Soil Biology and Biochemistry, 2005, 37(2):241-250.
    
    [102] Dey R, Pal K K, Bhatt D M, et al. Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiological Research, 2004, 159(4):371-394.
    
    [103] Gubis J, Vankova R, Cervena V, et al. Transformed tobacco plants with increased tolerance to drought. South African Journal of Botany, 2007, 73(4):505-511.
    
    [104] Mayak S, Tirosh T, Glick B R. Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiology and Biochemistry, 2004, 42(6):565-572.
    
    [105] Singh S, Sinha S. Accumulation of metals and its effects in Brassica juncea (L.) Czern.(cv.Rohini)grown on various amendments of tannery waste.Ecotoxicology and Environmental Safety,2005,62(1):118-127.
    [106]Sabina Zaidi S U,Braj Raj Singh,Javed Musarrat.Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea.Chemosphere,2006,64:991-997.
    [107]Zahir Z A,Arshad M,Frankenberger W T,et al.Plant Growth Promoting Rhizobacteria:Applications nd Perspectives n Agriculture.in Advances in Agronomy:Academic Press,2003:97-168.
    [108]姚拓.饲用燕麦和小麦根际促生菌特性研究及其生物菌肥的初步研制:(博士学位论文)兰州:甘肃农业大学,2002
    [109]Dobereiner J,Day J M,Dart P J.Rhizosphere association between grasses and nitrogen-fixing bacteria:Effect of O_2 on nitrogenase activity in the rhizosphere of Paspalum notatum.Soil Biology and Biochemisy,1973,5:517-519.
    [110]Okon Y.Effect of halophytic compost along with farmyard manure and phosphobacteria on growth characteristics of Arachis bypogaea Linn.Israel Journal of Botany,1984,31:214-220.
    [111]Alexander D B,Zuberer D A.Impact of soil environmental factors on rates of N2-fixation associated with roots of intact maize and sorghum plants Plant and Soil,1988,110(2):303-315.
    [112]梅笑漫.生物固氮研究中的几个热点问题.生物学杂志,2002,19(4):7-9.
    [113]Chen C,Belanger R R,Benhamou N,et al.Defense enzymes induced in cucumber roots by treatment with plant growth-promoting rhizobacteria(PGPR) and Pythium aphanidermatum.Physiological and Molecular Plant Pathology,2000,56(1):13-23.
    [114]Dutta S,Mishraa K,Dileep Kumar B S.Induction of systemic resistance against fusarial wilt in pigeon pea through interaction of plant growth promoting rhizobacteria and rhizobia.Soil Biology and Biochemistry,2008,40(2):452-461.
    [115]Guo J H,Qi H Y,Guo Y H,et al.Biocontrol of tomato wilt by plant growth-promoting rhizobacteria.Biological Control,2004,29(1):66-72.
    [116]Ramamoorthy V,Viswanathan R,Raguchander T,et al.Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases.Crop Protection,2001,20(1):1-11.
    [117]Ryu C M,Kim J,Choi O,et al.Improvement of biological control capacity of Paenibacillus polymyxa E681 by seed pelleting on sesame.Biological Control,2006,39(3):282-289.
    [118]Zhang S,Moyne A L,Reddy M S,et aI.The role of salicylic acid in induced systemic resistance elicited by plant growth-promoting rhizobacteria against blue mold of tobacco.Biological Control,2002,25(3):288-296.
    [119]Zhang S,Reddy M S,Kloepper J W.Development of Assays for Assessing Induced Systemic Resistance by Plant Growth-Promoting Rhizobacteria against Blue Mold of Tobacco.Biological Control,2002,23(1):79-86.
    [120]Saravanakumar D,Vijayakumar C,Kumar N,et al.POPR-induced defense responses in the tea plant against blister blight disease.Crop Protection,2007,26(4):556-565.
    [121]Broadbent P.Bacteria and actinomycetes antagonistic to fungal root pathogens in Australian soil.Australian Journal of Biology Science,1971,24:925-944.
    [122]Zehnder G K J,Yao C,et al.Induction of systemic resistance in cucumber against cucumber beetles by plant growth-promoting rhizobacteria.Journal of Economic Entomology 1997,90:391-396.
    [123]Racke J,Sikora R A.Formulation and antagonistc activity of rhizobacteria toward the potato cyst nematode globodera pallida.Soil Biology and Biochemistry,1992,24(6):521-526.
    [124]许煜泉,石荣,林志新.具有ACC脱氨酶活性及抗枯萎病菌的假单胞菌株B8.上海交通大学学报,1999,33(2):206-209.v[125]Kloepper J W,Leong T,Teintze M.Enhanced plant growth by siderphones produced by plant growth-promoting rhizobacteria.Nature 1980,286 885-886.
    [126]Dilfuza.E,Gisela H.Effect of plant growth-promoting bacteria on growth and nutrient uptake of cotton and pea in a semi-arid region of Uzbekistan.Journal of Arid Environments,2004,56:293-301.
    [127]Glick B R,Liu C,Ghosh S.Early development of canola seedlings in the presence of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2.Soil Biology and Biochemistry,1997,29:1233-1239.
    [128]Holguin G,Bashan Y.Nitrogen-fixation by Azospirillum brasilense Cd is promoted when co-cultured with a mangrove rhizosphere bacterium(Staphylococcus sp.).Soil Biology and Biochemistry,1996,28:1651-1660.
    [129]Hamaoui B,Abbadi JM,Burdman S,et al.Effects of inoculation with Azospirillum brasilense on chickpeas(Cicer arietinum)and faba beans(Vicia faba)under different growth conditions.Agronomie,2001,21:553-560.
    [130]Backman P A,Brannen P M,Mahaffe W F.Plant response and disease control following seed inoculation with Bacillus subtilis.In:Improving plant productivity with Rhizosphere Bacteria.CSIRO division of soils,1994.
    [131]Bochow H,El-Sayed S F,Junge H,et al.Use of Bacillus subtilis as biocontrol agent.Ⅳ.Salt-stress tolerance induction by Bacillus subtilis FZB24 seed treatment in tropical vegetable field crops,and its mode of action.Journal of Plant Diseases and Protection,2001,108:21-30.
    [132]Markus,Woitke H J,Schnitzler W H.Bacillus subtilis as Growth Promotor in Hydroponically Grown Tomatoes under Saline Conditions.Acta Hort,2004,659:363-369.
    [133]Saima M,Shazia A and Shahida H.Effect of Bacterial Mono Culture Inoculations on the Early Growth of Triticum aestivum Var.Inqlab-91 under NaCl Stress.Pakistan Journal of Biological Sciences,2002,5(6):643-647.
    [134]刘维红,闫淑珍,杨启银.ACC脱氨酶活性细菌筛选及其对番茄初生苗生长的影响.江苏农业科学,2006,2:80-84.
    [135]Mayak S,Tirosh T,Glick B R.Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers.Plant Science,2004,166(2):525-530.
    [136]Pereyra M A,Zalazar C A,Barassi C A.Root phospholipids in Azospirilluminoculated wheat seedlings exposed to water stress.Plant Physiology and Biochemistry,2006,44(11-12):873-879.
    [137]Jaleel C A,Manivannan P,Sankar B,et al.Pseudomonas f]uorescens enhances biomass yield and ajmalicine production in Catharanthus roseus under water deficit stress.Colloids and Surfaces B:Biointerfaces,2007,60(1):7-11.
    [138]Grichko V P,Glick B R.Flooding tolerance of transgenic tomato plants expressing the bacterial enzyme ACC deaminase controlled by the 35S,tolD or PRB-1b promoter.Plant Physiology and Biochemistry,2001,39(1):19-25.
    [139]Farwell A J,Vesely S,Nero V,et al.Tolerance of transgenic canola plants (Brassica napus)amended with plant growth-promoting bacteria to flooding stress at a metal-contaminated field site.Environmental Pollution,2007,147(3):540-545.
    [140]Huang X D,El-Alawi Y,Penrose D M,et al.Responses of three grass species to creosote during phytoremediation.Environmental Pollution,2004,130(3):453-463.
    [141]Huang X D,El-Alawi Y,Penrose D M,et al.A multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils.Environmental Pollution,2004,130(3):465-476.
    [142]Elena L C,Vincenza A.Improvement of Brassica napus growth under cadmium stress by cadmium-resistant rhizobacteria.Soil Biology & Biochemistry,2008,40:74-84.
    [143]Belimova A A,Hontzeas N,Safronova V I,et al.Cadmium- tolerant plant growth-promoting bacteria associated with the roots of Indian mustard(Brassica juncea L.Czern.).Soil Biology and Biochemistry,2005,37:241-250.
    [144]Shahida H,Anjum N.Growth stimulation of triticum aestivum seedings under Cr-stresses by non-rhizospheric pseudomanad strains.Environmental Pollution,1997,97(3):265-273.
    [145]Burd G I,George D,Glick B R.Plant growth-promoting bacteria that decrease heavy metal toxicity in plants.Canadian Journal of Microbiology,2000,46:237-245.
    [146]Williams J B.Phytoremediation in Wetland Ecosystems:Progress,Problems,and Potential.Critical Reviews in Plant Sciences,2002,21(6):607-635.
    [147]Newman L A,Dory S L,Gery K L,et al.Phytoremediation of Organic Contaminants:A Review of Phytoremediation Research at the University of Washington.Journal of Soil Contamination,1998,7(4):531-542.
    [148]Lin Q,Mendelssohn I A.The combined effects of phytoremediation and biostimulation in enhancing habitat restoration and oil degradation of petroleum contaminated wetlands.Ecological Engineering,1998,10(3):263-274.
    [149]劳家圣.土壤农业分析手册.农业出版社,1988.
    [150]科研协作组.环境污染分析方法(第一卷 无机物分析).科学出版社,1987.
    [151]Khalid A,Arshad M,Zahir Z A.Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat.Journal of Applied Microbiology,2004,96:473-480.
    [152]许光辉.土壤中微生物的分析.农业出版社,1983.
    [153]Sambrook J,Russell D W.分子克隆指南.北京:科学出版社,2002.
    [154]Mignard S,Flandrois J P.16S rRNA sequencing in routine bacterial identification:A 30-month experiment.Journal of Microbiological Methods,2006,67(3):574-581.
    [155]Corgie S C,Beguiristain T,Leyval C.Profiling 16S bacterial DNA and RNA:Difference between community structure and transcriptional activity in phenanthrene polluted sand in the vicinity of plant roots.Soil Biology and Biochemistry,2006,38(7):1545-1553.
    [156]别小妹,陆兆新,房耀维等.利用16S rDNA序列分析鉴定一株产抗菌物质的微生物菌株.食品科学,2006,27(11):466-470.
    [157]Shannon M C,Grieve C M.Tolerance of vegetable crops to salinity.Scientia Horticulturae,1998,78(1-4):5-38.
    [158]Ghosh S,Penterman J N,Little R D,Chavez R,Glick B.R,Three newly isolated plant growth-promoting bacilli facilitate the seedling growth of canola,Brassica campestris.Plant Physiology and Biochemistry,2003,41:277-281.
    [159]Shaharoona B,Arshad M,Zahir Z A.Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize(Zea mays L.) growth under axenic conditions and on nodulation in mung bean(Vigna radiata L.).Letter of Applied Microbiology,2006,42:155-159.
    [160]马焕成,王沙生,蒋湘宁.盐胁迫下胡杨的光合和生长响应.西南林学院学报,1998,18(1):33-41.
    [161]郑国琦,马宏玮,许兴.盐胁迫下枸杞盐分与甜菜碱积累及光合作用的关系.中国生态农业学报,2003,11(3):51-54.
    [162]Kaimi E,Mukaidani T,Miyoshi S,et al.Ryegrass enhancement of biodegradation in diesel-contaminated soil.Environmental and Experimental Botany,2006,55(1-2):110-119.
    [163]刘世亮,骆永明,丁克强等.黑麦草对苯并芘污染土壤的根际修复及其酶学机理研究.农业环境科学学报,2007,26(2):526-532.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700