用户名: 密码: 验证码:
用于细胞内具有重要生物学意义的活性小分子物种的高选择性识别的新型荧光探针的合成研究及其在生物体系中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物体内存在着各种各样的活性物种(如阳离子、阴离子等),它们有着特殊的生理功能,并对生命过程起着至关重要的影响。如果要详细阐述这些活性小分子物种在生命过程中所发挥的作用、所引起的各种生物学效应和生物学功能,那么就必须对它们进行准确实时地检测。但是由于生物本身环境的多样性和复杂性,对这些活性物种的研究就必须采用选择性好、灵敏度高的分析方法。随着荧光生物分析技术的发展,荧光显微成像的方法比其他侵入性方法提供了更好的灵敏性和操作的简便性,因此,检测生物体内活性物种的可视荧光探针技术也迅速发展起来。
     细胞内H+在细胞的许多生理过程中起着关键性的作用,例如受体介导的信号转导、酶催化活动、细胞生长和凋亡、离子运输和动态平衡、钙调节、细胞内吞作用、趋化和细胞粘附等。在正常生理状态下,细胞外氢离子浓度维持在一个非常狭窄的范围内,正常值约为40 nmol?L-1(pH值7.40),大约有5 nmol?L-1的浮动范围(pH值7.35-7.45)。pH升高或降低达到0.10-0.20个pH单位即可引起肺心病变和神经系统的问题(如阿尔茨海默氏病),体内较大的pH波动则是致命性的。因此,H+是一个衡量生物体生理变化的最重要的指标之一。
     氯是人体必需的一种元素,氯在体内主要以离子的形式存在。氯离子在维持生物体内pH平衡、维持细胞外液渗透压和酶催化等生命过程中起着举足轻重的作用。因此对阴离子识别和检测的研究就显得尤为重要。就目前阴离子识别发展状况看来,阴离子与受体相互作用过程中会受到很多因素的干扰,因而设计合成具有特异专一性识别阴离子受体就显得比较困难。阴离子与受体分子之间的相互络合识别的非共价键作用类型主要有:静电引力作用、氢键作用、静电引力与氢键共同作用、金属或路易斯酸配位作用。
     铁是生物体所必需的过渡金属元素,但细胞内过多的螯合铁却被认为是对细胞致病损伤的一个决定性因子,尤其是细胞胞浆内过负载的亚铁离子能够催化Fenton反应,从而产生氧化性极强的羟基自由基。如果想要对Fe2+的生物学功能作深入性的了解,就必需发展出高选择性、高灵敏度的新型检测方法。对阳离子探针设计合成的机理常见的有:光诱导电子转移、电荷转移激发态、单体-激基缔合、荧光共振能量转移、电子能量转移。
     为了实现高选择性、高灵敏度快速识别和检测生物体内的H+、Cl-和Fe2+,并使之达到可视化的目的,本论文开展了以下两方面的工作:
     (一)设计合成了一种近红外中性pH值荧光探针。探针结构采用“荧光团-桥体-受体”设计模式,通过光诱导电子转移机理来操控荧光强度的增减。在结构设计策略基础上,我们选择了具备有高吸光系数的七甲川花菁(Cy)染料作为荧光团,4′-(苄胺基)-2,2′:6′,2′′-三联吡啶(Tpy)为质子受体。通过pH滴定实验,我们发现此探针可用于监测生理pH值微小的波动。经测定,探针的pKa约为7.10。在pH值6.70-7.90范围内,荧光强度对H+浓度变化有强的依赖性和迅速响应灵敏性,并且在此范围内荧光强度和pH值之间有着良好的线性关系。此探针可以在生化体系中有效地避开生物自发荧光和生物内源性物种的干扰。同时探针也展现出高灵敏性、良好的光稳定性和优异的胞膜穿透性等优点。本文成功地实现了对HepG2细胞和HL-7702细胞内H+原位监测成像。
     (二)设计合成了一种连有三联吡啶基团的磺酸花菁结构的荧光分子探针用于选择性检测生物体内的Fe2+和Cl-。探针的工作原理是基于探针-金属离子-阴离子络合配位和重原子的三重态荧光淬灭效应。探针本身有强的荧光,在氯离子存在下与Fe2+络合后,导致磺酸花菁的荧光猝灭,而且荧光强度的猝灭程度分别与Fe2+的浓度和Cl-的浓度成一定的比例关系。探针在与Fe2+和Cl-反应前后的颜色由蓝色变为紫色,实验结果显示探针对Fe2+和Cl-有高度的选择性。据此,我们分别固定了Fe2+和Cl-浓度,成功地实现了对Fe2+和Cl-的分别检测,探针的荧光强度变化分别与亚铁离子和氯离子的浓度呈现较好的线性关系。探针对介质的酸碱度不敏感,荧光性质稳定。该探针成功用于血浆和血清中Fe2+和Cl-的选择性检测。选择性实验表明该探针是检测生物体内Fe2+和Cl-的理想近红外荧光探针。
Intracellular pH plays a pivotal role in many cellular events, including receptor-mediated signal transduction, enzymatic activity, cell growth and apoptosis, ion transport and homeostasis, calcium regulation, endocytosis, chemotaxis, and cell adhesion. Under normal physiological conditions extracellular hydrogen ion concentration is maintained within very narrow limits. The normal value is about 40 nmol?L-1 (pH 7.40) and varies by about 5 nmol?L-1 (pH 7.35-7.45). Deviation by 0.10-0.20 pH units in either direction can cause cardiopulmonary and neurologic problems (e.g., Alzheimer’s disease), and more extreme variations can be fatal. Hence, H+ is one of the most important targets among the species of interests in vivo. Moreover, the fluorescence microscopy provides greater sensitivity and convenience than other invasive methods. These advantages have made fluorescent intracellular pH probes imaging technology developing rapidly.
     Chlorine is an essential element for creatures, it exists mainly in the form of anion in vivo. Chloride plays a pivotal role in many life processes, such as equilibrium pH values, maintenance extracellular fluid osmotic pressure and enzyme catalysis. So it is important for anion recognition and detection. As far as the development status of anion recognition is concerned, many external influence factors will disturb the recognition process between anion and receptor. Therefore, there are some difficulties for design and synthesis a receptor that is exclusive to an anion. In general, the non-covalent bond association can be divided into four types: electrostatic force, hydrogen bonding, electrostatic force and hydrogen bonding interaction, and metal ions or lewis acids coordination.
     Iron, a transition metal element, is also essential for lives. However, many studies have shown that intracellular chelating iron is a crucial pathogenic factor for cell damages. The overload iron can catalyze Fenton reaction, and then hydroxyl radical is produced, which is one of the strongest oxidants known. It can lead to irreparable cellular damage. In order to further investigate the biological function of ferrous ion (Fe2+), it is urgent for developing new method with high selectivity and sensitivity to detect Fe2+. There are some familiar mechanisms for design and synthesis ion-probe, such as photoinduced electron transfer, charge-transfer excited states, monomer-excimer, fluorescence resonance energy transfer, and electronic energy transfer.
     Based on the overall strategy that is fleetly detecting and imaging H+, Cl-, and Fe2+ in vivo with high selectivity and high sensitivity. We carried out two aspects of investigation: First, A near-neutral pH near-infrared (NIR) fluorescent probe utilizing a fluorophore-spacer- receptor molecular framework that can modulate the fluorescence emission intensity through a fast photo induced electron-transfer process was developed. Our strategy was to choose tricarbocyanine (Cy), a NIR fluorescent dye with high extinction coefficients, as a fluorophore, and 4′-(aminomethylphenyl)-2,2′:6′,2′′-terpyridi- ne (Tpy) as a receptor. The pH titration indicated that Tpy-Cy can monitor the minor physiological pH fluctuations with a pKa of~7.10 near physiological pH. The probe responds linearly and rapidly to minor pH fluctuations within the range of 6.70-7.90 and exhibits strong dependence on pH changes. It is shown that the probe effectively avoids the influence of autofluorescence and native cellular species in biological systems and meanwhile exhibits high sensitivity, good photostability, and excellent cell membrane permeability. The real-time imaging of cellular pH and the detection of pH in situ was achieved successfully in living HepG2 and HL-7702 cells by this probe.
     Second, a probe composed of cyanine (Cy-SO3-) and terpyridine (Tpy) is designed and synthesized to detect Fe2+ and Cl- in vivo. Its working principle is based on probe-metal-anion coordination and heavy atom effect. The strongly fluorescent probe could chelae with Fe2+. When Cl- appeared, the fluorescence quenching and the colour change from blue to purple. The results demonstrated that the probe has high selectivity to Fe2+ and Cl-. The probe responds linearly and rapidly to minor [Fe2+] and [Cl-] variation respectively. The results demonstrate that the probe can detect Fe2+ and Cl- selectively.
引文
(1)De Silva A P , Hu Q N , Gunnlauggson T , Huxley A J M, McCoyC P , Rice T E. Chem. Rev. , 1997 , 97 :1515 -1566
    (2)Lehn, J.-M. Angew. Chem., Int. Ed. Engl. 1988, 27, 89.
    (3)Lehn, J.-M. Angew. Chem., Int. Ed. Engl. 1990, 29, 1304.
    (4)Lehn, J.-M. Supramolecular Chemistry; VCH: Weinheim, 1995
    (5)Supramolecular Photochemistry; Balzani, V., Ed.; Reidel: Dordrecht, 1987.
    (6)Balzani, V.; Scandola, F. Supramolecular Photochemistry; Ellis-Horwood: Chichester, 1991.
    (7)Balzani, V.; Credi, A.; Scandola, F. In Transition Metals in Supramolecular Chemistry; Fabbrizzi, L., Poggi, A., Eds.; Kluwer: Dordrecht, 1994.
    (8)Bryan, A. J.; de Silva, A. P.; de Silva, S. A.; Rupasinghe, R. A. D. D.; Sandanayake, K. R. A. S. Biosensors 1989, 4, 169.
    (9)Bissell, R. A.; de Silva, A. P.; Gunaratne, H. Q. N.; Lynch, P. L. M.; Maguire, G.E. M.; Sandanayake, K. R. A. S. Chem. Soc. Rev.1992, 21, 187.
    (10)Indicators; Bishop, E., Ed.; Pergamon, Oxford, 1972.
    (11)Biochemical Fluorescence: Concepts; Chen, R. F., Edelhoch, H.,Eds.; Dekker: New York, 1976; Vols. 1 and 2.
    (12)Fendler, E. J.; Fendler, J. H. Catalysis in Micellar and Macromolecular Systems; Academic: New York, 1975.
    (13)Fluorescent Probes; Beddard, G. S., West, M. A., Eds.; Academic:London, 1981.
    (14)Fendler, J. H. Membrane Mimetic Chemistry; Wiley: New York,1982.
    (15)Thomas, J. K. Chemistry of Excitation at Interfaces; ACS Monograph 191; American Chemical Society: Washington DC, 1983.
    (16)Fernandez-Gutierrez, A.; Munoz de la Pena, A. In Molecular Luminescence Spectroscopy. Methods and Applications; Schulman, S. G., Ed.; Wiley, New York, 1985; Part 1, p 371.
    (17)Kalyanasundaram, K. Photochemistry in Microheterogeneous Systems; Academic: New York, 1987.
    (18)Photochemistry in Organized and Constrained Media; Ramamurthy, V., Ed.; VCH: New York, 1991.
    (19)Haugland, R. P. Handbook of Fluorescent Probes and Research Chemicals, 6th ed.; Molecular Probes: Eugene, OR, 1996.
    (20)Fluorescent Chemosensors of Ion and Molecule Recognition. Czarnik, A. W., Ed.; ACS Symp. Ser. 538; American Chemical Society: Washington DC, 1993.
    (21)Valeur B. In Molecular Luminescence Spectroscopy; Schulman, S. G.; Ed.; Wiley, New York, 1993; Part 3, 25.
    (22)Probe Design and Chemical Sensing. Topics in Fluorescence Spectroscopy; Lakowicz, J. R.; Ed.; Plenum, New York, 1994; Vol.4.
    (23)Early review on supramolecular aspects: Lo¨hr, H.-G.; V?gtle, F. Acc. Chem. Res. 1985, 18, 65. See also: Herrmann, U.; Tumler, B.; Maass, G.; Mew, P. K. T.; Vo¨gtle, F. Biochemistry 1984, 29, 4059.
    (24)Biophysical and Biochemical Aspects of Fluorescence Spectroscopy; Dewey, T. G., Ed.; Plenum: New York, 1991.
    (25)Luminescence Techniques in Chemical and Biochemical Analysis; Baeyens, W. R. G., de Keukelaire, D., Korkidis, K., Eds.; Dekker, New York, 1991.
    (26)Fluorescence Spectroscopy: New Methods and Applications; Wolfbeis, O. S., Ed.; Springer, Berlin, 1993.
    (27)Valeur, B.; Bardez, E. Chem. Brit. 1995, 31, 216.
    (28)Biochemical Applications. Topics in Fluorescence Spectroscopy; Lakowicz, J. R., Ed.; Plenum, New York, 1992, 3.
    (29)Birks, J. B. Photophysics of Aromatic Molecules; Wiley: London, 1970.
    (30)Pietraszkiewicz, M. In Comprehensive Supramolecular Chemistry; Reinhoudt, D. N., Ed.; Pergamon, Oxford, 1996; Vol. 10, 225.
    (31)Balzani, V.; Scandola, F. In Comprehensive Supramolecular Chemistry; Reinhoudt, D. N., Ed.; Pergamon, Oxford, 1996, 10, 687.
    (32)Xie,X. S. Acc. Chem. Res. 1996, 29, 598.
    (33)Goodwin, P. M.; Ambrose, W. P.; Keller, R. A. Acc. Chem. Res.1996, 29, 607.
    (34)Orrit, M.; Bernard, J. Phys. Rev. Lett. 1990, 65, 2716.
    (35)Mets, U.; Rigler, R. J. Fluoresc. 1994, 4, 259.
    (36)Moerner, W. E.; Basche, T. Angew. Chem., Int. Ed. Engl. 1993, 32, 457.
    (37) Moerner, W. E. Acc. Chem. Res. 1996, 29, 563.
    (38)Yeung, E. S. Acc. Chem. Res. 1994, 27, 209.
    (39)Dixon, A. J.; Benham, G. S. Int. Lab. 1988 (4), 38.
    (40)Tan, W.; Shi, Z. Y.; Kopelman, R. Anal. Chem. 1992, 64, 2985.
    (41)Tan, W.; Shi, Z. Y.; Smith, S.; Birnbaum, D.; Kopelman, R.Science 1992, 258, 778.
    (42)Sharp, S. L.; Warmack, R. J.; Goudonnet, J. P.; Lee, I.; Ferrell,T. L. Acc. Chem. Res. 1993, 26, 377.
    (43) (a)Lewis, A.; Lieberman, K. Anal. Chem. 1991, 63, 625A. (b) Xie,X. S. Acc. Chem. Res. 1996, 29, 598.
    (44)De Silva A P , Hu Q N , Gunnlauggson T , Huxley A J M, McCoyC P , Rice T E. Chem. Rev. , 1997 , 97 :1515 -1566
    (45)H. Salman, S. Tal, Y. Chuvilov, O. Solovey, Y. Abraham, M.Kapon, K. Suwinska, Y. Eichen, Inorg. Chem. 2006, 45, 5315-5320
    (46)Y.-H. Lin, H.-H. Wu, K.-T. Wong,. C.-C. Hsieh, Y.-C. Lin, P.-T. Chou. Org. Lett., 2008, 10 (15), 3211–3214
    (47)Anthony J. Pearson, Wenjing Xiao J. Org. Chem. 2003, 68, 5361-5368
    (48) Hilary A G. Current Opinion in Chemical Biology, 2001, 5:223 -227
    (49)Xia W S , Schmehl R H , Li C J , Mague J T , Luo C P , Guldi D M. J . Phys. Chem. B, 2002, 106: 833.
    (50)Samuel J. Lord, Nicholas R. Conley, Hsiao-lu D. Lee, Reichel Samuel, Na Liu, Robert J. Twieg and W. E. Moerner J. Am. Chem. Soc., 2008, 130 (29), 9204–9205
    (51)M.F. Vitha, R.J. Clarke / Biochimica Biophysica Acta 1768 (2007) 107–114
    (52)Grabowski, Z. R.; Rotkiewicz, K.; Siemiarczuk, A.; Cowley, D. J.; Baumann, W. Nouv. J. Chim. 1979, 3, 443.
    (53)Grabowski, Z. R.; Dobkowski, J. Pure Appl. Chem. 1983, 55, 245.
    (54)Grabowski Z R, Dobkowski J. J. Pure Appl. Chem., 1983, 55:245 -252
    (55)Rettig W. Angew. Chem. Int. Ed., 1986, 25: 971-988
    (56)Trautwein A X. Bioinorganic Chemistry. Weiheim: Wiley-VCH, 1997
    (57)F?rster T. AHH. Phys., 1948, 2, 55-75
    (58)Stryer L.Haugland R.Proc.Nat1.Acad.sd.USA,1967,58,719-726
    (59) X. L.Zhang, Y. Xiao, Xuhong Qian, Angew. Chem. Int. Ed. 2008, 47, 8025–8029
    (60)H. Langhals, S. Poxleitner, O. Krotz, Tim Pust, and Andreas Walter Eur. J. Org. Chem. 2008, 4559–4562
    (61)H. M. Watrob, C.-P. Pan, M. D. Barkley, J. Am. Chem. Soc.2003, 125, 7336-7343.
    (62)米兰,武昆,高军彦,李树伟,谢永红,张姝第20卷2008 181-183.
    (63)魏亦男,李元宗,常文保,分析化学, 1998, 26 (4) : 477 - 484.
    (64)谢小燕,夏宁邵,.生物技术通讯, 2001, 12 (3) : 831 - 837.
    (65)蒋林玲,丁立平,房喻,自然杂志, 2004, 26 (6) : 333 - 338.
    (66)刘春春,杭海英..生物化学与生物物理进展, 2006, 33 (3) : 292 - 296.
    (67) S. Anderson, H. L. Anderson, A. Bashall, M. McPartlin, J. K. M. Sanders Angew. Chem. Int. Ed. Engl. 1995, 34, 1096-1099
    (68)Jin-Liang Wang, Zheng-Ming Tang, Qi Xiao, Yuguo Ma, and Jian Pei 2008, 10, 4271-4274
    (69)C. A. Hunter, Robert K. Hyde. Angeu. Cliem. lnt. Ed. Engl. 1996, 35. 1936-1939
    (70)S. Prathapan, Thomas E. Johnson, and Jonathan S. Lindsey’J. Am. Chem. Soc.1993,115, 7519-7520
    (71)J.-P. Chen, S. Li, L. Zhang, Y.-Y. Li, J. Chen, G. Yang, Y. Li, J. Phys. Chem. B., 2006, 110, 4047-4053
    (72)Fuh M R S, Burgess L W, Hirschfeld T, Christian G D. Analyst, 1987, 112:1159.
    (73)Khramt sov V V, Grigor Ev I A, Foster M A, Lurie D J, Nicholson I. Cell Mol .Biol. 2000 ,46 (8):1361.
    (74)Russell D A, Pot tier R H, Valenzeno D P. Photochem. Photobiol., 1994, 59 (3):309.
    (75)Safavi A, Abdollahi H. Anal. Chim. Acta, 1998, 367:167
    (76)Guilbault G G. Practical Fluorescence Theory, Methods and Techniques [M]. New York: Marcel Dekker, 1973:598.
    (77)Udenf riend S. Fluorescence Assay in Biology and Medicine [M]. New York: Academic Press, 1962:470.
    (78)Dement J. J. Chem. Educat., 1953, 30:145.
    (79)Posch H E ,Leiner M J P ,Wolfbeis O S. Fresenius Z Anal. Chem. [J], 1989, 334:162.
    (80)Lin J, Liu D. Anal. Chim. Acta, 2000, 408:49.
    (81)Peterson J I, Goldstein S R, Fitzgerald R V, Buckhold D W. Anal. Chem., 1980, 52:864.
    (82)Moreno M C, Martinez A, Millan P, Camara C. J. Mol. St Ruct., 1986, 143:553.
    (83)Kirkbright G F, Narayanaswamy R, Welti N A. Analyst, 1984, 109:1025.
    (84)Saari L, Seitz W R. Anal. Chem.1982, 54:821.
    (85) Wolfbeis O S, F rlinger E, Kroneis H et al. Fresenius Z Anal. Chem.1983, 314:119.
    (86)刘欣,王红,张华山.分析科学学报, 2001, 17 (4) :346.
    (87)Srivastava A, Krishnamoorthy G. Anal. Biochem. 1997, 249:140.
    (88)M. Kollmannsberger, K. Rurack, U. Resch-Genger, J. Daub J. Phys. Chem. A 1998, 102, 10211-10220
    (89)T. Gareis, C. Huber, O. S. Wolfbeis, J. Daub Chem. Commun. 1997 1717-1718
    (90)Baruah, M.; Qin, W. W.; Basari?, N.; De Borggraeve, W. M.; Boens, N. J. Org. Chem. 2005, 70, 4152–4157.
    (91)Cielen, E.; Tahri, A.; Ver Heyen, A.; Hoornaert, G. J.; De Schryver,F. C.; Boens, N. J. Chem. Soc., Perkin Trans. 1998, 2, 1573–1580.
    (92)Cui, D. W.; Qian, X. H.; Liu, F. Y.; Zhang, R. Org. Lett.2004, 6, 2757–2760
    (93)Sandrine Charier, Odile Ruel, J.-Bernard Baudin, Damien Alcor, J.-Franois Allemand, Adrien Meglio, Ludovic Jullien Angew. Chem. Int. Ed. 2004, 43, 4785–4788
    (94)Sandrine Charier, Odile Ruel, J.-Bernard Baudin, Damien Alcor, J.-Fran is Allemand, Adrien Meglio, Ludovic Jullien, Bernard Valeur Chem. Eur. J. 2006, 12, 1097 -1113
    (95) Francisco Galindo, M. Isabel Burguete, Laura Vigara, Santiago V. Luis, Nurul Kabir, Jelena Gavrilovic, David A. Russell Angew. Chem. Int. Ed. 2005, 44, 6504-6508
    (96)Kewen M. Sun, Christopher K. McLaughlin, Dean R. Lantero, and Richard A. Manderville, J. Am. Chem. Soc. 2007, 129, 1894-1895.
    (97)Hwan Myung Kim, M. J. An, Jin Hee Hong, Byeong Ha Jeong, O. Kwon, J. - Y. Hyon, S.-C. Hong, K. J. Lee, B. R. Cho Angew. Chem. Int. Ed. 2008, 47, 2231-2234
    (98)Sheng Yao, Katherine J. Schafer-Hales, Kevin D. Belfield, 2007, 9, 5645-5648
    (99) Robert Pal, David Parker. Chem. Commun., 2007, 474–476
    (100)Scott A. Hilderbrand, Kimberly A. Kelly, Mark Niedre, and Ralph WeisslederBioconjugate Chem. 2008, 19, 1635–1639
    (101)H. Lee, Mikhail Y. Berezin, Kevin Guo, Jeff Kao, and Samuel Achilefu,Org Lett. 2009, 11, 29-32
    (102)Junyan Han, Aurore Loudet, Rola Barhoumi, Robert C. Burghardt, Kevin Burgess J. Am. Chem. Soc., 2009, 131 1642–1643
    (103)C. Chen, G. Song, J. Ren, X. Qua, Chem. Commun., 2008, 6149–6151
    (104)S. Derinkuyu, K. Ertekin, O. Oter, S. Denizalti, E. Cetinkaya Dyes and Pigments, 76, (2008) 133-141
    (105)B. Tang, X. Liu,a K. Xu, H. Huang, G. Yang. L. An Chem. Commun., 2007, 3726–3728
    (106)W. Zhang, B. Tang, X. Liu, Y. Liu, K. Xu, J. Ma, L. Tong, G. Yang Analyst, 2009, 134, 367– 371
    (107)E. L. Que, D. W. Domaille, Christopher J. Chang Chem. Rev, 2008 108:1517–1549.
    (108)D. W. Domaille, E. L. Que, .C. J. Chang nature chemical biology 2008, 4, 168-175
    (109)Greenberg, G. R.; Wintrobe, M. M. J. Biol. Chem. 1946, 165, 397.
    (110)Jacobs, A. Ciba Found. Symp. 1977, 51, 91.
    (111)Kruszewski, M. Mutat. Res. 2003, 531, 81.
    (112)Kakhlon, O.; Cabantchik, Z. I. Free Radical Biol. Med. 2002, 33, 1037.
    (113)Epsztejn, S.; Glickstein, H.; Picard, V.; Slotki, I. N.; Breuer, W.;
    (114) Beaumont, C.; Cabantchik, Z. I. Blood, 1999, 94, 3593.
    (115)B. P. Esp?sito, S. Epsztejn, W. Breuer, Z. Ioav Cabantchik Analytical Biochemistry 304, 1-18 (2002)
    (116)Marcin Kruszewski Acta Biochimica Polonica 2004, 51, 471–480
    (117)Y. Ma, Z. Liu, R.C. Hider, F. Petrat Analytical Chemistry Insights 2007:2 61–67
    (118)Deepika Darbari, Mark Loyevsky, Victor Gordeuk, John A. Kark, Oswaldo Castro, Sohail Rana, Victor Apprey, oseph Kurantsin-Mills, Blood, 2003, 102, 357-364
    (119)Boldt, D. H. New perspectives on iron: an instroduction. Am J Med Sci, 1999, 318: 207-212.
    (120)Conrad, M.E., Umbreit, J. N., Moore, E. G.Iron absorption and transport.Am J Med Sci, 1999, 318, 213.
    (121)Alex D Sheftel, Sangwon F Kim, Prem Ponka. J Biol Chem. 2007, 10, 1074.
    (122) Reddy SV,Alcantara O,Boldt DH. Blood, 1998, 91: 1793-1801.
    (123) Pauline TL,Maria H,Per AP. Molecular Aspects of Medicine, 2001, 22, 1-87.
    (124) Haile D. J., Am. J. Med. Sci., 1999,318: 230-240.
    (125)白群安,望志跌.饲料博览, 2001, (9):13-15.
    (126)Grantham-McGregor S.Ani. C. J. Nutr. 2001, 131: 649-666.
    (127)Haas J. D.,Brownlie T. J. Nutr.2001.131: 676-688.
    (128)Allen L.H. J. Nutr, 2002,132, 813-819.
    (129)Ahmad KA,Ahmann JR,Migas MC. Blood Cells, Molecules and Diseases, 2002, 29, 361 -366.
    (130)Bridle K. R, Frazer D. M, Wilkins S. J.Lancet, 2003, 361: 669-673.
    (131)汤新之,崔乃杰.临床生物化学[M].天津:天津科学技术出版社,1999.628.
    (132)徐辉碧.硒的化学、生物化学及其在生命科学中的应用[M].武汉:华中理工大学出版社,1994.154.
    (133)AccSt S D and Svingen B A.The Role of Iron in Enzymatic Lipid Peroxidation.In:Pryor W A ed. Free Radials in Biology.New York:Academic Press,1982.1-28
    (134)裘莲群,吴兆龙,许讯辉.中华肾脏病杂志,2003,16(3):177-181
    (135)叶志斌,廖履坦.中国病理生理杂志,1996,12(5):474.
    (136)吴兆龙.中国病理生理杂志,1995,11(5):465—468
    (137) Voogd A, Sluiter W, van Ei jk HG. J Clin Invest, 1992, 90: 2050 - 2055.
    (138) Ambrosio G, Zweier JL, Jacobus WE. Circulation, 1987, 76: 906 - 915.
    (139)Breuer W, Epsztejn S, Cabantchik ZI. FEBS Lett 1996, 382, 304-308.
    (140)Thomas F, Serratrice G, Beguin C, Aman ES, Pierre JL, Fontecave M, Laulhere JP. Biol Chem 1999, 274, 13375-13383.
    (141)Breuer W, Ronson A, Slotki IN, Abramov A, Hershko C, Cabantchik ZI. Blood 2000, 95, 2975-2982.
    (142)Picard V, Epsztejn S, Santambrogio P, Cabantchik ZI, Beaumont C. J Biol Chem 1998, 273, 15382-15386.
    (143)Petrat, F., Rauen, U., De Groot, H. Hepatology 1999, 29, 1171–1179.
    (144)Shingles R, North M, McCarty RE. Anal Biochem 2001, 296, 106-113.
    (145)Lehnen-Beyel I, Groot HD, Rauen U. Biochem J 2002, 368, 517-26.
    (146)F. Petrat, D. Weisheit., M. Lensen., H. DE Groot, R. Sustmann, U. Rauen, Biochem. J. 2002, 362, 137-147.
    (147) Palanche, T.; Marmolle, F.; Abdallah, M. A.; Shanzer, A.; Albrecht-Gary, A. M. J. Biol. Inorg. Chem. 1999, 4, 188.
    (148)Lytton, S.D., Mester, B., Libman, J., Shanzer, A. Cabantchik, Z.I. Anal. Biochem. 1992, 205, 326–333.
    (149)Haugland, R.P. Molecular Probes, Inc., Eugene, Oregon, USA, 2002, 555–767
    (150)Ma, Y., de Groot, H., Liu, Z., Hider, R.C. & Petrat, F. Biochem. J. 2006, 395, 49–55.
    (151) Hua, J.; Wang, Y. G. Chem. Lett. 2005, 34, 98.
    (152) Bricks, J. L.; Kovalchuk, A.; Trieflinger, C.; Nofz, M.; Buschel, M.;Tolmachev, A. I.; Daub, J.; Rurack, K. J. Am. Chem. Soc. 2005,127, 13522.
    (153) Xiang, Y.; Tong, A. J. Org. Lett. 2006, 8, 1549.
    (154)Zhang, M.; Gao, Y. H.; Li, M. Y.; Yu, M. X.; Li, F. Y.; Li, L.; Zhu,M. W.; Zhang, J. P.; Yi, T.; Huang, C. H. Tetrahedron Lett. 2007, 48, 3709.
    (155)Chen, J. L.; Zhuo, S. J.; Wu, Y. Q.; Fang, F.; Li, L.; Zhu, C. Q.Spectrochim. Acta A 2006, 63, 438.
    (1) (a) Golovina, V. A.; Blaustein, M. P. Science 1997, 275, 1643–1648. (b) Kennedy, R. T.; Huang, L.; Aspenwall, C. A. J. Am. Chem. Soc. 1996, 118, 1795–1796. (c) Clark, H. A.; Kopelman, R.; Tjalkens, R.; Philbert, M. A. Anal. Chem. 1999, 71, 4837–4843.
    (2) (a) Gottlieb, R. A.; Dosanjh, A. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 3587–3591. (b) Martinez-Zaguilln, R.; Gillies, R. J. Cell Physiol. Biochem. 1996, 6, 169–l84. (c) Gottlieb, R. A.; Nordberg, J.; Skowronski, E.; Babior, B. M. Proc. Natl. Acad. Sci. 1996, 93, 654–658. (d) Gottlieb, R. A.; Giesing, H. A.; Zhu, J. Y.; Engler, R. L.; Babior, B. M. Proc. Natl. Acad. Sci. 1995, 92, 5965–5968.
    (3) (a) Donoso, P.; Beltra′n, M.; Hidalgo, C. Biochemistry 1996, 35, 13419–13425. (b) Hoyt, K. R.; Reynolds, I. J. J. Neurochem. 1998, 7, 1051–1058. (c) Speake, T.; Elliott, A. C. J. Physiol. 1998, 506, 415–430. (d) Anderson, R. G. W.; Orci, L. J. Cell Biol. 1988, 106, 539–543.
    (4) (a) Zhao, H.; Xu, X.; Diaz, J.; Muallem, S. J. Biol. Chem. 1995, 270, 19599–19605. (b) Yuli, I.; Oplatka, A. Science 1987, 235, 340–342. (c) Levine, S. A.; Nath, S. K.; Chris Yun, H. C.; Yip, J. W.; Montrose, M.; Donowitz, M.; Tse, C. M. J. Biol. Chem. 1995, 270, 13716–13725. (d) Janecki, A. J.; Montrose, M. H.; Zimniak, P.; Zweibaum, A.; Tse, C. M.; Khurana, S.; Donowitz, M. J. Biol. Chem. 1998, 273, 8790–8798.
    (5) (a) Russell, D. A.; Pottier, R. H.; Valenzeno, D. P. Photochem. Photobiol. 1994, 59, 309–313. (b) Davies, T. A.; Fine, R. E.; Johnson, R. J.; Levesque, C. A.; Rathbun, W. H.; Seetoo, K. F.; Smith, S. J.; Strohmeier, G.; Volicer, L.; Delva, L. Biochem. Biophys. Res. Commun. 1993, 194, 537–543. (c) Mogensen, H. S.; Beatty, D. M.; Morris, S. J.; Jorgensen, O. S. Neuroreport 1998, 9, 1553–1558. (d) Lagadic-Gossmann, D.; Rissel, M.; Galisteo, M.; Guillouzo, A. Br. J. Pharmacol. 1999, 128, 1673–1682.
    (6) Cogan, M. G. Fluid and Electrolytes; Appleton and Lange-Prentice Hall Publishers: Norwalk, CT, 1991.
    (7) (a) Charier, S.; Ruel, O.; Baudin, J.-B.; Alcor, D.; Allemand, J.-F.; Meglio, A.; Jullien,L. Angew. Chem., Int. Ed. 2004, 43, 4785–4788. (b) Charier, S.; Ruel, O.; Baudin, J.-B.; Alcor, D.; Allemand, J.-F.; Meglio, A.; Jullien, L. Chem.-Eur. J. 2006, 12, 1097–1113.
    (8) Kermis, H. R.; Kostov, Y.; Harms, P.; Rao, G. Biotechnol. Prog. 2002, 18, 1047–1053.
    (9) (a) Ohkuma, S.; Poole, B. Proc. Nat Acad. Sci. 1978, 5, 3327–3331. (b) Thomas, J. A.; Buchsbaum, R. N.; Zimniak, A.; Racker, E. Biochemistry 1979, 18, 2210–2218. (c) Jones, J. M.; Lorton, S. P.; Bavister, B. D. Cytometry 1995, 19, 235–242. (d) Graber, M. L.; DiLillo, D. C.; Friedman, B. L.; Pastoriza-Munoz, E. Anal. Biochem. 1986, 156, 202–212. (e) Rink, T. J.; Tsien, R. Y.; Pozzan, T. J. Cell Biol. 1982, 95, 189–196. (f) Tsien, R. Y. Methods Cell Biol. 1989, 30, 127–153. (g) Bright, G. R.; Fisher, G. W.; Rogowska, J.; Taylor, D. L. Methods Cell Biol. 1989, 30, 157–192. (h) Liu, J.; Diwu, Z.; Klaubert, D. H. Bioorg. Med. Chem. Lett. 1997, 7, 3069–3072.
    (10) (a) Clement, N. R.; Gould, J. M. Biochemistry 1981, 20, 1534–1538. (b) Wolfbeis, O. S.; Furlinger, E.; Kroneis, H.; Marsoner, M. Anal. Chem. 1983, 314, 119–124. (c) Schulman, S. G.; Chen, S.; Bai, F.; Leiner, M. J. P.; Weis, L.; Wolfbeis, O. S. Anal. Chim. Acta 1995, 304, 165–170. (d) Zhujun, H.; Seitz, W. R. Anal. Chem. Acta. 1984, 160, 47–55.
    (11) Whitaker, J. E.; Haugland, R. P.; Prendergast, F. G. Anal. Biochem.1991, 194, 330–344.
    (12) Liu, J. X.; Diwu, Z.; Leung, W.-Y. Bioorg. Med. Chem. Lett. 2001, 11, 2903–2905.
    (13) Sun, K. M.; McLaughlin, C. K.; Lantero, D. R.; Manderville, R. A. J. Am. Chem. Soc. 2007, 129, 1894–1895.
    (14) Galindo, F.; Burguete, M. I.; Vigara, L.; Luis, S. V.; Kabir, N.; Gavrilovic, J.; Russell, D. A. Angew. Chem., Int. Ed. 2005, 44, 6504–6508.
    (15) (a) Ohkuma, S.; Poole, B. Proc. Natl. Acad. Scd. 1978, 75, 3327–3331. (b) Cui, D. W.; Qian, X. H.; Liu, F. Y.; Zhang, R. Org. Lett. 2004, 6, 2757–2760. (c) Pal, R.; Parker, D. Chem. Commun. 2007, 47, 4–476. (d) Lin, H.-J.; Herman, P.; Kang, J. S.; Lakowicz, J. R. Anal. Biochem. 2001, 294, 118–125.
    (16) (a) Jyh-Myng, Z.; Gabor, P. Anal. Chem. 1991, 63, 2934–2938. (b) Briggs, M. S.; Burns, D. D.; Cooper, M. E.; Gregory, S. J. Chem. Commun. 2000, 2323–2324.
    (17) Tang, B.; Liu, X.; Xu, K. H.; Huang, H.; Yang, G. W.; An, L. G. Chem. Commun. 2007, 3726–3728.
    (18) Martin, R. B.; Lissfelt, J. A. J. Am. Chem. Soc. 1956, 78, 938–940.
    (19) (a) Paradiso, A. M.; Tsien, R. Y.; Machen, T. E. Proc. NatI. Acad. Sci. U.S.A. 1984, 81, 7436–7440. (b) Llopis, J.; Michael Mccaffery, J.; Miyawaki, A.; Farquhar, M. G.; Tsien, R. Y. Proc. Natl. Acad. Sci. 1998, 95, 6803–6808.
    (20) Huber, W.; Koella, J. C. Acta Trop. 1993, 55, 257–261.
    (21) (a) Wang, J. H.; Hanan, G. S. Synlett. 2005, 8, 1251–1254. (b) Winter, A.; Egbe, D. A. M.; Schubert, U. S. Org. Lett. 2007, 9, 2345–2348.(c) Cargill Thompson, A. M. W. Coord. Chem. Rev. 1997, 160, 1– 52. (d) Spahi, W.; Calzaferri, G. HelV. Chem. Acta. 1984, 67, 450–454.
    (22) (a) Whitaker, J. E.; Haugland, R. P.; Prendergast, F. G. Anal. Biochem. 1991, 194, 330–344. (b) Baruah, M.; Qin, W. W.; Basaric′, N.; De Borggraeve, W. M.; Boens, N. J. Org. Chem. 2005, 70, 4152–4157.
    (23) Yao, S.; Schafer-Hales, K. J.; Belfield, K. D. Org. Lett. 2007, 9, 5645–5648.
    (24) Velapoldi, R. A.; T?nnesen, H. H. J. Fluoresc. 2004, 14, 465–472.
    (25) Billo, E. J. Excel for Chemists, A ComprehensiVe Guide; Wiley-VCH: New York, 1997; p 303.
    (26) Qin, W. W.; Baruah, M.; Stefan, A.; Auweraer Van der, M.; Boens, N. Chem. Phys. Chem. 2005, 6, 2343–2351.
    (27) Cielen, E.; Tahri, A.; Ver Heyen, A.; Hoornaert, G. J.; De Schryver, F. C.; Boens, N. J. Chem. Soc., Perkin Trans. 1998, 2, 1573–1580.
    (28) (a) Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Chem. ReV. 1997, 97, 1515–1566. (b) Czarnik, A. W. Acc. Chem. Res. 1994, 27, 302–308.
    (1)Hentze, M.W., Muckenthaler, M.U. & Andrews, N.C. Cell 2004, 117, 285–297.
    (2)Becker, R., Eberhard, F., and Manteuffel, R. Plant Physiol. 1995, 108, 269–275
    (3)Crichton, R. in Inorganic Biochemistry of Iron Metabolism (Horwod, E., ed) pp. 131–172(1991)
    (4)Marcin Kruszewski, Acta Biochimica Polonica, 2004, 51 , 471–480
    (5)Fontecave, M., and Pierre, J. L. Biol. Met., 1991, 4, 133–135
    (6)Cricton, R.R., Wilmet, S., Legssyer, R., Ward, R. J. Inorg. Biochem., 2002, 91, 9–18.
    (7) Halliwell B, Gutteridge JMC. Methods Enzymo, 1990, 186, 1-85.
    (8) Ryan TP, Aust SD. T Crit Rev Toxicol 1992, 22, 119-141.
    (9)Stohs SJ, Bagchi D. Free Radic Biol Med 1995, 18, 321-336
    (10)Bacon B. R., Britton R. S. Hepatology 1990, 11, 127-137.
    (11)Stadtman ER.. Annu Rev Biochem 1993, 62, 797-821.
    (12)Baliga R, Ueda N, Shah SV. Biochem J 1993, 291, 901-905.
    (13)Balla G, Vercellotti GM, Eaton JW, Jacob HS. I, J Lab Clin Med 1990, 116, 546-554.
    (14)?llinger K, Roberg K. J Biol Chem 1997, 272, 23707-23711.
    (15)Sergent O, Morel I, Cogrel P, Chevanne M, Pasdeloup N, Brissot P, Lescoat G, et al. Biol Trace Element Res 1995, 47, 185-192.
    (16)Voogd A, Sluiter W, van Eijk HG, Koster JF. J Clin Invest 1992, 90, 2050-2055.
    (17)L. A. Sarver Ind. Eng. Chem. Anal. Ed.; 1938; 10(7); 378-378.
    (18)Weizman, H.; Ardon, O.; Mester, B.; Libman, J.; Dwir, O.; Hadar, Y.; Chen, Y.; Shanzer, A J. Am. Chem. Soc.; (Article); 1996; 118(49); 12368-12375.
    (19)Lindsay, S.; Brosnahan, D.; Watt, G. D. Biochemistry; (Article); 2001; 40(11); 3340-3347.
    (20)Fakih, S.; Podinovskaia, M.; Kong, X.; Collins, H. L.; Schaible, U. E.; Hider, R. C. J. Med. Chem. 2008; 51(15); 4539-4552.
    (21)Lee, H.; Yu, M. K.; Park, S.; Moon, S.; Min, J. J.; Jeong, Y. Y.; Kang, H.-W.; Jon, S. J. Am. Chem. Soc.; (Article); 2007; 129(42); 12739-12745
    (22)Ma, Y.; Luo, W.; Quinn, P. J.; Liu, Z.; Hider, R. C J. Med. Chem.; (Article); 2004; 47(25); 6349-6362.
    (23)Xu SJ, Peng XJ. Ion channel and cataract. Int. J. Ophthalmol. (Guoji Yanke Zazhi ),2005, 5 (4): 698-702.
    (24)MathiasRT, Rae JL. The lens: local transport and global transparency. Exp Eye Res , 2004; 78 (3):689-698.
    (25)Nilius B, Droogmans G. Amazing chloride channels: an overview. Acta Physiol Scand, 2003, 177: 119-147.
    (26)Jentsch TJ , Stein V , Weinreich F. Molecular structure and physiological function of chloride channels. Physiol Rev, 2002, 82: 503-568
    (27)MiriamA. Young, Mark J. Tunstall, Joerg Kistler and Paul J. Donaldson J. BlockingChlorideChannels in the Rat Lens: LocalizedChanges in TissueHydrationSupport the Existence of a Circulating Chloride Flux. Invest Oph, 701.
    (28)Ramana KV, Chandra D, Wills NK, BhatnagarA, SrivastavaSK. Oxidativestress-induced up-regulation of the chloride channel and Na+/Ca2+ exchanger during cataractogenesis in diabetic rats. J Diabetes Complications, 2004, 18(3): 177-182.
    (29)Pusch M. Myotonia caused by mutations in the muscle chloride channel gene CLCN 1. Hum Mutat, 2002, 19: 423-34.
    (30)Haug K, Warnstedt M, Alekov AK. Mutations in CLCN2 encoding a voltagegated chloride channel are associated with idiopathic generalized epilepsies. Nature Genet, 2003, 33: 527-32.
    (31)Saito-Ohara F, Uchida S, Takeuchi Y. Assignment of the genes encoding the human chloride channels , CLCNKA and CLCNKB , to 1p36 and of CLCN3 to 4q32-q33 by in situ hybridization. Genomics, 1996, 36: 372-374.
    (32)Simon DB, Bindra RS, Mansfield TA. Mutations in the chloride channel gene , CLCNKB , cause Bartter’s syndrome typeⅢ. Nature Genet, 1997, 17:171-178.
    (33)Cleiren E, Benichou O, Van Hul E. Albers-Schonberg disease (autosomal dominant osteoporosis, type II) results from mutations in the ClCN7 chloride channel gene. Hum.Mol Genet, 2001, 10: 2 86127.
    (36)Payne J A. Functional characterization of the neuronal specific KCl cot ransporter: implications for [K+] regulation [J]. Am J Physiol, 1997, 273 (5 Pt 1):C1516-C1525.
    (37)Rivera C, Voipio J, Payne J A, et al. The K+/Cl- cot ransporterKCC2 renders GABA hyperpolarizing during neuronal maturation [J]. Nature, 1999, 397 (6716):251-255.
    (38)Hume JR,Duan D,Collier ML,et a.Anion transport in heart[J].Physiol Rev,2000,80(1)31-81.
    (39)Bortner CD,Cidlowski JA.Absence of volume regulatory mechanisms contributes to the rapid activation of apoptosis in thymocytes [J]. Am J Physiol,1996.261(30):950-961.
    (40)Lang F,Busch GL,Ritter M.Functional significace of cell volume regulatory mechanisms E. Physiol Rev. 1998, 78: 247.
    (41)Schmidtchen F P. Inclusion of anions in macrotricyclic quaternary ammonium salts. Angewandte Chemie International Edition in English, 1977, 16(10):720-721.
    (42)Schmidtchen F P. Synthesis of macrotricyclic amines. Chemische Berichte, 1980, 13: 864-874.
    (43)Worm K, Schmidtchen F P, Schier A et al. Macrotricyclic borane-amine adducts: the first uncharged synthetic host compounds without lewis acid character, for anionic guests. Angewandte Chemie International Edition in English, 1994, 33:327-329.
    (44)Hyoung Min Yeo, Byung Ju Ryu, and Kye Chun Nam. A Novel Fluoride Ion Colorimetric Chemosensor 2008 Vol. 10, 2931-2934
    (45)Fabiola Zapata, Antonio Caballero, Arturo Espinosa, Alberto Tàrraga, and Pedro Molina. Cation Coordination Induced Modulation of the Anion Sensing Properties of a Ferrocene-Imidazophenanthroline Dyad: Multichannel Recognition from Phosphate-Related to Chloride Anions, J. Org. Chem. 2008, 73, 4034–4044
    (46)Valiyaveettil S, Engbersen J F J, Verboom W et al. Synthesis and complexation studies of neutral anion receptors. Angewandte Chemie International Edition in English, 1993, 32(6): 900-901.
    (47)Kuan-Hung Chen, Jen-Hai Liao, Hsin-Yu Chan, and Jim-Min Fang A Fluorescence Sensor for Detection of Geranyl Pyrophosphate by the Chemo-Ensemble Method J.Org. Chem., 2009, 74 (2), 895–898
    (48)Yasmine Willener, Kévin M. Joly, Christopher J. Moody, and James H. R. Tucker. An Exploration of Ferrocenyl Ureas as Enantioselective Electrochemical Sensors for Chiral Carboxylate Anions J. Org. Chem. 2008, 73, 1225-1233
    (49)Emma B. Veale and Thorfinnur Gunnlaugsson, Bidirectional Photo induced Electron-Transfer Quenching Is Observed in 4-Amino-1,8-naphthalimide-Based Fluorescent Anion Sensors J. Org. Chem., 2008, 73 (20), 8073–8076
    (50)Vijayakumar Ramalingam, Maciej E. Domaradzki, Seogjoo Jang,and Rajeev S. Muthyala Carbonyl Groups as Molecular Valves to Regulate Chloride Binding to Squaramides
    (51)Gunther Hennrich, Helmut Sonnenschein and Ute Resch-Genger, Fluorescent anion receptors with iminoylthiourea binding sites—selective hydrogen bond mediated recognition of CO32?, HCO3? and HPO42? Tetrahedron Letters 42 (2001) 2805–2808.
    (52)Min Su Han and Dong H. Kim, Naked-Eye Detection of Phosphate Ions in Water at Physiological pH: A Remarkably Selective and Easy-To-Assemble Colorimetric Phosphate-Sensing Probe Angew. Chem. Int. Ed. 2002, 41, 3809-3811
    (53)Park C H, Simmons H E. Macrobicyclic amines .III. Encapsulation of halide ions by in, in-1, (k+2)-diazabicyclo-[k.l.m.]-alkane ammonium ions, Journal of the American Chemical Society, 1968, 90(9):2431-2432.
    (54)Hosseini M W, Lehn J M. Anion receptor molecules: chain length dependent selective binding of organic and biological dicarboxylate anions by ditapic polyammonium macrocycles. Journal of the American Chemical Society, 1982, 104(12):3525-3527.
    (55)Hosseini M W, Lehn J-M. Anion coreceptor molecules: linear molecular recognition in the selective binding of dicarboxylate substrates by ditopic polyammonium macrocycles. Helvetica Chimica Acta, 1986, 69(31):587-603.
    (56)Ivan V. Korendovych, Mimi Cho, Olga V. Makhlynets, Phillip L. Butler,Richard J. Staples, and Elena V. Rybak-Akimova, Anion and Carboxylic Acid Binding to Monotopic and Ditopic Amidopyridine Macrocycles,J. Org. Chem., 2008, 73 (13), 4771–4782
    (57)Ivan V. Korendovych, Mimi Cho, Phillip L. Butler, Richard J. Staples, and Elena V. Rybak-Akimova Anion Binding to Monotopic and Ditopic Macrocyclic Amides Org. Lett., 2006, 8 (15), 171–3174
    (58)Carla Bazzicalupi, Andrea Bencini, Antonio Bianchi, Enrico Faggi, Claudia Giorgi, Samuele Santarelli, and Barbara Valtancoli Polyfunctional Binding of Thymidine 5’-Triphosphate with a SyntheticPolyammonium Receptor Containing Aromatic Groups. Crystal Structure of the Nucleotide-Receptor Adduct J. Am. Chem. Soc. 2008, 130, 2440-2441
    (59)Newcomb M, Blanda M T, Azuma Y et al. Macrocycles containing tin: synthesis and structure of 1, 10-diphenyl-1, 10-distannabieyclo [8.8.8]hexacosane. Journal of the Chemical Society, Chemical Communications, 1984, (17):1159-1160.
    (60)Katz H E. 1,8-Naphthalenediylbis(dichloroborane) chloride: the first bis-boron chloride chelate Organometallics, 1987, 6(5):1134-1136.
    (61)Yang X, Knobler C B, Hawthorne M F. Mercuracarborand-4, the first representative of a new class of rigid macrocyclic electrophiles: the chloride ion complex of acharge-reversed analogue of 12-crown-4 Angewandte Chemie International Edition in English, 1991,30:1507-1508.
    (62)Qi Zeng, Ping Cai, Zhen Li, Jingui Qin and Ben Zhong Tang Chem. Commun., 2008, 1094–1096
    (63)Shin Mizukami, Tetsuo Nagano, Yasuteru Urano, Akira Odani, and Kazuya Kikuchi, A Fluorescent Anion Sensor That Works in Neutral Aqueous Solution for Bioanalytical Application J. Am. Chem. Soc., 2002, 124 (15), 3920–3925
    (64)Xiaomei Huang, Zhiqian Guo, Weihong Zhu, Yongshu Xie and He Tian, A colorimetric and fluorescent turn-on sensor for pyrophosphate anion based on a dicyanomethylene-4H-chromene framework Chem. Commun., 2008, 5143–5145
    (65)Sessler J L, Cho W-S, Gale P A. Anion receptor chemistry. RSC, 2006.
    (66)Huber, W.; Koella, J. C. Acta Trop. 1993, 55, 257–261.
    (67)Mansoor, M. A.; Svardal, A. M.; Ueland, P. M., Anal. Biochem. 1992, 200, 218.
    (68)H.M.N.H. Irving, H. Freiser, West T. S. IUPAC, Compendium of Analytical Nomenclature Definitive Rules [M], Pergamon Press, Oxford (1978).
    (69)H. A. Benesi and J. H. Hildebrand, Spectrophotometry of Iodine with Aromatc Hydrocarbons 1949, 71, 2703-2707.
    (70)M?nica Barra, Cornelia Bohne, J. C. Scaiano J. Am. Chem. SOC. 1990, 112, 8075-8079.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700