用户名: 密码: 验证码:
三峡库区等高绿篱坡地农业系统紫色土水分特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
季节性干旱与水土流失并存是目前三峡库区面临的重要生态问题之一,等高绿篱技术是目前国内外广泛采用的一种坡耕地植被恢复和水土流失控制新技术,是库区农业生态系统持续发展的有效途径。本研究围绕等高绿篱坡地农业系统紫色土水分特性为主要内容,从土壤水形态学和土壤水动力学两方面展开研究,揭示等高绿篱影响下的坡地土壤水分有效性、土壤水分入渗性能、以及其空间分布特征,确定不同质地紫色土水动力学参数,探讨土壤水动力学参数间接推求方法在紫色土上的适用性,根据所获得资料通过物理模型和数学方法模拟等高绿篱篱前淤积土特殊剖面构造的土壤水分入渗过程。
     (1)选择新银合欢、黄荆和马桑三种绿篱,探讨其水土保育功效及抗旱效益。结果显示,由于绿篱的层层拦截,10年左右的时间,土坎高度增至近80cm,减缓坡度20°左右,具有显著的拦沙淤土效益;与对照相比,栽种绿篱后,土壤有机质增加52%-65%,土壤容重减小14%-17%,尤其是非毛管孔隙增幅达66%-124%,等高绿篱模式下土壤保肥增肥效益显著,土壤结构改善明显;按等高绿篱模式增加有效土层60cm计算,新银合欢、黄荆和马桑三个处理增加土壤水总库容分别为271mm、257mm和247mm,有力增强了土壤的抗旱性能。
     (2)以等高绿篱(新银合欢和黄荆)篱前淤积土为研究对象,评估等高绿篱坡地农业系统不同土层深度、不同距篱的土壤水分及物理性质变化特征。结果表明,绿篱处理土壤非毛管孔隙度、饱和入渗率、饱和含水量和自然含水量均高于石坎梯田处理,而土壤容重均小于石坎梯田处理,尤其在表层二层其差异更明显,等高绿篱保育土壤效益显著;同一土层,随距篱(坎)延长,绿篱处理土壤容重、自然含水量逐渐增大,土壤非毛管孔隙、饱和入渗率和饱和含水量逐渐减小,而石坎梯田处理变化不明显;随土层加深,各处理土壤容重、自然含水量均相应逐渐增大,土壤非毛管孔隙、饱和入渗率和饱和含水量均相应逐渐减小,且处理之间差异也逐渐缩小;距篱远近间接反映了绿篱处理对土壤水分及物理性质影响程度,距篱越近,影响越大。新银合欢处理与黄荆处理之间相比,效应相当。
     (3)以等高绿篱(新银合欢和黄荆)前淤积土与石坎梯田为研究对象,探讨不同土层深度、不同距篱(坎)的土壤水分入渗特性及其影响因素,并对其土壤水分入渗过程进行模型拟合。结果显示,同一土层,随距篱(坎)延长,各处理土壤入渗性能坎依次减弱,不同距篱绿篱处理土壤入渗性能存在较大差异,而不同距坎石坎梯田处理土壤入渗性能差异相对不明显;随土层加深,绿篱处理土壤入渗性能相应逐渐减弱,而石坎梯田处理土壤入渗性能急剧减弱;对于表层土壤平均入渗性能,石坎梯田处理优于绿篱处理,而对于二层土壤平均入渗性能,绿篱处理转而优于石坎梯田处理,三层土壤,各处理土壤入渗性能基本相当;黄荆处理土壤入渗性能存在明显的空间变化规律,主要通过水平和垂直两个方向来体现,其中水平方向,距篱远近间接反映了黄荆对土壤入渗性能的影响程度;土壤容重、砂粘比与有机质对土壤入渗性能均有显著影响,而初始含水量仅对初始入渗率有显著影响,其中砂粘比对初始入渗率、前30分钟入渗量影响最大,容重对稳定入渗率影响最大;Green-Ampt模型和Philip模型更适合本研究土壤水分入渗过程描述与模拟,且具有较高准确性。
     (4)选择等高绿篱新银合欢篱前淤积土、石坎梯田及自然荒坡的表层紫色土,室内测定水动力学参数。结果表明,对于紫色土水分特征曲线,土壤含水量与土壤水吸力呈负相关关系。同一土壤水吸力水平下,细质土的持水量最高,粗质土的持水量最小。Gardner模型和Van Genuchten模型均可用于描述紫色土水分特征曲线;对于紫色土水分扩散率,土壤水分扩散率与土壤含水量呈正相关关系。随含水量增加(θ>0.25),不同质地土样水分扩散率差异愈大,粗质土>细质土。已有经验模型均可用于表达紫色土水分扩散率函数关系;对于紫色土导水率,土壤导水率与土壤含水量呈正相关关系。同一含水量水平,粗质土导水率大于细质土。幂函数模型、Brooks-Corcy模型和Mualem-Van Genuchten模型均可用于表达紫色土导水率关系。
     (5)室内通过水平一维吸渗试验和土壤水分再分布试验,结合土壤颗粒分析等物理实验,探讨间接推求紫色土非饱和导水参数的适用性。结果显示,通过建立的土壤水分特征曲线模型分形维数与土壤粒径分布分形维数关系式,结合Tyler-Wheatcraft模型进行土壤水分特征曲线预测,预测值与实测值具有良好的一致性;简单入渗法和入渗特性法推求的水动力学参数中,水分特征曲线准确性较好,水分扩散率和非饱和导水率准确性较差;根据土壤水分再分布过程推求紫色土的水分扩散率与实测值具有良好的一致性,但推求的非饱和导水率与计算值均有很大的出入。然而单一的土壤水分垂直或水平再分布过程结合实测水分特征曲线推求的非饱和导水率与计算值基本相当,准确性均很高。另外,该方法比较适合低湿土壤的非饱和导水参数推求。
     (6)在(4)和(5)的基础上,首次推导了等高绿篱篱前淤积土特殊剖面构造的土壤水分入渗模型,并通过室内模拟进行准确性验证。结果显示,对于均质土剖面入渗,粗质地的湿润锋随时间推进速度快于细质地。而对于不同质地剖面入渗,一定剖面入渗设置条件下,粗质土半剖面的垂直湿润锋随时间推进速度快于细质土。而且,对于粗质地,上细下粗三角形剖面层次的垂直湿润锋随时间推进速度快于上粗下细,但对于细质地,差异不明显;无论上粗下细,还是上细下粗,不同剖面层次对斜面湿润锋变化曲线影响不大;各剖面层次入渗,湿润锋、入渗速率与时间均呈极显著幂函数关系;建立的紫色土特殊剖面构造入渗模型,经实测值验证,模拟值与实测值具有极好的一致性,充分说明模型的可靠性和准确性,均可用于描述紫色土特殊剖面构造的入渗过程。同时,建立的入渗模型可与经验模型相互转换,具有很好的相通性,模型参数也具有一定的物理意义。
The coexistence of seasonal drought and soil and water losses is one major ecological problem in the three gorges reservoir area now.Contour hedgerow is a very common and effective technique around the world,which is often employed to revegetate on cultivated slope land and conserve water and soil resources.And it is also considered as an available way of sustainable development of agroecosystem in the three gorges reservoir area.Soil water properties under contour hedgerow-intercroping system were studied thoroughly in two respects of soil water morphology and soil water dynamics.The purpose of this research was to discover soil water availability,soil permeability,and theirs spatial variability,as well as to determine hydraulic parameters of different textural purple soils and to discuss methods of estimating hydraulic parameters indirectly in term of applicability on purple soils.On the basis of former research,process of water infiltration in special soil profile was simulated according to alluvial soils in front of hedges through physical models and mathematical methods.The main results were as follows:
     (1) Three hedges of Leucaena leucocephala,Vitex negundo and Coriaria sinica were selected to discuss the benefits of soil and water conservation and drought-resistance.The results showed that because of trapping and depositing by contour hedgerows,the height of silt had increased to 80cm and the gradient had been eliminated 20°after 10 years, which reflected that the effect of sediment trapping and depositing was significant Compared with the control,within the contour hedgerow treatments,soil organic matter increased from 52%to 65%,soil bulk density decreased from 14%to 17%,and soil non-capillary porosity increased from 66%to 124%especially.The effects of fertilizer maintenance and improvement under the contour hedgerow system were significant and soil structure was improved obviously.According to the effective thickness of soil layer of 60cm,soil water total volumetric capacity in the treatments of Leucaena leucocephala, Vitex negundo and Coriaria sinica increases 271mm,257mm and 247mm respectively, which then improves the soil ability of drought-resistance greatly.
     (2) Alluvial soils in front of hedges(Leucaena leucocephala and Vitex negundo) were taken as the objects,to evaluate the effects on soil water and physical properties from different distances to hedgerows at different soil depths by contour hedgerow-intercroping system.The results showed that soil non-capillary porosity, saturated hydraulic conductivity,saturated water content and natural water content in the hedgerows treatments were higher than in the rock ridge terrace treatment,while the soil bulk density in the hedgerows treatments was lower than in the rock ridge terrace treatment,which reflected that the effects on water and soil conservation by hedgerows were significant,especially in the top and second layer.Based on the same depth,with the extending of the distance to hedgerows(ridge),in the hedgerows treatments soil bulk density and natural water content increased gradually,and soil non-capillary porosity, saturated hydraulic conductivity and saturated water content decreased gradually,while no apparent change in the rock ridge terrace treatment.With the deepening of the soil layer,in each treatment soil bulk density and natural water content increased gradually, and soil non-capillary porosity,saturated hydraulic conductivity and saturated water content decreased gradually accordingly,and their differences among treatments were also lessened gradually.The distance to hedgerow reflected the degree of effects on soil water and physical properties by hedgerow indirectly.The closer to hedgerow,the greater the effects were.Comparing treatments of Leucaena leucocephala and Vitex negundo, their effects were equivalent.
     (3) Alluvial soils in front of hedges(Leucaena leucocephala and Vitex negundo) and rock ridge terrace were taken as the objects,to study the soil water infiltration properties and theirs factors from different distances to hedges/ridge at different soil depths,as well as fit the model of the soil infiltration process.The results showed that,based on the same depth,with the extending of the distance to hedgerows(ridge),soil infiltration properties represented the trend of decreasing gradually for all treatments,and there was big difference among different distances to hedges for hedgerow treatments but no difference among different distances to ridge for rock ridge terrace treatment.With the deepening of the soil layer,soil infiltration properties decreased gradually for hedgerow treatments, while decreased rapidly for rock ridge terrace treatment.In the top layer the average soil infiltration properties for rock ridge terrace treatment was better than those for hedgerow treatments,but in the second layer the average soil infiltration properties for hedgerow treatments were better than those for rock ridge terrace treatment on the contrary,and in the third layer,they were equivalent.There was clear space variation in vertical and horizontal directions of soil infiltration properties for Vitex negundo treatment.In horizontal direction,the distance to hedgerow reflected the degree of effects on soil water and physical properties by Vitex negundo indirectly.Bulk density,sand/clay ratio and OM had significant influence on all of soil infiltration properties,but initial soil water content only had significant influence on initial infiltration rate.Sand/clay ratio had the most effect on initial infiltration rate and infiltration in 30min,and bulk density had the most effect on stable infiltration rate.Infiltration models of Green-Ampt and Philip were more suitable for describing and simulating the soil infiltration process in this research with higher accuracy.
     (4) Top purple soils of alluvial soil in front of Leucaena leucocephala,rock ridge terrace and natural slope were taken to measure hydraulic parameters in laboratory.The results were as follows,for purple soil water retention cuvre,there was a negative correlation between soil water suction and soil water content.Under the same soil water suction,water content of fine soil was the highest,and water content of coarse soil was the lowest.Both Gardner model and Van Genuchten model could be used to describe purple soil water retention curve.For purple soil water diffusivity,there was a positive correlation between soil water diffusivity and soil water content.With the increase of water content(θ>0.25),the difference among different textural soils became more obvious(coarse soil>fine soil).The existing models could be used to express purple soil water diffusivity.For purple soil conductivity,there was a positive correlation between soil conductivity and soil water content.Under the same water content,conductivity of coarse soil was higher than fine soil.Power function,Brooks-Corey model and Mualem-Van Genuchten model could be used to express purple soil conductivity.
     (5) Through conducting experiments of horizontal one-dimension infiltration,soil water redistribution and soil particle analysis,indirect approaches of determining soil unsaturated hydraulic conductivity and diffusivity were discussed,in term of applicability on purple soils.The results showed that,based on the linear function between the fractal dimension of soil particle size distribution and the fractal dimension of soil water retention curve,soil water retention curve was predicted through Tyler-Wheatcraft's model.It was quite obvious that the predicted soil water retention curve agreed well with the measured data.Hydraulic parameters were estimated by simple infiltration method and horizontal infiltration method.The estimated soil water retention curve was accurate,while the accuracy of estimated soil water diffusivity and conductivity was poor.Based on soil water redistributions,the estimated purple soil water diffusivity was in good agreement with the measured,but the estimated purple soil conductivity deviated greatly.While,the purple soil conductivity to be estimated agreed well with the calculated,by combining one-dimension redistributions of soil water and the measured soil water retention curve. In addition,this method was more suitable for the low soil moisture.
     (6) On the basis of research(4) and(5),models of water infiltration in special soil profile were derived according to alluvial soils in front of hedges for the first time,and verificated by laboratory simulation.The results showed that in homogeneous soil profile, wetting front rate for coarse soil was faster than free soil.But in heterogeneous soils profile,under the same boundary conditions,vertical wetting front rate of half part profile of coarse soil was faster than fine soil.Furthermore,vertical wetting front rate of half part profile of coarse soil in triangular profile with fine upper and coarse lower was faster than in triangular profile with coarse upper and fine lower.But there was no difference for half part profile of fine soil.There was no significant effect on incline wetting front rate by heterogeneous soils profile,whether coarse upper and fine lower,or fine upper and coarse lower.There was a very significant power relationship between wetting front,infiltration rate and time for different soil profiles.The established infiltration models for special profile of purple soils were verified by experimental data,and the results indicated that the estimated agreed well with the observed.It was suggested that these models be reliable and reasonable,so that these models could be used to express the infiltration process in special profile of purple soils.Meanwhile,there was well consistency between the established infiltration models and the existing empirical models,and they could be transformed each other.Moreover,parameters of established theoretical models had some certain physical meaning.
引文
1.卜崇峰,蔡强国,袁再健.三峡库区等高植物篱的控蚀效益及其机制.中国水土保持科学,2006,4(4):14-18.
    2.卜崇峰,蔡强国,袁再健.湿润区坡地香根草植物篱农作措施对土壤侵蚀和养分的影响.农业工程学报,2006,22(5):55-60.
    3.蔡崇法,王峰,丁树文,等.间作及农林复合系统中植物组分间养分竞争机理分析.水土保持研究,2000,7(3):219-221,252.
    4.蔡强国,黎四龙.植物篱笆减少侵蚀的原因分析.土壤侵蚀与水土保持学报,1998,4(2):54-60.
    5.蔡强国,张光远,吴淑安,等.长江三峡库区梯田稳定性分析与对策.地理研究,1997,16(1):45-52.
    6.查世煜,李秋洪.三峡库区坡耕地的水土流失问题与对策.农业环境与发展,1998,15(2):30-33,41.
    7.长江流域水资源保持局.三峡工程生态与环境.北京:科学出版社,2000.
    8.陈浩,蔡强国.坡度对坡面径流、入渗量影响的试验研究.晋西黄土高原土壤侵蚀规律实验研究.北京:水利电力出版社,1990,17-25.
    9.陈奇伯,齐实,孙立达,等.黄土丘陵区坡耕地土地退化研究.水土保持通报,2004,24(1):12-15.
    10.陈一兵,Kim Troubowst.紫色土渗透性的对比研究.水土保持通报,1997,17(2):11-13,20.
    11.陈一兵,林超文,朱钟麟,等.经济植物篱种植模式及其生态经济效益研究.水土保持学报,2002,16(2):80-83
    12.陈治谏,廖晓勇,刘邵权.坡地植物篱农业技术生态经济效益评价.水土保持学报,2003,17(4):125-127,160.
    13.崇婧,杨达源,姜洪涛,等.长江三峡地区坡地发育初步研究.长江流域资源与环境,2002,11(3):264-268.
    14.丁树文,蔡崇法,黄丽,等.三峡库区秭归盆地岩性构造对坡地紫色土某些特性影响.华中农业大学学报,2000,19(2):129-132.
    15.董三孝.黄土丘陵区退耕坡地植被自然恢复过程及其对土壤入渗的影响.水土保持通报,2004,2(4):1-5.
    16.方正三.黄河中游黄土高原梯田的调查研究.北京:科学出版社,1958,53-59.
    17.费良军,谭齐林,王文焰,等.充分供水条件下点源入渗特性及其影响因素.土壤侵蚀与水土保持学报,1999,5(2):70-74.
    18.冯宝平,陈守伦.用BP网络预测温度对土壤水分入渗的影晌.水利学报,2003(2):6-8,14.
    19.冯宝平,张建奉,等.温度对土壤水分运动影响的研究.灌溉排水,2001,20(1):46-49.
    20.福斯HD.(唐耀生译).土壤科学原理.北京:农业出版社,1978.
    21.宫渊波,麻泽龙,陈林武等.嘉陵江上游低山暴雨区不同水土保持林结构模式水源涵养效益研究.水土保持学报,2004,18(3):28-32,36.
    22.关君蔚.水土保持原理.北京:中国林业出版社,1996,84-85.
    23.国家环境保护总局.长江三峡工程与生态环境监测公报,2006.
    24.韩祥伟,邵明安,王全九.简单入渗法在确定Brooks-Corey水分特征曲线模型参数中的应用研究.土壤学报,2006,43(3):506-508.
    25.何丙辉,田大伦.杉木人工林土壤水分动态研究.西南农业大学学报,1995,17(4):334-337.
    26.何福红,黄明斌,李景保.土壤水库和森林植被对水资源的调节作用.土壤与环境,2001,10(1):42-44.
    27.何国亚,陈一兵,林超文.经济植物篱保墒效果灰色分析.西南农业大学学报(自然科学版),2004,26(1):10-14,34.
    28.贺康宁.水土保持林地土壤水分物理性质的研究.北京林业大学学报,1995,17(3):44-50.
    29.侯喜禄,白岗栓,曹清玉.刺槐、柠条、沙棘林土壤入渗及抗冲性对比试验.水土保持学报,1995,9(3):90-95.
    30.胡海波,张金池.平原粉沙淤泥质海岸防护林土壤渗透性的研究.水土保持学报,2001,15(1):39-42.
    31.胡建忠,朱金兆,周心澄,等.北川河流域退耕还林还草工程土壤渗吸性能研究.中国水土保持科学,2004,2(2):55-61.
    32.华孟,王坚.土壤物理学(附实验指导).北京:北京农业大学出版社,1993.
    33.黄冠华,詹卫华.土壤颗粒的分形特征及其应用.土壤学报,2002,39(4):490-497.
    34.黄冠华,詹卫华.土壤水分特性曲线的分形模拟.水科学进展,2002,13(1):55-60.
    35.黄丽,蔡崇法.几种绿篱梯田中紫色土有机质组分及其性质的研究.华中农业大学学报,2000,19(6):559-562.
    36.黄明斌,李玉山,康绍忠.坡地单元降雨产流分析及平均入渗率计算.土壤侵蚀与水土保持学报,1999,5(1):63-68.
    37.黄明斌.滞后效应对SPAC中水流运动的影响研究述评.水土保持通报,1995,15(4):1-6.
    38.黄荣珍,杨玉盛,等.福建闽江上游不同林地类型土壤水库“库容”的特性.中国水土保持科学,2005,3(2):92-96.
    39.江忠善.黄土地区天然降雨雨滴特性研究.中国水土保持,1983,2(3):32-36。
    40.蒋定生,范兴科,黄国俊.黄土高原坡耕地水土保持措施效益评价试验研究:1.坡耕地水土保持措施对降雨入渗的影响.水土保持学报,1990,4(2):1-9.
    41.蒋定生,黄国俊.地面坡度对降雨入渗影响的模拟试验.水土保持通报,1984,4(4):10-13.
    42.蒋定生,黄国俊.黄土高原土壤入渗速率的研究.土壤学报,1986,23(4):299-304.
    43.焦峰,温仲明,王勇,等.基于GIS的黄土丘陵区土壤水库蓄水时空变异特征.水土保持学报,2007,21(3):128-132.
    44.靳长兴.坡度在坡面侵蚀中的作用.地理研究,1996,15(3):57-63.
    45.康绍忠,张书函,聂光铺,等.内蒙古敖包小流域土壤入渗分布规律的研究.土壤侵蚀与水土保持学报,1996,2(2):38-46.
    46.康绍忠.积水入渗条件下土壤水分动态变化的野外观测与分析.水土保持通报,1997,17(1):7-12.
    47.雷志栋,胡和平,杨诗秀.土壤水研究进展与评述.水科学进展,1999,10(3):311-318.
    48.雷志栋,谢森传.测定土壤水分运动参数的出流法研究.水利学报,1982,11:10-14.
    49.雷志栋,杨诗秀,谢森传.土壤水动力学.北京:清华大学出版社,1988.
    50.雷志栋,杨诗秀.田间土壤水分入渗的空间分布.水利学报,1987(3):1-9.
    51.李保国,龚元石,左强,等.农田土壤水的动态模型及应用.北京:科学出版社,2000.
    52.李德生.石灰岩山地植被水土保持效益的研究.水土保持学报,1993,7(2):57-62.
    53.李文华,赖世登.中国农林复合经营.北京:科学出版社,1994,221-227.
    54.李秀彬,彭业轩,姜臣,等.等高活篱笆技术提高坡地持续生产力探讨——以三峡库区为例.地理研究,1998,17(3):309-314.
    55.李毅,王全九,邵明安,等.Green-Ampt入渗模型及其应用.西北农林科技大学学报(自然科学版),2007,35(2):225-230.
    56.李永生,王棣,邢金香.太行山石灰岩区水土保持林研究.北京:中国林业出版社,2000.
    57.李玉山,张孝中,黄土高原南部作物水肥产量效应的田间研究.土壤学报,1990,27(1):1-7.
    58.梁音,史学正,史德明.从长江上游地区水土流失及土壤水库容分析1998洪水.中国水土保持,1998(11):32-34.
    59.刘德,申学勤,李永华.三峡库区夏季旱涝成因分析及预测方法研究.四川气象,2000,20(4):36-39.
    60.刘建立,徐绍辉.根据颗粒大小分布估计土壤水分特征曲线:分形模型的应用.土壤学报.2003,40(1):46-52.
    61.刘贤赵,康绍忠.黄土高原沟壑区小流域土壤入渗分布规律的研究.吉林林学院学报,1997,13(4):203-208.
    62.刘贤赵,康绍忠.黄土区考虑滞后作用的坡地水量转化模型.土壤学报,2000,37(1):16-23.
    63.刘贤赵,康绍忠.降雨入渗与产流问题研究的若干进展及评述.水土保持通报,1999,19(2):57-62.
    64.吕殿青,邵明安.非饱和土壤水力参数的模型及确定方法.应用生态学报,2004,15(1):163-166.
    65.马履一.国内外土壤水分的研究现状与进展.世界林业研究,1997,(5):26-32.
    66.欧阳底梅,董闻达.百喜草对土壤渗透率的影响.江西农业大学学报,1998,20(1):70-73.
    67.庞福生,刘孝智,李晓伟.侧柏火炬树混交林蓄水保水效益的研究.水士保持研究,2001,8(3):14-15,44.
    68.彭新德.土壤水分再分布过程中滞后作用的影响分析.学位论文,中科院水土保持研究所,1992.
    69.秦耀东.土壤物理学.北京:高等教育出版社,2003
    70.邱扬,傅伯杰,邱扬,等.黄土丘陵小流域土壤物理性质的空间变异.地理学报,2002,57(5):587-594.
    71.全斌,陈健飞,郭成达.福建赤红壤、红壤旱地土壤水库容状况及水分问题研究.土壤通报,2002,33(2):96-99.
    72.邵明安,黄明斌.土根系统水动力学.西安:陕西科学技术出版社,2000.
    73.邵明安,李开元,钟良平.根据土壤水分特征曲线推求土壤的导水参数.中国科学院西北水土保持研究所集刊,1991,6:13-22.
    74.邵明安,王全九,Robert Horton.推求土壤水分运动参数的简单入渗Ⅰ:理论分析.土壤学报,2000,37(1):1-8.
    75.邵明安,王全九,Robert Horton.推求土壤水分运动参数的简单入渗Ⅱ:实验验证.土壤学报,2000,37(2):217-224.
    76.邵明安.不同方法测定土壤基质势的差别及准确性的初步研究.土壤通报,1985,16(5):23-29.
    77.邵明安.非饱和土壤导水参数的推求Ⅰ:理论.中国科学院水利部西北水土保持研究所集刊,1991,13:13-25.
    78.邵明安.根据土壤水分的再分布过程确定土壤的导水参数.中国科学院水利部西北水土保持研究所集刊,1985,2:47-53.
    79.申元村.三峡库区植物篱坡地农业技术水土保持效益研究.土壤侵蚀与水土保持学报,1998,4(2):61-66.
    80.申元村.资源工程体系建设探讨——以三峡库区坡地资源开发保护体系建设为例.长江流域资源与环境,1998,7(2):97-101.
    81.石新生,蒋定生.几种水土保持措施对强化降水入渗和减沙的影响试验研究.水土保持研究,1994,1(1):16-18.
    82.史学正,梁音,于东升,等.调用“土壤水库”是防洪减灾的治本之策.中国科学报,1998,10(21):4.
    83.史学正,梁音,于东升.“土壤水库”的合理调用与防洪减灾.土壤侵蚀与水土保持学报,1999,5(3):6-10.
    84.宋文玲.杨义文.长江三峡地区夏季早涝特征及气候预测.气象,2003,29(7):13-18.
    85.苏彩虹,郭创业.黄土旱塬农田全程全覆盖的“土壤水库”作用.水土保持学报,2001,15(4):87-91.
    86.苏里坦,宋郁东,张展羽.沙漠非饱和风沙土壤水分特征曲线预测的分形模型.水土保持学报,2005,19(4):115-118,130.
    87.孙辉,唐亚,陈克明,等.固氮植物篱防治土壤侵蚀效果的研究.水土保持通报,1999,19(6):1-5.
    88.孙辉,唐亚,陈克明,等.固氮植物篱改善退化坡耕地土壤养分状况的效果.应用与环境生物学报,1999,5(5):473-477.
    89.孙辉,唐亚,陈克明,等.等高固氮植物篱控制坡耕地地表径流的效果.水土保持通报,2001,21(2):48-51.
    90.孙辉,唐亚,王春明,等.等高固氮植物篱技术——山区坡耕地保护开发利用的有效途径.山地学报,2001,19(2):125-129.
    91.孙辉,唐亚,赵其国.干旱河谷区坡耕地植物篱种植系统土壤水分动态研究.水土保持学报,2002,16(1):84-87.
    92.孙立达,朱金兆.水土保持林体系综合效益研究与评价.北京:中国科学技术出版社,1995.
    93.汪志荣,张建丰,王文焰,等.温度影响下土壤水分运动模型.水利学报,2002(10):46-50.
    94.王国栋,刘国彬,周生路.黄土丘陵沟壑区小流域植被恢复对土壤稳定入渗率的影响.自然资源学报,2003,18(5):529-535.
    95.王国梁,刘国彬,周生路.黄土丘陵沟壑区小流域植被恢复对土壤稳定入渗的影响.自然资源学报,2003,18(5):529-535.
    96.王国梁,刘国彬.黄土丘陵沟壑区植被恢复的土壤水稳性团聚体效应.水土保持学报,2002,16(1):48-50.
    97.王红闪,黄明斌.四种方法推求土壤导水参数的差别与准确性研究.干旱地区农业研究,2004,22(2):76-80.
    98.王礼先,吴长文.林地土壤的入渗及其模拟分析.水土保持研究,1995,2(1):10-15.
    99.王礼先.水土保持工程学.北京:中国林业出版社,2000,48.
    100.王明珠,张桃林,何园球.红壤生态系统研究(第二集).南昌:江西科学技术出版社,1993.262-268.
    101.王全九,来剑斌.利用自由点源入渗法测定土壤导水参数的室内试验.农业工程学报,2006,22(3):191-192.
    102.王全九,邵明安,汪志荣,等.Green-Ampt公式在层状土入渗模拟计算中的应用.土壤侵蚀与水土保持学报,1999,5(4):66-70.
    103.王全九,王文焰,吕殿青,等.水平一维土壤水分入渗特性分析.水利学报,2006(6):34-38.
    104.王文焰,汪志荣,王全九,等.黄土中Green-Ampt入渗模型的改进与验证.水利学报,2003(5):30-34.
    105.王文焰,王全九,沈冰,等.甘肃秦王川地区双层土壤结构的入渗特性.土壤侵蚀与水十保持学报,1998,4(2):36-40.
    106.王文焰,张建丰,汪志荣,等.黄土中沙层对入渗特性的影响.岩土工程学报,1995,17(5):36-41.
    107.王燕,黄土表土结皮对降雨溅蚀和片蚀影响的试验研究.中科院水利部西北水土保持研究所硕士学位论文,1992.
    108.王玉宽.黄土高原坡地降雨产流过程的试验分析.水土保持学报,1991,5(2):25-29.
    109.王展,周云成,虞娜,等.以分形理论估计棕壤水分特征曲线的可行性研究.沈阳农业大学学报,2005,36(5):570-574.
    110.王占礼,邵明安,李勇.黄土地区耕作侵蚀过程中的土壤再分布规律研究.植物营养与肥料学报,2002,8(2):168-172.
    111.吴发启,赵西宁,佘雕.坡耕地土壤水分入渗影响因素分析.水土保持通报,2003,23(1):16-18,78.
    112.吴彦,刘世全.植物根系对土壤抗侵蚀能力的影响.应用与微生物学报,1997,2(3):119-124.
    113.肖建英,李永涛,王丽.利用Van Genuchten模型拟合土壤水分特征曲线.地下水,2007,29(5):46-47.
    114.夏卫生,雷廷武,潘英华,等.土壤水分动力学参数研究与评价.灌溉排水,2002,21(1):72-75.
    115.夏卫生,雷廷武,杨文治,等.蒸发条件下土壤水分再分布的动力学研究.水利学报,2002(7):37-41.
    116.许迪,Mermoud A.从土壤持水数据估算导水率方法的比较分析.水土保持学报,2001,15(5):125-129.
    117.许峰,蔡强国,吴淑安,等.等高植物篱控制紫色土坡耕地侵蚀的特点.土壤学报,2002,39(1):71-79.
    118.许峰,蔡强国,吴淑安.等高植物篱在南方湿润山区坡地的应用——以三峡库区紫色土坡地为例.山地学报,1999,17(3):193-199.
    119.许峰.坡地等高植物篱带间距对表土养分流失影响.土壤侵蚀与水土保持学报,1999,5(2):23-29.
    120.杨海龙,朱金兆,毕利东,等.三峡库区森林流域生态系统土壤入渗性能的研究.水土保持学报,2003,17(3):63-65,69.
    121.杨培岭,罗远培,石元春.用粒径的重量分布表征的土壤分形特征.科学通报,1993,38(20):1896-1899.
    122.杨绍锷,黄元仿.基于支持向量机的土壤水力学参数预测.农业工程学报,2007,23(7):42-47.
    123.杨文治,邵明安.黄土高原土壤水分研究.北京:科学出版社,2000.
    124.杨艳生,史德明,姚宗虞.江西兴国县土壤渗透性的研究.水土保持通报,1982,2(6):33-39.
    125.姚其华,邓银霞.土壤水分特征曲线模型及其预测方法的研究进展.土壤通报,1992,23(3):142-144.
    126.姚贤良,程云生等.土壤物理学.北京:农业出版社,1986.
    127.姚贤良,许绣云,于德芬.红壤的水库容及其对抗旱性能的影响.红壤生态系统研究(第二集).南昌:江西科学技术出版社,1993,262-268.
    128.于东升,史学正.红壤区不同生态模式的“土壤水库”特征及其防洪减灾效能.土壤学报,2003,40(5):656-663.
    129.袁建平,雷廷武,郭索彦,等.黄土丘陵区小流域土壤入渗速率空间变异性.水利学报,2001(10):88-92.
    130.袁建平,张素丽,张春燕,等.黄土丘陵区小流域土壤稳定入渗率空间变异.土壤学报,2001,38(4):199-203.
    131.袁建平.纸坊沟流域土壤入渗速率随空间和治理度之变异规律.水土保持学报,2000,14(4):121-124.
    132.袁再健,蔡强国,吴淑安,等.四川紫色土地区典型小流域分布式产汇流模型研究.农业工程学报,2006,(4):36-41.
    133.张北赢,徐学选,李贵玉,等.土壤水分基础理论及其应用研究进展.中国水土保持科学,2007,5(2):122-129.
    134.张汉雄.黄土高原的暴雨特性及其分布规律.地理学报,1983,38(4):416-420.
    135.张季如,朱瑞赓,祝文化.用粒径的数晕分布表征的土壤分形特征.水利学报、2004(4):67-71,79.
    136.张永涛,杨吉华,高伟.不同保水措施的保水效果研究.水土保持通报,2000,20(5):46-48.
    137.张志强.森林水文学:过程与机制.北京:中国环境科学出版社,2002.
    138.赵合理,蒋定生,范兴科.不同水土保持措施对坡面降水再分配的影响.水土保持研究,1996,3(2):75-83.
    139.赵西宁,吴发启.土壤水分入渗的研究进展和评述.西北林学院学报,2004,19(1):42-45.
    140.郑度,申元村.坡地过程及退化坡地恢复整治研究.地理学报,1998,53(2):116-122.
    141.郑纪勇,邵明安,张兴昌.黄土高原坡面表层土壤容重和饱和导水率空间变异特征.水土保持学报,2004,18(3):53-56.
    142.中国科学院成都分院土壤研究室,中国紫色土(上篇).北京:科学出版社,1991.
    143.周蓓蓓,邵明安.不同碎石含量及直径对土壤水分入渗过程的影响.土壤学报,2007,44(5):801-807.
    144.朱显谟.抢救“土壤水库”实为黄土高原生态环境综合治理与可持续发展的关键——四论黄土高原国土整治28字方略.水土保持学报.2000,14(1):1-6.
    145.朱显谟.抢救“土壤水库”治理黄土高原生态环境.中国科学院院刊,2000(4):293-295.
    146.朱显谟.试论黄土高原的生态环境与“土壤水库”——重塑黄土地的理论依据.第四纪研究,2000,20(6):514-520.
    147.朱显谟.维护土壤水库确保黄土高原山川秀美.中国水土保持,2006(1):6-7.
    148.朱显谟.再论黄土高原国土整治“28字方略”.土壤侵蚀与水土保持学报,1995,1(1):4-11.
    149.朱祖样.土壤学.北京:农业出版社,1983.
    150.Abujamin S,Abdurachman A,and Suwardjo M.Contour grass strip as low cost conservation practices.Asian Studies on the Pacific Coast Ext.Bull.1985,221:1-7.
    151.Adisak S.Management of Sloping land for sustainable Agriculture.IBSRAM publication,2002:151-186.
    152.Agus F,Cassel D K,Garrity D P.Soil-water and soil physical properties under contour hedgerow systems on sloping oxisols.Soil and Tillage Research,1997,40:185-199.
    153.Ahuja L R,Naney J W,Willianms R D.Estimating soil water retention from simpler properties or limited data.Soil Science Society of America Journal,1985,49:1100-1105.
    154.Aken A O,Yen B C.Effect of rainfall intensity no infiltration and surface runoff rates.Journal of Hydraulic Research,1984,21(2):324-331.
    155.Arya L M,Dierolf T S.Predicting soil moisture characteristics from panicle-size distributions:An improved method to calculate pore radii from panicle radii.In:M.Th.van Genuchten et al.(ed.)Proc.Int.Worksh.on Indirect Methods for Estimating the Hydraulic Properties of Unsaturated Soils.University of California,Riverside,CA,1992,115-124.
    156.Arya L M,Leij F J,van Genuchten M Th,et al.Scaling parameter to predict the soil water characteristic from particle2size distribution data.Soil Science Society of Americal Journal,1999,63:510-519.
    157.Arya L M,Paris J F.A physicoempiricai model to predict the soil moisture characteristic from particle-size distribution and bulk density data.Soil Science Society of America Journal,1981,45:1023-1030.
    158.Averjanov S F.About permeability of subsurface soils in case of incomplete saturation.In English Collection.1950,17:19-21.
    159.Baker Ralph S,Hillel D.Laboratory tests of theory of fingering during infiltration into layered soils.Soil Science Society of America Journal,1990,54:20-30.
    160.Bardossy A,Disse M.Fuzzy rule-based models for infiltration.Water Resources Research,1993,29(2):373-382.
    161.Barry D A.Infiltration under ponded conditions:An explicit predictive infiltration.Soil Science,1995,160(1):8-17.
    162.Baunhardt R L.Modeling infiltration into sealing soil.Water Resource Research,1990,26(1):2497-2505.
    163.Bodman G B,Colman E A.Moisture and energy condition during downward entry of water into soil.Soil Science Society of America Journal,1944,8(2):166-182.
    164.Broadbridge P,White I.Constant rate rainfall infiltration:a versatile nonlinear model 1.analytic solution.Water Resource Research,1988,24(1):145-154.
    165.Brooks R H,Corey A T.Hydraulic properties of porous media.Colorada:Colorada State Univ,Fort Colins,1964.
    166.Bruce R R and Klute A.The measurement of soil-water diffusivity.Soil Science Society of America Journal,1956,20:458-562.
    167.Bruce R R.Hydraulic conductivity evaluation of the soil profile from soil water retention relations.Soil Science Society America Proceedings,1972,36:555-561.
    168.Burdine N T.Relative permeability calculations from pore size distribution data.Tran AME,1953,198:71-77.
    169.Campell G S.A simple method for determining unsaturated hydraulic conductivity from moisture retention data.Soil Science,1974,117:311-314
    170.Cassel,D K,Warrick A W,Nielsen D R,et ai.Soil water diffusivity values based upon time dependent soil water content distribution.Soil Science Society America Proceedings,1968,32:774-777.
    171.Childs E C and Collis-George N.The permeability of porous materials.Soil Science,1950,50:239-252.
    172.Chong S K,Green R E,Ahuja L R.Infiltration prediction based on estimation of Green-Ampt wetting front pressure head from measurement of soil water redistribution.Soil Science Society of America Journal,1982,46:235-239.
    173.Clothier B E,ScoRer D R,Green A E.Diffusivity and one dimensional absorption experiments.Soil Science Society of America Journal,1983,47:641-644.
    174.Colman E A,Bodman G B.Moisture and energy conditions during downward entry of water into moist and layered soils.Soil Science Society America Proceedings,1945,9:3-11.
    175.Comegna V,Damiani P,Sommella A.Use of a fractal model for determining soil water retention curves.Geoderma,1998,85:307-323.
    176.Crawford J W,Matsui N,Young I M.The relation between the moisture release curve and the sturcture of soil.European Journal of Soil Science,1995,46:369-375.
    177.Darcy Henry.Les Fontaines Publique de la Ville de Dijon.Dalment,Pads,1956.
    178.De Gennes P G.Partial filling of a fractal structure by a wetting fluid.In:Adler D,Fritzsche H,Ovshinsky S R.eds.Physics of Disordered Materials.New York:Plenum Press,1985,227-241
    179.Dirkaen C.Relationship between root uptake and weighted mean soil water salinity and total leaf water potentials of alfalfa.Irrigation Science,1985,6:39-50.
    180.Dunne T.Field studies of hillslope flow processes,In:Kirkby(editor),Hillsiope Hydrology,John Wiley & Sons,1978,227-294.
    181.Eigle J D,Moore I D.Effect of rainfall energy on infiltration into a bare soil.JRANS.of ASAE,1983,26(6):189-199.
    182.Farrell D A and W E Larson.Modeling of the pore structure of porous media.Water Resources Research.1972,8:148-153.
    183.Garder W R.Field measurement of soil water diffusivity.Soil Science Society America Proceedings,1970,34:832-833.
    184.Gardner W R and F J Miklich.Unsaturated conductivity,diffusivity measurements by a constant flux method.Soil Science,1962,93:271-274.
    185. Gardner W R. Some steady-state solution of the unsaturated moisture flow equation with application to evaporation from a water table. Soil Science, 1958, 85(4):228-232.
    
    186. Ghosh R K.A note on the infiltration equation. Soil Science, 1983, 136:333-338.
    
    187. Green W H, Ampt G A. Studies on soil physics, flow of air and water through soils. Journal of Agricultural Science, 1911,4(1): 1-24.
    
    188. Haverkamp R, Parlange J Y. Predicting the water retention curve from particle-size distribution: Sandy soils without organic matter. Soil Science, 1986, 142:325-339.
    189. Helalia A M. The relation between soil infiltration and effective porosity in different soils. Agricultural Water Management, 1993, 24(8):39-47.
    190. Hill D E, Parlange J Y. Wetting front instability in layered soils. Soil Science Society America Proceedings, 1972, 36:697-702.
    191. Hillel D, Baker Ralph S, 1988. A descriptive theory of fingering during infiltration into layered soils. Soil Science, 1988, 46(1):51-55.
    192. Hillel D. Crust Formation in Lassies Soils. International Soil Science. 1960, 29(5):330-337.
    193. Hillel D. Soil and Water-Physical principles and processes. New York: Academic Press, 1971.
    194. Holton H N. A concept for infiltration estimates in watershed engineering. USDA. Agricultural Research Service, 1961, 39(30):41-51.
    195. Horton R E. An approach to ward a physical interpretation of infiltration capacity. Soil Science Society of America Proceedings, 1940, 5(3):399-417.
    196. Hutson J T, Cass A. A retentivity function for use in soil water simulation models. Journal of Soil science, 1987,38:105-113.
    197. Irmay S. On the hydraulic conductivity of unsaturated soils. Transactions American Geophysical Union. 1954,35:463-467.
    198. Jackson R D. On the calculation of hydraulic conductivity. Soil Science Society America Proceedings, 1972,36:380-382.
    199. Kang B T, van der Kruijs A C B M, Couper D C. Alley cropping for food crop production in humid and subhumid tropics. In: B T Kang, L Reynolds(eds). Alley Farming in the Humid and Sub—humid Tropics. Ottawa. Canada: IDRC, 1989, 16-26.
    200. Kang B T, Wilson G F, Lawson T L. Alley Cropping: A stable alternative to shifting cultivation. Ibadan, Nigeria: IITA, 1984, 22.
    201. Kemper D, Dabney S M, Kramer L, et al. Hedging against erosion. Journal of Soil and Water Conservation, 1992,47:284-288.
    202. Kiepe P. No Runoff, No Soil Loss: Soil and Water Conservation in Hedgerow Barrier Systems. The Netherlands: Wageningen Agricultural University, 1995:156.
    203. King L G. Description of soil characteristics for partially saturated flow. Soil Science Society America Proceedings, 1965, 29:359-362.
    204. King L G. Inhibition of fluid by porous soilds. Ph.D. thesis. Colorado State University, Ft.Collins, CO. 1964.
    205. Klute A. The determination of the hydraulic conductivity and diffusivity of unsaturated soil. Soil Science, 1972, 113:264-276.
    206. Klute A, Dirken. Water retention: Laboratory methods. In: A. Klute(ed), Methods of Soil Analysis, Part I, Physicial and Mineralogical Methods, Agronmv Monograph no. 1986, 9: 563-596. Am. Soc. Agron, Madison, Wis., USA.
    207. Kostiakov A N. On the dynamics of the coefficient of water percolation in soils and on the necessity of studying it from dynamic point of view for purposes of amelioration. Soil Science, 1932, 97(1):17-21.
    208. Kozeny J. Uehara kapillare leitung des Wassers im Boden. Zitzungsber. Akad. Wiss. Wien. 1927, 136:271-306.
    209. Kravchenko A, Zhang R D. Estimating the soil water retention from particle2size distributions: A fractal approach. Soil Science, 1998, 163:171-179.
    210. Lal R. Agroforestry systems and soft surface management of atropical alfisol: I. Soil moisture and crop yield. Agroforestry Systems, 1989, 8:7-29
    211. Lal R. Agroforestry systems and soil surface management of a tropical alfisol: II. Water runof, soil erosion, and nutrient loss. Agroforestry system, 1989, 8:97-111.
    212. Leij F J, Russell W B, Lesch S M. Closed-form expressions for water retention and conductivity data. Ground Water, 1997,35(5):848-858.
    213. Majed Abu-Zreig, Ramesh P. Rudra, et al. Experimental investigation of runoff reduction and sediment removal by vegetated filter strips.Hydrological Processes,2004,18:2029-2037.
    214.Majed A Z,Ramesh P,Rudra,et al.Experimental investigation of runoff reduction and sediment removal by vegetated filter strips.Hydrological Processes,2004,18:2029-2037.
    215.Mandelbrot B B.The Fractal Geometry of Nature.W.H.Freeman,San Francisco,1983.
    216.Mcbride J,Horton R.An empirical function to describe measured water distributions from horizontal infiltration experiments.Water Resource Research,1985,21:1539-1544.
    217.McGEE E A,et al.Water storage efficiency in no-till dry-land cropping system.Journal of Soil and Water Conservation,1997,52(3):131-136.
    218.Mclntyre B D,Riha S J,Ong C K.Competition for water in a hedge-intercrop system.Field Crops Research,1997,52:151-160.
    219.Millington R J,Quirk J P.Permeability of porous soils.Transactions of tbe Faraday Society,1961,57:1200-1206.
    220.Minasny B,McBratney A B,Bristow K L.Comparison of different approaches to the development of pedotransfer functions for water-retention curves.Geoderma,1999,93:225-253.
    221.Mingan Shao,Robert Horton.Intergral method for estimating soil hydraulic properties.Soil Science Society of America Journal,1998,62(3):585-592.
    222.Mualem Y,Dagan G.Hydraulic conductivity of soils:unified approach to the statistical models.Soil Science Society of America Journal,1978,42:392-395.
    223.Mualem Y.A new model for predicting the hydraulic conductivity of unsaturated porous media.Water Resource Research,1976,12:593-622.
    224.Mualem Y.Hydraulic conductivity of unsaturated porous media:generalized macroscopic approach.Water Resource Research,1978,14:325-334.
    225.Nair P K R.An introduction to agroforestry.Netherlands:Kluwer Academic Publishers,1993:13-17.
    226.Narain P,Singh R K,Sindhwal N S,et al.Agroforestry for soil and water conservation in western Himalayan valley region of India:Ⅰ.Runof,soil and nutrient loss.Agroforestry Systems,1998,39(2):175-189.
    227.Nimmo J R.Modeling structural influences on soil water retention.Soil Science Society of America Journal,1997,61:712-719.
    228.Pachepsky Y A,Shcherbakov R A,Korsunskaya L P.Scaling of soil water retention using a fractal model.Soil Science,1995,159:99-104.
    229.Paydar Z,Cresswell H P.Water retention in Australian soils:Ⅱ.Prediction using particle size,bulk density and other properties.Australian Journal of Soil Research,1996,34:679-693.
    230.Perfect E,McLaughlin N B,Kay B D,et al.An improved fraetal equation for the soil water retention curve.Water Resources Research,1996,32:281-287.
    231.Perfect E.Estimating soil mass fractal dimensions from water retention curves.Geoderma,1999,88:221-231.
    232.Perrier E,Rieu M,Sposito G,et al.Models of water retention curve for soils with a fractal pore size distribution.Water Resources Research,1996,32:3025-3031.
    233.Pfeifer P,Avnir D.Chemistry in non integer dimensions between two and three:Ⅰ.Fractal theory of heterogeneous surfaces.Journal of Chemical Physics,1983,79:3558-3564.
    234.Philip J R.Evaporation,moisture and heat fields in the soil.Journal of Meteorol,1957d,14:354-366.
    235.Philip J R.The theory of infiltration:2.the profile at infinity.Soil Science,1957a,83:435-448.
    236.Philip J R.The theory of infiltration:3.Moisture profiles and relation to experiment.Soil Science,1957b,84:163-178.
    237.Philip J R.The theory of infiltration:4.Sorptivity and algebraic infiltration equations.Soil Sci.1957c,84:257-264.
    238.Philip J R.The theory of infiltration:5.the influence of the initial moisture content.Soil Science,1957,84:329-339.
    239.Reynolds W D,Elick D E.A laboratory and numerical assessment of the Geulph permeameter method.Soil Science,1987,144(4):282-299.
    240.Reynolds W D,Elick D E.A method for simultaneous in situ measurement in the vadose zone of the field- saturated hydraulic conductivity,sorptivity and the conductivity-pressure head relationship.Soil Science,1986,143(4):84-95.
    241.Reynolds W D,Elick D E.A reexamination of the constant head well permeameter method for measuring saturated hydraulic conductivity above the water table.Soil Science,1983,136(4): 250-268.
    242. Reynolds W D, Elick D E. In situ measurement of field-saturated hydraulic conductivity. Sorptivity and the a-paramenter using the Guelph permeameter. Soil Science, 1985, 140(4):292-302.
    
    243. Richards L A. Capillary conduction through porous mediums. Physics 1, 1931, 313-318.
    
    244. Rieu M, Sposito G. Fractal fragmentation soil porosity, and soil water properties. 1. Theory. Soil Science Society of America Journal, 1991, 55:1231-1238.
    
    245. Rose C W, Stern W R, Drummond J E. Determination of hydraulic conductivity as a function of depth and water content for soil in situ. Aust. Journal of Soil Research, 1965, 3:1-9.
    
    246. Roseeranee R C, Rogers S, Tofinga M. Effect of alley cropping Calliandra ealothyrsus and Glirieidia Sepium hedges on weed growth, soil properties and taro yield in western Samoa, Agroforestry Systems, 1992,19:57-66.
    
    247. Rouault Y, Assouiine S. A probabilistic approach towards modeling the relationship between particle and pore size distributions:The multicomponent sphere park case, Powder Technology, in press, 1998.
    
    248. Rubin J. Theory of rainfall uptake by soil initially driver than their field capacity and its applications. Water Resource Research, 1966, 2(4):739-749.
    
    249. Russo D. Determining soil hydrraulic properties by parameter estimation: On the selection of a model for the hydraulic properties. Water Resource Research, 1988, 24(3):453-459.
    
    250. Saxton K E, Rawls W J, Romberger J S, et al. Estimation generalized soil water characteristics from texture. Soil Science Society of America Journal, 1986, 50(4): 1031-1036.
    
    251. Schaap M G, Leij F J, van Genuchten M Th. Neural network analysis for hierarchical prediction of soil water retention and saturated hydraulic conductivity. Soil Science Society of Americal Journal, 1998, 62:847-855.
    
    252. Schaap M G, Leij F J. Database-related accuracy and uncertainty of pedotransfer functions. Soil Science, 1998, 163:765-779.
    
    253. Schaap M G, Leij F J. Improved prediction of unsaturated hydraulic conductivity with the Mualem-Van Genuchten Model. Soil Science Society of America Journal, 2000, 64:843-851.
    
    254. Scotter D R, B E Clother, E R Harper. Measuring saturated hydraulic conductivity and sorptivity using twin rings. Australian Journal of Soil Research, 1982, 20(4):295-304.
    
    255. Seobi T, Anderson S H, Udawatta R P, et al. Influence of grass and agroforestry buffer strips on soil hydraulic properties for an albaqualf. Soil Science Society America. Journal, 2005, 69:893-901.
    
    256. Shao Mingan, Horton R. Integral method for estimating soil hydraulic properties. Soil Science Society America. Journal, 1998, 62(3):585-592.
    
    257. Shao Mingan, Horton R. Soil water diffusivity determination by general similarity theory. Soil Science, 1996, 161:727-734.
    
    258. Smith E. Modeling infiltration for multistorm runoff events. Water Resource Research, 1993. 29(1):133-144.
    
    259. Smith R E, Parlange J Y. A parameter-efficient hydrologic infiltration model. Water Resource Research, 1978, 14(3):533-538.
    
    260. Smith R E, The infiltration envelope Results from a theoretical infiltrometer, Journal of Hydrology, 1972, 17(1): 1-21.
    
    261.Smunek J, Hopmans J W, Nielsen D R, et al. Horizonal infiltration revisitd using parameter estimation. Soil Science, 2000, 165(9):708-717.
    
    262. Tanaka D L, et al. Soil water storage and precipitation storage of conservation tillage system. Journal of Soil and Water Conservation, 1997, 52(5):363-367.
    
    263. Tani M. The properties of water-table rise produces by one-dimensional, vertical, unsaturated flow(in Japanese with English summary), J. Jpn. For. Soc., 1982,64,409-418.
    
    264. Tietje O, Tapkenhinrichs M. Evaluation of pedotransfer functions. Soil Science Society of Americal Journal, 1993, 57:1088-1095.
    
    265. Turcotte D L. Fractals and fragmentation. Journal of Geophysical Research. 1986, 91(B2):1921-1926
    
    266. Tyler S W, Wheatcraft S W. Application of fractal mathematics to soil water retention estimation. Soil Science Society of America Journal, 1989, 53:987-996.
    
    267. Tyler S W, Wheatcraft S W. Fractal processes in soil water retention. Water Resources Research, 1990,26:1047-1056.
    268.Tyler S W.Wheatcraft S W.Fractal scaling of soil particle-size distributions:analysis and limitations.Soil Science Society of America Journal,1992,56:362-369
    269.Van Dijk P M,Kwaad F J P M,Klapwijk M.Retention of water and sediment by grass strips.Hydrological Processes,1996,10:1069-1080.
    270.Van Genuchten M Th,Leij F J.On estimating the hydraulic properties of unsaturated soils.In:Van Genuchten M Th.et al.(ed.) Proc.Int.Worksh.on Indirect Methods of Estimating the Hydraulic properties of Unsaturated Soils.University of California,Riverside,California,1992.1-14.
    271.Van Genuchten M Th,Leij F J,Yates S R.The RETC code for quantifying the hydraulic functions of unsaturated soils.USEPA Report 600/2-91/065.U.S.Environmental Protection Agency,Ada,Oklahoma,1991.
    272.Van Genuchten M Th.A closed-form equation for predicting the hydraulic conductivity of unsaturated soils.Soil Science Society of America Journal,1980,44:892-898.
    273.Vereecken H,Maes J,Feyen J,et al.Estimating the soil water moisture retention characteristic from texture,bulk density,and carbon content.Soil Science,1989,148:389-403.
    274.Vereecken H.Deviation and validation of pedotranfer functions for soil hydraulic properties.1992,473-488.In M TH Van Genuchten and F J Leiji,and L J Lund(ed).Proc Int Workshop on Indirect Methods for Estimating the Hydraulic properties of unsaturated soils.University of California Reverside,CA.
    275.Walsh P M,Barrett M E,Malina J F,et al.Use of Vegetative Controls for Treatment of Highway Runoff.Center for Research in Water Resources,The University of Texas at Austin:Austin,TX.1997.
    276.Wang Quanjiu,Horton R,Shao Mingan.Horizontal infiltration method for determining Brooks-Corey model parameters.Soil Science Society of America Journal,2002,66(6):1733-1739.
    277.Wang Quanjiu,Shao Mingan,Horton R.A simple method for estimating water diffusivity of unsaturated soils.Soil Science Society of America Journal,2004,68(3):713-718.
    278.Watson K K.An instaneous profile method for determining the hydraulic conductivity of unsaturated porous materials.Water Resource Research,1966,2:709-715.
    279.Willmott C J,Ackleson S G,Davis R E,et al.Statistics for the evaluation and comparison of models.Journal of Geophysical Research,1985,90:8995-9005.
    280.Wind G P.Field experiment concerning capillary rise of moisture in heavy clay soil.Soil.Netherlands Journal of Agricultural Science,1955,3:60-69.
    281.Wooding R A.Steady infiltration from large shallow circular pond.Water Resource Research,1968,4:1259-1273.
    282.Wosten J H M,Pachepsky Y A,Pawls W J.Pedotransfer functions:bridging the gap between available basic soil data and missing soil hydraulic characteristics.Journal of Hydrology,2001,251:123-150.
    283.Young I M,Crawford J W,Rappoldt C.New methods and models for characterizing structural heterogeneity of soil.Soil and Tillage Research,2001,61:33-45
    284.Yu-Si Fox.One-dimensional infiltration into layered soils.Journal of Irrigation and Drainage,1970,43:121-129.
    285.Yuster S T.Theoretical considerations of multiphases flow in idealized capillary systems.Proc.3rd World Pet Congr.1951,2:437-455.
    286.Zeiliguer A M,Pachepsky YA,Pawls WJ.Estimation of water retention of sandy soils using the additivity hypothesis.Soil Science,2000,165:373-383.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700