用户名: 密码: 验证码:
高纬度地区管道建设中的冻土工程地质问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多年冻土的工程地质特性及其相关的工程地质问题是当前油气管道工程建设中所面临的全球性工程难题。本文以正在规划的中俄原油管道工程为例,从我国高纬度多年冻土区管道工程建设可能遇到的工程地质问题出发,在总结中国高纬度地区多年冻土的主要特征和分布规律的基础上,结合研究区铁道、公路等线状工程建设实践,阐述了与多年冻土有关的工程地质问题及其形成机理;对多年冻土的工程地质特性进行了系统测试和统计分析;结合中俄原油管道规划,对管道沿线多年冻土的工程地质条件进行了综合评价,具有重要的理论和实际意义。
     分析研究表明,研究区内多年冻土的空间分布与纬度、海拔、微地貌和地热交换条件等因素有密切的关系。总体上,多年冻土呈不连续分布,自北向南由大片岛状多年冻土区逐渐过渡为零星岛状多年冻土区。由于全球气候变暖,多年冻土的退化趋势比较明显,从研究区多年冻土的退化表现来看,北部多年冻土退化主要表现为量变过程,而南部质变过程表现突出。
     野外地质调查表明,中俄原油管道工程沿线途经的河漫滩、阶地附近,多年冻土类型以多冰—富冰—饱冰冻土为主,在沼泽地段分布有含土冰层。本文根据大量实验数据,系统阐述了研究区多年冻土的工程地质特性,包括基本物理指标、热物理指标、力学性质和融化压缩性质,在此基础上统计分析了冻土的强度与负温度、岩性、含水量和外力作用时间等因素之间的相关性。
     冻土与管道间相互作用的模拟结果表明,冬季埋地管道会造成土壤温度降低,容易形成对管道的上抬力;夏季埋地管道易导致冻土融化;冻土的冻胀和融沉均能使管道产生弯曲变形。通过对冻土与基础间的相互作用过程分析认为,建(构)筑物的恒载不能克服冻胀力是产生基础冻胀变形破坏的主导因素,冻土融化时压缩系数增大是正融土产生融沉的根本原因。
     在工程实践中,注重多年冻土区工程经验和测试数据的积累是十分必要的。本文获得的中俄原油管道工程沿线多年冻土工程特性的基础数据及统计分析成果,对于今后高纬度多年冻土区冻土工程地质条件的综合评价以及冻土工程地质问题的解决具有较高的实用性和推广价值。
The engineering geological character of permafrost and its coherent problems are the global difficult engineering problems which are suffered during the oil and gas pipeline construction. Therefore, this study takes the Russia-China oil pipeline project being planed now for example, starting from the engineering geological problems which might be met in the pipeline construction in the permafrost region of nigh latitude in China, on the basis of the generalization of the main character and distribution regulation of the permafrost region of high latitudes in China, and associated with the linear engineering project construction of railway and road, the essay explains some engineering geological problems of perma frost and its forming mechanics. The study makes testing systematically and makes statistic analysis or the engineering geological character of permafrost, and the essay also makes synthesis appraisal of the engineering geology condition of permafrost along the Russian-China Oil Pipelin Project, which is beneficial with high theoretical and practical significance.
     The analysis and research indicate that the permafrost distribution has close relation with the factors of latitude, elevation, tiny physiognomy, terrestrial heat and so on. On the whole, the distribution of permafrost is not continuous, which transfers from the north of large island area permafrost distributing to the south of sporadic area permafrost distributing. Owing to the globe getting warmer, the degradation trend of permafrost is apparent. According to the permafrost degradation of the research, the degradation in the north mainly represents a quantitative change, while in the south it represents a qualitative change.
     The field geological research indicates that the permafrost type is mainly of much ice- more ice - most ice, and there are ice layers containing soil distributing in the swampland area. This essay systemically expatiates the engineering geological character of permafrost in study area based on large quantity of experiment data, which include basic physical index, thermo-physical index, dynamics character, as well as the character of melt and compression. The study also statistically analyses the correlation relation among the factors of intensity and negative temperature of permafrost, lithology, water content, and the external force time.
     The simulating result of the interactivity between the frost and the pipeline indicates that the buried pipes can lower the soil temperature and form upward forces to the pipeline in winter, while in summer the buried pipes will cause the frozen soil melt, both the frost heave and the thaw collapse can make the pipeline distorted and bent. By analyzing the interactivity between the frost and basic foundation, the permanent load of the building which can not overcome the frost-heave force is the main cause of leading to foundation frost heave and damage, and the magnification of the compression coefficient during the frozen soil melting is the ultimate cause which leads the frozen soil thaw collapse.
     It's necessary to accumulate the engineering experience and experimental data of the perma frost region during the engineering practice. The basic testing data and the statistic analysis of the perma frost character obtained in this study along the Russia-China crude oil pipeline have high practicability and popularizing value for the frozen soil engineering geological synthesis appraisal of high latitude permafrost region and the solution of the frozen soil engineering geological problems.
引文
[1] 程国栋,何平.多年冻土地区线性工程建设[J].冰川冻土,2001,23(3):213~217.
    [2] 梁翕章,唐智圆.世界著名管道工程[M].北京:石油工业出版社.2002.
    [3] 铁道第三勘察设计院.冻土工程[M].北京:中国铁道出版社.2002.
    [4] 周幼吾等.中国冻土[M].北京:科学出版社.2000.
    [5] 《工程地质手册》编写委员会.工程地质手册(第三版)[M].北京:中国建筑工业出版社.科学出版社.1994.
    [6] 陈肖柏,刘建坤,刘鸿绪,等.土的冻结作用与地基[M].北京:科学出版社.2006.
    [7] 中华人民共和国行业标准.铁路特殊路基设计规范[M].J158-2002.
    [8] 中华人民共和国行业标准.冻土地区建筑地基基础设计规范[M].JGJ118-98.
    [9] 中华人民共和国国家标准.冻土工程地质勘察规范[M].GB50324-2001.
    [10] 中华人民共和国国家标准.土工试验方法标准[M].GB/T50123-1999.
    [11] 周虎利.多年冻土地区铁路工程地质选线[J].铁道工程学报,2001,72(4):112~114.
    [12] 程国栋,赵林.青藏高原开发中的冻土问题[J].第四纪研究,2000,20(6).
    [13] 李治平.多年冻土地区道路冻害及其防治对策[J].东北公路,2003,26(4).
    [14] 孟凡松等.黑北公路冻土路基设计原则及病害特征[J].冰川冻土,2001,23(3).
    [15] 穆红霞等.优化大兴安岭冻土生态环境的对策[J].内蒙古林业调查设计.2004(2).
    [16] 王思敬,黄鼎成.中国工程地质世纪成就[M].北京:地质出版社2004.
    [17] 柳金海主编.不良条件管道工程设计与施工手册[M].北京:中国物价出版社.1992.
    [18] 黑龙江省地质矿产局.黑龙江省区域地质志[M].北京:地质出版社.1993.
    [19] 内蒙古自治区地质矿产局.内蒙古自治区区域地质志[M].北京:地质出版社.1991.
    [20] 金会军等.多年冻土区输油管道工程中的(差异性)融沉和冻胀问题[J].冰川冻土,2005,27(3):454~464.
    [21] 金会军,Max C. Brewer.阿拉斯加北极地区的工程设计和施工经验及教训[J].冰川冻土,2005,27(1):140~145.
    [22] 金会军,李述训,王绍令,等.气候变化对中国多年冻土和寒区环境的影响[J].地理学报,2000,55(2):161~173.
    [23] 金会军,于少鹏,等.大小兴安岭多年冻土退化及其趋势初步评估[J].冰川冻土2006,28(4):67~473.
    [24] 陈情来,张永双,等.多年冻土地区管道工程建设[J].油气储运.2007,26(1):55~99.
    [25] 陈情来,张永双,等.多年冻土地区长输管道地质选线[J].油气储运.2007,26(2):51~56.
    [26] 周幼吾,郭东信.我国多年冻土的主要特征[J].冰川冻土,1982,4(1):1~19.
    [27] 周幼吾等.我国东北部多年冻土温度和分布与气候变暖[J].冰川冻土,1996,8(增刊):140~146.
    [28] 郭东信,王绍令,鲁国威,等.东北大小兴安岭多年冻土分区[J].冰川冻土,1981,3(3):1~9.
    [29] 郭东信,李作福.我国东北地区晚更新世以来多年冻土历史演变及其形成时代[J].冰JlI冻土,1981,3(4):1~6.
    [30] 郭东信,黄以职.大兴安岭北部霍拉盆地地质构造在多年冻土形成中的作用[J].冰川冻土,1989,11(3):216~222.
    [31] 戴竞波.大兴安岭北部多年冻土温度特征[J].冰川冻土,1982,4(3):53~63.
    [32] 东北多年冻土研究协作组.中国东北部多年冻土分布的基本特征[C]//第二届全国多年冻土学术会议论文选集.兰州:甘肃省人民出版社,1983:36~42.
    [33] 鲁国威,翁炳林,郭东信.中国东北部多年冻土的地理南界[J].冰川冻土,1993,15(2):214~218.
    [34] 彭海云,程国栋.中国东北大兴安岭地区冰楔及其古气候意义[C]//第四届全国冰川冻土学术会议论文选集(多年冻土学).北京:科学出版社,1990:9~16.
    [35] 童伯良.中国东北部的冰楔[J].冰川冻土,1993,15(1):41~46.
    [36] 顾钟炜,周幼吾.大兴安岭阿木尔地区多年冻土的变化[M].北京:科学出版社,1994:156~161.
    [37] 印艳华.大兴安岭森林开发对多年冻土季节融化层的影响[C]//第五届全国冰川冻土大会论文集(下册).兰州:甘肃文化出版社,1996:1087~1091.
    [38] 王春鹤,张宝林,刘福涛,等.中国东北地区多年冻土退化标志和现象[C]//第五届全国冰川冻土学术大会论文集 (下册).兰州:甘肃文化出版社,1996:1063~1070.
    [39] 王彪,盛煜,刘建平.小兴安岭黑大公路沿线多年冻土分布及退化状态.冰川冻土,2001,23(3):302~305.
    [40] 郭东信.中国的多年冻土[M].兰州:甘肃教育出版社,1990:84~95.
    [41] 李英武.气温,地温与工程建筑[J].冰川冻土,2000,22(5):61~65.
    [42] 铁道部第三勘察设计院.铁路多年冻土工程地质[M].北京:铁道出版社,1978:55~70.
    [43] 元海义.正在退化中的大兴安岭多年冻土[C]//第三届全国多年冻土学术会议论文选集.北京:科学出版社,1989:54~57.
    [44] 秦大河.中国西部环境特征及其演变:中国西部环境演变评估.北京:科学出版社,2002:29~66.
    [45] 潘华盛,张桂花,徐南平,等.气候变暖对黑龙江省农业和生态环境影响及作物结构调整对策[J].黑龙江水文学报,2004,31(4):6-9.
    [46] 苏联科学院西伯利亚分院多年冻土研究所著(郭东信等译).普通多年冻土学[M].北京:科学出版社,1990:130~150.
    [47] 郑平,马贵阳.冻土区埋地输油管道温度场数值模拟研究[J].油气储运.2006,25(8):25~29.
    [48] 李洪升,刘增利,粱承姬.冻土水热力耦合作用的数学模型及数值模拟[J].力学学报.2002,33(5):622~627.
    [49] 李南生,胡巍纬,吴青柏,唐明春.冻土温度场计算中热间断面处理的理论分析[J].同济大学学报(自然科学版).2006,34(8):1011~1015.
    [50] 毛雪松,李宁,王秉纲.多年冻土路基水热力耦合理论模型及数值模拟[J].长安大学学报.2006,26(4):16~18.
    [51] 毛雪松,王秉纲,胡长顺.多年冻土路基水分迁移热力学性能分析[J].路基工程.2006,127(4):1~4.
    [52] 李南生,李洪升,丁德文.浅埋集输油管线拟稳态温度场及热工计算[J].冰川冻土,1997,19(1)65~72.
    [53] 彭功生,许强.饱水冻土水热力耦合分析[J].安徽建筑工业学院学报(自然科学版).2005,13(2):46~50.
    [54] 赵建军,董金梅,王沛,周长青,等.正冻土中的水热耦合模型[J].天津城市建设学院学报,2001,7(1);47~52.
    [55] 汪仁和,李栋伟.正冻土中水热耦合数学模型及有限元数值模拟[J].煤炭学报.2006,31(6):757~760.
    [56] 温智,盛煜,马巍,刘永智.保温法保护多年冻土的长期效果分析[J],冰川冻土.2006,28(5):761~765.
    [57] 齐吉琳,程国栋,P.A.Vermeer.冻融作用对土工程性质影响的研究现状[J].地球科学进展.2005,20(8)::887~893.
    [58] 袁中立,冯士明,汤彬.冻土地带管道敷设方法及保温技术[J].石油工程建设.2004,36(4):5~8.
    [59] 原忠喜.大兴安岭北部多年冻土地区路基沉陷研究[J].冰川冻土.1999,21(2):156~158.
    [60] 姬杨蓓蓓,马骉,王秉纲.冻土地区路基融沉变形对沥青路面结构的影响[J].中国公路学报.2006,19(5)1~5.
    [61] 田阿夫.冻土工程研究在青藏公路整治工程中的应用[J].公路.2002,4(4):30~31.
    [62] 章金钊,李祝龙,武民.冻土路基稳定性主要影响因素探讨[J].公路2000,2(2):17~20.
    [63] 王铁行,胡长顺,李宁.冻土路基应力变形数值模型[J].岩土工程学报.2002,24(2):193~197.
    [64] 金会军,喻文兵,高晓飞,陈友昌.冻土区输油管道工程基础稳定性研究[J].油气储运.2006,25(2):14~19.
    [65] 曹元平.对多年冻土地基处理措施的认识[J].冰川冻土.2003,25(增)1:43~48.
    [66] 刘红军,程显春,马介峰.多年冻土的力学性质[J]东北林业大学学报.2005,33(2):102~104.
    [67] 李治平,多年冻土地区道路病害及其防治对策[J],东北公路.2003,26(4):69~73.
    [68] 张宏伟,杨雪梅.多年冻土地区建筑地基与基础设计探讨[J].低温建筑技术.2003,94(4):53~56.
    [69] 王铁行,窦明健.多年冻土地区路堤热差异分析[J].煤田地质与勘探.2004,32(1):45~48.
    [70] 刘戈,章金钊,吴青柏.多年冻土地区路基变形特征及影响因素[J].公路2006(11):23~27.
    [71] 胡建华,汪稔.多年冻土区路基—地质体双向冻结湿热耦合的数学模型[J].土工基础.2004,18(1):30~33.
    [72] 汪双杰,黄晓明,侯曙光.多年冻土区路基路面变形及应力的数值分析[J].冰川冻土.2006,28(2):217~222.
    [73] 曹东伟,胡长顺.多年冻土区路基融沉变形的附加应力分析[J],重庆交通学院学报.2001,20(3):57~61.
    [74] 韩皓,蔡力,候芸,韩斌.高寒地区岛状冻土软土地基处理研究[J].内蒙古公路与运输.2000,67(3):7~10.
    [75] 韩皓,侯芸,赵文祥,李文章.高寒地区土的物理性质对冻胀性的影响及软土冻土地基处理的原则和方法研究[J].内蒙古公路与运输2001,70(4):11~15.
    [76] 马巍,常小晓.加载卸载对人工冻结土强度与变形的影响[J].岩土工程学报.2001,23(5):563~566.
    [77] 周国庆.间歇冻结抑制人工冻土冻胀机理分析[J].中国矿业大学学报.1999,28(5):423~416.
    [78] 王洪彬,李军,李燕.浅谈冻土地段对管道敷设的影响及防治措施[J].天然气与石油.2006,24(2):9~12.
    [79] 李东庆,孙志忠,赖远明,何平,房建宏.青藏高原东部高温多年冻土区路基热稳定性模拟分析[J].岩土工程学报.2005,27(12):1376~1379
    [80] 汪双杰,霍明,周文锦.青藏公路多年冻土路基病害[J].公路.2004(5):22~26.
    [81] 牛富俊,张建明,张钊.青藏铁路北麓河试验段冻土工程地质特征及评价[J].冰川冻土.2002,24(3):266~269.
    [82] 周志东,周春清,曾小东.青藏铁路多年冻土工程稳定性综合分类及工程意义研究[J].四川水力发电.2004,23(增刊):2~5.
    [83] 孙增奎,王连俊,魏庆朝,闵冬丽.青藏铁路多年冻土区路基温度场的模拟与预测[J].北方交通大学学报.2004,28(1):56~59.
    [84] 盛煜,温智,马巍,吴基春.青藏铁路多年冻土区热棒路基温度场三维非线性分析[J].铁道学报.2006,28(1):125~129.
    [85] 高钦,刘争平,张驰.青藏铁路格拉段多年冻土上限的确定方法[J].岩土工程技术.2002(6):313~319.
    [86] 马辉,刘建坤,张弥,郭大华.青藏铁路建设中的冻土工程问题及其应对措施[J].土木工程学报.2006,39(2):88~93.
    [87] 潘卫东,余绍水,贾海锋,刘登科.青藏铁路沿线多年冻土区地温场变化规律[J].冰川冻土.2002,24(6):774~779.
    [88] 崔慧.热油管道与土壤环境间不稳定传热的耦合研究[J].油气储运.2005,24(7):18~22.
    [89] 张钊,倪平.试论青藏高原多年冻土与进藏线路的选择[J].铁道工程学报.1998,57(3):1~6.
    [90] 孙广,友试论.沼泽与冻土的共生机理[J].冰川冻土.2000,22(4):309~311.
    [91] 孙增奎,王美芝,王连俊.青藏铁路多年冻土区路堤变形的数值模拟与预测[J].铁道标准设计,2004,11(2):8~11.
    [92] 孙增奎,王连俊等.青藏铁路多年冻土区路基温度场的模拟与预测[J].北方交通大学学报.2004,28(1):55~59.
    [93] 张静,吴明.用有限元法计算埋地热油管道土壤温度场[J].辽宁石油化工大学学报.2004,24(2):38~41.
    [94] 王春鹤,张宝林,刘福寿.大小兴安岭多年冻土退化规律及利弊的初步分析[J],冰川冻土,1996,18(5):176~179.
    [95] 伊承贵.既有东北铁路多年冻土区路基病害整治的试验研究[J].中国铁路.2005(10):54~59.
    [96] 袁中立.冻土地带管道敷设方法及保温技术[J].石油工程建设.2004,30(6):6~10.
    [97] 李宁等.冻土力学的研究进展[J].力学进展.2001,31(1):95~101.
    [98] 李洪升等.冻土水热力学耦合作用的数学模型及数值模拟[J].力学进展.2001,33(5):621~629.
    [99] 刘红军.多年冻土的力学性质[J].东北林业大学学报.2005,33(2):101~103.
    [100] 李治平.多年冻土地区道路病害及其防治对策[J].东北公路.2003,26(4)69~73.
    [101] 王铁行.多年冻土地区路基冻胀变形分析[J].中国公路学报.2005,18(2):1~5.
    [102] 刘奉喜.多年冻土地区热管冷却路基数值分析[J].土木工程学报.2004,37(9):41~45.
    [103] 蒲家宁.军用输油管线[M].北京:解放军出版社.2003,126~143.
    [104] 姚志祥.格拉管线的冰堵排除实践及预防措施[J].管道技术与设备.2003,53(1):24~27,
    [105] 姚志祥.格拉管线改造工程顺利竣工[J].军用油料.2004,120(6):65.
    [106] 孟凡松.黑北公路冻土路基设计原则及病害特征[J].冰川冻土.2001,23(3):307~311.
    [107] 王绍令,米海珍.青藏公路沿线铺筑沥青路面后路基下多年冻土的变化[J].冰川冻土.1993,15(4):566~574.
    [108] 吴青柏,童长江.气候转暖对青藏公路的稳定性影响[J].冰川冻土.1995,17(4):350~355.
    [109] 吴青柏,李新,李文君.青藏公路沿线冻土区域分布计算机模拟与制图[J].冰川冻土.2000,22(4):323~326.
    [110] 孙广友.试论沼泽与冻土的共生机理—以中国大小兴安岭地区为例[J].冰川冻土.2000,22(4):309~316.
    [111] 原喜忠.大兴安岭北部多年冻土地区路基沉陷研究[J].冰川冻土.1999,21(2):155~158.
    [112] 章金钊,武民,李祝龙.高原多年冻土地区修筑技术研究的回顾与展望[J].冰川冻土,1999,21(2):187~191.
    [113] Brewer M C. The thermal regime of an arctic lake[J]. American Geophysical Union, Transactions,1958,39: 278~294.
    [114] Ferrians O J J r., Kuchadoorian R, Greene G W. Permaf rostand related engineering problems in Alaska [R]. USGPO, Washington, D. C.: U. S. Geological Survey Professional Paper,1969,678: 1~37.
    [115] Brewer M C. Some result s of geot hermal investigations of permafrost in nort hern Alaska [J]. American Geophysical Union, Transactions,1958,39: 19~26.
    [116] Lachenbruch A H, Brewer M C, Greene G W, et al. Temperatures in permafrost [A]. Temperature: It s Measurement and Control in Science and Indust ry, Vol. 3[J]. New York: Reinhold Publishing Co,1962. 791~803.
    [117] Wohlfort h C. The Whale and t he Supercomputer, on the Northern Front of Climatic Change [M]. New York: NorthPoint Press,2004. 1-321.
    
    [118] Brewer M C. Permafrost,it s impact on development [A] .Man's Impact on Arctic and Subarctic Environment s[C] . Arctic Institute of North America,1974. 19-27.
    
    [119] Jin H J, Brewer M C. Highway road stability influenced by warm permaf rost and seasonal frost action [J]. Journal of Cold Regions Engineering,American Society of Civil Engineers (accepted),2004.
    
    [120] Rice E. Building in t he Nort h[R]. Alaska Science and Technology Foundation,Anchorage,Alaska,1995. 1-93.
    
    [121]Lachenbruch A H. Some estimates of the thermal effect s of a heated pipeline in permaf rost [R] . Washington.D. C. : U.S. Geological Survey Circular 632,USGPO,1970. 1-23.
    
    [122]Lachenbruch A H,Brewer M C. Dissipation of the temperature effect of drilling a well in Arctic Alaska[R] . Washington ,D. C.: U. S. Geological Survey Bulletin 10832C,USGPO ,1959. 73-109.
    
    [123]Lachenbruch A H : Some Estimates of the Thermal Effect s of a Heated Pipeline in Permaf rost,Geological Survey Circular 632 ,Washington ,DC ,1970.
    
    [124]Alyeska Pipeline Service Company : Summary Project Description of the Trans Alaska Pipeline System ,August ,1971. [125]Johnson T C ,McRobert s E C and Nixon J F : Design Implications of Subsoil Thawing,In : Frost Action and It s Cont -rol ,Technical Council on Cold Regions Engineering Monograph .Edited by R L Berg and E A Wright ,ASCE .New York ,1984.8, Speer T L ,Wat son G H and Rowley R K: Effect s of Ground ice Variability and Resulting Thaw Settlementson Buried Warmoil Pipelines ,In :Proceedings ,North American Cont ribu2tion,2nd International Conference on Permaf rost,Yakut sk ,1973.
    
    [126]AGRAEarth and Environmental Limited & Nixon Ltd : Monograph on Norman Wells Pipeline Geotechnical Design andPerformance.Final Report to Department of Nat uralResources,March 1999,Geological Survey of Canada Open Files 3773.
    
    [127]Burgess M M: Analysis of the Pipe and Ditch Thermal Regime ,Norman Wells Pipeline,In Proceedings of the 11st International Conference on Off shore Mechanics and Arctic Engineering ,Calgary Book No ,H0744B ,V(A) ,1992.
    
    [128]Burgess M M and Lawrence D E: Thaw Settlement in Permaf rost Soils : 12 Years of Observations on t he Norman Wells Pipeline Right2of2way,In Proceedings of the 50th Canadian Geotechnical Society Conference ,Ottawa ,1997.
    
    [129]Burgess M M & Tarnocai C: Peatlands in the Discontinuous Permaf rost Zone Long the Norman Wells Pipeline .Canadajn Proceedings of the International Symposium on Physics ,Chemistry and Ecology of Seasonally Frozen Soils,Fairbanks ,Alaska,US Army Cold Regions Research and Engineering Laboratory ,CRREL Special Report 97- 10,1997.
    
    [130]Nixon J F and Burgess M M: Norman Wells Pipeline Settlement and Uplift Movement s,Canadian Geotechnical Journal ,1999 (36).
    
    [131]Lachenbruch A H. Some Estimates of the Thermal Effect s of a Heated Pipeline in Permafrost [J] . Washington.D. C. ,Geological Survey Circular, 1970,632 : 1-23.
    
    [132] Alyeska Pipeline Service Company. Summary : Project description of the Trans-Alaska Pipeline System [ R] . August 1971. 1-64.
    
    [133]Johnson T C,McRobert s E C,Nixon J F. Design implications of subsoil t hawing [A] . Frost Action and It s Cont rol ,Technical Council on Cold Regions Engineering Monograph ,Edited by R. L. Berg and E. A. Wright [C] . ASCE,NewYork,1984. 45-103.
    
    [134] Speer T L,Wat son G H,R K Rowley. Effect s of groundice Variability and resulting t haw settlement s on buried warm oil pipelines [C].In: Proceedings,Nort h American Cont ribution,2nd International Conference on Permaf rost,Yakut sk ,1973. 746-752.
    
    [135] The British Pet roleum Co. Ltd. Transport of crude oil.gas and product s by pipeline,ChapterlO [A]. The Our Industry Petroleum[C]. London and New York,1976. 179-196.
    
    [136] Canol Pipeline [Z].http://www. The Canadian encyclopedia.com/ index, cfm PgNm TCE &Params A1ARTJ0001355.
    
    [137] Pipeline Permafrost Interaction : Norman Wells Pipeline Research [Z]. http://sts.gsc.nrcan.gc.ca/ permaf rost/ pipeline. Html
    [138] Day N B,Clark J A,Kienow K W, et al . Pipeline route selection for rural and crosscountry pipelines [R] . ASCE,Reston,VA, 1998,1 -94.
    
    [139] The Trans Alaska Oil Pipeline [ Z]. http :// cems. alf red. edustudent s98/ pickarnc/ Pipelinel. htm.
    
    [140] Rice E. Building in t he Nort h [ R]. Alaska Science and Technology Foundation,Anchorage,199. 58.
    
    [141] Lachenbruch A H,Brewer M C. Dissipation of t he temperature effect of drilling a well in Arctic Alaska [R] . Reston ,VA,USGS Bulletin,No. B10832C,1959. 46-58.
    
    [142] Williams P J,Smith M W. Studies in Polar Research,the Frozen Eart h,Fundamentals of Geocryology [M] . Cam bridge : Cambridge University Press,1994. 149-173.
    
    [143] Waters E. Heat pipes to stabilize piles on elevated Alaska Pipeline sections [J]. Pipeline Oil and Gas Journal,1974 ,(1): 46-58.
    
    [144]NormanWells[Z].http://www.pacificisl and travel.com/north_america/canada/about_destin/northwestterritory/
    
    [145] AGRA Eart h and Environmental Limited & Nixon Ltd. Monograph on Norman Wells pipeline geotechnical design and performance [A]. Final Report to Department of Natural Resources,March 1999[C]. Geological Survey of Canada Open Files,1999. 3 773.
    
    [146] Burgess M M. Analysis of the pipe and ditch t hermal regime ,Norman Wells pipeline [A] . Proceedings of the 11th International Conference on Off shore Mechanics and Arctic Engineering[C] . Calgary Book,1992,No. H0744B,V (A) . 575-584.
    
    [147] Burgess M M,Lawrence D E. Thaw settlement in permafrost soils : 12 years of observations on t he Norman Wells pipeline right2of2way [A]. Proceedings of the 50th Canadian Geotechnical Society Conference[C]. Ottawa, 1997. 77-84.
    
    [148] Burgess M M,Tarnocai C. Peatlands in t he discontinuous permaf rost zone long t he Norman Wells pipeline,Canada [A]. Proceedings of t he International Symposium on Physics ,Chemistry and Ecology of Seasonally Frozen Soils [C] . Fairbanks,Alaska,USArmyCold Regions Research and Engineering Laboratory,CRREL Special Report, 1997,417-424.
    
    [149]Nixon J F,Burgess M M. Norman Wells Pipeline settlement and uplift movement s [J] . Canadian Geotechnical Journal ,1999,36:119-135.
    
    [150] Pilon J A,Burgess M M,J udge A S,et al. Norman Wells to Zama pipeline permaf rost terrain research and monitoring program: site establishment report [R]. Geological Survey ofCanada Open File 2044 ,1989.
    
    [151]Burgess M M,Smit h S L. Seventeen years of thaw penet ration and surface settlement observations in permaf rost terrain along the Norman wells pipeline,Nort hwest Territories ,Canada [A]. Proceedings of the 8th International Conference on Permafrost Vol. 1 [C]. Balkema Publishers,2003. 107-112.
    
    [152]Shearer J M,Macnab R F.Pelletier B K,et al. Submarine Pingos in t he Beaufort Sea [J]. Science, 1971,174 : 816-818.
    
    [153] Rooney J W, Vinson T S. Road and airfield development in the Subarctic and Arctic Alaska and Nort hwest Canada [M].Technical Council on Cold Regions Engineering Monograph ,Roads and Airfields in Cold Regions,ASCE,New York, 1996. 1-22.
    
    [154]Jin Huijun,Brewer M C. Experiences and lessons learned in the engineering design and const ruction in t he Alaska Arctic Nel son F E. (Un) frozen in time [J]. Science,2003,299 :1673-1675.
    
    [155]Nelson F E,Anisimov O A,Shiklomanoc N I. Subsidence risk f rom t hawing permaf rost [J] . Nature,2001,410 : 889-890.
    
    [156]Tong Changjiang.Wu Qingbai. The effect of climate warming on the Qinghai-Tibet Highway,China[J]. Cold regions Science and Technology ,2001,24 : 101-106.
    
    [157]Pilon J A,Burgess M M,Judge A S,et al. Norman Wells to Zama pipeline permafrost terrain research and monitoring program: site establishment report [R]. Geological Survey of Canada Open File 2044 ,1989.
    
    [158]Burgess M M. Analysis of the pipe and ditch thermal regime ,Norman Wells pipeline[A].Proceedings of the 11th International Conference on Off shore Mechanics and Arctic Engineering[C].Calgary Book,1992, H0744B,V(A).575 -584.
    
    [159] Burgess M,Tarnocai C. Peatlands in t he discontinuous permafrost zone long the Norman Wells pipeline,Canada[A] . Proceedings of t he International Symposium on Physics, Chemist ry and Ecology of Seasonally Frozen Soils [C]. Fair banksAlaska, US Army Cold Regions Research and Engineering Laboratory, CRREL Special Report,1997,97~10,417~424.
    [160] Nixon J F, Burgess M. Norman Wells Pipeline settlement and uplift movements[J]. Canadian Geotechnical Journal,1999,36:119~135.
    [161] Burgess M M, Smith S L. Seventeen years of thaw penetration and surface settlement observations in permafrost terrain along t he Norman wells pipeline, Northwest Territories, Canada [A]. Proceedings of t he 8th International Conference on Permafrost Vol.1 [C]. Balkema Publishers,2003,107~112.
    [162] William Peter J. Pipelines & Permafrost [M]. Carleton University Press, 1989.1~87.
    [163] Lannom D A, Ogbe DO. Transportation of Alaska north slope natural gas to market [A]. Proceedings of the Eighth International Conference on Cold Regions Engineering[C]. Fairbanks: 1996,226~237.
    [164] Nekrasov I A, Klimovskii I V. Permaf rost along t he Baikal~Amur Main (BAM) (Railway) ]M]. Yakut sk: Science Press(Siberia Branch), 1978.[H [M].1978]
    [165] Garagulia L S. Met hods for prediction of permafrost conditionsunder ant hropogenic influences [M]. Moscow:Moscow State University Press, 1985:20~29.[1985: 20~29.]
    [166] Shpoliaskaia N A. Permafrost in t he Outer Baikal Region[M]. Moscow: Science Press,1978. [[M].1978.]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700