用户名: 密码: 验证码:
拱桥吊杆损伤监测与健康诊断
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在拱桥结构中,吊杆是关键的受力构件,但由于长期处于恶劣的环境和疲劳受力状态,吊杆往往因为环境腐蚀和疲劳损伤以及锚头锚锭磨损而发生断裂,导致桥梁倒塌,并因此造成严重的交通事故和人员伤亡以及带来巨大的经济损失和极坏的社会影响。因此发展一套吊杆损伤监测和安全评定方法,具有重要意义。
     本文对吊杆内力、疲劳腐蚀、防腐砂浆失效等损伤进行了监测,提出了一套较为实用的监测、评定和腐蚀疲劳寿命预测方法,并通过实际工程检验了所提方法有效性和正确性。其主要研究内容如下:
     首先,针对吊杆内力识别的频率测试法都是基于弦振动理论、在实际应用中可能带来不可接受误差的弊端,提出了一种基于频率测试的吊杆内力识别的神经网络方法,给出了神经网络的具体设计步骤和优化方法。运用20多座桥梁的200多组数据对设计好的网络进行了训练,得到了吊杆内力预测较为精确的神经网络模型,并通过工程实例验证了本方法的正确性。
     其次,提出了拱桥吊杆应力变化的光纤光栅传感器监测方法。对现役拱桥提出对吊杆开窗直接布设裸光纤光栅传感器,并对它的波长与应变和温度的关系进行了理论分析,通过标定试验,得到传感器的应变与温度灵敏系数,提出并实施了现役拱桥吊杆光纤光栅传感器的布设工艺、布设后吊杆的修复方法以及光纤光栅传感器温度补偿方法;对新建拱桥吊杆提出用玻璃纤维-光纤光栅智能复合筋监测吊杆应力变化的方法,对复合筋在吊杆中布设工艺、根数、温度和应变灵敏系数以及如何与钢绞线协同变形进行了系统的研究;比较了不同直径纤维智能复合筋的极限应变,得出φ7mm的智能筋适用于监测吊杆应力变化;最后开发了取代式和粘结式两种智能吊杆,并通过张拉实验表明它们都能很好地监测张拉全过程的应力变化。
     第三,提出吊杆拉伸损伤的声发射监测方法,得到了新旧钢绞线、单根吊杆拉伸损伤的声发射特征。首先根据声发射特征参数图提出了断丝信号和非断丝信号的判断方法,运用声发射直线定位技术准确定出了断丝的位置;其次,由声发射累积能量相关图,动态分析了钢绞线损伤演化过程和规律,判断了断丝的根数和发生的时刻;最后,基于得到的声发射参数,导出了声发射参数同损伤变量的关系,建立了用声发射累积能量相对变化表示的钢绞线拉伸损伤演化方程,采用声发射特征参数时间序列分形理论研究了钢绞线的损伤演化规律,并提出将分形维数变化图中“最大-最小”变化模式作为为钢绞线临界损伤破坏的判断依据。
     第四,提出了吊杆防腐砂浆损伤全过程的声发射监测方法。首先,通过三点弯曲试验,得到了水泥砂浆梁破坏全过程力学特征和声发射特征,发现声发射计数的包罗曲线和荷载曲线具有良好的对应关系。然后,提出三种方法来预测它的损伤演化过程:1)速率过程分析方法,它的统计模型能有效预测声发射事件数和判断结构的状态;2)声发射信号幅值与声发射事件数关系图分析方法,声发射信号幅值包络线形状变化可以判断损伤的极限状态和损伤演化过程;3)分形算法,声发射特征参数在不同应力状态下时间序列分形维数变化规律能很好预测水泥砂浆临界破坏。最后,通过声发射机理分析,利用声发射能量的相对变化来定义水泥砂浆损伤因子,提出了用声发射参数表示水泥砂浆损伤演化方程的方法,并试验证明了损伤演化方程的正确性。
     第五,提出了基于监测数据的拱桥吊杆疲劳累积损伤寿命评估方法。对危桥和正常运营两种不同状态的拱桥提出采用不同的方法来获得它的疲劳应力谱,结合实际桥梁监测的数据,给出了拱桥吊杆腐蚀疲劳累积损伤计算公式、步骤及数据处理方法;并对实际桥梁的某一根吊杆腐蚀疲劳累积损伤进行了预测,比较了有无腐蚀钢绞线累积损伤寿命,其评估结果与实际结果基本吻合。
     最后,把上述监测和评定方法在四川峨边大渡河拱桥吊杆(系杆)得到了具体实施和应用,成功测试了各吊杆内力和监测了吊杆常见类型的损伤,基于光纤光栅监测数据正确地评价了吊杆安全状况,并根据测试结果分析了不同长度吊杆和同根吊杆不同钢绞线的受力特征;提出了基于监测数据识别车辆荷载大小的方法;利用布设在系杆中的玻璃纤维-光纤光栅智能复合筋成功地监测了系杆整个张拉过程,并指导了工程施工。
Suspenders are arguably the most crucial elements of the arch bridge structure. However, they are often suffered from damage due to corrosion, fatigue and anchor head abrasion, what is more, these damages will perhaps cause arch bridge collapse, engendered severe casualties and economic loss, brought great bad social effect. It is very important to develop a series of methods that are monitored and assessed suspender damage.
     In this dissertation, the suspender tension, fatigue corrosion and anticorrosion cement mortar damage were monitored, and a systemic monitoring and corrosion fatigue life evaluating method was introduced and developed. A field application was examined through these methods.The main contributions of the thesis are given as follows:
     Firstly, the measurement of suspender tension using vibration menthod is mostly considered that the suspender is idealized as taut strings.This idealization simplifies the analysis may introduce unacceptable errors in many applications. The neural network intelligent methodology was proposed to compute suspenders tension, and design steps and optimization methods of neural network were given. In order to get correct neural network predictive model, 200 data of 20 bridges was used to train the neural network. The applicability of the proposed intelligent methodology was verified by comprasion with the others method through a case study.
     Secondly, the application of fiber Bragg gratting (FBG) sensors monitored arch bridge suspender stress was inventigated. The bare FBG sensors were directly installed in in-service arch bridge suspender by opening window. Its wavelength shift due to strain and temperature change has been studied theoretically, and theirs sensitivity coefficient was gotten through calibrating experiment. Techniques of installation of FBG sensors, suspender windows repairing and sensors temperature compensation have been explored in-service arch bridge. A new kind of smart glass fiber reinforced polymer optical fiber Bragg gratting (GFRP-OFBG) composite bar was developed to monitor the new constructing arch bridge suspender strain. The GFRP-OFBG sensors installation technology, number, strain and temperature sensitivity coefficient and how to setup transmission line were systemically studied. The different diameter GFRP-OFBG sensor’s limit strain was compared. It was verified that diameter 7mm GFRP-OFBG sensor was suit for the application of suspender strain monitoring. Based on these methods and technology, adhere intelligent suspender and replaceable intelligent suspender have been exploited. It was found that the two intelligent suspenders could well monitor the whole tensile process.
     Thirdly, the suspender tensile damage was monitored using acoustic emission (AE) technique, and AE characteristic parameters of tensile damage were investigated by the new and old steel strand, single suspender tensile experiment. Multiparameter analysis method based on correlation figure was proposed to recognize steel strand break and localization. According to the correlation figure of AE accumulative energy, the steel strand damage evolution process and law can be dynamically analyzed and broken strand numbers and time are judged. Based on the monitoring data, the relationship between AE parameter and damage variables was derived, and the steel strand tensile damage evolution equation is defined with AE accumulative energy relative change. The steel strand damage evolution law was studied applying the AE characteristic parameter time series fractal theory. In the initial stage of loading,the fractal value of steel strand is unsteady. When the cable crack begins its fast propagation, the fractal dimension appears the“increase-decrease”pattern, which could be used to identify the steel strand critical failure.
     Fourthly, AE monitoring systems for anticorrosion cement motar damage were established. AE characteristics of anticorrosion cement mortar were studied with three-point bending test. Compared with AE counts embraceable curve and load curve, it was found they had a good corresponding connection. Three damage evaluation methods were proposed: 1) Rate process analysis, its statistic model can correctly predict the AE event number and judge anticorrosion cement mortar damage state. 2) AE signal amplitude versus hits correlation figure analysis, in the different stress state embraceable curve of AE signal amplitude versus hits correlation figure can express anticorrosion cement mortar damage evolution process. 3) Fractal theory, the fractal dimension change of the whole damage process can be predicted the anticorrosion cement mortar critical failure. Based on the experiment, analyzed AE mechanics, damage factors were ?defined as variation of AE energy, the equation of damage evolution and the constitutive equations presented by AE parameters were derived. The evolution equation has been verified through experiments. ?
     Fifthly, the arch bridge suspender fatigue accumulative damage life assessment method was proposed using monitored data. The fatigue stress spectrum of different state arch bridge suspender was otained using different computing method. According to the data of arch bridge suspender monitoring and fatigue model experiment, the computing formulas and steps of suspender corrosion fatigue accumulative damage were given. The fatigue life of corrosive and noncorrosive steel wires was compared, the estimating results were well coincided with the practical case.
     Lastly, the above monitoring method and assessment criterion were applied in Sichuan E Bian Dadu river arch bridge suspenders and tie cables. The suspender tension and damage was successfully monitored. The different length suspender and different steel strand of the same suspender stress was analysed based on the monitoring data. The tie cables tensile process was successfully monitored utilizing GFRP-OFBG intelligent sensors, which supplied a great reference meaning to construction.
引文
1 欧进萍. 重大工程结构的累计损伤与安全评定.走向 21 世纪的中国力学—中国科协第 9 次“青年科学家论坛”报告文集.北京:清华大学出版社,1996:179~189
    2 欧进萍,关新春.土木工程智能结构体系的研究与发展.地震工程与工程振动.1999,19(2): 21~28
    3 宗周红,任伟新,阮毅.土木工程结构损伤诊断技术研究.土木工程学报. 2003,36(5):105~110
    4 孙鸿敏,李宏男.土木工程结构健康监测研究进展.防灾减灾工程学报. 2003,23(3): 92~98
    5 李德全.中国建筑市场的回顾和展望.建筑经济. 2000,4: 6~8
    6 黄聪,李启明,申立银. 中国建设推动力的计量模型与分析研究.东南大学学报. 2000,30(4): 112~118
    7 刘家凤,李世蓉.中国建筑市场的几大发展趋势. 建筑. 2000,5:17~19
    8 欧进萍.重大工程结构智能传感网络与健康监测系统的研究与应用.中国科学基金.2005,1:8~12
    9 李惠,欧进萍.斜拉桥结构健康监测系统的设计与实现(I):系统设计.土木工程学报.2006,39(4):39~44
    10 http://www.iicc.ac.cn/05transport_international/t20050324_17392.htm
    11 Ru Jiao Sun, Zhi Sun, Dan Hui Dan. An Integrated FBG Sensing System for Bridge Health Monitoring.SPIE.2006,Vol.6174:1~7
    12 Hiroshige Ohno, Hiroshi Naruse, Mitsuru Kihara, et al. Industrial Application of the BOTDR Optical Fiber Strain Sensor.2001,7(1):45~64
    13 具典淑,周智,欧进萍.PVDF 压电薄膜的应变传感特性研究.功能材料.2004,4(35):450~456
    14 Guodun, Wang Ming L. Wang Yang Zhao. Application of EM Stress Sensors in Large Steel Cables[J]. SPIE.2005,Vol.5765:395~406
    15 Chung D D L. Cement-matrix Composites for Smart Structures.Smart Material and Structure.2000,9(3):389~401
    16 李敏,孟臣.数字温度测量模块 LTM8003 及其应用.国外电子元器件2002,1:50~52
    17 S.Rizkalla, B.Benmokrane, G.Tadros. Structural Health Monitoring Bridges with Fibre Optic Sensors. European COST F3 Conference on System Identification and Structural Health Monitoring, Madrid, Spain, 2000: 501~510
    18 S.Teral, M.Kleinerman, P.Malavieille. Power Cable Fault Management with Fiber Optic Distributed Sensors: Future Technological Trends[J].SPIE. 1998,Vol 3326:380~389
    19 Z.Hou, M.Noori. Wavelet-Based Approach for Structural Damage Detection. ASCE, Journal of Engineering Mechanics. 2000,126 (7) : 677~683
    20 高翔,王勇. 数据融合技术综述. 计算机测量与控制. 2002,10(11):706~709
    21 喻言. 结构健康监测的无线传感器及其网络系统.哈尔滨工业大学博士论文,2006:3~10
    22 周智.土木工程结构光纤光栅智能传感元件及其监测系统. 哈尔滨工业大学博士论文,2003:1~15
    23 G. W. Ng, K. H. Ng. Sensor Management-What, Why and How. Informa-tion Fusion.2000(1):67~75
    24 I.F.Akyildiz, W.Su, Y.Sankarasubramaniam, et al. Wireless sensor network: A survey. Computer Networks. 2002,38(8): 393~422
    25 J.P.Lynch, K.H.Law, A.S.Kiremidjian, et al. Validation of a wireless modular monitoring system for structures. Smart Structures and Materials. SPIE Proceedings Intern. Symp. San Diego,2002: 17-21
    26 Hairong Qi, Phani Teja Kuruganti,Yingyue Xu. The Development of Localized Algorithms in Wireless Sensor Network. Sensors.2002,2: 286~293
    27 K.Maser, R.Egri, A.Lichtenstein, et al. Development of a Wireless Global Bridge Evaluation and Monitoring System (WGBEMS). Proceedings of the Specialty Conference on Infrastructure Condition Assessment: Art, Science, Practice. 1997: 91~100
    28 S.W.Doebling, C.R.Farrar, M.B.Prime.A Summary Review Of Vibration-based damage identification methods. The Shock and Vibration Digest. 1998,30(2)91~305
    29 郭健, 孙炳楠. 桥梁健康监测中的关键性问题和损伤识别方法.公路.2006,4:108~110
    30 朱宏平,徐斌,黄玉盈.结构动力模型修正方法的比较研究及评估.力学进展.2002,25(4):513~521
    31 J.He, D.J.Ewins. Compatibility of Measured and Predicted Vibration Modes in Model Improvement Studies.AIAAJ.1991,29:798~803
    32 R.I.Levin, N.A.J.Lieven. Dynamic Finite Model Updating Using Neural Networks. Journal of Sound and Vibration.1998,210(5):593~607
    33 D.C.Mckinney, M.D.Lin. Genetic Algorithm Solution of Groundwater Management Models. Water Resources Research.1994,30(6):1897~1906
    34 郭 彤,李爱群,李兆霞等.大跨桥梁结构状态评估方法研究进展.东南大学学报.2004,34(5):699~704
    35 赵国藩,金伟良,贡金鑫.结构可靠度理论.北京:中国建筑工业出版社.2000,12~20
    36 孙光亮.多层次综合评判模型及其应用.系统工程.1996,14(2):64~67
    37 王有志,徐鸿儒,任 锋.钢筋混凝土梁式桥的安全性评估系统研究与开发.公路交通科技.2002,1(1):51~54
    38 王永平,张宝银,张树仁.桥梁使用性能模糊评估专家系统.中国公路学报.1996,9(2):62~67
    39 袁曾任.人工神经元网络及其应用.北京:清华大学出版社.1999,53~58
    40 G.W.Housner, L.A.Bergman, T.K.Caughey, et al. Structural Control: Past, Present, and Future. Journal of Engineering Mechanics, ASCE.1997, 123(9): 897~971
    41 姜 增 国 , 赵 志 国 . 大 型 桥梁 健康诊 断的 研究 与 发展 初 探 . 交通 科技.2004,4:23~25
    42 吕大刚,王光远.结构智能健康诊断的信息融合原理.哈尔滨建筑大学学报.2002,4(35):62~64
    43 M.S.Chueng, G.S.Tadros, T.G.Brown, et al. Field Monitoring and Research on Performance of the Confederation Bridge. Canadian Journal of Civil Engineering.1997,24(6):951~962
    44 E.Y.Andersen, Pedersen. Structural Monitoring of the Great Belt East Bridge. In:Jon Krokeborg,ed. Proceedings of the Third Symposium on Strait Crossing. Rotterdam: Balkema.1994,54~62
    45 F.Myroll, E.Dibiagio. Instrumentation for Monitoring the Skarnsunder Cable-stayed Bridge. In: Jon Krokeborg,ed. Proceedings of the Third Symposium on Strait Crossing.Rotterdam:Balkema.1994,207~215
    46 P.Curran, G.Tilly. Design and Monitoring of the Flintshire Bridge,UK. Structural Engineering International.1999,3:225~228
    47 D.Inaudi, A.Ruefenacht A, B.Von Arx, et al. Monitoring of a Concrete Arch Bridge During Construction. SPIE.2002,Vol.4696:146~153
    48 宋雨.文晖大桥健康监测系统与评估管理系统主要问题研究.浙江大学博士论文.2003:2~12
    49 Hitoshi Furuta, Jianhong He, Eiichi Watanabe. A Fuzzy Expert System for Damage Assessment Uing Genetic Algorithms and Neural Networks. Journal of Computing in Civil Engineering. 1996, Vol,11:37~45
    50 J.de Brito, F.A.Branco, P.Thoft-Christensen, et al. An Expert System for Concrete Bridge Management. Engineering Structures.1997,19(7):519~526
    51 孙晓燕. 桥梁结构健康监测技术研究进展. 中外公路.2006,26(2):141~143
    52 J.Zhao, J.T.D.Wolf. Sensitivity Study for Vibration Parameters used in Damage Detection. Journal of Structural Engrg, ASCE. 1999, 125(4): 410~416
    53 N.Stubbs, J.T.Kim. Damage Localization in Structures Without Base Line Model Parameters. AIAA Journal.1996,34(8):1644~1649
    54 S.Alampalli. Effects of Testing, Analysis, Damage, and Environment on Modal Parameters. Mechanical System and Signal Processing. 2000, 14(1): 63~74
    55 J.E.T.Penny, M.J.Friswell, S.D.Garvey. Automatic Choice of Measurement Locations for dynamic testing. AIAA Journal.132(2):407~414.
    56 K.Worden, A.P.Burrows. Optimal sensor placement for fault detection. Engineering Structures, 2001, 23: 885-901
    57 K.Worden, A.P.Burrows. Optimal Sensor Placement for Fault Detection. Engineering Structures, 2001, 23: 885-901
    58 M.Reynier, A.K.Hisham. Sensors Location for Updating Problems. Mechanical System and Signal Processing, 1999, 13(2): 297~314
    59 秦权.桥梁结构的健康监测.中国公路学报.2000,13(2):37~39
    60 黄方林,王学敏,陈政清等.大型桥梁健康监测研究进展.中国铁道科学学报.2005,26(2):1~5
    61 Z.H.Zong, T.L.Wang, D.Z.Huang, et al. State-of-the-Art Report of Bridge Health Monitoring. Journal of Fuzhou University(Natural Science). 2002,30(2):127~152
    62 H.M.Kim, T.J.Bartkowicz. A two-step Structural Damage Detection Approach With Limited Instrumentation. Journal of Vibration Acoustic. 1997, 119(2): 258~264.
    63 H.Zhang, M.J.Schulz, F.Ferguson. Structural Health Monitoring Using Transmittance Functions. Mechanical System and Signal Processing. 1999, 13(5): 765~787.
    64 R.G.Cobb, B.S.Liebst. Sensor Location Prioritization and Structural Damage Localization Using Minimal Sensor Information. AIAA Journal.1997, 35(2): 369~374.
    65 钟善桐.钢管混凝土结构.黑龙江科学技术出版社.1994
    66 汤国栋,杨弘,朱正刚等.桥梁吊杆及拉索的健康诊断.公路.2002,9:36~38
    67 魏建东(译). 斜拉索振动及其控制策略的探讨. 国外公路,2000,1(20):36
    68 周新刚编著. 混凝土结构的耐久性与损伤防治. 中国建材工业出版社, 1999.8:44~48
    69 黄茂忠, 张澍曾. 钢管拱桥施工中临时预应力束破断原因分析. 铁道建筑.1996,9:19~20
    70 赵国藩, 李树瑶, 王健等编著. 钢筋混凝土结构的裂缝控制. 海洋出版社, 北京: 1991,:4~70
    71 荀艳, 靳克. 混凝土结构中钢筋锈蚀的影响因素.山东建材. 2003, 24 (4):50~51
    72 姚志强,阮小平,邓清. 拱桥吊杆变形差异引发桥面断裂及类似事故的预防措施. 公路. 2002, 7:73~74
    73 马林. 国产 1860 级低松弛预应力钢绞线疲劳性能研究. 铁道标准设计. 2000, 20(5):21
    74 周洪刚.高周疲劳损伤研究和寿命预测 探索.浙江大学硕士学位论文.2003:3~16
    75 贺修泽,付晓宁.斜拉索的索力测试.中外公路.2002,22(6):38~40
    76 方志,张智勇.斜拉桥的索力测试.中国公路学报.1997,10(1):51~52
    77 王卫锋,徐郁峰,韩大建等.崖门大桥施工中的索力测试技术.桥梁建设.2003,1:23~24
    78 K.J.Kroneberger-stanton,B.R.Hartsough.A Monitor for Indirect Measurement of Cable Vibration Frequency andTension. Transaction of the AS.1992,35:341~346
    79 Casas, J.R, A.Combined. Method for Measuring Cable Forces: the Cable-Stayed Alamillo Bridge,Spain. Structural Engineering International. 1994, 4:235~240
    80 J.C.Russell, T.J.Lardner. Experimental Determination of Frequencies and Tension for Elastic Cables. Journal of Engineering Mechanics, ASCE, 1998, 124:1067~1072
    81 A.Cunha, C.tano, E.Delgado. Dynamic Tests on Large Cable-Stayed Bridge. Journal of Bridge Engineering.2001, 6(1): 54~62
    82 陈刚.振动法测索力与实用公式.福州大学学位论文.2003:15~31
    83 H.M.Irvine, T.K.Caughey. The Linear Theory of Free Vibration of A Suspended Cable.Proc. Royal Society of London, England, Series A.1974, 341;299~315
    84 M.H.Irvine, Cable Structures. The MIT Press, Cambridge, Massachusetts, USA.1981
    85 H.Zui, T.Shinke, Y.Namita. Practical Formulas for Estimation of Cable Tension by Vibration Method. Journal of Structural Engineering, ASCE. 1996,122(6):651~656
    86 U.Starossek. Cable Dynamics - A Review. Struct. Eng.Int..1994, 3:171~176
    87 A.B.Mehrabi, H.A.Tabatabai. Unified Finite Difference Formulation for Free Vibration of Cables.J.Struct. Eng., ASCE.1998,124(11):1313~1322
    88 G.Zheng, J.M.Ko, Y.Q.Ni. Multimode-Based Evaluation of Cable Tension Force in Cable-Supported Bridges.SPIE.2001,Vol 4330:511~522
    89 Y.Q.Ni. J.M.Ko, G.Zheng. Dynamic Analysis of Large-Diameter Sagged CablesTaking in Account Flexural Rigidity. J. Sound Vib. 2002,257(2), 301~319
    90 许俊. 斜拉索索力简化计算中的精度分析.同济大学学报.2001,29(5): 611~615
    91 高建勋. 斜拉桥索力测试方法及误差研究.公路与气运.2004,4:80~81
    92 张建刚,张开银,沈典栋.随机激励作用下拉索内力测量.中山大学学报众论.2000,20(1):18~23
    93 段波,曾德荣,卢江.关于斜拉桥索力测定的分析.重庆交通学院学报.2005, 24(4):6~8
    94 朱卫国,申永刚,项贻强等. 梁拱组合体系桥柔性吊杆索力测试.中南公路工程.2004,29(1):21~23
    95 刘文峰,应怀樵,柳春图.考虑刚度及边界条件的索力精确求解.振动与冲击.2003,22(4):12~14
    96 W.X.Ren, G.Chen, Weihua Hu.Empirical Formulas to Estimate Cable Tension by Cablefundamental Frequency. Structural Engineering and Mechanics. 2005,20(3):363~380
    97 任伟新,陈刚.由基频计算拉索拉力的实用公式.土木工程学报.2005, 38(11): 26~31
    98 郝 超,裴岷山,强士中.斜拉桥索力测试新方法—磁通量法.公路.2000, 11: 30~31
    99 G.A.Wang, M.L.Wang, Y.A.Zhao, et al. Application of EM StressSensors in Large Steel Cables. SPIE.2005,5765:395~406
    100 张戌社, 杜彦良, 孙宝臣等. 光纤光栅压力传感器在斜拉索索力监测中的应用研究.铁道学报.2002,24(6):47~49
    101 R.Maaskant, T.Alavie, R.M.Measures,et al. Fiber-optic Bragg Grating Sensors for Bridge Monitoring. Cement and Comcrete Composites. 1997, 19: 21~33
    102 姜德生,郝义昶,刘胜春. 光纤 Bragg 光栅测力环在系杆拱桥中的应用.仪表技术与传感器.2006,2:43~44
    103 刘胜春,姜德生,郝义昶.光纤光栅测力传感器的研究及应用. 武汉理工大学学报(交通科学与工程版).2006,30(2):209~211
    104 A.Perez. Fiber Optic Sensors: Application to the Long Term Monitoring of Civil Engineering Structure. MS thesis, School of Civil Engineering, Technical University of Catalonia. 2001
    105 X.S.Zhang, Y.L.Du, C.X.Ning.A New Monitoring Method of Cable Tension of Cable-Stayed Bridge-Fiber Bragg Grating Method. J. CENT. SOUTH UNIV. TECHNOL.2005,12:261~263
    106 Z.C.Zhang, Z.Zhou, C.Wang,et al.Long-Term Monitoring FBG-Based Cable Load Sensor.SPIE.2006,Vol 2167:416~422
    107 M.Akira, Y.Isamu. Fiber Bragg Grating Accelerometer for Structural Health Monitoring. Fifth International Conference on Motion and Vibration Control(MOVIC), Sydney, Australia.2000
    108 刘胜春,姜德生,李盛. 新型光纤光栅振动传感器测试斜拉索索力.武汉理工大学学报.2006,28(8):110~112
    109 刘波,牛文成,杨亦飞.新型光纤光栅加速度传感器的设计与实现.仪器仪表学报.2006,27(1):42~44
    110 A.Richard , D.Soref , H.Mcmahon. Tilting-Mirror Fiber-Optic Acclerometer Appl.opt..1984,23(3):486~491
    111 T. A. Berkoff, A. D. Kersey. Experimental Demonstration of a Fiber Bragg Grating Accelerometer, IEEE Photonics Technology Letters. 1996, 8: 1677 ~ 1679
    112 Y.J.Rao. In-Fibre Brag Grating Sensors, Meas.Sci. Technol.. 1997, (8) 355~ 375
    113 戴锋,黄国君.一种布拉格光纤光栅加速度传感器.激光杂志. 2005,26(1): 26~27
    114 陈宏波,蔡雄飞,姜德生.光纤光栅压力传感器的研究.武汉理工大学学报. 2003,25(8):55~56
    115 Z.Zhou, Z.C. Zhang, N.C. Deng. Applications of FRP-OFBG Sensors on Bridge Cables.SPIE.2005,Vol 5765:668~677
    116 李冬生,周智,欧进萍等.玻璃纤维筋 OFBG 传感器在拱桥吊杆应力监测中的应用.光电子.激光.(已录用)
    117 Z. Zhou, J.P. Ou, B. Wang. Smart FRP-OFGB Bars and Their Application in Reinforced Concrete Beams. Proceedings of the first international conference on structural health monitoring and intelligent structure. Tokyo, Japan 2003, 861-866
    118 Z.Zhou, J.P.OU. A New Kind of Smart Bridge Cable Based on FBG Sensors.SPIE. 2004,Vol 5502:196~199
    119 杨少军.桥梁拉索体系损伤的检测和监测方法.公路交通技术. 2005, 3: 130~134
    120 唐亚鸣,张河.大型桥梁拉索损伤与健康监测.桥梁建设.2002,5:79~82
    121 http://bbs.nju.edu.cn/vd223120/blogdcon?userid=njuswine&m=11&d=29
    122 沙丽新,阮欣. 桥梁结构健康检测与评估方法发展现状综述.青岛建筑工程学院学报.2003,24(4):19~22
    123 邵永波.声发射技术在钢丝绳损伤检测中的应用研究.东北大学学位论文.1999
    124 叶觉明.缆索用钢丝的断丝问题.钢结构.2003,3(18):35~36
    125 K.Coultate. Techniques Used in the Magnestic Inspection of Wire Ropes. Insight,1998,40(2):89~91
    126 M.C.Juan, M.Johannio, T.Peter. Monitoring of Bridge to Detect Changes in Structural Health.America Control Conference. Arlington, Virginia. 2001, 1~6.
    127 J.S.Li, S.Z.Yang, W.X.Lu,et al.Space Domain Feature-Based Automatic Quantitative Determination of Localised Faults in Wire Ropes.Material Evaluation.1990,48(3):336~341
    128 A.C.Rose. The Use of the Magnetic Defectograph MD-6.CIM Bullein. 1969, 62(684):425~431
    129 S.A.H.Bundy.Eddy Current Testing of Wire and Bar. Wire Industry. 1981, 48(576):887~888
    130 N.F.Casy.Fatigue Testing of Large Wire Ropes. Wire Industry. 1988,
    55(653):300~303
    131 谭明光,宋海兰,谭莉.运行中钢丝绳的检测技术.无损检测.1994,16(3): 78~80
    132 Y.Olexandr, Andreykiv. Analysis of Acoustic Emission Caused By internal Cracks. Engineering Fracture Mechanics.2001(68): 1317~1333
    133 袁振明,马羽宽,何泽云.声发射技术及其应用.机械工业出版社,北京.1985, 1~7
    134 T.M.Roberts, M.Talebzadeh. Fatigue Life Prediction Based on Crack Propagation and Acoustic Emission Count Rates. Journal of Constructional Steel Research .2003,59:679~694
    135 沈功田,戴光,刘时风.中国声发射技术进展——学会成立 25 周年纪念.无损检测.2003,19(6):100~101
    136 陈兵,张东,姚武.用声发射技术研究水泥基复合材料脆性.无损检测.2001,23(10):421~457
    137 M.R. Gorman, W.H. Prosser. AE Source Orientation by Plate Wave Analysis. Journal of Acoustic Emission.1991,9:283~288
    138 M.N. Bassin. Detection of The Onset of Fatigue Crack Growth in Rail Steels Using Acoustic Emission. International Journal of Fatigue. 1995, 17(4): 307~402
    139 纪洪广,张天森,张志勇等.无损检测中常用声发射参数分析与评价.无损检测.2001,23(7):289~294
    140 I. Kimpara, I. Ohsawa. Evaluation of Defects in CFRP laminates by acoustic emission. NDT&E International.1997,30(2):115
    141 刘时风,张平等.全波形声发射信好采集及分析技术研究.第八届全国声发射学术研讨会论文集,上海.2001:153~158
    142 A.Ghorbanpoor. Acoustic Emission Characterization of Fatigue Cracks Growth in Highways Bridges Components. Dissertation abstracts International.1987,47(7):3029~3030
    143 H.HicK, H.Willer. Acoustic Emission Measurements on Bridges. Journal of Acoustic Emission.1992,10(3):67~70
    144 G.B.Uravin, L.M.Lezvinskaya. Diagnostics of Reinforced Concrete Bridges by the Acoustic Emission Method. Quality Control of Concrete Structural. 1999,12:357~365
    145 H.Tsuka, H.Hikosaka et al. Estimation of Maximum Stress in Old Railway Riveted I-Girder Bridges Using Acoustic Emission Signals. Journal of Acoustic Emission.1992,17:1~2
    146 N.Godina, S.Hugueta, R.Gaertnera,et al. Clustering of Acoustic Emission Signals Collected During Tensile Tests on Unidirectional Glass/Polyester Composite using Supervised and Unsupervised Classifiers. NDT&E International.2004,37: 253~264
    147 D.Richard, M.A.F.Finlayson, F.C.Mark. Acoustic Emission Structural Health Management Systems. SPIE.2000,Vol 3994:128~137
    148 R.Mohammed. An Insight Into the NDT of Steel Cables by Aoustic Emission. Proceedings of the 14th World Conference on Non-Destructive Testing, New Delhi.996.
    149 R.Piervincenzo, L.S.Francesco. Acoustic emission monitor-ing of CFRP cables for cable-stayed bridges. SPIE.2001,Vol 4337:129~138
    150 D.J.Yoon, P.Park, S.S.Lee. AE Characteristics for Monitoring Fatigue Crack in Steel Bridge Members. SPIE. 2000, Vol 3995: 153~162
    151 D.J.Yoon, P.Parka, J.C.Jeonga. Assessment of Integrity of Concrete Bridge Structures by Acoustic Emission Technique. SPIE. 2002, Vol 4704:208~214
    152 D.J.Yoon, W.Jason, W.P.David. Assessing Corrosion Damage in ReinforcedConcrete Beams Using Acoustic Emission. SPIE. 1999,Vol 3587:254~263
    153 欧进萍,段忠东,肖仪清.海洋平台结构安全评定——理论、方法与应用. 科学出版社. 2003
    154 胡雄吉祥.拉索桥梁安全性与耐久性评估的专家系统设计.应用力学学报.1998, 12
    155 史敏.中小桥梁承载能力评定方法研究. 同济大学硕士论文. 2001
    156 袁卫国. 基于模糊神经网络的钢管混凝土拱桥安全性评价方法研究. 武汉理工大学硕士论文. 2003
    157 中华人民共和国交通部标准. 公路养护技术规范(JTJ073-85). 人民交通出版社. 1986
    158 中华人民共和国行业标准. 城市桥梁养护技术规范(CJJ99-2003). 2003
    159 胡钊芳.公路桥梁荷载实验人民交通出版社. 2003
    160 中华人民共和国交通部. 公路旧桥承载能力鉴定方法(试行). 人民交通出版社. 1988
    161 李亚东. 基于设计规范的桥梁承载能力评估. 桥梁建设. 1996, 12
    162 沈大元,强士中. 既有桥梁承载能力的评定方法. 全国桥梁结构学术会议论文集. 1992.
    163 S.Olusegun.C.W.Salawu. Bridge Assessment Using Forced-vibrition Testing. Journal of Bridge Engineering. 1992, 120
    164 S.S.Law, H.S.Ward, G.B. Shi. Dynamic Assessment of Bridge Load-carrying Capacities. Journal of Bridge Engineering. 1992, 120:3
    165 M.S.Mahmod, M.Biswas.Vibration Testing for Nondestructive Evaluation of Bridges. Journal of Bridge Engineering. 1994, 120:1
    166 M.P.Enright, D.M.Frangopol. Reliability Based Condition Assessment of deteriorating concrete bridges considering load redistribution. Journal of Bridge Engineering. 1994, 120:10
    167 K.Breitung. Asymptotic Approximations for Multinormal Integrals. Journal of Engineering 357~366
    168 P.Thoft-Christensen, Y.Murostu. Application of Mechanics, ASCE. 1984, 110(3): Structural Systems Reliability Theory. Berlin:Springer-Verlag.1986
    169 贡金鑫,仲伟秋,赵国藩. 工程结构可靠性基本理论的发展与应用(1).建筑结构学报.2002,23(4):2~9
    170 贡金鑫,仲伟秋,赵国藩. 工程结构可靠性基本理论的发展与应用(2).建筑结构学报.2002,23(5):2~9
    171 王光远.结构服役期间的动态可靠度及其维修理论初探.哈尔滨建筑工程学报.1996:6
    172 赵国藩,李云贵.旧有结构性能评估.大连理工大学学报.1991:6
    173 欧进萍,叶骏.结构风振的概率疲劳累积损伤.振动工程学报. 1993, 6(2): 164~168
    174 杜修力,刘勇生.强震持时对钢筋混凝土结构地震累积破坏的影响.地震工程与工程振动.1992,12(3):65~69
    175 牛荻涛,石玉钗,雷怡生.混凝土碳化的概率模型及碳化可靠性分析.西安建筑科技大学学报.1995,27(3):252~256
    176 张俊芝,高兑现,李桂青.服役建筑结构可靠性评估的可变荷载取值研究.工业建筑,30(12):58~61
    177 张俊芝,金本清,李桂青.在役结构随机时变可靠性分析.南昌水专学报. 2000,19(4):5~10
    178 金伟良,何勇,龚顺风等.单点系泊海洋导管架平台结构体系可靠性分析.海洋工程.2004,22(4):12~18
    179 张建仁,秦权.现有混凝土桥梁的时变可靠度分析.工程力学. 2005,22(4): 90~94
    180 杨伟军,赵传智.钢筋混凝土吊车梁的混凝土的疲劳概率分析.工程力学. 1999,16(3):140~144
    181 G.B.William, J.M.Mark, M.Jamshid, et al. Fatigue Reliability Reassessment Application: State-of-the-Art Paper. J.Struct.Engrg, ASCE. 1997, 123(3): 277~285
    182 G.B.William, J.M.Mark, M.Jamshid, et al. Fatigue Reliability Reassessment Application: State-of-the-Art Paper. J.Struct.Engrg, ASCE. 1997, 123(3): 271~276
    183 铁路工程结构可靠度可靠度设计统一标准.(GB50216-94)
    184 S.Naruhito, F.Hitoshi, U.Motohide, et al. An Expert System for Damage Assessment of a Reinforced Concrete Bridge Deck. Fuzzy Sets and Systems.1991,44(3):449~457
    185 J.D.Brito, F.A.Branco, P.Theft. An Expert System for Concrete Bridge Management. Engineering Structures.1997,19(7):519~526
    186 王爱民.神经网络应用模糊综合评价的研究.系统工程理论与实践.1995,58~62
    187 田钦谟.模糊综合系统评价中的若干问题.模糊系统与数学.1996, 26~29
    188 吴海军,陈思甜,龚尚龙等. 斜拉桥索力测试方法研究. 重庆交通大学学报. 2001,21(4):23~24
    189 董建华.中、下承式拱桥吊索的模态分析.郑州大学硕士论文.2004:32~46
    190 J.D.Prohaska, E.Snitzer, B.Chen, et al. Fiber optic Bragg grating strain sensor in large scale concrete structures. SPIE.1993,Vol 1798:286~294
    191 W.M.William, G.A.Ball, H.Singh. Applications of fiber grating sensors. SPIE .1996,Vol 2839 :2~7
    192 Z.Zhou, Z.C.Zhang, N.C.Deng, et al. Applications of FRP-OFBG Sensors on Bridge Cables. SPIE.2005, Vol 5765:668~677
    193 邵永波.声发射技术在钢丝绳损伤检测中应用研究.东北大学博士论文. 1999
    194 N.F.Casey, J.T.Taylor. The Evaluation of Wire Ropes by Acoustic Emission Techniques. British Journal of NDT. 1985,27(6):351~356
    195 刘学文.用声发射技术评估材料损伤的研究.北方交通大学博士论文.1996
    196 D.Fang, A.Berkovits. Acoustic Emission During Fatigue of a Nickel Base Superalloy . Journal of Acoustic Emission.1993, 11(2):85~94
    197 D.S. Li, J.P.Ou. Damage Evolution Prediction and Model of Cement Mortar Based on Acoustic Emission. SPIE.2005,Vol.5851:267~272
    198 T.Higuchi. Approach to an Irregular Time Series on the Basis of The Fractal Theory. Phys D. 1988, 31: 277~283
    199 M.Ohtsu. Rate Process Analysis of Acoustic Emission Activity in Core Test of Concrete.Concrete Libr JSCE.1992,20:143~153
    200 A.Ishibashi, E.Hidaka, A.M.Farahat et al. Deterioration Evaluation by AE in Concrete Samples.Proc 6th Int Conf Structural Faults and Repair. 1995, 2: 69~74
    201 冯夏庭,雷兴林.声发射(AE)技术的应用.冶金工业出版社.1997
    202 M.Ohtsu, H.Watanabe. Quantitative Damage Estimation of Concrete by Acoustic Emission.Construction and Building Materials.2001,15:217~224
    203 纪洪广,王基才,单晓云等.混凝土材料声发射过程分形特征及其在断裂分析中的应用.岩石力学与工程学报.2001,20(6):801~804
    204 W.Z.Cheng, C.S.Wang, L.Xu. Safety Assessment and MaintenanceManagement of Old Bridge Over Suzhou Creek. The International Symposium for Steel Structures, Pusan Korea. 2002, 203~213
    205 鲍卫刚.公路桥梁车辆荷载研究.桥梁. 1997,3(20):8~12
    206 童乐为,沈祖炎,陈中延.城市道路桥梁的疲劳荷载谱.土木工程学报.1997, 5(30):20~27
    207 王春生.铆接钢桥剩余寿命与使用安全评估.同济大学博士论文.2003
    208 向雅娟.斜拉索大直径斜拉索的疲劳强度.国外桥梁.1994,1:25~32
    209 何宪飞,陈艾荣.斜拉桥斜拉索局部弯曲应力分析.上海市公路学会第四届年会学术论文集.1998,85~90
    210 张其林.索和膜结构.同济大学出版社.2002
    211 孔庆凯.大跨中承式拱桥短吊杆结构性为研究.西南交通大学硕士论文. 2000:54~55
    212 A.A.Pollock, B.Smith. Stress-Wave Emission Monitoring of a Military Bridge. Non-Destructive Testing.1972, 5(6):348~353
    213 郑一峰,黄侨,张宏伟.部分斜拉桥拉索设计方法研究.公路. 2005, 2(2): 27~31
    214 Y.E.Zhou.Assessment of Bridge Remaining Fatigue Life Through Field Strain Measurement.ASCE, Structures.2005:1~11
    215 L.Xiu, H.Y.Hiroshi, T.Inaba, et al. Damage Evaluation of Railway Structures by Using Train-induced AE. Construction and Building Materials. 2004,18(3):215~223
    216 E.Dan, H.Johnson. Warren Shen, Richard D. Finlayson. Acoustic Emission Evaluation of Reinforced Concrete Bridge Beam with Graphite Composite Laminate. SPIE, 2001,Vol.4330: 498~504
    217 P.Sunil, W.Jason. Assessment of Localized Damage in Concrete under Compression Using Acoustic Emission. Journal of Material in Civil Engineering. 2006, 18(3):325~333
    218 J.C.Duke, M.Sison. Acoustic Emission Monitoring of Steel Bridge Members Final Report. The Virginia Transportation Research Council.1995: 9~11
    219 陆菜平,窦林名.隧道围岩的损伤与声电监测.煤炭学报,2004,29(1):41~44

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700