用户名: 密码: 验证码:
基于线粒体控制区分析雉鸡甘肃亚种的种群遗传结构与保护遗传研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
雉鸡(Phasianus colchicus)是全世界最重要的猎禽之一,适应性强,分布广泛。我国共有19个亚种的分布,其中甘肃亚种分布于中国西北部地区。本研究以进化速率相对较快的线粒体控制区全序列基因片段为遗传标记,对雉鸡甘肃亚种10个种群的132个样本进行了种群遗传结构分析和保护遗传研究。本文研究的主要目的为:(1)探究雉鸡种下单元的遗传变异,了解雉鸡甘肃亚种不同种群间的分化程度及在特殊生境下不同种群间的基因交流情况;(2)揭示雉鸡甘肃亚种的种群遗传结构;(3)重建雉鸡甘肃亚种的系统地理结构,阐明气候和环境变化对其系统进化的作用;(4)为雉鸡起源中心假说提供依据,给出可能的进化扩散路线;(5)结合形态差异的描述,分析雉鸡甘肃亚种的遗传变异与形态地理变异的关系;(6)从遗传学角度探讨雉鸡甘肃亚种的保护问题。主要结果如下:
     用直接测序法对线粒体控制区全序列进行分析,测出碱基含量G+C=40.5%。共发现50个变异位点,定义了54种单倍型。由8个种群共享的单倍型H1比例最高,为祖先单倍型。平均核苷酸多样较低(0.0031),而平均单倍型多样性较高(0.9421)。通过计算固定指数、基因流和Fu's Fs检验发现,种群间遗传分化不显著,且经历过快速扩张,可能由于缺少隔离,基因交流频繁所致。根据种群间遗传距离计算分歧时间约为8-28万年。
     支持雉鸡起源于西南横断山脉的假说,从西南向东北和西北可能是其扩散的路线。各单倍型在系统树中相互混杂,没有形成明显的地理分支,属于“系统发生连续,无空间隔离”的地理格局。推测由于线粒体的母性遗传,其变异与父性遗传的白色眉纹项圈等变异并不完全一致。为缓冲栖息地片段化和人类活动对其的影响,对遗传多样性较高的成县、大通种群,以及严重隔离的漳县种群应优先保护。
Common pheasant(Phasianus colchicus)is a world-widely distributed species as one of the most important game birds with numerous subspecies,while in China, there are 19.Our study is to demonstrate genetic structure and conservation genetics of common pheasant Gansu subspecies(P.c.strauchi),which is an endemic resident of Gansu,Ningxia and Qinghai provinces in northwestern China.
     Mitochondrial DNA(mtDNA)genome has proven to be useful in many avian phylogenetic and population studies,and the control region(CR)plays an important role in replication and transcription in the mitochondrial(mt)genome.Its supposedly high rate of DNA substitution makes it a suitable marker for our study.In our study,a total of 132 samples from 10 populations of P.c.strauchi were collected from ten localities in Gansu,Ningxia and Qinghai provinces.We obtained those samples during three consecutive autumns 2005,2006 and 2007.The entire mtDNA control region genes were PCR amplified and sequenced directly.We used different softwares to calculate the genetic structure within and among P.c.strauchi populations.The aims of our study are:(1)to calculate the genetic diversity of common pheasant at a level of subspecies;to demonstrate the divergence variation and gene flows among P.c.strauchi populations in different habitats;(2)to reveal the population genetic structure of P.c.strauchi;(3)to reconstruct the phylogeographic structure of P.c. strauchi and to infer the impacts of environmental and climate change on its systematic evolutionary process;(4)to give support to the nascence-center hypothesis of pheasants;to infer the possible dispersal route in P.c.strauchi evolutionary history; (5)to compare the morphological variation and genetic diversity referred to descriptions of P.c.strauchi morphological characters;(6)to discuss the conservation status of P.c.strauchi as viewed from genetics.
     The results of our study are as below:
     The average nucleotide composition G+C=40.5%,which was typical for avian mitochondrial DNA control regions.A total of 50 variable sites defined 54 haplotypes. The most common haplotype was H1 with 26 individuals from 8 populations.The theory predicts that the most frequent and widespread haplotypes are ancestral.Based on this coalescent theory,it suggested that the haplotype H1 was ancestral.
     The average nucleotide diversity was at a low level(0.0031),while the average haplotype diversity was at a high level(0.9421).The value of Fst and value of Nm implied there was no,however,significant genetic divergence among populations mainly because populations lacking of spatial separation and communicating frequently.Fu's Fs test indicated that P.c.strauchi has suffered a rapid spatial expanding during its evolutionary history.Diverge time was suggested 0.08 Ma to 0.28 Ma by calculating genetic distance among populations.
     The results gave support to hypothesis that the nascence-center of pheasants was in Hengduan Mountain range in southwestern China,which indicated the possible dispersal route of P.c.strauchi was from southwest to northeast and northwest during its evolutionary history.A total of 54 haplotypes interweaved in the phylogenetic tree and did not cluster into separate branches according to separate sampling localities as imaged.The phylogeographic structure of P.c.strauchi belonged to "phylogenetic continuity,lack of spatial separation".Due to the maternal inheritance of mitochondrial DNA while paternal inheritance of morphologic characters such as white eyebrow and white collar,it didn't show strict congruence between genetic differentiation and morphologic variation.For the sake of decreasing impacts coming from both habitat fragmentation and human behavior to P.c.strauchi,we should give first protection priority to Chengxian(CX)and Datong(DT) populations which had high genetic diversity and to Zhangxian(ZX)population which had been isolated sharply.
引文
1. Avise JC and Ball RM. 1990. Principles of genealogical concordance in species concepts and biological taxonomy. Oxford Surveys of Evolutionary Biology. 7:45-68.
    2. Avise JC and Hamrick JL. 1996. Conservation genetics, case histories from nature. Chapman & Hall, New York.
    3. Avise JC, Arnold J, Ball RM, Bermingham E, Lamb T, Niegel JE, Reeb CA and Saunders NC 1987. Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Ann. Rev. Ecol. Syst., 18: 489-522.
    4. Avise JC, Neigel JE and Arnold J. 1984. Demographic influences on mitochondrial DNA lineage survivorship in animal populations. Journal of Molecular Evolution, 20:99-105.
    5. Avise JC. 1994. Molecular Markers, Natural History and Evolution. Chapman & Hall, New York.
    6. Avise JC. 1996. Toward a regional conservation genetic perspective: Phylogeography of fauna in the southeastern United States. In: Avise J C and Hamrick J L (eds), Conservation genetics: case histories from nature. Chapman & Hall, New York, 431-470.
    7. Avise JC. 1998. The history and preview of phylogeography: a personal reflection. Molecular Ecology, 7:371 -379.
    8. Avise JC.2000. Phylogeography. Harvard University Press,Cambridge.
    9. Bensasson D, Zhang DX, Hartl DL and Hewitt GM. 2001. Mitochondrial pseudogenes: evolution's misplaced witnesses. Trends in Ecology and Evolution, 16:314-321.
    10. Berg T, Mourn T, Johansen S. 1995. Variable numbers of simple tandem repeats make birds of the order Cicomiiformes heteroplasmic in their mitochondrial genomes. Curr Genet, 27: 257-262.
    11. Birky CW, Fuerst P and Maruyama T. 1989. Organelle gene diversity under migration, mutation and drift: equilibrium expectations, approach to equilibrium, effects of heteroplasmic cells, and comparison to nuclear genes. Genetics, 121:613-627.
    12. Brown WM, George M and Wilson AC. 1979. Rapid evolution of animal mitochondrial DNA. Proc. Natl. Acad. Sci. USA 76(4): 1967-1971.
    13. Brown WM. 1983. Evolution of mitochondrial DNA. In: Nei M and Keohn RK (eds). Evolution of genes and proteins. Sinaver: Sunderland Mass, 62-68.
    14. Cann RL, Stoneking M and Wilson AC. 1987. Mitochondrial DNA and human evolution. Nature, 325:31-36.
    15. Desjardins P and Moraris R. 1990. Sequence and gene organization of the chicken mitochondrial genome. A novel gene order in higher vertebrates. J. Mol. Biol. 20;212(4):599-634.
    16. Desjardins P, Morais R. 1991. Nucleotide sequence and evolution of coding and noncoding region of a quail mitochondrial genome. J Mol Evol, 32:153-161.
    17. Edwards S V. 1993a. Long-distance gene flow in a cooperative breeder suggested by genealogies of mitochondrial DNA sequences. Proc. R. Soc. London, ser B, 252:177-185.
    18. Edwards S V. 1993b. Mitochondrial gene genealogy and gene flow among island and mainland populations of a sedentary songbird, the grey-crowned babbler. Evolution, 47: 1118-1137.
    19. Falk DA and Holsinger KE. 1991.Genetics and conservation of rare plants. New York: Oxford University Press.
    20. Frankham R. 1995. Conservation genetics. Annual Review of Genetics, 29: 305-327.
    21. Frankham R. 1996. Relationship of genetic variation to population size in wildlife. Conservation Biology, 10,1500-1508.
    22. Fumihito A, Miyake T, Sumi J, Takada M, Ohno S and Kondo N. 1994. One subsepecies of the red junglefowl (Gallus gallus gallus) suffices as the matriarchic ancestor of all domestic breeds. Proc. Nat.Ucad.Sci. USA, 91:12505-12509.
    23. Fumihito A, Miyake T, Sumi J, Takada M, Ohno S and Kondo N. 1995. The genetic link between the Chinese bamboo partridge (Bambusicola thoracica) and the chicken and junglefowls of the genus Gallus. Proc.Natl.Acad.Sci USA, 82:11053-11056.
    24. Goldstein PZ, DeSalle RA and Vogler AP. 2000. Conservation genetics at the species boundary. Conservation Biology, 11:120-131.
    25. Gyllensten U, Wharton D and Wilson AC. 1985. Maternal inheritance of mitochondrial DNA during backcrossing of two species of mice. The Journal of Heretidy, 76:321-324.
    26. Gyllensten UB. and Wilson AC. 1987. Interspecific mitochondrial DNA transfer and the colonization of Scandinavia by mice. Genetical Research, 49: 25-29.
    27. Hey J and Kliman RM. 1993. Population genetics and phylogenetics of DNA sequence variation of multiple loci within the Drosophila melanogaster complex. Molecular Biology and Evolution. 10:804-822.
    28. Hill, D. and Robertson, P., 1988. The Pheasant Ecology, Management and Conservation, Oxford: BSP Professional Books.
    29. Holsinger KE. 1996. The scope and the limits of conservation genetics. Evolution. 50:2558-2561.
    30. Houlden BA, Costello BH, Sharkey D, Flower EV, Melzer A, Ellis W, Carrick F, Baverstock PR and Elphinstone MS. 1999. Phylogeographic differentiation in the mitochondrial control region in the koala, Phascolarctos cinerus(Goldfuss 1817). Molecular Ecology. 8:999-1011.
    31. Huang ZH, Liu NF, Zhou TL and Ju B. 2005. Effects of environmental factors on population genetic structure in chukar partridge (Alectoris chukar). Journal of Arid Envrionments. 62:427-434.
    32. Huang ZH, Liu NF. 2004. Genetic structure of chukar partridge (Alectoris chukar) populations in the Longdong Loess Plateau, China. J. Ornithol. 145:137-141.
    33. I. V. Kulikova, G. N. Chelomina, and Yu. N. Zhuravlev. RAPD-PCR Analysis of Genetic Diversity in the Manchurian Pheasant Russian Journal of Genetics, Vol. 38, No. 6, 2002, pp. 699-703. Translated from Genetika, Vol. 38, No. 6, 2002, pp. 836-841.
    34. Johnsgard PA. 1988 The quails, Partridges, and francolins of the World. Oxford Univ. Press, Oxford.
    35. Kark S, Philip PU, Safriel UN and Randi E. 1999. Conservation priorities for chukar to partridge in Israel based on genetic diversity across an ecological gradient. Cons. Biol., 13(3):542-552.
    36. Kimura M and Ohta T. Eukaryotes-prokaryotes divergence estimated by 5S ribosomal RNA sequences. Nature, 243:199-200.
    37. Kimura M. 1968. Evolutionary rate at the molecular level. Nature. 217:624-626.
    38. Kimura M. 1980. A simple method for estimating evolutionary rate of base substitutions though comparative studies of nucleotide sequences. J.Mol.Evol., 16:111-120.
    39. Kocher T D et al. 1989. Dynamics of mitochondria! DNA evolution in animals: Amplication and sequencing with conserved primers. Proc Natl Acad Sci USA, 86:6196-6200.
    40. Kocher T D, White T J. 1989. Evolutionary analysis via PCR. In: H. A. Erlich. PCR Technology: Principles and Applications for DNA Amplification: New York : Stockton Press.
    41. Kocher T D. 1992. PCR, direct sequencing, and the comparative approach. PCR methods Applic, 2:217-221.
    42. Kumar SK and Nei M. 1993. MEGA, Molecular Evolutionary Genetics Analysis, version 1.01. University Park, Pennsylvania State University.
    43. Kumar SK, Tamura K, Jakobsen J and Nei M. 2001. MEGA: Molecular Evolutionary Genetics Analysis, Ver2.0. Bioinformatics, 1244-1245.
    44. Long, J.L., 1981.International Birds of the World, London : David and Charles.
    45. Lucchini V and Randi E. 1998 Mitochondrial DNA sequence variation and phylogeographcial structure of rock partridge (Alectoris graeca) populations. Heredity, 31:528-536.
    46. Meffe GK and Carroll CR. 1994. Principles of conservation biology. Sinauer Associates, Inc., Sunderland, Massachusetts.
    47. Milligan BG, Leebens-Mack J and Strand AE. 1994. Conservation genetics: beyond the maintenances. Molecular Ecology. 3:423-435.
    48. Moritz C. 1994. Defining evolutionarily significant units for conservation. Trends in Ecology and Evolution. 9:373-375.
    49. Moritz T, Dowling TE and Brown WM. 1987. Evolution of Animal Mitochondrial DNA: Relevance for Population Biology and Systematics. Ann.Rev.Ecol.Syst. 18:269-292.
    
    50. Nass MMK and Nass S. 1963. Intramitochondrial fibers with DNA characteristics. J.Cell Biology, 19:591-611.
    
    51. Nei M and Kumar S. 2000. Molecular Evolution and Phylogenetics. Oxford University Press, London.
    
    52. Nei M and Li WH. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc.Natl.Acad.Sci.USA., 76(10): 5269-73
    53. Nei M, Maruyama T and Chakraborty R. 1975. The bottleneck effect and genetic variability in populations. Evolution, 29:1-10
    54. Neigle JE and Avise JC. 1986. Phylogenetic relationships of mitochondrial DNA under various demographic models of speciation. In: Nevo E and Karlin S(eds). Evolutionary Processes and Theory. New York: Academic Press, 515-534.
    55. Norman J,Moritz C and Limpus CJ. 1994. Mitochondrial DNA control region polymorphisms: genetic markers for ecological studies of marine turtles. Molecular Ecology. 3:363-373.
    56. O'Brien SJ and Mayr E. 1991. Bureaucratic mischief: recognizing endangered species and subspecies. Science. 251:1187-1188.
    57. Quinn T W. 1992. The genetic legacy of Mother Goose-phyiogeographic patterns of lesser snow goose Chen caerulescens maternal lineages. Mol Ecol, 1: 105-117.
    58. Randi E and Alkon PU. 1994. Genetic structure of Chukar (Alectoris chukar) population in Isael. Auk. 11(2): 216-226.
    59. Randi E and Bernard-Laurent A. 1999. Population genetic of a hybrid zone between the red-legged partridge and rock partridge. Auk. 116(2):324-337.
    60. Randi E, Meriggi A, Lorenzini R. Fusco G and Alkon PU. 1992. Biochemical analysis of relationships of Mediterranean Alectoris partridge. Auk. 102:358-367.
    61. Randi E. 1996 A mitochondrial cytochrome b phylogeny of the Alectoris partridges. Molecular Phylogenetic Evolution, 6(2) :214-27.
    62. Randi, E. and Lucchini V. (1998). Organization and evolution of the mitochondrial DNA control region in the avian genus Alectoris. J Mol Evol, 47(4): 449-62.
    63. Randi, E., C.Tabarroni, S.Rimondi, V.Lacchini, and A. Sfougaris. 2003. Phylogeography of the rock partridge (Alectoris graeca). Molecular Ecology. 12:2201-2214.
    64. Ryder OA. 1986. Species conservation and systematics: the dilemma of subspecies . Trends in Ecology and Evolution, 1:9-10.
    65. Smith JM and Smith NH. 2002. Recombination in animal mitochondrial DNA. Mol. Biol. Evol., 19:2330-2332.
    66. Soule ME and Hillis LS. 1998. No need to isolate genetics. Science. 282:1658-1659.
    67.Wayne R.1996,Conservation genetics.World Conservation,1:15-17.
    68.Wenink P W,Baker A J,Tilanus M G J.1993.Hypervariable control-region sequence reveal global population structuring in a long-distance migrant shorebird,the dunlin(Calidris alpina).Proc Natl Acad Sci USA,90:94-98.
    69.Wenink P W,Baker A J,Tilanus M G J.1996.Global mitochondrial DNA phylogeography of holarctic breeding dunlins(Calidris alpina).Evolution,50:318-330.
    70.Zhang DX and Hewitt GM.1996.Nuclear integrations:challenges for mitochondrial DNA markers.Trends in Ecology and Evolution,11:247-251.
    71.卞进步,李新.2005.雉类生存现状及其保护.中国家禽.27(18):53-56.
    72.曹兴山.1996.甘肃第四纪气候期划分.干旱区研究.13(3):28-40.
    73.常青,周开亚.1998.分子进化研究中系统发生树的重建.生物多样性,6(1):55-62.
    74.陈发虎,张维信.1993.甘青地区的黄土地层学与第四纪冰川问题.北京:科学出版社,128-129.
    75.葛颂,洪德元.遗传多样性及其检测方法.见:钱迎倩,马克平(主编),生物多样性研究的原理与方法.北京:中国科学技术出版社,123-140.
    76.葛颂.1997.遗传多样性.见:蒋志刚,马克平和韩兴国编.保护生物学.杭州:浙江科学技术出版社.
    77.侯连海.1987,江苏泗洪下草湾中中新世脊椎动物群-6.鸟纲[J].古脊椎动物学报,25(1):57-68.
    78.侯连海.1993.周口店更新世鸟类.中国科学院古脊椎动物与古人类研究所集刊.北京:科学出版社,165-249.
    79.侯连海.2003.中国古鸟类.昆明:云南科技出版社.
    80.胡志昂,王洪新.1998.分子生态学研究进展.生态学报,18(6):565-574.
    81.胡志昂,张亚平.1997.中国动植物的遗传多样性.杭州:浙江科学技术出版社.
    82.黄万波,方其仁.1991.巫山猿人遗址.北京:海洋出版社.
    83.黄族豪,刘迺发,周天林.2003.陇东黄土高原石鸡的遗传多样性与保护.生物多样性,11(6):454-460.
    84.黄族豪,刘迺发.2004.陇东黄土高原石鸡的分子系统地理结构.动物学报,50(4):576-582.
    85.蒋志刚,马克平和韩兴国编.保护生物学.杭州:浙江科学技术出版社.
    86.李庆伟,马飞.2007.鸟类分子进化与分子系统学.北京:科学出版社.
    87.刘迺发.1995.甘肃鸡类资源及评价.自然资源学报,10(1):67-72.
    88.刘迺发,黄族豪,周天林.2003.石鸡线粒体DNA的种群遗传变异分析.见:颜重威编.海峡两岸鸟类学术研讨会论文集.台北:国立自然科学博物馆,275-280.
    89.刘迺发,孙红英.1992.雉鸡甘肃亚种的地理变异及分类研究.兰州大学学报(自然科学版),28(2):135-139.
    90.刘迺发,王香亭.1986.雉鸡阿拉善亚种确立与否的讨论.动物学报,32(3):299-300.
    91.刘迺发.1984.甘肃雉鸡亚种分化及地理变异.野生动物,2:6-9.
    92.马敬能,菲利普斯.2000.中国鸟类野外手册.长沙:湖南教育出版社.
    93.孙儒泳.2001.动物生态学原理(第3版).北京:北京师范大学出版社.
    94.汪永庆,张知彬,徐来祥.2001中心区和边缘区大仓鼠种群的遗传多样性.科学通报,46(19):1644-1650.
    95.王继文.2004.动物线粒体假基因的识别及其在进化生物学中的应用.动物学杂志,39(3):103-108.
    96.王文.分子系统学在生物保护中的意义.生物多样性.1998,6(2):138-142.
    97.王香亭.1991.甘肃脊椎动物志.甘肃科学技术出版社.387-395.
    98.卫明,侯鹏,黄族豪和刘迺发.2002.环境因子对大石鸡种群遗传结构的影响.生态学报,22(4):528-534.
    99.张芳,米志勇.1998.动物线粒体DNA的分子生物学研究进展.生物工程进展.18(3):25-31.
    100.张亚平,施立明.1992.动物线粒体DNA多态性的研究概况.动物学研究.13(3):289-298.
    101.张亚平,施立明.1992.两种锦鸡和环颈雉mtDNA的比较研究.动物学研究,12(4):387-392.
    102.郑光美.2002.世界鸟类与分布名录.北京:科学出版社.
    103.郑作新.1978.中国动物志鸟纲第四卷—鸡形目.北京:科学出版社.
    104.郑作新.2000.中国鸟类种和亚种分类名录大全.北京:科学出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700