用户名: 密码: 验证码:
溶液加工有机半导体光电器件的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机发光二极管(organic light-emitting diode,OLED)与CRT为代表的第一代显示器和以LCD为代表的第二代显示器相比,具有自主发光、重量轻、厚度薄、无视角、能耗低、响应速度快、耐高低温、柔性可弯曲等优点,近年来受到人们的广泛青睐,被认为是最理想和最有潜力的下一代平板显示技术。
     根据发光材料分子量的不同,OLED显示屏可以分为小分子材料显示屏(SMOLED)和聚合物材料显示屏(PLED)。SMOLED起步早,但由于需要昂贵的真空蒸镀设备和高精度的掩膜设备和对位系统,市场成本相对较高。PLED结构简单,在常压下通过各种湿法制备技术即可成膜,不需要昂贵的真空设备,可实现低价格,适用于大型玻璃基板,生产效率高,具有良好的发展前景。
     目前,实现OLED全彩化的技术有真空蒸镀掩膜法、喷墨打印技术、激光转移技术、色转换法和彩膜法等。喷墨打印具有图案与文字制作能力、可制作大面积器件、大量节省材料,适用于柔性和玻璃基板、对基板缺陷不敏感、光色均匀等优点,是未来实现PLED全彩化的主流方法。在喷墨打印PLED全彩显示屏的过程中,可打印墨水的调制、液滴的调控、薄膜均匀性及器件结构优化等是制备高性能显示屏的关键。我们采用hybridinkjet printing(HIJP)技术,先在PEDOT层上旋涂一薄层蓝光材料,接着分别喷墨打印红光和绿光材料,得到致密、均匀、针孔少的发光层薄膜,通过有效的能量转移,最后实现了RBG三基色的有效发射。其次,通过往红光材料PFO-DHTBT中掺入少量的P-PPV,有效提高了红光的亮度和效率;另外,通过选用分子量相对较小的P-PPV批次材料,调节出稳定的液滴。通过对相关问题的解决,我们成功制备了1.5英寸无缺陷的聚合物全彩显示屏。
     太阳能具有清洁环保、无污染、利用价值高、干净、无公害等特点,是一种取之不尽、用之不竭的理想新能源。太阳电池就是通过光电转换技术把太阳光中的能量转化为电能的。因为有机太阳电池的原料来源广泛且价格便宜、加工性能好、可进行物理改性、电池制作多样化、轻薄和可弯曲等显著优点,致使有机太阳电池尤其是聚合物太阳电池有望成为硅基无机半导体的替代品,并成为国内外研究的热点。
     Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS)作为空穴传输层在有机光伏器件中得到广泛应用,从而获得高的能量转换效率。但是通常使用的PEDOT(AI4083)具有一定的酸性,会腐蚀ITO,从而降低器件的能量转换效率及稳定性。我们采用pH值中性的PEDOT取代酸性PEDOT制备聚合物太阳电池。通过对中性PEDOT薄膜进行简单的表面处理,使得处理后的中性PEDOT器件的效率比未处理的中性PEDOT器件效率提高了一倍多,且稍高于酸性PEDOT器件的效率。同时通过X射线光电子能谱测试分析发现,不论是在空气中存放一段时间的酸性PEDOT样品,还是同样条件下存放的以酸性PEDOT薄膜为基底的活性层样品,它们的样品表面均可探测到In元素。而在相应的中性PEDOT样品和活性层样品中,均未检测到In的存在,这说明中性PEDOT有效抑制了In对空穴传输层和活性层的扩散。最后,与酸性PEDOT器件相比,中性PEDOT器件的寿命提高了一倍多。
Organic light-emitting diode (OLED for short), compared to the first generation displayrepresented with the CRT and the second generation display represented by LCD, with selflight-emission, light weight, thin form factor, wide view-angle, low energy consumption, fastresponse, wide operation temperature, flexibility, etc, has been widely favored in recent years,is considered to be the most ideal and the most promising next generation flat panel displaytechnology.
     According to different luminescent material molecular weight, OLED display can bedivided into small molecule materials display (SMOLED) and polymer materials display(PLED). SMOLED started early, but due to the need for expensive vacuum evaporationequipment and high precision mask and registration system, the cost is relatively high. PLEDhas simple structure, forming film under the normal pressure by a variety of wet preparationtechnologys, do not need for expensive vacuum equipment. Moreover, it is suitable for largeglass substrate, realizing low price and having high production efficiency, has gooddevelopment prospect.
     At present, the realization of full color OLED technologys are vacuum evaporation maskmethod, ink-jet printing technology, laser transfer technology, color conversion method andcolor film method, etc. Ink-jet printing has many advantages, such as the design and textproduction capacity and large devices production, saving a large number of materials, suitablefor the flexible and glass substrates, not sensitive to substrate defects, light color uniform, etc.,it is the mainstream method to realizing the full-colored PLED. In the process of ink-jetprinting PLED full-color displays, printing ink modulation, regulation of the droplet, filmuniformity and optimization of device structure are the key to the preparation of highperformance display. We use hybrid inkjet printing (HIJP) technology to prapare the ink-jetprinting PLED full-color display. A thin blue emitting layer is spun on the PEDOT layerfirstly, red emitting and green emitting materials are ink-jetted into the related pixelsrespectively, and compact, uniform and pinhole less emitting layer films can be obtained.Then through effective energy transfer, the effective emitting of RBG are finally realized.Secondly, by blending the red emitting material–PFO-DHTBT with a small amount of P-PPV, the brightness and efficiency of the red emitting are improved effectively. In addition,by choosing a relatively small molecular weight of P-PPV material, the stable droplet can beobtained. By solving the related issues, we successfully made a1.5-inch PLED full-colordisplays without defects.
     Solar energy is environmental, no pollution, high use value, clean, pollution-free. It is aninexhaustible, inexhaustible ideal new energy. Solar cell uses the photoelectric conversiontechnology to convert the solar energy into electricity. Because of its abroad material sourcesand cheap price, good processability, physical modification, diversification of the battery’sprocessing, thin and flexible etc, organic solar cell, especially polymer solar cell, is analternative to silicon-based inorganic semiconductor, and become the focus of research athome and abroad.
     Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS) is widely usedin organic photovoltaic device as the hole transport layer, so as to obtain high energyconversion efficiency. But the noamal PEDOT (AI4083) is acidic, and it will etch ITO, thenreduce energy conversion efficiency and stability of device. We adopt pH neutral PEDOTreplace acid PEDOT to make polymer solar cell devices. By applied some simple processingson the surface of a neutral PEDOT film, the efficiency of the neutral PEDOT device afterprocessings is more than doubled compared to the untreated neutral PEDOT device, and isslightly higher than the efficiency of the acid PEDOT device. By X-ray photoelectronspectroscopy analysis, whether the acidic PEDOT samples which are stored in the air forsome days, or the active layer samples which use the acidic PEDOT as substrate and werestored in the same conditions, In element could be detected in the surfaces of two typesamples. And in corresponding neutral PEDOT samples and active layer samples, In elementwere not detected, it is illustrated that the neutal PEDOT can restrain the diffusion of Inelement into the hole transport layer and the active layer effectively, the lifetime of the neutralPEDOT device is more than doubled compared with the acidic PEDOT device.
引文
[1]黄春辉,李富友,黄维.有机电致发光材料与器件导论[M]复旦大学出版社:上海,2005.
    [2] Pope, M.; Kallmann, H. P.; Magnante, P. Electroluminescence in Organic Crystals [J]. J.Chem. Phys.1963,38(8),2042.
    [3] Tang, C. W.; VanSlyke, S. A. Organic electroluminescent diodes [J]. Appl. Phys. Lett.1987,51(12),913.
    [4] Adachi, C.; Tokito, S.; Tsutsui, T.; Saito, S. Electroluminescence in organic films withthree-layer structure [J]. Jpn. J. Appl. Phys.2, Lett.1988,27(2), L269-L271.
    [5] Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R.H.; Burns, P. L.; Holmes, A. B. Light-emitting diodes based on conjugated polymers [J].Nature1990,347(6293),539-541.
    [6] Braun, D.; Heeger, A. J. Electroluminescence from light-emitting diodes fabricated fromconducting polymers [J]. Thin Solid Films1992,216(1),96-98.
    [7] Gustafsson, G.; Cao, Y.; Treacy, G. M.; Klavetter, F.; Colaneri, N.; Heeger, A. J. Flexiblelight-emitting diodes made from soluble conducting polymers [J]. Nature1992,357(6378),477-479.
    [8] Sun, Y. R.; Giebink, N. C.; Kanno, H.; Ma, B. W.; Thompson, M. E.; Forrest, S. R.Management of singlet and triplet excitons for efficient white organic light-emitting devices[J]. Nature2006,440(7086),908-912.
    [9] Pfeiffer, M.; Forrest, S. R.; Leo, K.; Thompson, M. E. Electrophosphorescent p-i-n organiclight-emitting devices for very-high-efficiency flat-panel displays [J]. Adv. Mater.2002,14(22),1633-1636.
    [10] Sheats, J. R.; Antoniadis, H.; Hueschen, M.; Leonard, W.; Miller, J.; Moon, R.; Roitman,D.; Stocking, A. Organic electroluminescent devices [J]. Science1996,273(5277),884-888.
    [11] Burrows, P. E.; Forrest, S. R. Electroluminescence from trap-limited current transport invacuum deposited organic light emitting devices [J]. Appl. Phys. Lett.1994,64(17),2285-2287.
    [12] Karg, S.; Meier, M.; Riess, W. Light-emitting diodes based onpoly-p-phenylene-vinylene.1. Charge-carrier injection and transport [J]. J. Appl. Phys.1997,82(4),1951-1960.
    [13] Munn, R. W.; Siebrand, W. Sign of the Hall effect for hopping transport in molecularcrystals [J]. Phys. Rev. B, Solid State1970,2(8),3435-3437.
    [14] Parker, I. D. Carrier tunneling and device characteristics in polymer light-emitting diodes[J]. J. Appl. Phys.1994,75(3),1656-1666.
    [15] Chen, B. J.; Lee, C. S.; Lee, S. T.; Webb, P.; Chan, Y. C.; Gambling, W.; Tian, H.; Zhu, W.H. Improved time-of-flight technique for measuring carrier mobility in thin films of organicelectroluminescent materials [J]. Jpn. J. Appl. Phys. Part1-Regul. Pap. Short Notes Rev. Pap.2000,39(3A),1190-1192.
    [16] Brian W., D. A. White Organic Light Emitting Devices.[D]The faculty of princetonuniversity in candidacy,2004.
    [17] Chan, H. S. O.; Ng, S. C. Synthesis, characterization and applications of thiophene-basedfunctional polymers [J]. Prog. Polym. Sci.1998,23(7),1167-1231.
    [18] Akcelrud, L. Electroluminescent polymers [J]. Prog. Polym. Sci.2003,28(6),875-962.
    [19] Ohmori, Y.; Uchida, M.; Muro, K.; Yoshino, K. Visible-light electroluminescent diodesutilizing poly(3-alkylthiophene)[J]. Jpn. J. Appl. Phys.2, Lett.1991,30(11B), L1938-L1940.
    [20] Granstrom, M.; Inganas, O. White light emission from a polymer blend light emittingdiode [J]. Appl. Phys. Lett.1996,68(2),147-149.
    [21] Thelakkat, M. Star-shaped, dendrimeric and polymeric triarylamines as photoconductorsand hole transport materials for electro-optical applications [J]. Macromol. Mater. Eng.2002,287(7),442-461.
    [22] Strohriegl, P.; Grazulevicius, J. V. Charge-transporting molecular glasses [J]. Adv. Mater.2002,14(20),1439-+.
    [23] Kulkarni, A. P.; Tonzola, C. J.; Babel, A.; Jenekhe, S. A. Electron transport materials fororganic light-emitting diodes [J]. Chem. Mat.2004,16(23),4556-4573.
    [24] Hughes, G.; Bryce, M. R. Electron-transporting materials for organic electroluminescentand electrophosphorescent devices [J]. J. Mater. Chem.2005,15(1),94.
    [25] Milliron, D. J.; Hill, I. G.; Shen, C.; Kahn, A.; Schwartz, J. Surface oxidation activatesindium tin oxide for hole injection [J]. J. Appl. Phys.2000,87(1),572.
    [26] Moon, J.-M.; Bae, J.-H.; Jeong, J.-A.; Jeong, S.-W.; Park, N.-J.; Kim, H.-K.; Kang, J.-W.;Kim, J.-J.; Yi, M.-S. Enhancement of hole injection using ozone treated Ag nanodotsdispersed on indium tin oxide anode for organic light emitting diodes [J]. Appl. Phys. Lett.2007,90(16),163516.
    [27] Lo, M. F.; Ng, T. W.; Lai, S. L.; Fung, M. K.; Lee, S. T.; Lee, C. S. Stability enhancementin organic photovoltaic device by using polymerized fluorocarbon anode buffer layer [J].Appl. Phys. Lett.2011,99(3),033302.
    [28] Lo, M.-F.; Ng, T.-W.; Mo, H.-W.; Lee, C.-S. Direct Threat of a UV-Ozone TreatedIndium-Tin-Oxide Substrate to the Stabilities of Common Organic Semiconductors [J]. Adv.Funct. Mater.2013,23(13),1718-1723.
    [29]陈金鑫,黄孝文. OLED有机电致发光材料与器件[M]清华大学出版社:北京,2007.
    [30] Zhou, J.; Ai, N.; Wang, L.; Zheng, H.; Luo, C.; Jiang, Z.; Yu, S.; Cao, Y.; Wang, J.Roughening the white OLED substrate’s surface through sandblasting to improve the externalquantum efficiency [J]. Org. Electron.2011,12(4),648-653.
    [31] Xu, Y.; Liang, B.; Peng, J.; Niu, Q.; Huang, W.; Wang, J. Efficient red phosphorescencepolymer light-emitting diodes with dual function polymer [J]. Org. Electron.2007,8(5),535-539.
    [32] Zhou, Y.; Ding, L.; Shi, K.; Dai, Y. Z.; Ai, N.; Wang, J.; Pei, J. A non-fullerene smallmolecule as efficient electron acceptor in organic bulk heterojunction solar cells [J]. AdvMater2012,24(7),957-61.
    [33] Meng, Y.; Hu, Z.; Ai, N.; Jiang, Z.; Wang, J.; Peng, J.; Cao, Y. Improving the Stability ofBulk Heterojunction Solar Cells by Incorporating pH-Neutral PEDOT:PSS as the HoleTransport Layer [J]. ACS Appl Mater Interfaces2014.
    [34] Elschner, A.; Bruder, F.; Heuer, H. W.; Jonas, F.; Karbach, A.; Kirchmeyer, S.; Thurm, S.PEDT/PSS for efficient hole-injection in hybrid organic light-emitting diodes [J]. Synth. Met.2000,111,139-143.
    [35] Brown, T. M.; Kim, J. S.; Friend, R. H.; Cacialli, F.; Daik, R.; Feast, W. J. Built-in fieldelectroabsorption spectroscopy of polymer light-emitting diodes incorporating a dopedpoly(3,4-ethylene dioxythiophene) hole injection layer [J]. Appl. Phys. Lett.1999,75(12),1679.
    [36] Olivier, J.; Servet, B.; Vergnolle, M.; Mosca, M.; Garry, G. Stability/instability ofconductivity and work function changes of ITO thin films, UV-irradiated in air or vacuum-Measurements by the four-probe method and by Kelvin force microscopy [J]. Synth. Met.2001,122(1),87-89.
    [37] Schlatmann, A. R.; Floet, D. W.; Hilberer, A.; Garten, F.; Smulders, P. J. M.; Klapwijk, T.M.; Hadziioannou, G. Indium contamination from the indium–tin–oxide electrode in polymerlight-emitting diodes [J]. Appl. Phys. Lett.1996,69(12),1764.
    [38] de Jong, M. P.; van Ijzendoorn, L. J.; de Voigt, M. J. A. Stability of the interface betweenindium-tin-oxide and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) in polymerlight-emitting diodes [J]. Appl. Phys. Lett.2000,77(14),2255.
    [39] Jorgensen, M.; Norrman, K.; Gevorgyan, S. A.; Tromholt, T.; Andreasen, B.; Krebs, F. C.Stability of polymer solar cells [J]. Adv Mater2012,24(5),580-612.
    [40] Mitschke, U.; Bauerle, P. The electroluminescence of organic materials [J]. J. Mater.Chem.2000,10(7),1471-1507.
    [41] Do, L. M.; Oyamada, M.; Koike, A.; Han, E. M.; Yamamoto, N.; Fujihira, M.Morphological change in the degradation of Al electrode surfaces of electroluminescentdevices by fluorescence microscopy and AFM [J]. Thin Solid Films1996,273(1-2),209-213.
    [42] Burrows, P. E.; Bulovic, V.; Forrest, S. R.; Sapochak, L. S.; McCarty, D. M.; Thompson,M. E. Reliability and degradation of organic light emitting devices [J]. Appl. Phys. Lett.1994,65(23),2922.
    [43] Lim, S. F.; Ke, L.; Wang, W.; Chua, S. J. Correlation between dark spot growth andpinhole size in organic light-emitting diodes [J]. Appl. Phys. Lett.2001,78(15),2116.
    [44] Sheats, J. R.; Roitman, D. B. Failure modes in polymer-based light-emitting diodes [J].Synth. Met.1998,95(2),79-85.
    [45] Nguyen, T. P.; Jolinat, P.; Destruel, P.; Clergereaux, R.; Farenc, J. Degradation in organiclight-emitting diodes [J]. Thin Solid Films1998,325(1-2),175-180.
    [46] Hebner, T. R.; Wu, C. C.; Marcy, D.; Lu, M. H.; Sturm, J. C. Ink-jet printing of dopedpolymers for organic light emitting devices [J]. Appl. Phys. Lett.1998,72(5),519.
    [47] Chang, S. C.; Liu, J.; Bharathan, J.; Yang, Y.; Onohara, J.; Kido, J. Multicolor organiclight-emitting diodes processed by hybrid inkjet printing [J]. Adv. Mater.1999,11(9),734-737.
    [48] Pschenitzka, F.; Sturm, J. C. Three-color organic light-emitting diodes patterned bymasked dye diffusion [J]. Appl. Phys. Lett.1999,74(13),1913.
    [49] Pardo, D. A.; Jabbour, G. E.; Peyghambarian, N. Application of screen printing in thefabrication of organic light-emitting devices [J]. Adv. Mater.2000,12(17),1249-+.
    [50]王丽娟.平板显示技术基础[M]北京大学出版社:北京,2013.
    [51] Muller, C. D.; Falcou, A.; Reckefuss, N.; Rojahn, M.; Wiederhirn, V.; Rudati, P.; Frohne,H.; Nuyken, O.; Becker, H.; Meerholz, K. Multi-colour organic light-emitting displays bysolution processing [J]. Nature2003,421(6925),829-833.
    [52] Zheng, H.; Zheng, Y.; Liu, N.; Ai, N.; Wang, Q.; Wu, S.; Zhou, J.; Hu, D.; Yu, S.; Han, S.;Xu, W.; Luo, C.; Meng, Y.; Jiang, Z.; Chen, Y.; Li, D.; Huang, F.; Wang, J.; Peng, J.; Cao, Y.All-solution processed polymer light-emitting diode displays [J]. Nat Commun2013,4,1971.
    [53] Niu, Q.; Shao, Y.; Xu, W.; Wang, L.; Han, S.; Liu, N.; Peng, J.; Cao, Y.; Wang, J. Fullcolor and monochrome passive-matrix polymer light-emitting diodes flat panel displays madewith solution processes [J]. Org. Electron.2008,9(1),95-100.
    [54] Eom, S. H.; Park, H.; Mujawar, S. H.; Yoon, S. C.; Kim, S.-S.; Na, S.-I.; Kang, S.-J.;Khim, D.; Kim, D.-Y.; Lee, S.-H. High efficiency polymer solar cells via sequentialinkjet-printing of PEDOT:PSS and P3HT:PCBM inks with additives [J]. Org. Electron.2010,11(9),1516-1522.
    [55] Hoth, C. N.; Schilinsky, P.; Choulis, S. A.; Brabec, C. J. Printing highly efficient organicsolar cells [J]. Nano Lett.2008,8(9),2806-2813.
    [56] Kawase, T.; Shimoda, T.; Newsome, C.; Sirringhaus, H.; Friend, R. H. Inkjet printing ofpolymer thin film transistors [J]. Thin Solid Films2003,438-439,279-287.
    [57] Lee, J.; Kim do, H.; Kim, J. Y.; Yoo, B.; Chung, J. W.; Park, J. I.; Lee, B. L.; Jung, J. Y.;Park, J. S.; Koo, B.; Im, S.; Kim, J. W.; Song, B.; Jung, M. H.; Jang, J. E.; Jin, Y. W.; Lee, S. Y.Reliable and uniform thin-film transistor arrays based on inkjet-printed polymersemiconductors for full color reflective displays [J]. Adv Mater2013,25(41),5886-92.
    [58] Jang, J.; Ha, J.; Cho, J. Fabrication of Water-DispersiblePolyaniline-Poly(4-styrenesulfonate) Nanoparticles For Inkjet-Printed Chemical-SensorApplications [J]. Adv. Mater.2007,19(13),1772-1775.
    [59] in het Panhuis, M.; Heurtematte, A.; Small, W. R.; Paunov, V. N. Inkjet printed watersensitive transparent films from natural gum?carbon nanotube composites [J]. Soft Matter2007,3(7),840.
    [60] B berl, M.; Kovalenko, M. V.; Gamerith, S.; List, E. J. W.; Heiss, W. Inkjet-PrintedNanocrystal Photodetectors Operating up to3μm Wavelengths [J]. Adv. Mater.2007,19(21),3574-3578.
    [61] Haverinen, H. M.; Myllyla, R. A.; Jabbour, G. E. Inkjet Printed RGB QuantumDot-Hybrid LED [J]. J. Disp. Technol.2010,6(3),87-89.
    [62] Wood, V.; Panzer, M. J.; Chen, J.; Bradley, M. S.; Halpert, J. E.; Bawendi, M. G.;Bulovic, V. Inkjet-Printed Quantum Dot-Polymer Composites for Full-ColorAC-DrivenDisplays [J]. Adv. Mater.2009,21(21),2151-2155.
    [63] Torrisi, F.; Hasan, T.; Wu, W. P.; Sun, Z. P.; Lombardo, A.; Kulmala, T. S.; Hsieh, G. W.;Jung, S. J.; Bonaccorso, F.; Paul, P. J.; Chu, D. P.; Ferrari, A. C. Inkjet-Printed GrapheneElectronics [J]. ACS Nano2012,6(4),2992-3006.
    [64] Shin, K. Y.; Hong, J. Y.; Jang, J. Micropatterning of graphene sheets by inkjet printingand its wideband dipole-antenna application [J]. Adv Mater2011,23(18),2113-8.
    [65] Ezzeldin, M.; van den Bosch, P. P. J.; Weiland, S. Toward Better Printing Quality for aDrop-on-Demand Ink-Jet Printer: Improving Performance by Minimizing Variations in DropProperties [J]. IEEE Control Syst.2013,33(1),42-60.
    [66] Bharathan, J.; Yang, Y. Polymer electroluminescent devices processed by inkjet printing:I. Polymer light-emitting logo [J]. Appl. Phys. Lett.1998,72(21),2660.
    [67] Chang, S.-C.; Bharathan, J.; Yang, Y.; Helgeson, R.; Wudl, F.; Ramey, M. B.; Reynolds, J.R. Dual-color polymer light-emitting pixels processed by hybrid inkjet printing [J]. Appl.Phys. Lett.1998,73(18),2561.
    [68] Tekin, E.; de Gans, B.-J.; Schubert, U. S. Ink-jet printing of polymers? from single dotsto thin film libraries [J]. J. Mater. Chem.2004,14(17),2627.
    [69] Tekin, E.; Smith, P. J.; Schubert, U. S. Inkjet printing as a deposition and patterning toolfor polymers and inorganic particles [J]. Soft Matter2008,4(4),703.
    [70] Ze Liu, G. W., Hongjun Xie, Zhongyuan Wu, Yanzhao Li, Chunsheng Jiang, Jingwen Yin,Fei Yang, Danna Song, Guangcai Yuan, Li Sun, Wenjun Hou, Qing Dai, Huifeng Wang.Ink-jetPrinted17-inch AMOLED Display with Amorphous IGZO TFTs Backplane [A]. SIDSymposium Digest46[C]. Vancouver, Canada: Society for Information Display,2013:634-636.
    [71] Chih-Lei Chen, Y.-C. C., Chien-Chuan Chen, Peng-Yu Chen, Chia-Hwa Lee, Ling-ICheng, LunTsai, Hung-Che Ting, Li-Fong Lin, Chih-Cheng Chen, Tsung-Hsiang Shih,Chia-Yu Chen, Lee-Hsun Chang, Yusin Lin.Inkjet Printed AMOLED Displays Based on HighMobility IGZO TFTs Cost Does Matter![A]. SID Symposium Digest55[C]. Vancouver,Canada: Society for Information Display,2013:760-762.
    [72]刘南柳,艾娜,胡典钢,余树福,彭俊彪,曹镛,王坚.旋涂方式对有机发光显示屏发光均匀及性能的影响[J].物理学报2011,60(8),087805.
    [73] Li, Y.; Wu, H.; Zou, J.; Ying, L.; Yang, W.; Cao, Y. Enhancement of spectral stability andefficiency on blue light-emitters via introducing dibenzothiophene-S,S-dioxide isomers intopolyfluorene backbone [J]. Org. Electron.2009,10(5),901-909.
    [74] Hou, Q.; Zhou, Q. M.; Zhang, Y.; Yang, W.; Yang, R. Q.; Cao, Y. Synthesis andelectroluminescent properties of high-efficiency saturated red emitter based on copolymersfrom fluorene and4,7-di(4-hexylthien-2-yl)-2,1,3-benzothiadiazole [J]. Macromolecules2004,37(17),6299-6305.
    [75] Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W. Solar cell efficiency tables (version37)[J]. Prog. Photovoltaics Res. Appl.2011,19(1),84-92.
    [76] Coakley, K. M.; McGehee, M. D. Conjugated polymer photovoltaic cells [J]. Chem. Mat.2004,16(23),4533-4542.
    [77] Chapin, D. M.; Fuller, C. S.; Pearson, G. L. A New Silicon p-n Junction Photocell forConverting Solar Radiation into Electrical Power [J]. J. Appl. Phys.1954,25(5),676.
    [78] Kallmann, H.; Pope, M. Photovoltaic Effect in Organic Crystals [J]. J. Chem. Phys.1959,30(2),585-586.
    [79] Ghosh, A. K.; Morel, D. L.; Feng, T.; Shaw, R. F.; Rowe, C. A. Photovoltaic andrectification properties of Al∕Mg phthalocyanine∕Ag Schottky-barrier cells [J]. J. Appl.Phys.1974,45(1),230.
    [80] Tang, C. W. Two-layer organic photovoltaic cell [J]. Appl. Phys. Lett.1986,48(2),183.
    [81] Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Polymer photovoltaic cells:enhanced efficiencies via a network of internal donor-acceptor heterojunctions [J]. Science1995,270(5243),1789-1791.
    [82] Smilowitz, L.; Sariciftci, N.; Wu, R.; Gettinger, C.; Heeger, A.; Wudl, F. Photoexcitationspectroscopy of conducting-polymer–C60composites: Photoinduced electron transfer [J].Phys. Rev. B1993,47(20),13835-13842.
    [83] Wei, X.; Vardeny, Z. V.; Sariciftci, N. S.; Heeger, A. J. Absorption-detectedmagnetic-resonance studies of photoexcitations in conjugated-polymer/C60composites [J].Phys. Rev. B, Condens. Matter1996,53(5),2187-2190.
    [84] Clarke, T. M.; Durrant, J. R. Charge Photogeneration in Organic Solar Cells [J]. Chem.Rev.2010,110(11),6736-6767.
    [85] Smith, M. B.; Michl, J. Singlet Fission [J]. Chem. Rev.2010,110(11),6891-6936.
    [86] Faist, M. A.; Kirchartz, T.; Gong, W.; Ashraf, R. S.; McCulloch, I.; de Mello, J. C.;Ekins-Daukes, N. J.; Bradley, D. D.; Nelson, J. Competition between the charge transfer stateand the singlet states of donor or acceptor limiting the efficiency in polymer:fullerene solarcells [J]. J Am Chem Soc2012,134(1),685-92.
    [87] Cheng, Y. J.; Yang, S. H.; Hsu, C. S. Synthesis of Conjugated Polymers for Organic SolarCell Applications [J]. Chem. Rev.2009,109(11),5868-5923.
    [88] Liang, Y. Y.; Yu, L. P. A New Class of Semiconducting Polymers for Bulk HeterojunctionSolar Cells with Exceptionally High Performance [J]. Acc. Chem. Res.2010,43(9),1227-1236.
    [89] Boudreault, P.-L. T.; Najari, A.; Leclerc, M. Processable Low-Bandgap Polymers forPhotovoltaicApplications [J]. Chem. Mat.2011,23(3),456-469.
    [90] Li, Y. F. Molecular Design of Photovoltaic Materials for Polymer Solar Cells: TowardSuitable Electronic Energy Levels and Broad Absorption [J]. Acc. Chem. Res.2012,45(5),723-733.
    [91] Li, G.; Yao, Y.; Yang, H.; Shrotriya, V.; Yang, G.; Yang, Y.―SolventAnnealing‖Effect inPolymer Solar Cells Based on Poly(3-hexylthiophene) and Methanofullerenes [J]. Adv. Funct.Mater.2007,17(10),1636-1644.
    [92] Beaujuge, P. M.; Fréchet, J. M. J. Molecular Design and Ordering Effects in π-FunctionalMaterials for Transistor and Solar Cell Applications [J]. J. Am. Chem. Soc.2011,133(50),20009-20029.
    [93] Peet, J.; Kim, J. Y.; Coates, N. E.; Ma, W. L.; Moses, D.; Heeger, A. J.; Bazan, G. C.Efficiency enhancement in low-bandgap polymer solar cells by processing with alkanedithiols [J]. Nature Materials2007,6(7),497-500.
    [94] Li, G.; Chu, C. W.; Shrotriya, V.; Huang, J.; Yang, Y. Efficient inverted polymer solarcells [J]. Appl. Phys. Lett.2006,88(25),253503.
    [95] He, Z.; Zhong, C.; Huang, X.; Wong, W. Y.; Wu, H.; Chen, L.; Su, S.; Cao, Y.Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fillfactor in polymer solar cells [J]. Adv Mater2011,23(40),4636-43.
    [96] Kim, J. Y.; Lee, K.; Coates, N. E.; Moses, D.; Nguyen, T.-Q.; Dante, M.; Heeger, A. J.Efficient tandem polymer solar cells fabricated by all-solution processing [J]. Science2007,317(5835),222-225.
    [97] Yuan, Y.; Reece, T. J.; Sharma, P.; Poddar, S.; Ducharme, S.; Gruverman, A.; Yang, Y.;Huang, J. Efficiency enhancement in organic solar cells with ferroelectric polymers [J].Nature Materials2011,10(4),296-302.
    [98] He, Z.; Zhong, C.; Su, S.; Xu, M.; Wu, H.; Cao, Y. Enhanced power-conversionefficiency in polymer solar cells using an inverted device structure [J]. Nat. Photonics2012,6(9),593-597.
    [99] Dou, L.; You, J.; Yang, J.; Chen, C.-C.; He, Y.; Murase, S.; Moriarty, T.; Emery, K.; Li,G.; Yang, Y. Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer[J]. Nature Photonics2012,6(3),180-185.
    [100] You, J.; Dou, L.; Yoshimura, K.; Kato, T.; Ohya, K.; Moriarty, T.; Emery, K.; Chen,C.-C.; Gao, J.; Li, G.; Yang, Y. A polymer tandem solar cell with10.6%power conversionefficiency [J]. Nature Communications2013,4.
    [101] Xue, J.; Uchida, S.; Rand, B. P.; Forrest, S. R. Asymmetric tandem organic photovoltaiccells with hybrid planar-mixed molecular heterojunctions [J]. Appl. Phys. Lett.2004,85(23),5757.
    [102] Riede, M.; Uhrich, C.; Widmer, J.; Timmreck, R.; Wynands, D.; Schwartz, G.; Gnehr,W.-M.; Hildebrandt, D.; Weiss, A.; Hwang, J.; Sundarraj, S.; Erk, P.; Pfeiffer, M.; Leo, K.Efficient Organic Tandem Solar Cells based on Small Molecules [J]. Adv. Funct. Mater.2011,21(16),3019-3028.
    [103] Li, G.; Shrotriya, V.; Huang, J. S.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y.High-efficiency solution processable polymer photovoltaic cells by self-organization ofpolymer blends [J]. Nature Materials2005,4(11),864-868.
    [104] Ma, W. L.; Yang, C. Y.; Gong, X.; Lee, K.; Heeger, A. J. Thermally stable, efficientpolymer solar cells with nanoscale control of the interpenetrating network morphology [J].Adv. Funct. Mater.2005,15(10),1617-1622.
    [105] Kim, Y.; Cook, S.; Tuladhar, S. M.; Choulis, S. A.; Nelson, J.; Durrant, J. R.; Bradley, D.D. C.; Giles, M.; McCulloch, I.; Ha, C. S.; Ree, M. A strong regioregularity effect inself-organizing conjugated polymer films and high-efficiency polythiophene: fullerene solarcells [J]. Nature Materials2006,5(3),197-203.
    [106] Irwin, M. D.; Buchholz, B.; Hains, A. W.; Chang, R. P. H.; Marks, T. J. p-Typesemiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymerbulk-heterojunction solar cells [J]. Proceedings of the National Academy of Sciences of theUnited States of America2008,105(8),2783-2787.
    [107] Chang, C.-Y.; Wu, C.-E.; Chen, S.-Y.; Cui, C.; Cheng, Y.-J.; Hsu, C.-S.; Wang, Y.-L.; Li,Y. Enhanced Performance and Stability of a Polymer Solar Cell by Incorporation of VerticallyAligned, Cross-Linked Fullerene Nanorods [J]. Angewandte Chemie-International Edition2011,50(40),9386-9390.
    [108] Sun, Y.; Cui, C.; Wang, H.; Li, Y. Efficiency Enhancement of Polymer Solar CellsBased on Poly(3-hexylthiophene)/Indene-C70Bisadduct via Methylthiophene Additive [J].Advanced Energy Materials2011,1(6),1058-1061.
    [109] Guo, X.; Cui, C.; Zhang, M.; Huo, L.; Huang, Y.; Hou, J.; Li, Y. High efficiencypolymer solar cells based on poly(3-hexylthiophene)/indene-C-70bisadduct with solventadditive [J]. Energy&Environmental Science2012,5(7),7943-7949.
    [110] Liao, S.-H.; Li, Y.-L.; Jen, T.-H.; Cheng, Y.-S.; Chen, S.-A. Multiple Functionalities ofPolyfluorene Grafted with Metal Ion-Intercalated Crown Ether as an Electron Transport Layerfor Bulk-Heterojunction Polymer Solar Cells: Optical Interference, Hole Blocking, InterfacialDipole, and Electron Conduction [J]. Journal of the American Chemical Society2012,134(35),14271-14274.
    [111] Blouin, N.; Michaud, A.; Leclerc, M. A low-bandgap poly(2,7-carbazole) derivative foruse in high-performance solar cells [J]. Advanced Materials2007,19(17),2295-+.
    [112] Park, S. H.; Roy, A.; Beaupre, S.; Cho, S.; Coates, N.; Moon, J. S.; Moses, D.; Leclerc,M.; Lee, K.; Heeger, A. J. Bulk heterojunction solar cells with internal quantum efficiencyapproaching100%[J]. Nature Photonics2009,3(5),297-U5.
    [113] Beiley, Z. M.; Hoke, E. T.; Noriega, R.; Dacuna, J.; Burkhard, G. F.; Bartelt, J. A.;Salleo, A.; Toney, M. F.; McGehee, M. D. Morphology-Dependent Trap Formation in HighPerformance Polymer Bulk Heterojunction Solar Cells [J]. Advanced Energy Materials2011,1(5),954-962.
    [114] Zhu, Z.; Waller, D.; Gaudiana, R.; Morana, M.; Muehlbacher, D.; Scharber, M.; Brabec,C. Panchromatic conjugated polymers containing alternating donor/acceptor units forphotovoltaic applications [J]. Macromolecules2007,40(6),1981-1986.
    [115] Hou, J.; Chen, H.-Y.; Zhang, S.; Li, G.; Yang, Y. Synthesis, Characterization, andPhotovoltaic Properties of a Low Band Gap Polymer Based on Silole-ContainingPolythiophenes and2,1,3-Benzothiadiazole [J]. Journal of the American Chemical Society2008,130(48),16144-+.
    [116] Kim, F. S.; Guo, X.; Watson, M. D.; Jenekhe, S. A. High-mobility ambipolar transistorsand high-gain inverters from a donor-acceptor copolymer semiconductor [J]. Adv Mater2010,22(4),478-82.
    [117] Liang, Y.; Feng, D.; Wu, Y.; Tsai, S.-T.; Li, G.; Ray, C.; Yu, L. Highly Efficient SolarCell Polymers Developed via Fine-Tuning of Structural and Electronic Properties [J]. Journalof the American Chemical Society2009,131(22),7792-7799.
    [118] Liang, Y.; Xu, Z.; Xia, J.; Tsai, S.-T.; Wu, Y.; Li, G.; Ray, C.; Yu, L. For the BrightFuture-Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of7.4%[J]. Advanced Materials2010,22(20), E135-+.
    [119] Chen, H.-Y.; Hou, J.; Zhang, S.; Liang, Y.; Yang, G.; Yang, Y.; Yu, L.; Wu, Y.; Li, G.Polymer solar cells with enhanced open-circuit voltage and efficiency [J]. Nature Photonics2009,3(11),649-653.
    [120] He, Y.; Li, Y. Fullerene derivative acceptors for high performance polymer solar cells[J]. Physical Chemistry Chemical Physics2011,13(6),1970-1983.
    [121] Sonar, P.; Lim, J. P. F.; Chan, K. L. Organic non-fullerene acceptors for organicphotovoltaics [J]. Energy&Environmental Science2011,4(5),1558-1574.
    [122] Halls, J. J. M.; Walsh, C. A.; Greenham, N. C.; Marseglia, E. A.; Friend, R. H.; Moratti,S. C.; Holmes, A. B. Efficient photodiodes from interpenetrating polymer networks [J].Nature1995,376(6540),498-500.
    [123] Wienk, M. M.; Kroon, J. M.; Verhees, W. J. H.; Knol, J.; Hummelen, J. C.; van Hal, P.A.; Janssen, R. A. J. Efficient methano70fullerene/MDMO-PPV bulk heterojunctionphotovoltaic cells [J]. Angewandte Chemie-International Edition2003,42(29),3371-3375.
    [124] He, Y.; Chen, H.-Y.; Hou, J.; Li, Y. Indene-C-60Bisadduct: A New Acceptor forHigh-Performance Polymer Solar Cells [J]. Journal of the American Chemical Society2010,132(4),1377-1382.
    [125] Zhao, G.; He, Y.; Li, Y.6.5%Efficiency of Polymer Solar Cells Based onpoly(3-hexylthiophene) and Indene-C-60Bisadduct by Device Optimization [J]. AdvancedMaterials2010,22(39),4355-+.
    [126] Miller, N. C.; Sweetnam, S.; Hoke, E. T.; Gysel, R.; Miller, C. E.; Bartelt, J. A.; Xie, X.;Toney, M. F.; McGehee, M. D. Molecular Packing and Solar Cell Performance in Blends ofPolymers with a Bisadduct Fullerene [J]. Nano Letters2012,12(3),1566-1570.
    [127] He, Y.; You, J.; Dou, L.; Chen, C.-C.; Richard, E.; Cha, K. C.; Wu, Y.; Li, G.; Yang, Y.High performance low band gap polymer solar cells with a non-conventional acceptor [J].Chemical Communications2012,48(61),7616-7618.
    [128] Kawano, K.; Pacios, R.; Poplavskyy, D.; Nelson, J.; Bradley, D. D. C.; Durrant, J. R.Degradation of organic solar cells due to air exposure [J]. Sol. Energy Mater. Sol. Cells2006,90(20),3520-3530.
    [129] Xu, Z.; Chen, L.-M.; Yang, G.; Huang, C.-H.; Hou, J.; Wu, Y.; Li, G.; Hsu, C.-S.; Yang,Y. Vertical Phase Separation in Poly(3-hexylthiophene): Fullerene Derivative Blends and itsAdvantage for Inverted Structure Solar Cells [J]. Adv. Funct. Mater.2009,19(8),1227-1234.
    [130] Campoy-Quiles, M.; Ferenczi, T.; Agostinelli, T.; Etchegoin, P. G.; Kim, Y.;Anthopoulos, T. D.; Stavrinou, P. N.; Bradley, D. D. C.; Nelson, J. Morphology evolution viaself-organization and lateral and vertical diffusion in polymer: fullerene solar cell blends [J].Nat. Mater.2008,7(2),158-164.
    [131] Huang, J. S.; Li, G.; Yang, Y. A semi-transparent plastic solar cell fabricated by alamination process [J]. Adv. Mater.2008,20(3),415-+.
    [132] Peters, C. H.; Sachs-Quintana, I. T.; Kastrop, J. P.; Beaupre, S.; Leclerc, M.; McGehee,M. D. High Efficiency Polymer Solar Cells with Long Operating Lifetimes [J]. AdvancedEnergy Materials2011,1(4),491-494.
    [133] Dennler, G.; Lungenschmied, C.; Neugebauer, H.; Sariciftci, N. S.; Labouret, A.Flexible, conjugated polymer-fullerene-based bulk-heterojunction solar cells: Basics,encapsulation, and integration [J]. Journal of Materials Research2005,20(12),3224-3233.
    [134] Pacios, R.; Chatten, A. J.; Kawano, K.; Durrant, J. R.; Bradley, D. D. C.; Nelson, J.Effects of photo-oxidation on the performance of poly2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylene vinylene:6,6-phenyl C-61-butyric acid methyl ester solarcells [J]. Advanced Functional Materials2006,16(16),2117-2126.
    [135] Krebs, F. C.; Norrman, K. Analysis of the failure mechanism for a stable organicphotovoltaic during10000h of testing [J]. Progress in Photovoltaics2007,15(8),697-712.
    [136] Norrman, K.; Gevorgyan, S. A.; Krebs, F. C. Water-Induced Degradation of PolymerSolar Cells Studied by (H2O)-O-18Labeling [J]. Acs Applied Materials&Interfaces2009,1(1),102-112.
    [137] Paci, B.; Generosi, A.; Albertini, V. R.; Perfetti, P.; de Bettignies, R.; Firon, M.; Leroy,J.; Sentein, C. In situ energy dispersive x-ray reflectometry measurements on organic solarcells upon working [J]. Applied Physics Letters2005,87(19).
    [138] Berson, S.; De Bettignies, R.; Bailly, S.; Guillerez, S. Poly(3-hexylthiophene) Fibers forPhotovoltaic Applications [J]. Adv. Funct. Mater.2007,17(8),1377-1384.
    [139] Mihailetchi, V. D.; van Duren, J. K. J.; Blom, P. W. M.; Hummelen, J. C.; Janssen, R. A.J.; Kroon, J. M.; Rispens, M. T.; Verhees, W. J. H.; Wienk, M. M. Electron transport in amethanofullerene [J]. Advanced Functional Materials2003,13(1),43-46.
    [140] Blom, P. W. M.; deJong, M. J. M.; vanMunster, M. G. Electric-field and temperaturedependence of the hole mobility in poly(p-phenylene vinylene)[J]. Physical Review B1997,55(2), R656-R659.
    [141] Geens, W.; Shaheen, S. E.; Brabec, C. J.; Poortmans, J.; Serdar Sariciftci, N.Field-effect mobility measurements of conjugated polymer/fullerene photovoltaic blends [J].AIP Conf. Proc.2000,(544),516-520.
    [142] Tanase, C.; Meijer, E. J.; Blom, P. W. M.; de Leeuw, D. M. Unification of the holetransport in polymeric field-effect transistors and light-emitting diodes [J]. Physical ReviewLetters2003,91(21).
    [143] Ratcliff, E. L.; Zacher, B.; Armstrong, N. R. Selective Interlayers and Contacts inOrganic Photovoltaic Cells [J]. The Journal of Physical Chemistry Letters2011,2(11),1337-1350.
    [144] Brabec, C. J.; Cravino, A.; Meissner, D.; Sariciftci, N. S.; Fromherz, T.; Rispens, M. T.;Sanchez, L.; Hummelen, J. C. Origin of the open circuit voltage of plastic solar cells [J]. Adv.Funct. Mater.2001,11(5),374-380.
    [145] Mihailetchi, V. D.; Blom, P. W. M.; Hummelen, J. C.; Rispens, M. T. Cathodedependence of the open-circuit voltage of polymer:fullerene bulk heterojunction solar cells [J].J. Appl. Phys.2003,94(10),6849.
    [146] Park, S. H.; Roy, A.; Beaupré, S.; Cho, S.; Coates, N.; Moon, J. S.; Moses, D.; Leclerc,M.; Lee, K.; Heeger, A. J. Bulk heterojunction solar cells with internal quantum efficiencyapproaching100%[J]. Nat. Photonics2009,3(5),297-302.
    [147] Yang, T.; Wang, M.; Cao, Y.; Huang, F.; Huang, L.; Peng, J.; Gong, X.; Cheng, S. Z. D.;Cao, Y. Polymer Solar Cells with a Low-Temperature-Annealed Sol-Gel-Derived MoOx Filmas a Hole Extraction Layer [J]. Adv. Energy Mater.2012,2(5),523-527.
    [148] Zhou, H.; Zhang, Y.; Mai, C. K.; Collins, S. D.; Nguyen, T. Q.; Bazan, G. C.; Heeger, A.J. Conductive conjugated polyelectrolyte as hole-transporting layer for organic bulkheterojunction solar cells [J]. Adv Mater2014,26(5),780-5.
    [149] Seo, J. H.; Gutacker, A.; Sun, Y.; Wu, H.; Huang, F.; Cao, Y.; Scherf, U.; Heeger, A. J.;Bazan, G. C. Improved high-efficiency organic solar cells via incorporation of a conjugatedpolyelectrolyte interlayer [J]. J Am Chem Soc2011,133(22),8416-9.
    [150] Li, G.; Shrotriya, V.; Huang, J.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y.High-efficiency solution processable polymer photovoltaic cells by self-organization ofpolymer blends [J]. Nat. Mater.2005,4(11),864-868.
    [151] Kyaw, A. K. K.; Wang, D. H.; Gupta, V.; Leong, W. L.; Ke, L.; Bazan, G. C.; Heeger, A.J. Intensity Dependence of Current-Voltage Characteristics and Recombination inHigh-Efficiency Solution-Processed Small-Molecule Solar Cells [J]. ACS Nano2013,7(5),4569-4577.
    [152] Yoo, J. E.; Lee, K. S.; Garcia, A.; Tarver, J.; Gomez, E. D.; Baldwin, K.; Sun, Y.; Meng,H.; Nguyen, T. Q.; Loo, Y. L. Directly patternable, highly conducting polymers for broadapplications in organic electronics [J]. Proc. Natl. Acad. Sci. U. S. A.2010,107(13),5712-5717.
    [153] Betancur, R.; Maymó, M.; Elias, X.; Vuong, L. T.; Martorell, J. Sputtered NiO aselectron blocking layer in P3HT:PCBM solar cells fabricated in ambient air [J]. Sol. EnergyMater. Sol. Cells2011,95(2),735-739.
    [154] Sun, Y.; Takacs, C. J.; Cowan, S. R.; Seo, J. H.; Gong, X.; Roy, A.; Heeger, A. J.Efficient, air-stable bulk heterojunction polymer solar cells using MoO(x) as the anodeinterfacial layer [J]. Adv Mater2011,23(19),2226-30.
    [155] Shrotriya, V.; Li, G.; Yao, Y.; Chu, C.-W.; Yang, Y. Transition metal oxides as the bufferlayer for polymer photovoltaic cells [J]. Appl. Phys. Lett.2006,88(7),073508.
    [156] Han, S.; Shin, W. S.; Seo, M.; Gupta, D.; Moon, S. J.; Yoo, S. Improving performanceof organic solar cells using amorphous tungsten oxides as an interfacial buffer layer ontransparent anodes [J]. Org. Electron.2009,10(5),791-797.
    [157] Garcia, A.; Welch, G. C.; Ratcliff, E. L.; Ginley, D. S.; Bazan, G. C.; Olson, D. C.Improvement of interfacial contacts for new small-molecule bulk-heterojunction organicphotovoltaics [J]. Adv Mater2012,24(39),5368-73.
    [158] Murase, S.; Yang, Y. Solution processed MoO3interfacial layer for organicphotovoltaics prepared by a facile synthesis method [J]. Adv Mater2012,24(18),2459-62.
    [159] Teran-Escobar, G.; Pampel, J.; Caicedo, J. M.; Lira-Cantu, M. Low-temperature,solution-processed, layered V2O5hydrate as the hole-transport layer for stable organic solarcells [J]. Energy Environ. Sci.2013,6(10),3088-3098.
    [160] Cao, Y.; Yu, G.; Zhang, C.; Menon, R.; Heeger, A. J. Polymer light-emitting diodes withpolyethylene dioxythiophene-polystyrene sulfonate as the transparent anode [J]. Synth. Met.1997,87(2),171-174.
    [161] Groenendaal, L. B.; Jonas, F.; Freitag, D.; Pielartzik, H.; Reynolds, J. R.Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future [J]. Adv. Mater.2000,12(7),481-494.
    [162] Wong, K. W.; Yip, H. L.; Luo, Y.; Wong, K. Y.; Lau, W. M.; Low, K. H.; Chow, H. F.;Gao, Z. Q.; Yeung, W. L.; Chang, C. C. Blocking reactions between indium-tin oxide and poly(3,4-ethylene dioxythiophene):poly(styrene sulphonate) with a self-assembly monolayer [J].Appl. Phys. Lett.2002,80(15),2788.
    [163] Kim, H.; Nam, S.; Lee, H.; Woo, S.; Ha, C.-S.; Ree, M.; Kim, Y. Influence ofControlled Acidity of Hole-Collecting Buffer Layers on the Performance and Lifetime ofPolymer:Fullerene Solar Cells [J]. J. Phys. Chem. C2011,115(27),13502-13510.
    [164] Wu, S.; Han, S.; Zheng, Y.; Zheng, H.; Liu, N.; Wang, L.; Cao, Y.; Wang, J. pH-neutralPEDOT:PSS as hole injection layer in polymer light emitting diodes [J]. Org. Electron.2011,12(3),504-508.
    [165]吴莎.聚合物电致发光器件电荷注入界面的研究.[D]华南理工大学,2011.
    [166] Blouin, N.; Michaud, A.; Leclerc, M. A Low-Bandgap Poly(2,7-Carbazole) Derivativefor Use in High-Performance Solar Cells [J]. Adv. Mater.2007,19(17),2295-2300.
    [167] Wang, Q.; Zhou, Y.; Zheng, H.; Shi, J.; Li, C.; Su, C. Q.; Wang, L.; Luo, C.; Hu, D.; Pei,J.; Wang, J.; Peng, J.; Cao, Y. Modifying organic/metal interface via solvent treatment toimprove electron injection in organic light emitting diodes [J]. Org. Electron.2011,12(11),1858-1863.
    [168] Zhou, H.; Zhang, Y.; Seifter, J.; Collins, S. D.; Luo, C.; Bazan, G. C.; Nguyen, T. Q.;Heeger, A. J. High-efficiency polymer solar cells enhanced by solvent treatment [J]. AdvMater2013,25(11),1646-52.
    [169] Liu, X.; Wen, W.; Bazan, G. C. Post-deposition treatment of an arylated-carbazoleconjugated polymer for solar cell fabrication [J]. Adv Mater2012,24(33),4505-10.
    [170] Ye, L.; Jing, Y.; Guo, X.; Sun, H.; Zhang, S.; Zhang, M.; Huo, L.; Hou, J. Remove theResidual Additives toward Enhanced Efficiency with Higher Reproducibility in PolymerSolar Cells [J]. J. Phys. Chem. C2013,117(29),14920-14928.
    [171] Siebert-Henze, E.; Lyssenko, V. G.; Fischer, J.; Tietze, M.; Brueckner, R.; Menke, T.;Leo, K.; Riede, M. Electroabsorption studies of organic p-i-n solar cells: Increase of thebuilt-in voltage by higher doping concentration in the hole transport layer [J]. Org. Electron.2014,15(2),563-568.
    [172] Giebink, N. C.; Wiederrecht, G. P.; Wasielewski, M. R.; Forrest, S. R. Ideal diodeequation for organic heterojunctions. I. Derivation and application [J]. Phys. Rev. B2010,82(15).
    [173] Heeger, A. J.25th anniversary article: bulk heterojunction solar cells: understanding themechanism of operation [J]. Adv Mater2014,26(1),10-28.
    [174] Yip, H. L.; Jen, A. K. Y. Recent advances in solution-processed interfacial materials forefficient and stable polymer solar cells [J]. Energy Environ. Sci.2012,5(3),5994-6011.
    [175] Saracco, E.; Bouthinon, B.; Verilhac, J. M.; Celle, C.; Chevalier, N.; Mariolle, D.; Dhez,O.; Simonato, J. P. Work function tuning for high-performance solution-processed organicphotodetectors with inverted structure [J]. Adv Mater2013,25(45),6534-8.
    [176] Blom, P. W. M.; Mihailetchi, V. D.; Koster, L. J. A.; Markov, D. E. Device Physics ofPolymer:Fullerene Bulk Heterojunction Solar Cells [J]. Adv. Mater.2007,19(12),1551-1566.
    [177] Dennler, G.; Scharber, M. C.; Brabec, C. J. Polymer-Fullerene Bulk-HeterojunctionSolar Cells [J]. Adv. Mater.2009,21(13),1323-1338.
    [178] Chen, J. W.; Cao, Y. Development of Novel Conjugated Donor Polymers forHigh-Efficiency Bulk-Heterojunction Photovoltaic Devices [J]. Acc. Chem. Res.2009,42(11),1709-1718.
    [179] Wang, W.; Wu, H.; Yang, C.; Luo, C.; Zhang, Y.; Chen, J.; Cao, Y. High-efficiencypolymer photovoltaic devices from regioregular-poly(3-hexylthiophene-2,5-diyl) and
    [6,6]-phenyl-C[sub61]-butyric acid methyl ester processed with oleic acid surfactant [J].Appl. Phys. Lett.2007,90(18),183512.
    [180] Chen, L.-M.; Hong, Z.; Li, G.; Yang, Y. Recent Progress in Polymer Solar Cells:Manipulation of Polymer:Fullerene Morphology and the Formation of Efficient InvertedPolymer Solar Cells [J]. Adv. Mater.2009,21(14-15),1434-1449.
    [181] Kyaw, A. K.; Wang, D. H.; Wynands, D.; Zhang, J.; Nguyen, T. Q.; Bazan, G. C.;Heeger, A. J. Improved Light Harvesting and Improved Efficiency by Insertion of an OpticalSpacer (ZnO) in Solution-Processed Small-Molecule Solar Cells [J]. Nano Lett2013,13(8),3796-801.
    [182] Yang, T.; Wang, M.; Duan, C.; Hu, X.; Huang, L.; Peng, J.; Huang, F.; Gong, X.Inverted polymer solar cells with8.4%efficiency by conjugated polyelectrolyte [J]. EnergyEnviron. Sci.2012,5(8),8208.
    [183] Lu, L.; Luo, Z.; Xu, T.; Yu, L. Cooperative plasmonic effect of Ag and Au nanoparticleson enhancing performance of polymer solar cells [J]. Nano Lett2013,13(1),59-64.
    [184] Dou, L.; Gao, J.; Richard, E.; You, J.; Chen, C.-C.; Cha, K. C.; He, Y.; Li, G.; Yang, Y.Systematic Investigation of Benzodithiophene-and Diketopyrrolopyrrole-BasedLow-Bandgap Polymers Designed for Single Junction and Tandem Polymer Solar Cells [J].Journal of the American Chemical Society2012,134(24),10071-10079.
    [185] J rgensen, M.; Norrman, K.; Krebs, F. C. Stability/degradation of polymer solar cells[J]. Sol. Energy Mater. Sol. Cells2008,92(7),686-714.
    [186] Hauch, J. A.; Schilinsky, P.; Choulis, S. A.; Childers, R.; Biele, M.; Brabec, C. J.Flexible organic P3HT:PCBM bulk-heterojunction modules with more than1year outdoorlifetime [J]. Sol. Energy Mater. Sol. Cells2008,92(7),727-731.
    [187] Krebs, F. C. Encapsulation of polymer photovoltaic prototypes [J]. Sol. Energy Mater.Sol. Cells2006,90(20),3633-3643.
    [188] Hermenau, M.; Riede, M.; Leo, K.; Gevorgyan, S. A.; Krebs, F. C.; Norrman, K. Waterand oxygen induced degradation of small molecule organic solar cells [J]. Sol. Energy Mater.Sol. Cells2011,95(5),1268-1277.
    [189] Norrman, K.; Krebs, F. C. Lifetimes of organic photovoltaics: Using TOF-SIMS and18O2isotopic labelling to characterise chemical degradation mechanisms [J]. Sol. EnergyMater. Sol. Cells2006,90(2),213-227.
    [190] Hee Kim, S.; Hwang, I.-W.; Jin, Y.; Song, S.; Moon, J.; Suh, H.; Lee, K. Long-livedbulk heterojunction solar cells fabricated with photo-oxidation resistant polymer [J]. Sol.Energy Mater. Sol. Cells2011,95(1),361-364.
    [191] Kim, B. J.; Miyamoto, Y.; Ma, B.; Fréchet, J. M. J. Photocrosslinkable Polythiophenesfor Efficient, Thermally Stable, Organic Photovoltaics [J]. Adv. Funct. Mater.2009,19(14),2273-2281.
    [192] Madakasira, P.; Inoue, K.; Ulbricht, R.; Lee, S. B.; Zhou, M.; Ferraris, J. P.; Zakhidov,A. A. Multilayer encapsulation of plastic photovoltaic devices [J]. Synth. Met.2005,155(2),332-335.
    [193] Lungenschmied, C.; Dennler, G.; Neugebauer, H.; Sariciftci, S. N.; Glatthaar, M.;Meyer, T.; Meyer, A. Flexible, long-lived, large-area, organic solar cells [J]. Sol. EnergyMater. Sol. Cells2007,91(5),379-384.
    [194] Chen, M.-C.; Chiou, Y.-S.; Chiu, J.-M.; Tedla, A.; Tai, Y. Marked improvement in thestability of small molecule organic photovoltaics by interfacial modification usingself-assembled monolayers to prevent indium diffusion into the active layer [J]. J. Mater.Chem. A2013,1(11),3680.
    [195] Norrman, K.; Gevorgyan, S. A.; Krebs, F. C. Water-induced degradation of polymersolar cells studied by H2(18)O labeling [J]. ACS Appl Mater Interfaces2009,1(1),102-12.
    [196] Yang, X. N.; Loos, J.; Veenstra, S. C.; Verhees, W. J. H.; Wienk, M. M.; Kroon, J. M.;Michels, M. A. J.; Janssen, R. A. J. Nanoscale morphology of high-performance polymersolar cells [J]. Nano Lett.2005,5(4),579-583.
    [197] Kawano, K.; Adachi, C. Reduced initial degradation of bulk heterojunction organicsolar cells by incorporation of stacked fullerene and lithium fluoride interlayers [J]. Appl.Phys. Lett.2010,96(5),053307.
    [198] Kawano, K.; Adachi, C. Evaluating Carrier Accumulation in Degraded BulkHeterojunction Organic Solar Cells by a Thermally Stimulated Current Technique [J]. Adv.Funct. Mater.2009,19(24),3934-3940.
    [199] Alstrup, J.; Norrman, K.; J rgensen, M.; Krebs, F. C. Lifetimes of organic photovoltaics:Design and synthesis of single oligomer molecules in order to study chemical degradationmechanisms [J]. Sol. Energy Mater. Sol. Cells2006,90(17),2777-2792.
    [200] Liu, J. S.; Kadnikova, E. N.; Liu, Y. X.; McGehee, M. D.; Frechet, J. M. J.Polythiophene containing thermally removable solubilizing groups enhances the interface andthe performance of polymer-titania hybrid solar cells [J]. J. Am. Chem. Soc.2004,126(31),9486-9487.
    [201] Lloyd, M. T.; Olson, D. C.; Lu, P.; Fang, E.; Moore, D. L.; White, M. S.; Reese, M. O.;Ginley, D. S.; Hsu, J. W. P. Impact of contact evolution on the shelf life of organic solar cells[J]. J. Mater. Chem.2009,19(41),7638.
    [202] Reese, M. O.; Morfa, A. J.; White, M. S.; Kopidakis, N.; Shaheen, S. E.; Rumbles, G.;Ginley, D. S. Pathways for the degradation of organic photovoltaic P3HT:PCBM baseddevices [J]. Sol. Energy Mater. Sol. Cells2008,92(7),746-752.
    [203] Jeon, S. O.; Lee, J. Y. Improved lifetime in organic solar cells using a bilayer cathode oforganic interlayer/Al [J]. Sol. Energy Mater. Sol. Cells2012,101,160-165.
    [204] Wang, M.; Xie, F.; Du, J.; Tang, Q.; Zheng, S.; Miao, Q.; Chen, J.; Zhao, N.; Xu, J. B.Degradation mechanism of organic solar cells with aluminum cathode [J]. Sol. Energy Mater.Sol. Cells2011,95(12),3303-3310.
    [205] Song, Q. L.; Wang, M. L.; Obbard, E. G.; Sun, X. Y.; Ding, X. M.; Hou, X. Y.; Li, C. M.Degradation of small-molecule organic solar cells [J]. Appl. Phys. Lett.2006,89(25),251118.
    [206] Wu, B.; Wu, X.; Guan, C.; Fai Tai, K.; Yeow, E. K.; Jin Fan, H.; Mathews, N.; Sum, T.C. Uncovering loss mechanisms in silver nanoparticle-blended plasmonic organic solar cells[J]. Nat Commun2013,4,2004.
    [207] Dou, L.; You, J.; Hong, Z.; Xu, Z.; Li, G.; Street, R. A.; Yang, Y.25th anniversaryarticle: a decade of organic/polymeric photovoltaic research [J]. Adv Mater2013,25(46),6642-71.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700