用户名: 密码: 验证码:
基于混沌理论的MIMO雷达正交波形设计与目标检测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
正交波形设计与优化是MIMO(Multi-Input Multi-Output)雷达研究的基础性问题之一,在聚集式MIMO雷达和分散型MIMO雷达研究中均占有十分重要的地位。混沌信号产生简单、易于复制重现、数量多、类随机、遍历、无周期,在正交波形设计中具有天然优势。基于二者契合点,本文深入研究了基于混沌理论的MIMO雷达正交波形设计与优化问题,并将混沌理论推广应用于解决MIMO雷达非均匀分形杂波中目标检测问题。
     本文首先阐述了研究背景和意义,介绍了MIMO雷达系统发展与正交波形设计优化技术,回顾了混沌研究的历程,就混沌理论在雷达波形设计中的应用进行了总结,指出混沌理论应用于MIMO雷达的可行性,最后介绍了论文的主要研究工作。
     第二章主要研究正交发射波形与MIMO雷达定位、检测性能关系,为MIMO雷达正交波形设计与优化提供依据。建立了MIMO雷达一般信号观测模型,在此基础上分析其匹配滤波处理过程,并进一步推导得到MIMO参数估计的充分统计量。基于此,研究了发射波形互相关与MIMO雷达波束增益、高斯背景下目标检测性能、波达角(DOA)估计性能的关系,结果表明:当发射波形非理想正交时,收发波束宽度不变,但旁瓣水平抬高,在一定相关程度下旁瓣性能接近于发射理想正交波形。目标检测、DOA估计性能亦有类似结论。即无必要一味追求发射波形的正交性,可根据MIMO雷达探测需求和波形参数条件相应选择、设计和优化满足一定相关程度的波形集。
     第三章主要分析混沌调制信号性能,基于雷达传统波形要求,从平均模糊函数、相关函数、频谱、距离分辨、速度分辨和信号处理等角度研究论证了信号作为MIMO雷达发射信号的可行性和优势。具体研究了三种信号形式:针对混沌调频信号,基于混沌各态历经理论研究了信号的统计特性,发现调制信号具有各态历经性。并以此进一步从理论上推导信号频谱、模糊函数和准正交性能,得到解析表达式,解释了信号距离旁瓣产生的原因;针对混沌离散频率编码信号,推导得到信号模糊函数,距离和速度分辨的解析表达式,考察了信号的正交性能。采用数值仿真方法,比较了四种混沌离散频率编码信号的性能;针对混沌随机频率步进信号,研究信号回波脉压处理方法,提出一种先匹配存储后脉压处理方法,指出当径向速度为0时,采用IFFT方法进行脉压,而存在径向速度时,需进行相位匹配,采用相关处理进行脉压。
     第四章研究MIMO雷达混沌正交波形集设计。以相位编码信号为例,研究指出为获得最佳的正交性能,混沌编码信号在设计中需综合考虑混沌概率分布、编码方案选取、混沌选择与构造等因素,为混沌正交编码信号集设计提供了准则;基于混沌遍历、独立理论,提出一种基于序列抽样的混沌正交信号集设计方法。研究发现,当抽样间隔足够大时,同一混沌系统产生的两混沌序列近似独立和正交,其调制信号正交性能亦相应改善;从信号隐身和更好正交性能角度研究推导了混沌频率调制信号混沌行为保留的充分条件,定义和分析了混沌编码信号的混沌初值敏感度函数,指出不同混沌调制信号正交性能差异产生的原因,为混沌正交信号集的设计提供了指导。
     第五章针对信号高距离旁瓣和多普勒敏感问题,主要研究波形优化。分析了正交多相编码信号速度、加速度敏感问题,采用更加灵活的分块编码方法增加信号优化自由度,在克隆选择算法中引入混沌,根据编码多样性测度进行自适应混沌变异操作,提出一种自适应混沌克隆选择算法,并基于此算法进行多目标联合优化问题求解,可同时获得距离旁瓣更低,速度、加速度容忍性更好的编码信号;基于互补编码思想,提出MIMO雷达在发射混沌相位编码之后,补充发射一组具有互补性质的编码信号,通过接收端联合处理,可较大程度降低距离旁瓣。其中,混沌相位编码信号的最佳互补码通过自适应混沌克隆选择算法优化求解得到。为降低信号多普勒敏感性,借鉴感知雷达闭环理念,提出一种多重假设检验自适应多普勒扩容方法。在MIMO雷达接收端进行多普勒滤波处理,通过假设检验测量获得目标多普勒相位估计值后,以闭环方式实时反馈到雷达发射端进行多普勒相位偏移预补偿,有效降低了信号对原多普勒偏移的敏感性。
     第六章基于雷达自然背景杂波的分形特征,主要研究分形杂波中MIMO雷达目标检测问题。建立了分形杂波存在情况下MIMO雷达接收信号模型,基于混沌分形理论推导得到MIMO雷达接收信号的分形维均值,在此基础上设计了一种MIMO雷达分形检测器,并分析了其检测性能。结果表明,对于聚集式MIMO雷达,分形检测性能与其虚拟孔径大小无关;而对于分散型MIMO雷达,虚拟孔径越大,检测性能越好。研究为MIMO雷达分形杂波中目标检测提供了技术手段,拓展了MIMO雷达检测理论。
     第七章对全文进行总结,并指出下一步可能的研究工作。
     本课题的研究,具有理论和工程意义,一方面可以推动新型体制MIMO雷达技术发展,为MIMO雷达工程化应用提供可能的信号集;另一方面,亦可以拓宽和深化非线性科学-混沌分形理论的研究和工程应用。同时,课题对网络雷达(Netted Radar)信号设计、电子对抗、电磁隐身等领域的研究亦具有启发借鉴意义。
Orthogonal waveform design and optimization is a basic research issue for MIMOradar, which takes up quite an important status for colocated and statistic MIMO radaras well. Chaos presentes inherent property in orthogonal signal design for its easygeneration, easy copy, great number, randomicity, ergodicity and aperiodicity.Thus, thisthesis investigates the MIMO radar waveform design and optimization based on chaosand fractal theory which is also extended to MIMO radar target detection inunheterogeneous fractal clutter.
     Background and siginificance of this thesis are first expounded, and then someMIMO radar sytem development and waveform design technique are introduced. Thestudy development of chaos is listed, especially its application in radar waveform isreviewed in detail and its feasibility for MIMO radar waveform is pointed out as well,followed with the main content introduction.
     In charpter2, the relationship between transmitting unideal orthogonal waveformsand localization and detection performance of MIMO radar is investigated guiding forMIMO radar orthogonal waveform design and optimization. The general measuredsignal model is introduced, the course of matched processing is then presented, and thesufficient statistic for parameters estimation is induced in theory. Relationships betweenunideal orthogonal transmitting waveforms and MIMO radar beamforming, targetdetection in Gaussion noise and DOA estimation are mainly investigated. It can befound out that the sidelobe level is increased though its width is sustained fortransmit-receive beam with the correlation increases, which trend is similar to targetdetection and DOA estimation performance. Therefore, there is no necessary forpursuing fully orthogonal tramsmitting signals, which should be chosen, design andoptimizasion according to requirements of MIMO radar localization and detection.
     Based on the analysis in chapter2, performances of chaos based modulated signalsincluding average ambiguity function, correlation, spectrum, range and velocityresolution, and echo waveform signal processing are mainly investigated in chapter3,and their feasibility and superiority are also pointed out. As to the chaos basedfrequence modulated signal, the signal model is introduced, statistic characteristic basedon ergodicity theory is investigated, based on these, its spectrum, average ambiguityfunction, and psudo-orthogonality are induced in theory. As to the chaos based discretefrequency coded signal, its chaotic coding method is presented, then performancesincluding the ambiguity function, the range and velocity resolution, and orthogonalityare investigated. Numerical simulation based on four chaotic maps has validated theanalyzing. As to the chaos based frequency stepped signal, an echo signal processingmethod is proposed, which carries our matched saving before pluse compression. Whenthere is no range velocity, FFT is utilized for pluse compression; otherwise, it takes the correlation processing.
     In charpter4, MIMO radar orthogonal waveform design based on chaos theory ismainly inveatigated. Taking the poly phase coded signal as an example, the probabilitydensity, coding method and chaos chosn and construction are synthetically considered,which provides a design guidance for MIMO radar orthogonal waveform design. Basedon the ergodicity and independence theory, a chaos series sampling method is proposedfor orthogonal waveform set design. It is found out that, when the sampling distance islarge enough, two chaotic signals generated from the same chaos system are notcorrelated, which show better modulated orthogonal performance. Further, a sufficientcondition for chaos sustaining for chaotic frequency modulated signals is induced andan inititial condition sensitivity function for chaotic coded signals is defined. Thereasons for varying performance of different chaos are thus analyzed, which can guidefor MIMO radar chaotic orthogonal waveform design.
     In charpter5, MIMO radar orthogonal waveform optimization based on chaostheory is mainly inveatigated. Velocity and accelerate velocity intolerance are firstanalyzed for poly phase coded waveforms. An improved clonal seneltion algorithm isproposed by introducing chaos. Based on this algorithm combining more flexiblecoding to increase signal design freedom, a combined optimization method is thusproposed and waveforms with lower sidelobe level, more velocity and acceleratevelocity intolerance are obtained. Based on the complementary coding idea, a chaosbased complementary codes are transmitted for MIMO radar after transmitting itcorresponding chaos codes and much lower sidelobe level is obtained shown bynumerical simulations. Further, a multiple hypothesis testing at MIMO radartransmitters is proposed for Doppler tolerance increasing,which carrys out Dopplerfiltering and gets a Doppler estimation firstly, and then is is feeded back to MIMO radartransmitters in a closed loop for Doppler precompensation. Numerical simulations showgreatly improvements have been obtained.
     Fractal geometry has been used as an effective tool to improve target detectionperformance in radar system, since most non-homogeneous clutter generated by naturalsurface is demonstrated to be fractal by recent researches. In charpter6, we mainlyconsider MIMO radar target detection in fractal clutter. Target and clutter model isproposed for high resolution MIMO radar. Based on this model, a fractal dimensionestimation method is discussed, which is further investigated and deduced inmulti-channel systems with antennas being placed colocated and distributed,respectively. Fractal detectors for both colocated and statistical MIMO radars are thendesigned based on the statistic theory. The likelihood ratio threshold, false alarmprobability and detection probability are deduced according to the Neyman-Pearson (NP)Criteria, and the relationship between detection performances and the transmit-receivechannel number is analyzed as well. Additionally, we show that the fractal detector presents great capabilities in rejection of non-homogeneous clutter for MIMO radarsystem.
     In charpter7, the summarization and the probable future work of this dissertationare discussed.
     What need to be pointed out for supplement is that the study of this dissertation isof both theoretical and engineering sense. On one hand, it can promote the developmentof the new radar system-MIMO radar and provide waveform set for engineeringapplication. On the other hand, it can deepen and widen the non-linear science-chaosand fractal research in theory and engineering. Additionally, the research results canilluminate orthogonal waveform design of netted radars, electronic warfare, andelectromagnetism concealment. The obtained orthogonal waveform set can evendirectly be used in netted radar system.
引文
[1]张明友.雷达系统[M].北京:电子工业出版社,第2版,2006.
    [2]耿海军.信息化战场的电磁环境究竟有多复杂[J].国防,2008,04:80-82.
    [3]张劲东.自适应雷达系统中波形分集技术的研究[D].南京理工大学,2010.
    [4] Dorey J, Gamier G, Auvray G. RIAS, synthetic impulse and antennaradar[C].1989International Conference on Radar,01:556-562.
    [5] Luce A. Experimental results on SIAR digital beam forming radar[C]. Proc. ofthe IEEE International Radar Conference,1992,01:505-510.
    [6] Li J, Stoica P. MIMO radar signal processing[M]. New York: Wiley,2009,xvii-xv,1-64,70.
    [7] Li J, Stoica P. MIMO radar with collocated antennas[J]. IEEE SignalProcessing Magazine,2007,24(5):106-114.
    [8] Haimovich A, Blum R, Cimini L. MIMO radar with widely separatedantennas[J]. IEEE Signal Processing Magazine,2008,25(1):116-129.
    [9]吴曼青.大有作为的数字阵列雷达[J].现代军事,2005,10:46-49.
    [10] Cantrell B. Development of digital array radar (DAR)[J]. IEEE Aerospace andElectronic Systems Magazine,2002,17(3):22-27.
    [11] Weedon WH. Phased array digital beam forming hardware development atApplied Radar[J]. IEEE International Symposium on Phased Array Systemsand Technology (ARRAY),2010:854-859.
    [12] Chappell W and Fulton C. Digital array radar panel development[J]. IEEEInternational Symposium on Phased Array Systems and Technology (ARRAY),2010:50-60.
    [13] Stoica P, Li J and Xu Y. On probing signal design for MIMO radar[J]. IEEETrans. on Signal Processing,2007,55(8):4151-4161.
    [14] Soumekh M. SAR-ECCM using phase-perturbed LFM chirp signals andDRFM repeat jammer penalization[J]. IEEE Trans. on Aerospace andElectronic Systems, Jan.2006,42(1):191-205.
    [15]姜斌,王宏强,付耀文,黎湘,郭桂蓉.基于LS-SVM的海杂波混沌预测[J].自然科学进展,2007(03):415-420.
    [16]田建生,刘铁军,高频雷达海洋回波混沌特性研究[J].系统工程与电子技术,2007,05(29):687-691.
    [17] Kurian AP and Leung H. Weak signal estimation in chaotic clutter usingmodel-based coupled synchronization[J]. IEEE Trans. on Circuits and SystemsI: Regular Papers,2009,04(56):820-828.
    [18]黎湘.非线性方法在雷达目标识别中的应用研究[D].国防科学技术大学,1998.
    [19] Kuraya M, Uchida A, Sano S, Yoshimori S and Umeno K. Independentcomponent analysis of mixed chaos in electronic circuits[J]. IEE ElectronicsLetters,2008,03(44).
    [20]蒋飞,刘中,胡文,包伯成.任意频谱结构的连续混沌调频雷达波形设计.电子学报,2010,09(38):2195-2198.
    [21] Willsey M.Quasi-orthogonal wideband radar waveforms based on chaoticsystems[D]. Department of Electrical Engineering and Computer Science ofMIT,2006.
    [22] Heinz OP, Hartmut J, Dietmar S. Chaos and fractals new frontiers ofscience[M]. National Defense Industry Press.,2008,08.
    [23] Carrol TL. Optimizing chaos-based signals for complex radar targets[J]. Chaos,2007,17(3):33103.
    [24] Homer ME, Hogan SJ, Bernardo MD, Williams C. The importance of choosingattractors for optimizing chaotic communications[J]. IEEE Trans. on CircuitsSyst. II,2004,51(10):511-516.
    [25] Carroll TL. Adaptive chaotic maps for identification of complex targets[J]. IETJournal of Radar, Sonar and Navigation,2008,2(4):256-262.
    [26] Drozd A. Waveform diversity and design[C]. IEEE International WaveformDiversity and Design Workshop,2006.
    [27] Wieks MC. A brief history of waveform diversity[J]. IEEE International RadarConference,2009:328-333.
    [28] CaPraro GT,Bradarie I,Wieks MC. Waveform diversity and electroniccompatibility[J]. IEEE International Symposium on Electromagnetic Compati-bility,2007:173-179.
    [29] Garnham JW, Roman JR. Why and what is waveform diversity, and how doesit affect electromagnetic[J]. IEEE International Symposium on Electromag-netic Compatibility,2007:180-183.
    [30] Garnhan JW, Roman JR. How will waveform diversity affect electromagneticcompatibility[C]. IEEE International Waveform Diversity and DesignConference,2007:98-101.
    [31] Proceeding of International Waveform Diversity and Design Conference,Niagara Falls, Aug.8-13,2010.
    [32] Capraro GT,Wicks MC,Liuzzi RA. Artificial intelligence and waveformdiversity[C]. IEEE International Conference on Integration of KnowledgeIntensive Multi-Agent Systems,2003:270-274.
    [33] Haykin S. Cognition is the key to the next generation of radar systems[C]. InDigital Signal Processing Workshop and5th IEEE Signal ProcessingWorkshop,2009:463-467.
    [34] Haykin S. Cognitive radar: a way of the future[J]. IEEE Signal ProcessingMagazine,2006,23(1):30-40.
    [35] Smits F. A cognitive radar network: architecture and application tomultiplatform radar management[C].2008European Radar Conference,2008:312-315.
    [36] Fishler E, Haimovieh A, Blum RS. Spatial diversity in radar-models anddetection performance[J]. IEEE Trans. on Signal Processing,2006,54(3):823-838.
    [37]保铮,张庆文.一种新型的米波雷达-综合脉冲与孔径雷达[J].现代雷达,1995,17(1):1-13.
    [38] Tabrikian J. Bounds for target localization by MIMO radars[C]. Fourth IEEEworkshop on Sensor Array and Mulit-channel Processing,2006,0l:278-281.
    [39] Rabideau DJ,Parker P,Rabidean D. Ubiquitous MIMO digital array radar[C].37th IEEE Asilomar Conference on Signals,Systems and Computers,2003:1057-1064.
    [40] Fletcher AS, Robey FC. Performance bounds for adaptive coherence of sparsearray radar[C]. Proceeding of the11th Conference on Adaptive Sensors ArrayProcessing,2003.
    [41] Bekkerman I, Tabrikian J. Target detection and localization using MIMOradars and sonars[J]. IEEE Trans. on Signal Processing,2006,54(10):3873-3883.
    [42] Bekkerman I, Tabrikian J. Spatially coded transmission for active arrays[C].IEEE International Conference on Acuities, Speech, Signal Processing.2004,2:209-212.
    [43] Tabrikian J, Bekkerman1. Transmission diversity smoothing for multi-targetlocalization[C]. IEEE International Conference on Acuities, Speech, SignalProcessing,2005,4:1041-1044.
    [44] Sanunartino PF. Target model effects on MIMO radar Performance[c]. IEEEInternational Conference on Acuities, Speech, Signal Processing,2006,5:1127-1129.
    [45] Khan HA, Malik WQ, Edwards DJ. Ultra wideband multiple-input multiple-output radar[C]. IEEE International Radar Conference,2005,01:900-904.
    [46] Fishler E,Haimovieh A, Blum R. MIMO radar: an idea whose time hascome[C]. IEEE International Radar Conference,2004,01:71-78.
    [47] Chen CY, Vaidyanathan PP. MIMO radar ambiguity Properties andoptimization using frequency-hopping waveforms[J]. IEEE Trans. on SignalProcessing,2008,56(12):5926-5936.
    [48] Chen CY, Vaidyanathan PP. Joint MIMO radar waveform and receiving filteroptimization[C]. IEEE International Conference on Acoustics,Speech, SignalProcessing (ICASSP),2009:2073-2076.
    [49] Yang Y, Blum RS. Waveform design for MIMO radar based on mutualinformation and minimum mean-square error estimation[C].40th AnnualConference on Information Sciences and Systems,2006, l:111-116.
    [50] Yang Y, Blum RS. MIMO radar waveform design based on mutual informationand minimum mean square error estimation[J]. IEEE Trans. on Aero space andElectronic Systems,2007,43:330-343.
    [51] Yang Y,Blum RS. Minimax robust MIMO radar waveform design[J]. IEEEJournal of selected Topics in Signal Processing, June2007, l (l):147-155.
    [52] Yang Y,Blum R S. MIMO radar waveform design[C]. IEEE/SP14th workshopon Statistical Signal Processing,2007:468-472.
    [53] Fuhrmann DR, Antonio SG. Transmit beam forming for MIMO radar systemsusing Partial signal correlation[C]. The38th Asilomar Conference on Signals,Systems and Computers, Pacific Grove, CA, November2004(l):295-299.
    [54] Antonio SG, Fuhrmann DR. Beam Pattern synthesis for wideband MIMO radarsystems[C]. The1st IEEE International Workshop on Computational Advancesin Multi-Sensor Adaptive Processing, Puerto Vallarta, MEXICO, December2005,105-108.
    [55] Xu L, Li J, Stoiea P, etal. Waveform optimization for MIMO Radar: aCramer-Rao bound based study[C]. The2007IEEE International Conferenceon Acoustics, Speech, and Signal Processing, Honolulu, Hawaii, April2007.
    [56] Stoiea P, Li J and Zhu X. Waveform synthesis for diversity-based transmitbeam pattern design[J]. IEEE Trans. on Signal Processing, June2008,56(6):2593-2598.
    [57] Li J,Xu L,Stoiea R, etal. Range compression and waveform optimization forMIMO radar: A Cramer-Rao Bound based study[J]. IEEE Trans. on SignalProcessing,2008,56(l):218-232.
    [58] De Maio. Design principles for MIMO radar receivers[J]. IEEE Trans. on Aerospace and Electronic Systems,2007,43(3):886-898.
    [59] Deng H. Discrete frequency-coding waveform design for netted radarsystems[J]. IEEE Signal Processing Letters,2004,11(2):179-182.
    [60] Deng H. Poly-Phase code design for orthogonal netted radar system[J]. IEEETrans. on Signal Processing,2004,52(11):3126-3135.
    [61] Liu B, He Z and He Q. Optimization of orthogonal discrete frequency-codingwaveform based on modified genetic algorithm for MIMO radar[C].International Conference on Communications, Circuits and Systems,2007:996-970.
    [62] Liu B, He Z and He Q. Poly phase orthogonal code design for MIMO radarsystems[C]. International Conference on Radar,2006:1-4.
    [63]刘波,何子述.基于遗传算法的正交多相码设计[J].电子测量与仪器学报,2008,22(2):62-66.
    [64] Zhang Y, Wang J. Improved design of DFCW for MIMO radar[J]. ElectronicsLetters,2009,45(5):285-286.
    [65] Khan HA, Edwards DJ. Doppler problems in orthogonal MIMO radar[C]. IEEEConference on Radar,2006:244-247.
    [66] Yu Z and Jianxin W. OFDM-coded signals design for MIMO radar[C].9thInternational Conference on Signal Processing.2008:2442-2445.
    [67] Shen S and NehoraiA. OFDM MIMO radar with mutual-Information waveformdesign for low-grazing angle tracking[J]. IEEE Trans. on Signal Processing,2010,58(6):3152-3162.
    [68] Wu XH, Kishk AA and Glisson AW. MIMO-OFDM radar for directionestimation[J]. IET Radar, Sonar&Navigation,2010,4(1):28-36.
    [69]郑为.正反馈[M].清华大学出版社,1998,03.
    [70]龙运佳.混沌振动研究方法与实际[M].清华大学出版社,1997,04.
    [71]胡文.混沌在雷达中的应用[D].南京理工大学,2004.
    [72] Lorenz EN.Deterministicn on periodic flow[J]. J.Atmos.Sci.1963,20:130-141.
    [73] Henon M, Heiles C. The applicability of the third integral of motion, somenumerical experiments[J]. Astorn.J.6973,1964.
    [74]谢红梅.基于混沌理论的信号处理方法研究[D].西北工业大学,2003.
    [75]甘建超.混沌信号处理在雷达和通信对抗中的应用[D].电子科技大学,2004.
    [76] Carroll TL and Pecora LM. Synchroniizngn on autonomous chaotic circuits[J].IEEE Trans.On Circuit and Systems-1,1993,40:646-649.
    [77]陈士华,陆均安.混沌动力学初步[M].武汉水利电力大学出版社,1998,08.
    [78]吕金虎,陆君安,陈士华.混沌时间序列分析及其应用[M].武汉大学出版社,2003.
    [79] Waldrop M. Complexity-The Emerging Science at the Edge of Order andChaos[M].三联书店.
    [80] Wai MT, Francis L, Chi KT. Digital Communications with Chaos[M]. ElsevierLad.,2007.
    [81] Ying S, Weihua S and Guosui L. Ambiguity function of chaotic phasemodulated radar signals[C]. Proceeding of ICSP'98,1998,10(2):1574-1577.
    [82] Ying S, Guosui L. Use Chaos to Generate Broadband Signals[C]. Part of theSPIE Conference on intense Microwave Pulse V1, Orlando, Florida,1999:69-73.
    [83]沈颖,刘国岁.混沌相位调制雷达信号的模糊函数[J].电子科学学刊,2000,02:55-60.
    [84]袁永斌,徐继麟,黄香馥.一种混沌雷达波形的模糊函数[J].电子科学学刊,1998,5(20):641-646.
    [85]袁永斌.混沌信号及其在雷达系统中的应用研究[D].成都电子科技大学博士论文,1999.
    [86]俞杰,郝永刚,任勇,山秀明.一种新的混沌编码脉压雷达信号[J].电子学报,2001,12(29):1705-1706.
    [87]熊张亮,是湘全.基于混沌映射的新型LPI脉压雷达信号波形设计[J].现代雷达,2004,01(26):26-29.
    [88] Callegari S, Rovatti R and Setti G. Spectral properties of chaos-based FMsignal theory and simulation results[J]. IEEE Trans. on circuits and Systems-I:Fundamental Theory and Applications,2003,1(5):3-15.
    [89] Callegari S, Rovatti R and Setti G. Chaos-based FM signals application andimplementation issues[J].IEEE Trans. on circuits and Systems-I: FundamentalTheory and Applications,2003,8(1):1141-1147.
    [90] Fortuna L, Frasca M and Rizzo A. Chaotic pulse position modulation toimprove the efficiency of sonar sensors[J]. IEEE Trans. on Instrumentation andMeasurement,2003,6(52):1809-1814.
    [91] Weinberg GV and Alexopoulos A. Examples of a class of chaotic radarsignals[M]. AD Reports,2005:1-37.
    [92] Harman SA, Fenwick AJ and Williams C. Chaotic signals in radar[C].Proceeding of the3rd European Radar Conference. Manchester UK,2006,09:49-53.
    [93] Flores BC, Solis EA and Thomas G. Assessment of chaos-based FM signals forrange-Doppler imaging[J]. IEE Proc. Radar Sonar Navigation,2003,4(150):313-322.
    [94] Ashtari. Radar Signal Design Using Chaotic Signals[C]. IEEE WaveformDiversity&Design,2007:353-357.
    [95] Flores BC, Berenice V, Gabriel T and Ashtari A. Generation of Quasi-NormalVariables using Chaotic Maps[C]. Proceedings of SPIE, Radar SensorTechnology IX, vol.5788,2005,03.
    [96] Verdina B and Flores BC. Wideband radar imaging using chaotic-basedGaussian frequency modulation[C]. Proceedings of SPIE, Radar SensorTechnology X, vol.6210,2006.
    [97] Ashtari A, Thomas G, Kinsner W and Flores BC. Sufficient condition forchaotic maps to yield chaotic behavior after FM[J]. IEEE Trans. on Aerospaceand Electronic systems,2008,44(3):1240-1248.
    [98]陈滨,周正欧,刘光祜,张勇,唐军.混沌噪声源在噪声雷达的应用[J].现代雷达,2008,05(30):24-28.
    [99] Bin C, Jun T, Yong Z and Peng C. Chaotic signals with weak-structure used forhigh resolution radar imaging[C]. International Conference on Communicationsand Mobile Computing.2009:325-330.
    [100]胡英辉,郑远,邓云凯.超混沌调相信号抗干扰技术研究[J].电子与信息学报,2008,7(30):1726-1759.
    [101]张正明,王金.混合映射混沌跳频序列的研究[J].电波科学学报,2006,6(12):895-899.
    [102]李江,武文,徐生求.三类混沌二相码性能分析[J].中国电子科学研究院学报,2006,6(1):527-531.
    [103]张家树,冯海涛.基于混沌的最佳压制干扰噪声源设计[J].电波科学学报,2006,5(21):701-707.
    [104]张勇.雷达与干扰的混沌一体化系统及其共享信号[D].电子科技大学博士论文,2006.
    [105]张勇,陈天麒.时空混沌二相调制雷达与干扰一体化信号[J].现代雷达,2006,12(28):15-19.
    [106]甘建超,张德山,肖先赐.基于混沌相干调制的逆合成孔径雷达干扰技术[J].电子信息对抗技术,2006,04:3-7.
    [107] Rihaczek AW, Hershkowttz SJ. Theory and practice of radar targetidentification[M]. Artech House, Norwood, MAY,2000.
    [108] Pillai SU, Oh HS, Youla DC, Guerci JR. Optimum transmit-receiver design inthe presence of signal dependent interference and channel noise[J]. IEEE Trans.Inf. Theory,2000,46(2):577-584.
    [109] Bergin JS, Techau PM, Carlos JD and Guerci JR. Radar waveform optimizationfor colored noise mitigation[C]. IEEE Radar Conf. VA, Alexandria, May2005,05:9-12.
    [110] Lin FY and Liu JM. Chaotic radar using nonlinear laser dynamics[J]. IEEE J.Quantum Electron..2004,40(6):815-820.
    [111] Willett P, Reinert J and Lynch R. LPI waveforms for active sonar[C]. IEEEAerospace Conf. Proc.(IEEE Cat. No.04TH8720),2004,4:2236-2248.
    [112] Venkatasubramanian V and Leung H. A novel chaos-based high-resolutionimaging technique and its application to through-the-wall imaging[J]. IEEESignal Process. Lett.,2005,12(7):528-531.
    [113] Callegari S, Rovatti R and Srtti G. Spectral properties of chaos-based FMsignals: theory and simulation results[J]. IEEE Trans. Circuits Syst. I, Fundam.Theory Appl.,2003,50(1):3-15.
    [114] Tsuneda A. Design of binary sequences with tunable exponentialautocorrelations and run statistics based on one-dimensional chaotic maps[J].IEEE Trans. Circuits Syst.I,2005,52(2):454-462.
    [115] Homer ME, Hogan SJ, Bernardo MD and Williams C. The importance ofchoosing attractors for optimizing chaotic communications[J]. IEEE Trans.Circuits Syst.II,2004,51(10):511-516.
    [116] Carroll T L. Optimizing chaos-based signals for complex radar targets[J].Chaos,2007,17(3):331-336.
    [117] Mehrdad S. Synthetic Aperture Radar signa1Processing with Mat1abAlgorithms[M]. New York: A Wiley-lnterscience Publication,1999.
    [118] Soumekh M. SAR-ECCM using phase-perturbed LFM chirp signals andDRFM repeat jammer penalization[J]. IEEE Trans. on Aerospace andElectronic systems,2006:42:191.
    [119] Walter WG. Synthetic Aperture Radar and Electronic Warfare[M]. BostonLondon: Artech House,1993.
    [120] Dmitriy SG, Ram MN. Ultra-Wideband Continuous Wave Random NoiseArc-SAR[J]. IEEE Trans. on Geoscience and Remote Sensing.2002,40:2543-2552.
    [121]张直中.雷达信号的选择与处理[M].北京:国防工业出版社,1979,08.
    [122] Tarchi D,Leva D, Lukin K,Nesti G,Mogila A and Siebert A. Shot-rangeimaging applications using noise radar technology[C]. The3rdEuropeanConference on Synthetic Radar, Munich, Germany,2000.
    [123] Flores BC,Solis E A and Thomas G. Chaotic signals for wideband RadarImaging[C]. Algorithms for Synthetic Aperture Radar Imagery, Orlando, USA,2002,4727, X32768.
    [124]丁凯,杨汝良.用混沌调频信号作为脉冲压缩雷达信号源的方法[P].申请日:2004.8.27,申请号:20041057148.5,公开日:2006.3.1,公开号: CN17408llA.
    [125]丁凯,杨汝良.基于混沌映射的随机信号产生方法及其电路[P].申请日:2004.12.17,申请号:20041098952.8,公开日:2006.06.21,公开号:CN1790222.
    [126]丁凯,杨汝良.一种混沌信号的合成孔径雷达系统[P].申请日:2006.06.14,申请号:200610012244.7.
    [127]丁凯,杨汝良.混沌调频雷达成像仿真[J].电子与信息学报,2006,02(28):354-357.
    [128] Kai D and Ruliang Y. Point target imaging simulation using chaotic signals.IEEE international radar conference, May2005:847-850.
    [129]丁凯,混沌信号合成孔径雷达信号研究.中国科学院电子学研究所博士论文,北京,2006.
    [130] Liu X. and Leung H. Through the wall imaging using chaotic modulated ultrawideband synthetic aperture radar[C]. IEEE ICASSP,2007,03:1257-1260.
    [131]刘培国,刘继斌,李高升,周蔚红,张婷.混沌信号在超宽带穿墙成像雷达中的应用[J].国防科技大学学报,2007,03(29):85-88.
    [132]刘诗华,王德石.混沌信号雷达SAR成像的新方法[J].计算机测量与控制,2008,16(10):1457-1459.
    [133]刘诗华,王德石.基于混沌的随机信号雷达成像[J].计算机应用,2008,6(28):187-190.
    [134]郑远,胡英辉,邓云凯.混沌相位编码信号成像与反欺骗干扰仿真[J].系统仿真学报,2008,15(20):3962-3965.
    [135]冯祥芝,许小剑.混沌码正交频分复用SAR抗干扰能力研究[J].系统仿真学报,2009,22(21):7359-7363.
    [136] Hassanien A and Vorobyov SA. Phased-MIMO Radar: A tradeoff betweenphased-array and MIMO radars[J]. IEEE Trans. on Signal Processing,2010,58(6):3137-3151.
    [137]张贤达.矩阵分析与应用[M].清华大学出版社,2004,9:107-117.
    [138] Kay SM. Fundamentals of Statistical Signal Processing: Estimation Theory[M].Englewood Cliffs, NJ: Prentice-Hall,1993.
    [139] Fuhrmann DR and Antonio GS. Transmit beamforming for MIMO radarsystems using signal cross-correlation[J]. IEEE Trans.on Aerosp. Electron.Syst.,2008,44(1):171-186.
    [140]邢孟道,王彤,李真芳等译.雷达信号处理基础. Richards MA.Fundamentals of radar signal processing[M].电子工业出版社,2008.
    [141]武佳佳.基于混沌的统计MIMO雷达[D].南京理工大学,2009.
    [142]陈滨.混沌在时变参数保密通信及雷达波形设计中的应用基础研究[D].电子科技大学,2007.
    [143]丁凯.混沌信号合成孔径雷达研究[D].中国科学院电子学研究所,2006.
    [144]乔闪. Colpitts微波混沌及其雷达应用[D].浙江大学,2007.
    [145] Xiang L and Zeng J. The chaotic signal design for MIMO radar[C].2ndConference on Environmental Science and Information ApplicationTechnology,2010:611-614.
    [146] Harman SA, Fenwick AJ, Williams C. Chaotic signals in radar[C]. Proceedingof the3rd European Radar Conference, Manchester UK,2006.
    [147] Weinberg GV and Alexopoulos A. Examples of a class of chaotic radarsignals[R]. AD,2005:1-37.
    [148] Whalen A. Detection of signals in noise[M]. Academic Press,1971.
    [149] Papoulis A. Probability, random variables, and stochastic processes[M].McGraw-Hill,1984.
    [150] Berliner LM. Statistics, probability, and chaos[J]. Stat. Sci.,1992,7(1):69-90.
    [151] Delgado M, Rodriguez A. Chaos-based noise generation in silicon[M]. InKennedy, MP, Rovatti, R, and Setti G(Eds):‘Chaotic electronics intelecommunications’, CRC Press,2000.
    [152] Flores BC, Solis EA, Thomas G. Assignment of chaos-based FM signals forRange-Doppler imaging[J]. IEE Radar Sonar and Navigation,2003,150(4):100-111.
    [153] Harman S, Qineti Q. The Diversity of Chaotic Waveforms in use andcharacteristics[M]. UK: IET Michael Faraday House,2009:33-39.
    [154]毛二可,龙腾,韩月秋.频率步进雷达数字信号处理[J].航空学报,2001,22(6):16-25.
    [155] Gill GS. Step Frequency waveform design and processing for detection ofmoving targets in clutter[C]. IEEE International Radar Conference,1996:573-578.
    [156]刘宏伟,沈福民,张守宏.随机序列步进频率信号及处理[J].电子科学学刊,1999,21(3):343-348.
    [157]李鸣.毫米波频率步进雷达前端关键技术研究[D].南京理工大学,2007.
    [158]刘国岁,顾红,苏卫民.随机信号雷达[M].北京:国防工业出版社,2005.
    [159] Axelsson SRJ. Analysis of Random Step Frequency Radar and Comparisonwith Experiments [J]. IEEE Trans. on Geo-science and Remote Sensing,2007,45(4):890-904.
    [160] Axelsson SRJ. Noise radar using random phase and frequency modulation2004[J]. IEEE Trans. on Geo-science and Remote Sensing,2004,42(11):2370-2384.
    [161] Proceedings of2005IEEE AP-S International Symposium and USNC/URSINational Radio Science meeting[C]. Joint special session20, Washington DC,2005.
    [162] Yang J, Qiu Z, Nie L and Zhuang Z. Frequency modulated radar signals basedon high dimensional chaotic maps[C]. ICSP2010Proceedings, Beijing, October,2010:1923-1926.
    [163]胡英辉,耿旭朴,邓云凯.超混沌正交多相码信号的设计与优选[J].兵工学报,2009,12(30):1632-1637.
    [164]胡英辉,郑远,邓云凯.超混沌调相信号抗干扰技术研究[J].电子与信息学报,2008,07(30):1756-1759.
    [165] Deng Y, Hu Y and Geng X. Hyper Chaotic Logistic phase coded signal and itssidelobe suppression[J].IEEE Trans. on Aerospace and Electronic Systems,2010,46(2):672-686.
    [166]陈滨.混沌在时变参数保密通信及雷达波形设计中的应用基础研究[D].电子科技大学,2007.
    [167] Chen B, Zhou Z, Liu G, Hang Y, Tang J.Time-varying parameter method withhigh security performance for chaotic synchronized communication[C].Intenrational Conference on Communications, Circuits and SystemsProceedings,2006, Volume IV:2376-2380.
    [168] Ashtari A, Thomas G, Garces H, Flores BC. Radar signal design using chaoticsignals[C]. IEEE Waveform Diversity&Design,2007:353-357.
    [169] Wolfram R. Logistic map. http://documents.wolfram.com/.
    [170] González JA, Reyes LI, Suárez JJ, Guerrero LE, Gutiérrez G, Physica D178(2003)26.
    [171] Wang K, Pei W, Xia H, Nustes MG, Gonzalez JA. Statistical independence innonlinear maps coupled to non-invertible transformations[J]. Physics Letters A372(2008)6593–6601.
    [172] Adriana V, Adrian L, and Madalin F. Computational measurements of thetransient time and of the sampling distance that enables statistical independencein the logistic map[C]. In Proc. International Conference on ComputationalScience and Its Applications (ICCSA):703-718, Berlin, Heidelberg,2009.Springer-Verlag.
    [173] Armin DW. SAR processing with non-Linear FM chirp waveforms [R]. SandiaReport SAND2006-7729, Sandia National Laboratories, Albuquerque, NewMexico,2006.
    [174]胡英辉,郑远,耿旭朴,邓云凯.相位编码信号的多普勒补偿[J].电子与信息学报,2009.31(11):2596-2599.
    [175] Davis RM, Fante RL and Perry RP. Phase-Coded Waveforms for Radar[J].IEEE Trans. on Aarospace and Electronic System,2007,43(1):401-408.
    [176]包云霞,毛二可,何佩琨.基于一维高分辨距离像的相关测速补偿算法[J].北京理工大学学报,2008,28(2):160-163.
    [177] Peng W, Wang X, and Zhao J. Methods of eliminating Doppler dispersion insynthetic wideband signal [C].ICMMT2008, Nanjing, China, Apr.21-24,2008,3:1540-1543.
    [178] Sailaja A. New approaches to pulse compression technologes of phase-codedwaveforms in radar[D]. Department of Electronics&CommunicationEngineering, National Institute of Technology, Rourkela,2010.
    [179] Cheng YP and Bao Z, et al.. Doppler compensation for binary phase-codedwaveforms[J]. IEEE Trans. on Aerospace and Electronic Systems,2002,38(3):1068-1072.
    [180]王毅鹰,苏兮.基于m序列信号的多普勒补偿方法[J].现代雷达,2007,29(2):48-51.
    [181] Yang J and Sarkar TK. Acceleration-invariance of hyperbolic frequencymodulated pulse compression[J]. Elsevier Digital Signal Process.,2007: doi:10.1016/j.dsp.2007.01.005.
    [182] Khan HA, Edwards DJ. Doppler problems in orthogonal MIMO radar[C]. IEEEConference on Radar,2006:244-247.
    [183] Rohling H and Plagge W. Mismatched-filter design for periodic binary phasedsignals[J]. IEEE Trans. on Aerospace and Electronic Systems,1989,25(6):890-897.
    [184] Molina A and Fannin PC. Application of mismatched filter theory to bandpassimpulse response measurements[J]. IET Electronics Letters,1993,29(2):162-163.
    [185] Sarkar I and Fam AT. Multiplicative mismatched filters for sidelobesuppression in Barker codes[J]. IEEE Trans. on Aerospace and ElectronicSystems,2008,44(1):349-359.
    [186] Damtie B, Markku L, Mikko O, Juha V. Mismatched filtering of aperiodicquadriphase codes[J]. IEEE Trans. on Information theory,2008,54(4):1742-1749.
    [187] Edwin A. and Adly TF. Mismatched filters for Frank polyphase codes viasidelobe inversion[C].2009IEEE Radar Conference,2009:2871-2877.
    [188] Candan C. On the design of mismatched filters with an adjustable matchedfiltering loss[C].2010IEEE Radar Conference,2010:5812-5871.
    [189] Liangbing H, Hongwei L, et al. Optimal mismatched filter bank design forMIMO radar via convex optimization[C].2010International WaveformDiversity and Design Conference (WDD),2010:8201-8206.
    [190] Deng H. Polyphase code design for orthogonal netted radar systems[J] IEEETrans. on Signal Process., Nov.2004,52(11):3126–3135.
    [191]雷德明,严新平,吴智铭.多目标混沌进化算法[J].电子学报,2006,6(34):1142-1145.
    [192]袁晓辉,袁艳斌,王乘,张勇传.一种新型的自适应混沌遗传算法[J].电子学报,2006,4(34):708-712.
    [193]陈炳瑞,杨成祥,冯夏庭,王文杰.自适应混沌遗传混合算法及其参数敏感性分析[J].东北大学学报(自然科学版),2006,06(27):689-693.
    [194]程志刚,张立庆,李小林,吴晓华.基于Tent映射的混沌混合粒子群优化算法[J].系统工程与电子技术,2007,01(29):103-106.
    [195]李勇军,袁小芳,孙炜.动态分级的并行混沌优化算法研究[J].系统仿真学报,2007,12(19):2690-2694.
    [196]张浩,沈继红,张铁男,李阳.一种基于混沌映射的粒子群优化算法及性能仿真[J].系统仿真学报,2008,20(20):5462-6466.
    [197] Hongwei D, Yu Y, Cunhua L. Chaotic clonal selection algorithm for functionoptimization[C].2010International Conference on E-Health Networking,Digital Ecosystems and Technologies,2010:181-184.
    [198] Grandjean E. Linear time algorithms and NP-complete problems[J]. SIAM J.Comput.,1994,23(3):573–597.
    [199]柴争义,刘芳,朱思峰.混沌量子克隆优化求解认知无线网络决策引擎[J].物理学报,2012,61(2):028801,1-7.
    [200]杜海峰,公茂果,刘若辰,焦李成.自适应混沌克隆进化规划算法[J].中国科学E辑,信息科学,2005,35(8):817-829.
    [201]李敏强,寇纪松,林丹.遗传算法的基本理论与应用[M].北京:科学出版社,2002:244-247.
    [202]陈炳瑞,杨成祥,冯夏庭,王文杰.自适应混沌遗传混合算法及其参数敏感性分析[J].东北大学学报(自然科学版),2006,06(27):689-693.
    [203] Somaini U. Binary sequences with good autocorrelation and cross correlationproperties[J], IEEE Trans. on Aerospace and Electronic Systems,1975,6(11):1226-1231.
    [204] Davis RM, Fante RL and Perry RP. Phase-coded waveforms for radar[J]. IEEETrans. on Aerospace and Electronic Systems,2007,43(1):401-408
    [205] Hongbin L, Himed B. Transmit subaperturing for MIMO radars withco-Located antennas[J]. IEEE Journal of Selected Topics in Signal Processing,2010,4(1):55-65.
    [206] Wang J, Jiang S, He J, Liu Z, Baker CJ. Adaptive subspace detector formulti-input multi-output radar in the presence of steering vector mismatch[J].IET Radar Sonar Navig.2011,5(1):23-31.
    [207] Forsythe K, Bliss D, and Fawcett G. Multiple-input multiple-output (MIMO)radar: Performance issues[C]. Proc.38th Asilomar Conf. Signals, Systems,Computers, Pacific Groove, CA, Nov.2004:310-315.
    [208] Fishler E, Alexander H and Blum RS et al. Spatial diversity in radars-modelsand detection performance[J]. IEEE Trans. on Signal Processing,2006,3(54):823-838.
    [209] Yang J, Qiu Z, Chen H and Zhuang Z. Effects of transmitting correlatedwaveforms for co-located MIMO radar with target detection and localization[J].IET Radar Sonar Navig.,2011, under review.
    [210] Li J, Liao G, Jin M and Ma Q. Multi-target detection and localization methodfor bi-static MIMO radar[C].2009IET International Radar Conference. April2009:1-4.
    [211] Nion D and Sidiropoulos ND. A parafac-based technique for detection andlocalization of multiple targets in a MIMO radar system[C]. IEEE InternationalConference on Speech and Signal Processing, in Acoustics, April2009:2077-2080.
    [212] Liu XL and Liao GS. Multi-target localization in bi-static MIMO radar[J].Electronics Letters,2006,13(46):945-946.
    [213] Gogineni S and Nehorai A. Polarimetric MIMO radar with distributed antennasfor target detection[J]. IEEE Trans. on Signal Processing,2010,3(58):1689-1697.
    [214] He Q, Lehmann NH, Blum RS and Haimovich AM. MIMO radar movingtarget detection in homogeneous clutter[J]. IEEE Trans. on Aerospace andElectronic Systems,2010,3(46):1290-1310.
    [215] Cui G, Kong L and Yang X. Multiple-input multiple-output radar detectorsdesign in non-Gaussian clutter[J]. IET Radar Sonar Navig.2010,5(4):724-732.
    [216] Mandelbrot BB. The fractal geometry of nature[M]. NY: Freeman,1982.
    [217] Berizzi F. Fractal theory of sea scattering.[M] In: Proc CIE int conf radar,1996:661-665.
    [218] Jaggard DL and Sun X. Scattering from fractally corrugated surfaces[J]. J OptSoc Am A,1990,6(7):1131-1139.
    [219] Jaggard DL and Sun X. Fractal surface scattering: a generalized rayleighsolution[J]. J Appl Phys,1990,68:5456-5462.
    [220] Tang J and Zhu Z. High resolution radar detection based on fractaldimension[J]. In: IEEE proc.,1996:369-372.
    [221] Peng Z, Huang B and Zhang Q. Detecting the manmade target based onenhanced fractal feature using PRIA[C]. IEEE First International Symposiumon Systems and Control in Aerospace and Astronautics, Jan.2006:208-211.
    [222] Du G. Detection of sea-surface radar targets based on fractal model[J].Electronics Letters,2004,14(40):906-907.
    [223] Salmasi M and Hashemi MM. Design and analysis of fractal detector for highresolution radars[J]. Chaos Solitons and Fractals,2009,40:2133-2145.
    [224] Bigerelle M and Iost A. Fractal dimension and classification of music[J]. ChaosSolitons Fractal,2000,14(11):2179-2192.
    [225] Esteller R, Vachtsevanos G, Echauz J and Litt B. A comparison of waveformfractal dimension algorithms[J]. IEEE Trans. on circuits and systems:fundamental theory and applications,2001,2(48):177-183.
    [226] Falconer K. Fractal geometry[M]. John Wiley&Sons,1990.
    [227] Sheikhi A and Zamani A. Temporal coherent adaptive target detection formulti-input multi-output radar in clutter[J]. IET Radar Sonar Navig.2008,2(2):86-96.
    [228] Farina A, Studer FA and Vitiello R. High resolution radar for enhanced radardetection[C]. In: Int conf radar,1992:163-166.
    [229] Jacobs SP and Sullivan J. High resolution radar models for joint tracking andrecognition[C]. In: IEEE natl radar conf.,1997:99-104.
    [230] Weidong H, Wenxian Y and Aimin L. Fractal detection of radar weaktargets[C]. In: Proc IEEE1995natl aerosp electron conf.,1995:140-144.
    [231] Salmasi M, Modarres MH and Nayebi MM. Performance analysis of fractaldetector for a general model of HRR signals[C]. In: Proc. int radar conf, radar2004, Toulouse, France, Oct.2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700