用户名: 密码: 验证码:
适用于大样本高分辨三维成像的树脂块连续薄切片研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近来兴起的脑神经元网络精细结构的研究,需要能够在哺乳动物全脑范围实现神经突起甚至突触分辨率水平的解剖结构成像的技术。根据这一需求,已发展出许多新的成像方法和成像系统。基于树脂包埋和薄切片的显微成像技术,被认为是目前最可能实现全脑精细神经连接结构获取的方法之一。当这类技术应用于小鼠全脑这种厘米尺寸大样本时,薄切片的加工性能和稳定性对海量地长时间微米分辨率获取神经精细结构数据的质量具有至关重要的影响。然而目前还缺少对连续薄切片尤其是大样本的连续薄切片的系统性的研究。
     显微光学切片断层成像(Micro-optical Sectioning Tomography, MOST)技术是基于树脂包埋和薄切片的显微成像技术的一个代表,主要致力于研究各种染色的小鼠全脑的高分辨率成像。MOST技术通过对小鼠全脑组织用树脂包埋后进行厚度为0.5-1μm的连续自动薄切片和成像,实现海量数据获取。本文以MOST系统为实验平台,建立用于大样本三维高分辨成像的树脂连续薄切片性能的定量评估和研究方法,并以Spurr树脂为代表的环氧类树脂样本为对象,研究MOST系统微米切片性能。
     由于大样本薄切片的直接测量实施的难度大,可靠性低,故提出了基于加工表面形貌测量的性能评估的基本思想,并阐述了该方法的总体方案、技术选择、以及评估和优化的标准。
     表面波纹度、表面粗糙度、切片厚度与切片图像质量和三维重建准确性直接相关。通过表面波纹曲线、三维形貌和台阶高度的获取与测量对这三项基本性能进行研究。MOST系统的具体实验研究表明,MOST系统微米切片Spurr树脂应避免使用会造成振动和表面波纹加强的F300切片速度,并保证样本的邵氏硬度在80以上,由此可在非切片边界处获得Rq低于20nm、Rz低于200nm的高质量表面;通过刀刃滚动角的调节,微米切片的厚度变动范围可以控制在10%以内。
     大样本的薄切片会经历同一断面分解为多条切片的过程,带来切片条带的横向配准和边界损失问题,并可能直接影响三维图像数据的准确性和完整性。首次提出基于表面锯齿高度的刀刃滚动角测量方法,并以此评估条带的横向配准程度。利用扫描电子显微镜研究条带边界的损失,以边界缺口宽度评价边界损失。MOST系统微米切片Spurr树脂实验说明:加工表面锯齿高度越大,横向条带错位和边界缺口宽度越大;较软的样本更易产生面积较大的边界缺口。通过调整刀刃滚动角将加工表面锯齿高度控制在200-300nm,并尽量采用较硬的样本(推荐1#邵氏硬度,约83.5度),可将横向切片配准偏差控制在20%~30%,边界缺口宽度控制在MOST成像横向分辨率(0.71μm)以下。结合微米台阶高度和锯齿高度的测量,精确计算了MOST微米切片Spurr树脂的实际平均切片厚度,与设定值1μm的偏差不超过3%。
     大样本薄切片的实施必须在水中进行,水会使得树脂材料膨胀甚至软化,对切片性能可能会有影响。针对水环境下切片性能进行研究和优化,首次提出了基于表面台阶高度测量的样本表面短时间浸水膨胀程度的定量研究方法,并用于Spurr树脂块的吸湿性膨胀特性研究。根据Spurr树脂吸湿性膨胀特性,应保证同一层断面中各切片条带的浸水时间一致且尽可能短,一般控制在4分钟以内,浸水时间超过8分钟,可能引起加工表面力学性能退化从而造成严重数据损失。利用邵氏硬度测量对Spurr树脂浸水后硬度的变化进行研究,认为25°C的水温和不低于1mm/24h的表面更新速度,基本可以避免水环境降低Spurr树脂切片性能。
     本文实验研究获得一系列优化切片性能的条件参数,并表明MOST系统运行在可选参数条件下,能实现高精度和长时间稳定的微米切片工作,各项性能指标都优于系统设计的横向和轴向分辨率,可以满足MOST系统获取小鼠鼠脑神经突起水平的全脑解剖数据的需求。综合切片性能和优化条件以及水环境的影响,针对MOST系统长时间数据采集Spurr树脂样本设计合理的切片控制方案,并制定了一套标准规范的MOST系统正式数据采集切片性能监控工艺流程。
With the development of the study on brain-wide neural network structure of themammal, it is necessary to exploit the imaging technology which can provide neuronalprocesses or even synapses resolutions throughout a whole brain. A lot of new imagingmethods and systems have been developed, among which the microscopic imaging basedon resin embedding and ultra-thin sectioning has been considered one of the mostrealistic techniques for determining fine connectivity architectures of a brain-wide neuralnetwork. As this kind of technology is used for centimeter sized sample such as a wholebrain, the processability and stability of thin sectioning greatly affect the qualities ofneural network structure imaging and large data acquisition with micron resolutions andlong-term work. However, few systemic studies have been conducted on the serialultra-thin sectioning, especailly on large-sized samples.
     Micro-optical Sectioning Tomography (MOST) is representative one of microscopicimaging techniques based on resin embedding and ultra-thin sectioning, which focuseson the high resolution imaging of whole mouse brain stained with various kinds oftechniques. MOST achieves large volumetric data acquisition through embeding thewhole mouse brain in resin and automatic process of0.5-1μm-thick thin sectioning andimaging. This paper used MOST system as experimental platform, and established aquantitative evaluation and research methods of serial-thin-sectioning performance in3Dhigh-resolution imaging of large samples and researched the MOST micron-sectioning oflarge sample made of Spurr resin representing epoxy resins.
     Since the direct measurement of the sections of the large sample is difficult andunreliable, we provided the basic idea of performance evaluation based on processedsurface topography measurement, and described the technology choice, overall program,evaluation and optimization criteria.
     Section image quality and the accuracy of three-dimensional reconstruction aredirectly related to the surface waviness, surface roughness and section thickness. Thesethree basic performances were studied through the acquisition and measurement ofsurface waviness curve,3D topography and step height. The specific research on theMOST system indicated that MOST system should avoid the F300section speed whichwould enhance vibration and surface waviness in micron sectioning of Spurr resin. Andthe Shore hardness of sample should be80. Based on these conditions, we could obtainthe high quality surface with Rq below20nm and Rz below200nm. By adjust theroll angle of knife blade, the thickness variation range of the sections could be controlledwithin10%.
     Thin sectioning of large sample has to experience that the whole slice decomposes toseveral sectioned strip, which would cause the problem on the lateral registration of thestrip and the boundary loss, and hence effect the accuracy and integrity of thethree-dimensional image data. We firstly proposed the roll angle measurement of knifeblade based on surface sawtooth height, and evaluated the lateral registration of strips.Strip boundary loss was studied by using scanning electron microscopy and evaluated bythe nick width on boundary. From the experiment on the MOST micron sectioning ofSpurr resin, it shows that large sawtooth height of cause large nick width on boundaryand large dislocation of lateral stripes. Soft samples are more likely to have a largerboundary nick. By adjusting the roll angle of knife blade, the sawtooth height iscontrolled within200-300nm. Besides, hard sample(recommend1#Shore hardness,83.5) should be used. Under these conditions, the registration deviation of lateral stripscan be control within20%to30%, and the nick width on the boundary can be controlbelow the lateral resolution of MOST system (0.71μm). By the measurement of themicron step height and the sawtooth height, we calculated the average thickness inMOST micron sectioning of Spurr resin, and the deviation between the actual value andthe set value of1μm was less than3%.
     Thin sections of the large sample should be operated under water, in which case thewater may soften the resin and make it expansion which may affect the performance ofthe section. For studying and optimizing the sectioning performance under waterenvironment, a quantitative research method of the surface expansion with a short-timeimmersion based on surface-step-height measurement was firstly proposed. And thismethod was applied to studied the hygroscopic expansion characteristics of Spurr resin.According to the hygroscopic expansion properties of Spurr resin, the immersionduration of each sectioned strip should be both constant and as short as possible,normally within4minutes. When the water immersion duration is longer than8minutes,the mechanical properties of sectioned surface may degenerate and cause serious dataloss. Using Shore hardness measurement to study hardness changes of the Spurr resinafter water immersion, it is considered that the section performance of Spurr resin couldavoid degenerating under the25°C water temperature and the surface renewal rate above1mm/24h.
     Through the experimental study, we obtained a serial of condition parameters tooptimize the sectioning performance. And it showed that when MOST system is runningunder the optional parameter conditions, we can achieve high accuracy and long-timestability of micron sectioning and the performance indicators is better than the lateral andaxial resolution of current system, which can meet the requirements of data acquisition ofthe brain-wide neural network structure. Comprehensively considering the sliceperformance and the influence of water environment, we designed specailsectioning-control scheme for Spurr resin specimens during MOST long-time dataacquisition, and developed a set of processing standards for sectioning performancemonitoring of MOST data acquisition.
引文
[1] Helmchen F, Denk W. Deep tissue two-photon microscopy. Nat. Methods,2005,2(12):932-940.
    [2] Theer P, Hasan M T, Denk W. Two-photon imaging to a depth of1000mu m inliving brains by use of a Ti: Al2O3regenerative amplifier. Opt. Lett.,2003,28(12):1022-1024.
    [3] Hayat A. Principles and Techniques of Electron Microscopy: BiologicalApplications,4th ed. New York: Cambridge University Press,2000.
    [4] Gray H, Standring S, Ellis H, et al. Gray's anatomy: the anatomical basis of clinicalpractice,39th ed. Elsevier Churchill Livingstone,2005.
    [5]王先逵.机械加工工艺手册第二卷:精密加工和纳米加工、高速切削、难加工材料的切削加工,北京:机械工业出版社,2008.
    [6] Henrikson R C, Kaye G I, Mazurkiewicz J E. Histology,3rd ed. Pennsylvania:Williams&Wilkins,1997.
    [7] Bancroft J D, Gamble M. Theory and Practice of Histological Techniques,6th ed.New York: Elsevier Churchill Livingstone,2008.
    [8] Hoppert M. Microscopic Techniques in Biotechnology, Weinheim: John Wiley&Sons,2006.
    [9] Gibb R, Kolb B. A method for vibratome sectioning of Golgi-Cox stained wholerat brain. J. Neurosci. Methods,1998,79(1):1-4.
    [10] MacKenzie-Graham A, Jones E S, Shattuck D W, et al. The informatics of aC57BL/6J mouse brain atlas. Neuroinformatics,2003,1(4):397-410.
    [11] Stephen R P. A Practical Guide to Frozen Section Technique, New York; Dordrecht;Heidelberg; London: Springer,2009.
    [12] Kazakia G J, Lee J J, Singh M, et al. Automated high-resolution three-dimensionalfluorescence imaging of large biological specimens. J. Microsc.,2007,225(2):109-117.
    [13] Williams D B, Carter C B. Transmission Electron Microscopy: A Textbook forMaterials Science, New York: Springer,2009.
    [14] Ewald A J, Mcbride H, Reddington M, et al. Surface imaging microscopy, anautomated method for visualizing whole embryo samples in three dimensions athigh resolution. Dev. Dyn.,2002,225(3):369-375.
    [15] Gerneke D A, Sands G B, Ganesalingam R, et al. Surface imaging microscopyusing an ultramiller for large volume3D reconstruction of wax-andresin-embedded tissues. Microsc. Res. Tech.,2007,70(10):886-894.
    [16] Tsai P S, Friedman B, Ifarraguerri A I, et al. All-Optical Histology Using UltrashortLaser Pulses. Neuron,2003,39(1):27-41.
    [17] Knott G, Marchman H, Wall D, et al. Serial section scanning electron microscopyof adult brain tissue using focused ion beam milling. J. Neurosci.,2008,28(12):2959-2964.
    [18] Kandel E R, Schwartz J H and Jessell T M. Principles of neural science,4th ed.New York: McGraw-Hill,2000.
    [19] Lichtman J W, Denk W. The Big and the Small: Challenges of Imaging the Brain'sCircuits. Science,2011,334(6056):618-623.
    [20] Sporns O, Tononi G, Kotter R. The human connectome: A structural description ofthe human brain. PLoS Comput. Biol.,2005,1(4):245-251.
    [21] Bohland J W, Wu C Z, Barbas H, et al. A Proposal for a Coordinated Effort for theDetermination of Brainwide Neuroanatomical Connectivity in Model Organisms ata Mesoscopic Scale. PLoS Comput. Biol.,2009,5(3):e1000334.
    [22] Eisenstein M. Putting neurons on the map. Nature,2009,461(7267):1149-1154.
    [23] DeFelipe J. From the Connectome to the Synaptome: An Epic Love Story. Science,2010,330(6008):1198-1201.
    [24] Shepherd G M, Mirsky J S, Healy M D, et al. The Human Brain Project:neuroinformatics tools for integrating, searching and modeling multidisciplinaryneuroscience data. Trends Neurosci.,1998,21(11):460-468.
    [25] Tang X W, Yin L, Tang Y Y. Human brain project and neuroinformatics in China,Shanghai: Fudan Univ Press,2001.
    [26] Tsunoda K, Yamane Y, Nishizaki M, et al. Complex objects are represented inmacaque inferotemporal cortex by the combination of feature columns. Nat.Neurosci.,2001,4(8):832-838.
    [27] Johansson C, Lansner A. Towards cortex sized artificial neural systems. NeuralNetw.,2007,20(1):48-61.
    [28] Snyder E Y, Yoon C, Flax J D, et al. Multipotent neural precursors can differentiatetoward replacement of neurons undergoing targeted apoptotic degeneration in adultmouse neocortex. Proc. Natl. Acad. Sci. U. S. A.,1997,94(21):11663-11668.
    [29] Spittaels K, Van Den Haute C, Van Dorpe J, et al. Neonatal neuronaloverexpression of glycogen synthase kinase-3beta reduces brain size in transgenicmice. Neuroscience,2002,113(4):797-808.
    [30] Hendry S H, Jones E G, Emson P C. Morphology, distribution, and synapticrelations of somatostatin-and neuropeptide Y-immunoreactive neurons in rat andmonkey neocortex. J. Neurosci.,1984,4(10):2497-2517.
    [31] Dent J A, Polson A G, Klymkowsky M W. A whole-mount immunocytochemicalanalysis of the expression of the intermediate filament protein vimentin in Xenopus.Development,1989,105(1):61-74.
    [32] Dodt H U, Leischner U, Schierloh A, et al. Ultramicroscopy: three-dimensionalvisualization of neuronal networks in the whole mouse brain. Nat. Methods,2007,4(4):331-336.
    [33] Hindle F, McCann H, Ozanyan K B. First demonstration of optical fluorescenceauto-projection tomography. Chem. Eng. J.,2000,77(1-2):127-135.
    [34] Sharpe J, Ahlgren U, Perry P, et al. Optical projection tomography as a tool for3Dmicroscopy and gene expression studies. Science,2002,296(5567):541-545.
    [35] Huang H M, Xia J J, Haidekker M A. Fast optical transillumination tomographywith large-size projection acquisition. Ann. Biomed. Eng.,2008,36(10):1699-1707.
    [36] Ragan T, Sylvan J D, Kim K H, et al. High-resolution whole organ imaging usingtwo-photon tissue cytometry. J. Biomed. Opt.,2007,12(1):9.
    [37] Denk W, Horstmann H. Serial Block-Face Scanning Electron Microscopy toReconstruct Three-Dimensional Tissue Nanostructure. PLoS. Biol.,2004,2(11):1900-1909.
    [38] Micheva K D, Smith S J. Array tomography: A new tool for Imaging the moleculararchitecture and ultrastructure of neural circuits. Neuron,2007,55(1):25-36.
    [39] Hayworth K J, Kasthuri N, Schalek R, et al. Automating the Collection of UltrathinSerial Sections for Large Volume TEM Reconstructions. Microsc. Microanal.,2006,12:86-87.
    [40] Mayerich D, Abbott L, McCormick B. Knife-edge scanning microscopy forimaging and reconstruction of three-dimensional anatomical structures of themouse brain. J. Microsc.-Oxf.,2008,231(1):134-143.
    [41] Li A A, Gong H, Zhang B, et al. Micro-Optical Sectioning Tomography to Obtain aHigh-Resolution Atlas of the Mouse Brain. Science,2010,330(6009):1404-1408.
    [42] Braitenberg V, Schuz A. Anatomy of the cortex: statistics and geometry, Berlin:Springe,1991.
    [43] Murre J M J, Sturdy D P F. The connectivity of the brain: Multi-level quantitativeanalysis. Biol. Cybern.,1995,73(6):529-545.
    [44]付洪兰.实用电子显微镜技术,北京:高等教育出版社,2004.
    [45]吴培熙,夏巨敏.塑料加工原理及实用技术,北京:中国轻工业出版社,1991.
    [46]栾华.塑料二次加工,北京:中国轻工业出版社,1999.
    [47] Peachey L D. Thin sections-I. A study of section thickness and physical distortionproduced during microtomy. J. Biophys. Biochem. Cytol.,1958,4(3):233-242.
    [48] Sakai T. Relation between thickness and interference colors of biological ultrathinsection. J. Electron Microsc.,1980,29(4):369-375.
    [49] Yang G C H, Shea S M. The precise measurement of the thickness of ultrathinsections by a ‘re-sectioned’ section technique. J. Microsc.-Oxf.,1975,103(3):385-392.
    [50] Bedi K S. A simple method of measuring the thickness of semi-thin and ultra-thinsections. J. Microsc.-Oxf.,1987,148(1):107-111.
    [51] Cabrini R L, Folco A, Orrea S, et al. A technique for section thickness evaluationfor microphotometry and image analysis of sectioned nuclei. Anal. Cell. Pathol.,1998,17(2):125-130.
    [52] Zeitler E, Bahr G. A Photometric Procedure for Weight Determination ofSubmicroscopic Particles Quantitative Electron Microscopy. J. Appl. Phys.,1962,33(3):847-853.
    [53] Edie J W, Karlsson U L. A routine method object thickness determination in thetransmission electron microscope. J. Microsc.-Oxf.,1972,13(1):13.
    [54] Schlichting F, Berger D, Niedrig H. Thickness determination of ultra-thin filmsusing backscattered electron spectra of a new toroidal electrostatic spectrometer.Scanning,1999,21(3):197-203.
    [55] Pearse A D, Marks R. Further studies on section thickness measurement. TheHistochemical journal,1976,8(4):383-396.
    [56] Berthold C H, Rydmark M, Corneliuson O. Estimation of sectioningcompressionand thickness of ultrathinsections through Vestopal-W-embedded cat spinal roots J.Ultrastruct. Res.,1982,80(1):42-52.
    [57] Amako K, Takade A, Umeda A, et al. Imaging of the surface structures of Eponthin sections created with a glass knife and a diamond knife by the atomic forcemicroscope. J. Electron Microsc.,1993,42(2):121-123.
    [58] Mollenhauer H H. Artifacts caused by dehydration and epoxy embedding intransmission electron microscopy. Microsc. Res. Tech.,1993,26(6):496-512.
    [59] Yamamoto A, Tashiro Y. Visualization by an atomic force microscope of thesurface of ultra-thin sections of rat kidney and liver cells embedded in LR white. J.Histochem. Cytochem.,1994,42(11):1463-1470.
    [60] Spurr A R. A low-viscosity epoxy resin embedding medium for electronmicroscopy. J. Ultrastruct. Res.,1969,26(1):31-43.
    [61]吴敏镜.超精密加工的技术基础和创新.超精密加工技术,2006,5:7-10.
    [62]杨桂霞,梁鑫.国内外超精密加工技术与机床的发展状况.机械工程师,2009,1:9-11.
    [63] Latta H, Hartmann J F. Use of a glass edge in thin sectioning for electronmicroscopy. Proc. Soc. Exp. Biol. Med.,1950,74(2):436-439.
    [64] Finck H. Epoxy resins in electron microscopy. J. Biophys. Biochem. Cytol.,1960,7:27-30.
    [65] Roth J, Bendayan M, Carlemalm E, et al. Enhancement of structural preservationand immunocytochemical staining in low temperature embedded pancreatic tissue.J. Histochem. Cytochem.,1981,29(5):663-671.
    [66] Newman G R. Use and abuse of LR White. The Histochemical journal,1987,19(2):118-120.
    [67] Tournier-Lasserve V, Boudet A and Sopena P. Artefacts and their healing inultramicrotomy of side-chain liquid-crystal polymers. Ultramicroscopy,1995,58(2):123-130.
    [68]李成锋.介观尺度铣削力与表面形貌建模及工艺优化研究.[博士学位论文].上海:上海交通大学,2007
    [69] Schmid E N, Menge B, Lickfeld K G. Capsule fine structure in thin slices ofKlebsiella pneumoniae Biovar d (Richard). J. Ultrastruct. Res.,1981,75(1):41-49.
    [70] Revel J P, Barnard T and Haggis G H. The science of biological specimenpreparation for microscopy and microanalysis, Chicago: Scanning ElectronMicroscopy,1984.
    [71] Acetarin J D, Carlemalm E, Kellenberger E, et al. Correlation of some mechanicalproperties of embedding resins with their behaviour in microtomy. J. ElectronMicrosc. Tech.,1987,6(1):63-79.
    [72]陈锡渠,彭晓南.金属切削原理与工具,北京:北京大学出版社-中国林业出版社,2006.
    [73]刘正林.摩擦学原理,北京:高等教育出版社,2009.
    [74] Bhushan B. Modern Tribology Handbook, Danvers: Taylor&Francis,2000.
    [75]毛起广.表面粗糙度的评定和测量,北京:机械工业出版社,1991.
    [76] Vorburger T V. Methods of Characterizing Surface Topography. In: Tutorials inoptics, Washington: Optical Society of America,1992
    [77] Binnig G, Rohrer H. Scanning tunneling microscopy. Surf. Sci.,1983,126(1-3):236-244.
    [78] Binnig G, Quate C F, Gerber C. Atomic Force Microscope. Phys. Rev. Lett.,1986,56(9):930-933.
    [79] Poon C Y, Bhushan B. Comparison of surface roughness measurements by stylusprofiler. Wear,1995,190(1):76-88.
    [80] Zahouani H, Vargiolu R, Kapsa P, et al. Effect of lateral resolution ontopographical images and three-dimensional functional parameters. Wear,1998,219(1):114-123.
    [81] Song J F, Vorburger T V. Friction, Lubrication and Wear Technology. In: ASMHandbook OH: ASM International, Materials Park,1992
    [82] Dektak150surface profiler user's manual. Tucson: Veeco Instruments Inc.
    [83]张颖,任耕,刘民生.无机非金属材料研究方法,北京:冶金工业出版社,2011.
    [84] http://www.instrument.com.cn/show/literature/c13316.pdf
    [85]姚琲.扫描隧道与扫描力显微镜分析原理,天津:天津大学出版社,2009.
    [86] Reimer L, Hawkes P W. Scanning Electron Microscopy: Physics of ImageFormation and Microanalysis,1st ed. Heidelberg: Springer,1998.
    [87] http://wenku.baidu.com/view/76be23f24693daef5ef73d13
    [88]凌诒萍,愈彰.细胞超微结构与电镜技术,上海:复旦大学出版社,2004.
    [89]周小鸽,刘勇.组织学技术的理论与实践,第六版.北京:北京大学医学出版社,2010.
    [90] Tobias S A. Machine-tool vibration, London: J. Wiley,1965.
    [91]韩正铜.磨削颤振与磨削表面形貌误差的研究,徐州:中国矿业大学出版社,2005.
    [92] Guntupalli J S. Physical sectioning in3D biological microscopy.[Master Thesis].Texas: Texas A&M University,2007
    [93]勾戮.再生型切削颤振的非线性动力学分析.[硕士学位论文].西安:西安交通大学,2009
    [94]林巨才.现代硬度测量技术及应用,北京:中国计量出版社,2008.
    [95] Maintz J B, Viergever M A. A survey of medical image registration. Med. ImageAnal.,1998,2(1):1-36.
    [96] Kwon J, Mayerich D, Choe Y, et al. Automated lateral sectioning for Knife-EdgeScanning Microscopy. In:2008Ieee International Symposium on BiomedicalImaging: From Nano to Macro. New York: Ieee.2008.1371-1374
    [97] Peutzfeldt A. Resin composites in dentistry: The monomer systems. Eur. J. OralSci.,1997,105(2):97-116.
    [98] Ferracane J L. Hygroscopic and hydrolytic effects in dental polymer networks.Dent. Mater.,2006,22(3):211-222.
    [99] Maggana C, Pissis P. Water sorption and diffusion studies in an epoxy resin system.J. Polym. Sci. Pt. B-Polym. Phys.,1999,37(11):1165-1182.
    [100] Wei Y J, Silikas N, Zhang Z T, et al. Hygroscopic dimensional changes ofself-adhering and new resin-matrix composites during water sorption/desorptioncycles. Dent. Mater.,2011,27(3):259-266.
    [101] Versluis A, Tantbirojn D, Lee M S, et al. Can hygroscopic expansion compensatepolymerization shrinkage? Part I. Deformation of restored teeth. Dent. Mater.,2011,27(2):126-133.
    [102] McCabe J F, Rusby S. Water absorption, dimensional change and radial pressure inresin matrix dental restorative materials. Biomaterials,2004,25(18):4001-4007.
    [103] Zhang B, Li A A, Yang Z Q, et al. Modified Golgi-Cox method for micrometerscale sectioning of the whole mouse brain. J. Neurosci. Methods,2011,197(1):1-5.
    [104] ASM International. Characterization and Failure Analysis of Plastics, OH:Materials Park,2003.
    [105] Paxinos G, Franklin K B J. The Mouse Brain in Stereotaxic Coordinates,2nd ed.San Diego: Elsevier Academic Press,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700