用户名: 密码: 验证码:
基于微流控芯片的浓度梯度实现新方法及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物体能够感受周围环境中多种化学分子信号,并根据其浓度梯度改变自身的生理活动。传统的研究生物体对于外界环境反应的方法操作繁琐、耗时较长、难以定量分析、并且不具有通用性。微流控芯片技术能够将不同的操作整合在一块芯片内,从而实现分析设备的微型化、集成化、自动化,将可以解决传统方法难以解决的生物学问题。因此,利用微流控芯片模拟外界环境,建立化学物质浓度梯度,并在细胞以及个体水平上研究生物体对于外界环境的反应无疑具有重要的意义。
     本文建立了一种新型浓度梯度微流控芯片。不同于已报道的常见的“圣诞树”的浓度梯度形成结构,该芯片利用阶梯状微通道网络,采用了逐步分流再混流的方式逐步稀释样品溶液,从而产生液体浓度梯度。
     我们首先对该微流控芯片进行理论分析与优化。采用数学建模的方法对这种通过液体串行稀释而产生化学物质浓度梯度的微流控新方法进行了原理阐述。通过流体力学计算方法,对微流控芯片内微通道结构进行了数学建模,并模拟分析不同的结构对于浓度梯度的影响。结果表明采用微通道宽度为100μm、下层主通道液体分流的分叉口处于右位、入口流量为0.5μL/min时的阶梯状网络结构最有利于形成液体浓度梯度。
     为了验证数学模拟的结果,我们在芯片入口分别通入水和荧光素,并通过荧光显微镜进行成像分析。结果表明在芯片内混流的区域,水和荧光素实现了完全混合,并在出口的六条微通道处形成了线性浓度梯度。在出口主通道中,六路溶液呈现层流特性,形成了明显的稳定的浓度梯度,保持了较长距离。实验结果与流体动力学计算得到的模拟结果非常吻合。
     之后,我们利用该微流控芯片进行了细胞水平上的应用。表达有可以检测细胞凋亡的CD2探针的HeLa细胞通过正压从芯片出口处进入主通道内,并贴附其通道壁生长。通过该芯片微通道网络在主通道中形成稳定的抗癌药物—顺铂浓度梯度,从而实现不同浓度的顺铂药物对细胞的处理。利用荧光能量共振转移成像系统对顺铂诱导细胞凋亡的进行实时在体监测。实验表明:顺铂可以诱导HeLa细胞凋亡,且顺铂的浓度与细胞凋亡率呈正相关,其中蛋白酶Caspase-2介导了顺铂诱导的细胞凋亡。这些结果说明该微流控浓度梯度产生芯片可以用于细胞凋亡的研究。
     最后,我们利用该微流控芯片形成了传统方法难以实现的含有浓度梯度的线虫培养环境,并分析了线虫对于NaCl的趋向性以及趋向学习行为。通过正压,我们将线虫直接注入芯片内出口主通道中,并通过芯片内阶梯状微通道网络在主通道中形成NaCl浓度梯度。为定量分析芯片内线虫的化学物质趋向性行为,我们通过成像,分析了在出口主通道中不同NaCl浓度区域内的线虫分布。结果表明野生型线虫主要趋向于浓度大于20mM的NaCl溶液,对于50-100mM之间的NaCl溶液没有偏好性,对高于300mM的NaCl溶液则表现出明显的厌恶性行为。此外,我们在该芯片内直接实现了NaCl与饥饿共处理线虫,从而将线虫的学习训练与训练后趋向性分析同在一块芯片内进行。结果表明:类似于平板上的学习行为,NaCl与饥饿共处理的线虫表现出厌恶原来喜欢的低浓度的NaCl的行为。这种芯片内学习方式可以让线虫通过学习建立低浓度NaCl与厌恶行为的联系。因此,该芯片可以为研究线虫的化学物质趋向以及学习行为提供良好的研究平台,并能够提高分析效率,降低分析时间,可以分析记忆时间很短的线虫可塑性学习行为。
     上述实验结果表明该微流控新技术平台具有设计新颖、结构简单以及实现效果明显的特点,能够实现可控的化学物质浓度梯度,并能够应用于不同的生物体系中。除了形成浓度梯度,该方法还可以形成温度梯度,为将来研究细胞和多细胞生物体在不同温度条件下的反应提供一种新的途径。该芯片在药物筛选、生物检测以及环境检测等方面也具有潜在的应用价值。
Organisms can sense a variety of chemical signals surrounding them, and changetheir physiological activities in accordance with the signals’ concentration gradient.Traditional methods for investigating the responses of organisms to the externalenvironment are complicated, time-consuming, and difficult to realize quantitativeanalysis. Microfluidic chip technology allows different operations on a single chip,showing advantages such as miniaturization, integration and automation. Therefore, it isof great significance to use microfluidic-based method to simulate external environment,and establish chemical concentration gradient for studying the responses of organisms tothe external environment at the single-cell level.
     In this paper, a new concentration gradient microfluidic chip is developed. Differentfrom preveiously reported "Christmas tree" structure, the new microfluidic chip make useof stepped microchannel network to dilute the sample solution, and to generateconcentration gradients.
     We first used numerical simulations to optimize the design of the microfluidic chipfor generating chemical concentration gradient by serial dilution. The influence ofdifferent microchannel structures on the concentration gradient was investigated. Resultsshowed that the best concentration gradient generating structure was the ladder networkwith the right bifurcation in the lower main channel and the microchannel width of100μm at quantity of flow of0.5μL/min in inlets.
     In order to verify the results of mathematical modeling, we loaded water andfluorescein into the chip, and studied the generation of concentration gradient byfluorescence imaging. Results showed that water and fluorescein were mixed completely,and a linear concentration gradient was generated at the outlet of the six microchannels. Inthe main channel of the outlet, the six-way concentrations of the solution are broughttogether. The solutions are layered, and last a long distance for keeping stableconcentration gradients apparently. These results were consistent to those obtained fromnumerical simulations.
     Subsequently, we applied the microfluidic chip to cell analysis. HeLa cells,expressing CD2probes for detecting apoptosis, were loaded into the main channel throughthe outlet of the chip, and attached to the bottom of the microchannel for cell culture. Astable concentration gradient of the anti-cancer drug, cisplatin was established in the main channel. Thus adherent cells could be treated with different concentrations of cisplatinsimultaneously. Fluorescence resonance energy transfer imaging system was used tomonitor the cisplatin-induced apoptosis in real time. Experimental results showed thatcisplatin could induce the apoptosis of HeLa cells, and the apoptosis rate was positivelycorrelated with the cisplatin concentrations. The protease caspase-2mediated theapoptosis induced by cisplatin. All these results suggested that the microfluidicconcentration gradient chip could be used for studying apoptosis.
     Finally, we used the microfluidic chip to establish concentration gradient forculturing Caenorhabditis elegans (C. elegans), which was difficult to achieve throughtraditional methods. The chemotaxis of C. elegans to NaCl was investigated. We loaded C.elegans to the main channel from the outlet of the microchannel, and the NaClconcentration gradient was generated simultaneously. The distribution of C. elegans in themain channel was investigated to quantify the chemotaxis C. elegans to NaCl. Resultsshowed that the wild-type C. elegans responded to NaCl with a concentration more than20mM. C. elegans showed no chemotaxis to50-100mM NaCl, and hated NaClconcentration higher than300mM. In addition, we have implemented directly the C.elegans with Nacl and with hungry on the same chip. Therefore, the learning training andthe chemotaxis analysis after training were conducted on the same chip. Results showedthat C. elegans could change its chemotaxis to low concentration of NaCl through leaning.Thus, the microfluidic chip provided a useful platform for investigating the chemotaxisand learning behaviors of C. elegans with reduced analysis time and enhanced analyticalefficiency.
     Above experimental results showed that the novel, simple and efficient microfluidicmethod was able to generate controllable chemical concentration gradients, and it could beapplied to study different model organisms. Except forming concentration gradient, thischip can also form a temperature gradient, which provides a new way for the future studyof reaction of cells and multicellular organisms in different temperature. This new methodwould have potential applications in drug screening, biological examination andenvironmental testing.
引文
[1] Caliper Technologies Corp. Caliper's labchip systems "putting the lab on a chip",1999, www.caliperls.com
    [2] Xu Y., Hu X.G., Liang J., et al. A microsystem of low-voltage-drivenelectrophoresis on microchip with array electrode pairs for the separation of aminoacids. Analytical and Bioanalytical Chemistry,2009,394:1947-1953
    [3] Xu Y., Liang J., Liu H.T., et al. Characterization of a capacitance-coupledcontactless conductivity detection system with sidewall electrodes on alow-voltage-driven electrophoresis microchip. Analytical and BioanalyticalChemistry,2010,397:1583-1593
    [4] Zhang G.S., Qian C.E., Xu Y.Z., et al. Open tubular CEC in a microfluidic chip forrapid chiral recognition. Journal of Separation Science,2009,32:374-380
    [5] Baker C.A., Roper M.G. A continuous-flow, microfluidic fraction collection device.Journal of Chromatography A,2010,1217:4743-4748
    [6] Ross D., Shackman J.G., Kralj J.G., et al.2D separations on a1D chip: gradientelution moving boundary electrophoresis-chiral capillary zone electrophoresis. Labon a Chip,2010,10:3139-3148
    [7] Mu X.Y., Qi L., Qiao J., et al. Study on alanine aminotransferase kinetics bymicrochip electrophoresis. Analytical Biochemistry,2012,421:499-505
    [8] Chen S.P., Wu J., Yu X.D., et al. Preparation of metal nanoband microelectrode onpoly(dimethylsiloxane) for chip-based amperometric detection. Analytica ChimicaActa,2010,665:152-159
    [9] Guan Q., Noblitt S.D., Henry C.S. Electrophoretic separations in poly(dimethylsiloxane) microchips using a mixture of ionic and zwitterionic surfactants.Electrophoresis,2012,33:379-387
    [10] Qiu J.D., Wang L., Liang R.P., et al. Microchip CE analysis of amino acids on atitanium dioxide nanoparticles-coated PDMS microfluidic device with in-channelindirect amperometric detection. Electrophoresis,2009,30:3472-3479
    [11] Park J., Lee D., Kim W., et al. Fully packed capillary electrochromatographicmicrochip with self-assembly colloidal silica beads. Analytical Chemistry,2007,79:3214-3219
    [12] Ladner Y., Cretier G., Faure K. Electrochromatography in cyclic olefin copolymermicrochips: A step towards field portable analysis. Journal of Chromatography A,2010,1217:8001-8008
    [13] Wang Q., Zhang Y., Ding H., et al. The use of ethylene glycol solution as therunning buffer for highly efficient microchip-based electrophoresis in unmodifiedcyclic olefin copolymer microchips. Journal of Chromatography A,2011,1218:9422-9427
    [14] Kim B.Y., Yang J., Gong M.J., et al. Multidimensional separation of chiral aminoacid mixtures in a multilayered three-dimensional hybrid microfluidic/nanofluidicdevice. Analytical Chemistry,2009,81:2715-2722
    [15] Fuentes H.V., Woolley A.T. Phase-changing sacrificial layer fabrication ofmultilayer polymer microfluidic devices. Analytical Chemistry,2008,80:333-339
    [16] Sun X.H., Peeni B.A., Yang W., et al. Rapid prototyping of poly(methylmethacrylate) microfluidic systems using solvent imprinting and bonding. Journalof Chromatography A,2007,1162:162-166
    [17] Yang W.C., Sun X.H., Pan T., et al. Affinity monolith preconcentrators for polymermicrochip capillary electrophoresis. Electrophoresis,2008,29:3429-3435
    [18] Pan T., Fiorin G.S., Chiu D.T., et al. In-channel atom-transfer radicalpolymerization of thermoset polyester microfluidic devices for bioanalyticalapplications. Electrophoresis,2007,28:2904-2911
    [19] Shackman J.G., Munson M.S., Ross D. Gradient elution moving boundaryelectrophoresis for high-throughput multiplexed microfluidic devices. AnalyticalChemistry,2007,79:565-571
    [20] Sun X.F., Liu J.K., Lee M.L. Surface modification of polymer microfluidic devicesusing in-channel atom transfer radical polymerization. Electrophoresis,2008,29:2760-2767
    [21] Rogers C.I., Pagaduan J.V., Nordin G.P., et al. Single-monomer formulation ofpolymerized polyethylene glycol diacrylate as a nonadsorptive material formicrofluidics. Analytical Chemistry,2011,83:6418-25
    [22] Sun X., Li D., Lee M.L. Poly(ethylene glycol)-functionalized polymeric microchipsfor capillary electrophoresis. Analytical Chemistry,2009,81:6278-6284
    [23] Sikanen T., Aura S., Heikkila L., et al. Hybrid ceramic polymers: new,nonbiofouling, and optically transparent materials for microfluidics. AnalyticalChemistry,2010,82:3874-3882
    [24] Liu Y., Rauch C.B., Stevens R.L., et al. DNA amplification and hybridizationassays in integrated plastic monolithic devices. Analytical Chemistry,2002,74:3063-3070
    [25] Janasek D., Franzke J., Manz A. Scaling and the design of miniaturizedchemical-analysis systems. Nature,2006,442:374-380
    [26] Hogan J. Lab on a chip: a little goes a long way. Nature,2006,442:351-352
    [27] Craighead H. Future lab-on-a-chip technologies for interrogating individualmolecules. Nature,2006,442:387-393
    [28] Psaltis D., Quake S.R., Yang C. Developing optofluidic technology through thefusion of microfluidics and optics. Nature,2006,442:381-386
    [29] Yager P., Edwards T., Fu E., et al. Microfluidic diagnostic technologies for globalpublic health. Nature,2006,442:412-418
    [30] Perry M., Li Q., Kennedy R.T. Review of recent advances in analytical techniquesfor the determination of neurotransmitters. Analytica Chimica Acta,2009,653:1-22
    [31] Lapainis T., Sweedler J.V. Contributions of capillary electrophoresis toneuroscience. Journal of Chromatography A,2008,1184:144-158
    [32] Jahr C.E., Lester R.A.J. Synaptic excitation mediated by glutamate-gated ionchannels. Current Opinion in Neurobiology,1992,2:270-274
    [33] Poinsot V., Carpene M.A., Bouajila J., et al. Recent advances in amino acidanalysis by capillary electrophoresis. Electrophoresis,2012,33:14-35
    [34] Poinsot V., Gavard P., Feurer B., et al. Recent advances in amino acid analysis byCE. Electrophoresis,2010,31:105-121
    [35] Poinsot V., Rodat A., Gavard P., et al. Recent advances in amino acid analysis byCE. Electrophoresis,2008,29:207-223
    [36] DeMello A.J. Control and detection of chemical reactions in microfluidic systems.Nature,2006,442:394-402
    [37] Dittrich P.S., Tachikawa K., Manz A. Micro total analysis systems. Latestadvancements and trends. Analytical Chemistry,2006,78:3887-3907
    [38] Vilkner T., Janasek D., Manz A. Micro total analysis systems. Recentdevelopments. Analytical Chemistry,2004,76:3373-3385
    [39] West J., Becker M., Tombrink S., et al. Micro total analysis systems: Latestachievements. Analytical Chemistry,2008,80:4403-4419
    [40] Thorsen T., Maerkl S.J., Quake S.R. Microfluidic large-scale integration. Science,2002,298:580-584
    [41] Feng X.J., Du W., Luo Q.M., et al. Microfluidic chip: Next-generation platform forsystems biology. Analytica Chimica Acta,2009,650:83-97
    [42] Kovarik M.L., Gach P.C., Ornoff D.M., et al. Micro Total Analysis Systems forCell Biology and Biochemical Assays. Analytical Chemistry,2012,84:516-540
    [43] Harrison D.J., Fluri K., Seiler K., et al. Micromachining a Miniaturized CapillaryElectrophoresis-Based Chemical Analysis System on a Chip. Science,1993,261:895-897
    [44] Manz A., Graber N., Widmer H.M. Miniaturized Total Chemical Analysis Systems:a Novel Concept for Chemical Sensing. Sens. Actuators B,1990,1:244-248
    [45] Ou G., Feng X., Du W., et al. Recent advances in microchip electrophoresis foramino acid analysis. Analytical and Bioanalytical Chemistry,2013
    [46] Schulze M., Belder D. Poly(ethylene glycol)-coated microfluidic devices for chipelectrophoresis. Electrophoresis,2012,33:370-378
    [47] Liang R.P., Meng X.Y., Liu C.M., et al. PDMS microchip coated withpolydopamine/gold nanoparticles hybrid for efficient electrophoresis separation ofamino acids. Electrophoresis,2011,32:3331-3340
    [48] Liang R.P., Wang L., Meng X.Y., et al. Enhanced electrophoresis separation ofnon-electroactive amino acids on poly(dimethylsiloxane) microchip coupled withdirect electrochemical detection on a copper electrode. Microfluidics andNanofluidics,2011,11:227-233
    [49] Xiao Y., Yu X.D., Wang K., et al. Study on the separation of amino acids inmodified poly(dimethylsiloxane) microchips. Talanta,2007,71:2048-2055
    [50] Wang A.J., Xu J.J., Chen H.Y. In-situ grafting hydrophilic polymer on chitosanmodified poly (dimethylsiloxane) microchip for separation of biomolecules.Journal of Chromatography A,2007,1147:120-126
    [51] Zhang Z.W., Feng X.J., Luo Q.M., et al. Environmentally friendly surfacemodification of PDMS using PEG polymer brush. Electrophoresis,2009,30:3174-3180
    [52] Zhang Z.W., Feng X.J., Xu F., et al."Click" chemistry-based surface modificationof poly(dimethylsiloxane) for protein separation in a microfluidic chip.Electrophoresis,2010,31:3129-3136
    [53] Li B.W., Jiang L., Wang Q., et al. Micropumps actuated negative pressure injectionfor microchip electrophoresis. Electrophoresis,2008,29:4906-4913
    [54] Miyaki K., Zeng H.L., Nakagama T., et al. Steady surface modification ofpolydimethylsiloxane microchannel and its application in simultaneous analysis ofhomocysteine and glutathione in human serum. Journal of Chromatography A,2007,1166:201-206
    [55] Karlinsey J.M. Sample introduction techniques for microchip electrophoresis: Areview. Analytica Chimica Acta,2012,725:1-13
    [56] Blas M., Delaunay N., Rocca J.L. Comparative study of floating and dynamicinjection modes in electrokinetic separative microsystems. Electrophoresis,2007,28:4629-4637
    [57] He Q.H., Fang Q., Du W.B., et al. Fabrication of a monolithic sampling probesystem for automated and continuous sample introduction in microchip-based CE.Electrophoresis,2007,28:2912-2919
    [58] Zhang L., Yin X.F. Parallel separation of multiple samples with negative pressuresample injection on a3-D microfluidic array chip. Electrophoresis,2007,28:1281-1288
    [59] Abdelgawad M., Watson M.W.L., Wheeler A.R. Hybrid microfluidics: Adigital-to-channel interface for in-line sample processing and chemical separations.Lab on a Chip,2009,9:1046-1051
    [60] Li M.W., Martin R.S. Integration of continuous-flow sampling with microchipelectrophoresis using poly(dimethylsiloxane)-based valves in a sealed devicereversibly sealed device. Electrophoresis,2007,28:2478-2488
    [61] Price A.K., Culbertson C.T. Generation of Nonbiased Hydrodynamic Injections onMicrofluidic Devices Using Integrated Dielectric Elastomer Actuators. AnalyticalChemistry,2009,81:8942-8948
    [62] Noblitt S.D., Kraly J.R., VanBuren J.M., et al. Integrated membrane filters forminimizing hydrodynamic flow and filtering in microfluidic devices. AnalyticalChemistry,2007,79:6249-6254
    [63] Yamamoto S., Watanabe Y., Nishida N., et al. Simultaneous concentrationenrichment and electrophoretic separation of weak acids on a microchip, using insitu photopolymerized carboxylate-type polyacrylamide gels as the permselectivepreconcentrator. Journal of Separation Science,2011,34:2879-2884
    [64] Yoon T.H., Li M., Hong L.Y., et al. Durable hydrophilic microchannels withcontrolled morphology by the direct molding method. Analytical Chemistry,2011,83:1901-1907
    [65] Xiao Y., Yu X.D., Xu J.J., et al. Bulk modification of PDMS microchips by anamphiphilic copolymer. Electrophoresis,2007,28:3302-3307
    [66] Culbertson C.T., Jacobson S.C., Ramsey J.M. Microchip devices for high-efficiency separations. Analytical Chemistry,2000,72:5814-5819
    [67] Moore A.W., Jacobson S.C., Ramsey J.M. Microchip Separations of NeutralSpecies via Micellar Electrokinetic Capillary Chromatography. AnalyticalChemistry,1995,67:4184-4189
    [68] Kitagawa F., Otsuka K. Micellar eletrokinetic chromatography on microchips.Journal of Separation Science,2008,31:794-802
    [69] Sueyoshi K., Hashiba K., Kawai T., et al. Hydrophobic labeling of amino acids:Transient trapping-capillary/microchip electrophoresis. Electrophoresis,2011,32:1233-1240
    [70] Qiao J., Qi L., Ma H.M., et al. Study on amino amides and enzyme kinetics ofL-asparaginase by MCE. Electrophoresis,2010,31:1565-1571
    [71] Hoeman K.W., Culbertson C.T. A novel, environmentally friendly sodium laurylether sulfate-, cocamidopropyl betaine-, cocamide monoethanolamine-containingbuffer for MEKC on microfluidic devices. Electrophoresis,2008,29:4900-4905
    [72] Huo Y., Kok W.T. Recent applications in CEC. Electrophoresis,2008,29:80-93
    [73] Blas M., Delaunay N., Rocca J.L. Electrochromatographic separation on apoly(dimethylsiloxane)/glass chip by integration of a capillary containing anacrylate monolithic stationary phase. Journal of Separation Science,2007,30:3043-3049
    [74] Xu Y., Cao M.X., Gan J., et al. Experimental and Simulation Research of theSeparation of Amino Acids on Micro Free-Flow Electrophoresis Chip with VoltageApplied in Two-Dimensions. Analytical Sciences,2010,26:1139-1143
    [75] Kohler S., Weilbeer C., Howitz S., et al. PDMS free-flow electrophoresis chipswith integrated partitioning bars for bubble segregation. Lab on a Chip,2011,11:309-314
    [76] Shameli S.M., Glawdel T., Liu Z., et al. Bilinear Temperature Gradient Focusing ina Hybrid PDMS/Glass Microfluidic Chip Integrated with Planar Heaters forGenerating Temperature Gradients. Analytical Chemistry,2012,84:2968-2973
    [77] Shadpour H., Hupert M.L., Patterson D., et al. Multichannel microchipelectrophoresis device fabricated in polycarbonate with an integrated contactconductivity sensor array. Analytical Chemistry,2007,79:870-878
    [78] Nagl S., Schulze P., Ludwig M., et al. Progress in microchip enantioseparations.Electrophoresis,2009,30:2765-2772
    [79] Nagl S., Schulze P., Ohla S., et al. Microfluidic chips for chirality exploration.Analytical Chemistry,2011,83:3232-3238
    [80] Huang Y., Shi M., Zhao S.L. Quantification of D-Asp and D-Glu in rat brain andhuman cerebrospinal fluid by microchip electrophoresis. Journal of SeparationScience,2009,32:3001-3006
    [81] Huang Y., Shi M., Zhao S.L., et al. Trace analysis of D-tyrosine in biologicalsamples by microchip electrophoresis with laser induced fluorescence detection.Journal of Chromatography B-Analytical Technologies in the Biomedical and LifeSciences,2011,879:3203-3207
    [82] Gotz S., Karst U. Recent developments in optical detection methods for microchipseparations. Analytical and Bioanalytical Chemistry,2007,387:183-192
    [83] Kuswandi B., Nuriman, Huskens J., et al. Optical sensing systems for microfluidicdevices: A review. Analytica Chimica Acta,2007,601:141-155
    [84] Schulze P., Link M., Schulze M., et al. A new weakly basic amino-reactivefluorescent label for use in isoelectric focusing and chip electrophoresis.Electrophoresis,2010,31:2749-2753
    [85] Liu C.C., Cui D.F., Chen X. Development of an integrated direct-contactingoptical-fiber microchip with light-emitting diode-induced fluorescence detection.Journal of Chromatography A,2007,1170:101-106
    [86] Yang L., Li X.T., Li J., et al. Small-angle optical deflection from collinearconfiguration for sensitive detection in microfluidic systems. Electrophoresis,2012,33:1996-2004
    [87] Liu B.F., Ozaki M., Utsumi Y., et al. Chemiluminescence detection for a microchipcapillary electrophoresis system fabricated in poly(dimethylsiloxane). AnalyticalChemistry,2003,75:36-41
    [88] Kamruzzaman M., Alam A.M., Kim K.M., et al. Microfluidic chip basedchemiluminescence detection of L-phenylalanine in pharmaceutical and soft drinks.Food Chemistry,2012,135:57-62
    [89] Chen Z.G., Li Q.W., Li O.L., et al. A thin cover glass chip for contactlessconductivity detection in microchip capillary electrophoresis. Talanta,2007,71:1944-1950
    [90] Tay E.T.T., Law W.S., Sim S.P.C., et al. Floating resistivity detector for microchipelectrophoresis. Electrophoresis,2007,28:4620-4628
    [91] Ghanim M.H., Abdullah M.Z. Integrating amperometric detection withelectrophoresis microchip devices for biochemical assays: Recent developments.Talanta,2011,85:28-34
    [92] Zhai C., Qiang W., Lei J.P., et al. Highly resolved separation and sensitiveamperometric detection of amino acids with an assembled microfluidic device.Electrophoresis,2009,30:1490-1496
    [93] Ueno H., Wang J., Kaji N., et al. Quantitative determination of amino acids infunctional foods by microchip electrophoresis. Journal of Separation Science,2008,31:898-903
    [94] Zhao S.L., Huang Y., Liu Y.M. Microchip electrophoresis with chemiluminescencedetection for assaying ascorbic acid and amino acids in single cells. Journal ofChromatography A,2009,1216:6746-6751
    [95] Cellar N.A., Kennedy R.T. A capillary-PDMS hybrid chip for separations-basedsensing of neurotransmitters in vivo. Lab on a Chip,2006,6:1205-12
    [96] Wang M., Roman G.T., Perry M.L., et al. Microfluidic chip for high efficiencyelectrophoretic analysis of segmented flow from a microdialysis probe and in vivochemical monitoring. Analytical Chemistry,2009,81:9072-8
    [97] Wang M., Hershey N.D., Mabrouk O.S., et al. Collection, storage, andelectrophoretic analysis of nanoliter microdialysis samples collected from awakeanimals in vivo. Analytical and Bioanalytical Chemistry,2011,400:2013-23
    [98] Mecker L.C., Martin R.S. Coupling microdialysis sampling to microchipelectrophoresis in a reversibly sealed device. Journal of Association for LaboratoryAutomation,2007,12:296-302
    [99] Nandi P., Lunte S.M. Recent trends in microdialysis sampling integrated withconventional and microanalytical systems for monitoring biological events: areview. Analytica Chimica Acta,2009,651:1-14
    [100] Guihen E., O'Connor W.T. Capillary and microchip electrophoresis inmicrodialysis: recent applications. Electrophoresis,2010,31:55-64
    [101] Escarpa A., Gonzalez M.C., Crevillen A.G., et al. CE microchips: An opened gateto food analysis. Electrophoresis,2007,28:1002-1011
    [102] Ohla S., Schulze P., Fritzsche S., et al. Chip electrophoresis of active bananaingredients with label-free detection utilizing deep UV native fluorescence andmass spectrometry. Analytical and Bioanalytical Chemistry,2011,399:1853-1857
    [103] Mora M.F., Stockton A.M., Willis P.A. Microchip capillary electrophoresisinstrumentation for in situ analysis in the search for extraterrestrial life.Electrophoresis,2012,33:2624-2638
    [104] Chiesl T.N., Chu W.K., Stockton A.M., et al. Enhanced amine and amino acidanalysis using Pacific Blue and the Mars Organic Analyzer microchip capillaryelectrophoresis system. Analytical Chemistry,2009,81:2537-2544
    [105] Benhabib M., Chiesl T.N., Stockton A.M., et al. Multichannel capillaryelectrophoresis microdevice and instrumentation for in situ planetary analysis oforganic molecules and biomarkers. Analytical Chemistry,2010,82:2372-2379
    [106] Mora M.F., Greer F., Stockton A.M., et al. Toward Total Automation ofMicrofluidics for Extraterrestial In Situ Analysis. Analytical Chemistry,2011,83:8636-8641
    [107] Nilsson J., Evander M., Hammarstrom B., et al. Review of cell and particle trappingin microfluidic systems. Analytica Chimica Acta,2009,649:141-157
    [108] El-Ali J., Sorger P.K., Jensen K.F. Cells on chips. Nature,2006,442:403-411
    [109] Sun J., Chen P., Feng X., et al. Development of a microfluidic cell-based biosensorintegrating a millisecond chemical pulse generator. Biosensors and Bioelectronics,2011,26:3413-3419
    [110] Leclerc E.S.Y., Fujii T. Cell culture in3-dimensional microfluidic structure ofPDMS (polydimethylsiloxane). Biomedical Microdevices,2003,5:109-114
    [111] Liu X., Qin J.H., Lin B.C. Patterning adhesive and non-adhesive cells by2-and3-dimentational hydrogel microstructures.11th Asian Chemical Congress,2005:340
    [112] Park J., Kim B., Choi S.K., et al. An efficient cell separation system using3D-asymmetric microelectrodes. Lab on a Chip,2005,5:1264-1270
    [113] Yao B., Luo G.A., Feng X., et al. A microfluidic device based on gravity andelectric force driving for flow cytometry and fluorescence activated cell sorting.Lab on a Chip,2004,4:603-607
    [114] Tai C.H., Hsiung S.K., Chen C.Y., et al. Automatic microfluidic platform for cellseparation and nucleus collection. Biomed Microdevices,2007,9:533-543
    [115] Arai F., Ichikawa A., Ogawa M., et al. High-speed separation system of randomlysuspended single living cells by laser trap and dielectrophoresis. Electrophoresis,2001,22:283-288
    [116] Berger M., Castelino J., Huang R., et al. Design of a microfabricated magnetic cellseparator. Electrophoresis,2001,22:3883-3892
    [117] Arai F., Ichikawa A., Ogawa M., et al. High-speed separation system of randomlysuspended single living cells by laser trap and dielectrophoresis. Electrophoresis,2001,22:283-288
    [118] Wang M.M., Tu E., Raymond D.E., et al. Microfluidic sorting of mammalian cellsby optical force switching. Nature Biotechnology,2005,23:83-87
    [119] Yu L., Huang H., Dong X., et al. Simple, fast and high-throughput single-cellanalysis on PDMS microfluidic chips. Electrophoresis,2008,29:5055-5060
    [120] Han K.H., Frazier A.B. Paramagnetic capture mode magnetophoreticmicroseparator for high efficiency blood cell separations. Lab on a Chip,2006,6:265-273
    [121] Wolff A., Perch-Nielsen I.R., Larsen U.D., et al. Integrating advanced functionalityin a microfabricated high-throughput fluorescent-activated cell sorter. Lab on aChip,2003,3:22-27
    [122] Mohamed H., McCurdy L.D., Szarowski D.H., et al. Development of a rare cellfractionation device: application for cancer detection. IEEE Transactions onNanobioscience,2004,3:251-256
    [123] Zheng T., Yu H., Alexander C.M., et al. Lectin-modified microchannels formammalian cell capture and purification. Biomedical Microdevices,2007,9:611-617
    [124] Furdui V.I., Harrison D.J. Immunomagnetic T cell capture from blood for PCRanalysis using microfluidic systems. Lab on a Chip,2004,4:614-618
    [125] Chen P., Feng X., Hu R., et al. Hydrodynamic gating valve for microfluidicfluorescence-activated cell sorting. Analytica Chimica Acta,2010,663:1-6
    [126] Di Carlo D., Wu L.Y., Lee L.P. Dynamic single cell culture array. Lab on a Chip,2006,6:1445-1449
    [127] Nevill J.T., Cooper R., Dueck M., et al. Integrated microfluidic cell culture andlysis on a chip. Lab on a Chip,2007,7:1689-1695
    [128] Zhang M.Y., Lee P.J., Hung P.J., et al. Microfluidic environment for high densityhepatocyte culture. Biomedical Microdevices,2008,10:117-121
    [129] Khademhosseini A., Yeh J., Eng G., et al. Cell docking inside microwells withinreversibly sealed microfluidic channels for fabricating multiphenotype cell arrays.Lab on a Chip,2005,5:1380-1386
    [130] Wheeler A.R., Throndset W.R., Whelan R.J., et al. Microfluidic device for single-cell analysis. Analytical Chemistry,2003,75:3581-3586
    [131] Sabounchi P., Ionescu-Zanetti C., Chen R., et al. Soft-state biomicrofluidic pulsegenerator for single cell analysis. Applied Physics Letters,2006,88:183901
    [132] Lee P.J., Hung P.J., Shaw R., et al. Microfluidic application-specific integrateddevice for monitoring direct cell-cell communication via gap junctions betweenindividual cell pairs. Applied Physics Letters,2005,86:223902-223904
    [133] Gao J., Yin X.F., Fang Z.L. Integration of single cell injection, cell lysis, separationand detection of intracellular constituents on a microfluidic chip. Lab on a Chip,2004,4:47-52
    [134] Mittal N., Rosenthal A., Voldman J. nDEP microwells for single-cell patterning inphysiological media. Lab on a Chip,2007,7:1146-1153
    [135] Kamholz A.E., Weigl B.H., Finlayson B.A., et al. Quantitative analysis ofmolecular interaction in a microfluidic channel: the T-sensor. Analytical Chemistry,1999,71:5340-5347
    [136] Stroock A.D., Dertinger S.K., Ajdari A., et al. Chaotic mixer for microchannels.Science,2002,295:647-651
    [137] Pearce T.M., Williams J.C. Microtechnology: meet neurobiology. Lab on a Chip,2007,7:30-40
    [138] Young E.W., Beebe D.J. Fundamentals of microfluidic cell culture in controlledmicroenvironments. Chemical Society Reviews,2010,39:1036-1048
    [139] Sundararaghavan H.G., Monteiro G.A., Firestein B.L., et al. Neurite growth in3Dcollagen gels with gradients of mechanical properties. Biotechnology andBioengineering,2009,102:632-643
    [140] Chung B.G., Flanagan L.A., Rhee S.W., et al. Human neural stem cell growth anddifferentiation in a gradient-generating microfluidic device. Lab on a Chip,2005,5:401-406
    [141] Vickerman V., Blundo J., Chung S., et al. Design, fabrication and implementationof a novel multi-parameter control microfluidic platform for three-dimensional cellculture and real-time imaging. Lab on a Chip,2008,8:1468-1477
    [142] Dertinger S.K.W., Chiu D., Jeon N.L., et al. Generation of gradients havingcomplex shapes using microfluidic networks. Analytical Chemistry,2001,73:1240-1246
    [143] Li Jeon N., Baskaran H., Dertinger S.K., et al. Neutrophil chemotaxis in linear andcomplex gradients of interleukin-8formed in a microfabricated device. NatureBiotechnology,2002,20:826-830
    [144] Song L., Nadkarni S.M., Bodeker H.U., et al. Dictyostelium discoideumchemotaxis: threshold for directed motion. European Journal of Cell Biology,2006,85:981-989
    [145] Irimia D., Liu S.Y., Tharp W.G., et al. Microfluidic system for measuringneutrophil migratory responses to fast switches of chemical gradients. Lab on aChip,2006,6:191-198
    [146] Tirella A., Marano M., Vozzi F., et al. A microfluidic gradient maker for toxicitytesting of bupivacaine and lidocaine. Toxicology In Vitro,2008,22:1957-1964
    [147] Ye N., Qin J., Shi W., et al. Cell-based high content screening using an integratedmicrofluidic device. Lab on a Chip,2007,7:1696-1704
    [148] Liu D., Wang L., Zhong R., et al. Parallel microfluidic networks for studyingcellular response to chemical modulation. Journal of Biotechnology,2007,131:286-292
    [149] Saadi W., Rhee S.W., Lin F., et al. Generation of stable concentration gradients in2D and3D environments using a microfluidic ladder chamber. BiomedicalMicrodevices,2007,9:627-635
    [150] Shamloo A., Ma N., Poo M.M., et al. Endothelial cell polarization and chemotaxisin a microfluidic device. Lab on a Chip,2008,8:1292-1299
    [151] Wu H.K., Huang B., N. Z.R. Generation of complex, static solution gradients inmicrofluidic channels. Journal of the American Chemical Society,2006,128:4194-4195
    [152] Abhyankar V.V., Lokuta M.A., Huttenlocher A., et al. Characterization of amembrane-based gradient generator for use in cell-signaling studies. Lab on a Chip,2006,6:389-393
    [153] Christopher G.F., Anna S.L. Microfluidic methods for generating continuousdroplet streams. Journal of Physics D: Applied Physics,2007,40:319-336
    [154] Chen P., Feng X., Sun J., et al. Hydrodynamic gating for sample introduction on amicrofluidic chip. Lab on a Chip,2010,10:1472-1475
    [155] Bargmann C.I. Genetic and cellular analysis of behavior in C. elegans. AnnualReview of Neuroscience,1993,16:47-71
    [156] Schafer W.R. Deciphering the neural and molecular mechanisms of C. elegansbehavior. Current Biology,2005,15: R723-729
    [157] Schumacher J.A., Hsieh Y.W., Chen S., et al. Intercellular calcium signaling in agap junction-coupled cell network establishes asymmetric neuronal fates in C.elegans. Development,2012,139:4191-4201
    [158] Rankin C.H. Invertebrate learning: what can't a worm learn? Current Biology,2004,14: R617-618
    [159] Ardiel E.L., Rankin C.H. An elegant mind: learning and memory in Caenorhabditiselegans. Learning and Memory,2010,17:191-201
    [160] Lau H.L., Timbers T.A., Mahmoud R., et al. Genetic dissection of memory forassociative and non-associative learning in Caenorhabditis elegans. Genes Brainand Behavior,2013,12:210-223
    [161] Sasakura H., Mori I. Behavioral plasticity, learning, and memory in C. elegans.Current Opinion in Neurobiology,2013,23:92-99
    [162] Mori I., Sasakura H., Kuhara A. Worm thermotaxis: a model system for analyzingthermosensation and neural plasticity. Current Opinion in Neurobiology,2007,17:712-719
    [163] Ward S. Chemotaxis by the nematode Caenorhabditis elegans: identification ofattractants and analysis of the response by use of mutants. Proceedings of theNational Academy of Sciences of the United States of America,1973,70:817-821
    [164] Dusenbery D.B., Sheridan R.E., Russell R.L. Chemotaxis-defective mutants of thenematode Caenorhabditis elegans. Genetics,1975,80:297-309
    [165] Bargmann C.I., Horvitz H.R. Control of larval development by chemosensoryneurons in Caenorhabditis elegans. Science,1991,251:1243-1246
    [166] Bargmann C.I., Horvitz H.R. Chemosensory neurons with overlapping functionsdirect chemotaxis to multiple chemicals in C. elegans. Neuron,1991,7:729-742
    [167] Golden J.W., Riddle D.L. The Caenorhabditis elegans dauer larva: developmentaleffects of pheromone, food, and temperature. Developmental Biology,1984,102:368-378
    [168] Rogers C., Persson A., Cheung B., et al. Behavioral motifs and neural pathwayscoordinating O2responses and aggregation in C. elegans. Current Biology,2006,16:649-659
    [169] de Bono M., Tobin D.M., Davis M.W., et al. Social feeding in Caenorhabditiselegans is induced by neurons that detect aversive stimuli. Nature,2002,419:899-903
    [170] Kim N., Dempsey C.M., Kuan C.J., et al. Gravity force transduced by theMEC-4/MEC-10DEG/ENaC channel modulates DAF-16/FoxO activity inCaenorhabditis elegans. Genetics,2007,177:835-845
    [171] Hulme S.E., Shevkoplyas S.S., McGuigan A.P., et al. Lifespan-on-a-chip:microfluidic chambers for performing lifelong observation of C. elegans. Lab on aChip,2010,10:589-597
    [172] Chung K., Zhan M., Srinivasan J., et al. Microfluidic chamber arrays forwhole-organism behavior-based chemical screening. Lab on a Chip,2011,11:3689-3697
    [173] Krajniak J., Lu H. Long-term high-resolution imaging and culture of C. elegans inchip-gel hybrid microfluidic device for developmental studies. Lab on a Chip,2010,10:1862-1868
    [174] Chung K., Crane M.M., Lu H. Automated on-chip rapid microscopy, phenotypingand sorting of C. elegans. Nature Methods,2008,5:637-643
    [175] Casadevall i Solvas X., Geier F.M., Leroi A.M., et al. High-throughput agesynchronisation of Caenorhabditis elegans. Chemical Communications (Camb),2011,47:9801-9803
    [176] Rezai P., Salam S., Selvaganapathy P.R., et al. Electrical sorting of Caenorhabditiselegans. Lab on a Chip,2012,12:1831-1840
    [177] Shi W.W., Qin J.H., Ye N.N., et al. Droplet-based microfluidic system forindividual Caenorhabditis elegans assay. Lab on a Chip,2008,8:1432-1435
    [178] Shi W., Wen H., Lu Y., et al. Droplet microfluidics for characterizing theneurotoxin-induced responses in individual Caenorhabditis elegans. Lab on a Chip,2010,10:2855-2863
    [179] Ma H., Jiang L., Shi W.W., et al. A programmable microvalve-based microfluidicarray for characterization of neurotoxin-induced responses of individual C. elegans.Biomicrofluidics,2009,3:44114-44121
    [180] Lockery S.R., Lawton K.J., Doll J.C., et al. Artificial dirt: Microfluidic substratesfor nematode neurobiology and behavior. Journal of Neurophysiology,2008,99:3136-3143
    [181] Park S., Hwang H., Nam S.W., et al. Enhanced Caenorhabditis elegans locomotionin a structured microfluidic environment. PLoS One,2008,3: e2550
    [182] Zhang Y., Lu H., Bargmann C.I. Pathogenic bacteria induce aversive olfactorylearning in Caenorhabditis elegans. Nature,2005,438:179-184
    [183] Qin J., Wheeler A.R. Maze exploration and learning in C. elegans. Lab on a Chip,2007,7:186-192
    [184] Sukul N.C., Croll N.A. Influence of potential difference and current on theelectrotaxis of Caenorhaditis elegans. Journal of Nematology,1978,10:314-317
    [185] Gray J.M., Karow D.S., Lu H., et al. Oxygen sensation and social feeding mediatedby a C. elegans guanylate cyclase homologue. Nature,2004,430:317-322
    [186] Chang A.J., Bargmann C.I. Hypoxia and the HIF-1transcriptional pathwayreorganize a neuronal circuit for oxygen-dependent behavior in Caenorhabditiselegans. Proceedings of the National Academy of Sciences of the United States ofAmerica,2008,105:7321-7326
    [187] Bretscher Andrew J., Kodama-Namba E., Busch Karl E., et al. Temperature,Oxygen, and Salt-Sensing Neurons in C. elegans Are Carbon Dioxide Sensors thatControl Avoidance Behavior. Neuron,2011,69:1099-1113
    [188] Albrecht D.R., Bargmann C.I. High-content behavioral analysis of Caenorhabditiselegans in precise spatiotemporal chemical environments. Nature Methods,2011,8:599-605
    [189] Rezai P., Siddiqui A., Selvaganapathy P.R., et al. Electrotaxis of Caenorhabditiselegans in a microfluidic environment. Lab on a Chip,2010,10:220-226
    [190] Rezai P., Siddiqui A., Selvaganapathy P.R., et al. Behavior of Caenorhabditiselegans in alternating electric field and its application to their localization andcontrol. Applied Physics Letters,2010,96:153702-153703
    [191] Faumont S., Miller A.C., Lockery S.R. Chemosensory behavior of semi-restrainedCaenorhabditis elegans. Journal of Neurobiology,2005,65:171-178
    [192] Hilliard M.A., Apicella A.J., Kerr R., et al. In vivo imaging of C-elegans ASHneurons: cellular response and adaptation to chemical repellents. Embo Journal,2005,24:63-72
    [193] Schafer W.R., Ezcurra M., Tanizawa Y., et al. Food sensitizes C. elegans avoidancebehaviours through acute dopamine signalling. Embo Journal,2011,30:1110-1122
    [194] Chronis N., Zimmer M., Bargmann C.I. Microfluidics for in vivo imaging ofneuronal and behavioral activity in Caenorhabditis elegans. Nature Methods,2007,4:727-731
    [195] Chalasani S.H., Chronis N., Tsunozaki M., et al. Dissecting a circuit for olfactorybehaviour in Caenorhabditis elegans. Nature,2007,450:63-70
    [196] Whitesides G.M., Hulme S.E., Shevkoplyas S.S., et al. A microfabricated array ofclamps for immobilizing and imaging C-elegans. Lab on a Chip,2007,7:1515-1523
    [197] Allen P.B., Sgro A.E., Chao D.L., et al. Single-synapse ablation and long-termimaging in live C. elegans. Journal of Neuroscience Methods,2008,173:20-26
    [198] Ben-Yakar A., Guo S.X., Bourgeois F., et al. Femtosecond laser nanoaxotomylab-on-achip for in vivo nerve regeneration studies. Nature Methods,2008,5:531-533
    [199] Zeng F., Rohde C.B., Yanik M.F. Sub-cellular precision on-chip small-animalimmobilization, multi-photon imaging and femtosecond-laser manipulation. Lab ona Chip,2008,8:653-656
    [200] Yanik M.F., Samara C., Rohde C.B., et al. Large-scale in vivo femtosecond laserneurosurgery screen reveals small-molecule enhancer of regeneration. Proceedingsof the National Academy of Sciences of the United States of America,2010,107:18342-18347
    [201] Wang J., Feng X., Du W., et al. Microfluidic worm-chip for in vivo analysis ofneuronal activity upon dynamic chemical stimulations. Analytica Chimica Acta,2011,701:23-28
    [202] Wang J., Li Z., Xu Z., et al. Development of an Integrated Microfluidic Device forEvaluating of in vivo Chemo-Sensing of Intact C. elegans. Sensors and Actuators B:Chemical,2013
    [203] Chokshi T.V., Bazopoulou D., Chronis N. An automated microfluidic platform forcalcium imaging of chemosensory neurons in Caenorhabditis elegans. Lab on aChip,2010,10:2758-2763
    [204] Bargmann C.I., Zimmer M., Gray J.M., et al. Neurons Detect Increases andDecreases in Oxygen Levels Using Distinct Guanylate Cyclases. Neuron,2009,61:865-879
    [205] Weigl B.H., Bardell R.L., Cabrera C.R. Lab-on-a-chip for drug development.Advanced Drug Delivery Reviews,2003,55:349-377
    [206] Saadi W., Wang S.J., Lin F., et al. A parallel-gradient microfluidic chamber forquantitative analysis of breast cancer cell chemotaxis. Biomedical Microdevices,2006,8:109-118
    [207] Thompson D.M., King K.R., Wieder K.J., et al. Dynamic gene expression profilingusing a microfabricated living cell array. Analytical Chemistry,2004,76:4098-103
    [208] Lee P.J., Hung P.J., Rao V.M., et al. Nanoliter scale microbioreactor array forquantitative cell biology. Biotechnology and Bioengineering,2006,94:5-14
    [209] Takayama S., Ostuni E., LeDuc P., et al. Subcellular positioning of small molecules.Nature,2001,411:1016
    [210] Cheng J.Y., Yen M.H., Kuo C.T., et al. A transparent cell-culture microchamberwith a variably controlled concentration gradient generator and flow field rectifier.Biomicrofluidics,2008,2:24105
    [211] Yamada M., Hirano T., Yasuda M., et al. A microfluidic flow distributor generatingstepwise concentrations for high-throughput biochemical processing. Lab on a Chip,2006,6:179-184
    [212] Li C.W., Chen R., Yang M. Generation of linear and non-linear concentrationgradients along microfluidic channel by microtunnel controlled stepwise addition ofsample solution. Lab on a Chip,2007,7:1371-1373
    [213] Kang T., Han J., Lee K.S. Concentration gradient generator using aconvective-diffusive balance. Lab on a Chip,2008,8:1220-1222
    [214] Yang M., Li C.W., Yang J. Cell docking and on-chip monitoring of cellularreactions with a controlled concentration gradient on a microfluidic device.Analytical Chemistry,2002,74:3991-4001
    [215] Li C.W., Yang J., Yang M. Dose-dependent cell-based assays in V-shapedmicrofluidic channels. Lab on a Chip,2006,6:921-929
    [216] Li C.W., Cheung C.N., Yang J., et al. PDMS-based microfluidic device withmulti-height structures fabricated by single-step photolithography using printedcircuit board as masters. Analyst,2003,128:1137-1142
    [217] Kamholz A.E., Yager P. Theoretical analysis of molecular diffusion inpressure-driven laminar flow in microfluidic channels. Biophysical Journal,2001,80:155-160
    [218] Kerr J.F., Wyllie A.H., Currie A.R. Apoptosis: a basicbiological phenomenon withwide-ranging implacations in tissuekinetics. British Journal of Cancer,1972,26:239-257
    [219] Hengartner M.O. Apoptosis: corralling the corpses. Cell,2001,104:325-328
    [220] Thompson C.B. Apoptosis in the pathogenesis and treatment of disease. Science,1995,267:1456-1462
    [221] Johnstone R.W., Ruefli A.A., Lowe S.W. Apoptosis: a link between cancer geneticsand chemotherapy. Cell,2002,108:153-164
    [222] Shi Y. Mechanisms of caspase activation and inhibition during apoptosis.Molecular Cell,2002,9:459-470
    [223] Donepudi M., Grutter M.G. Structure and zymogen activation of caspases.Biophysical Chemistry,2002,101-102:145-153
    [224] Lassus P., Opitz-Araya X., Lazebnik Y. Requirement for caspase-2instress-induced apoptosis before mitochondrial permeabilization. Science,2002,297:1352-1354
    [225] Luker G.D., Sharma V., Pica C.M., et al. Noninvasive imaging of protein-proteininteractions in living animals. Proceedings of the National Academy of Sciences ofthe United States of America,2002,99:6961-6966
    [226] Laxman B., Hall D.E., Bhojani M.S., et al. Noninvasive real-time imaging ofapoptosis. Proceedings of the National Academy of Sciences of the United States ofAmerica,2002,99:16551-16555
    [227] Rehm M., Dussmann H., Janicke R.U., et al. Single-cell fluorescence resonanceenergy transfer analysis demonstrates that caspase activation during apoptosis is arapid process. Role of caspase-3. Journal of Biological Chemistry,2002,277:24506-24514
    [228] Lin J., Zhang Z., Zeng S., et al. TRAIL-induced apoptosis proceeding fromcaspase-3-dependent and-independent pathways in distinct HeLa cells.Biochemical and Biophysical Research Communications,2006,346:1136-1141
    [229] Lin J., Zhang Z., Yang J., et al. Real-time detection of caspase-2activation in asingle living HeLa cell during cisplatin-induced apoptosis. Journal of BiomedicalOptics,2006,11:024011
    [230] Ye N., Qin J., Liu X., et al. Characterizing doxorubicin-induced apoptosis inHepG2cells using an integrated microfluidic device. Electrophoresis,2007,28:1146-1153
    [231] Wlodkowic D., Khoshmanesh K., Sharpe J.C., et al. Apoptosis goes on a chip:advances in the microfluidic analysis of programmed cell death. AnalyticalChemistry,2011,83:6439-6446
    [232] Yu J.Q., Liu X.F., Chin L.K., et al. Study of endothelial cell apoptosis usingfluorescence resonance energy transfer (FRET) biosensor cell line withhemodynamic microfluidic chip system. Lab on a Chip,2013
    [233] Xia Z., Liu Y. Reliable and global measurement of fluorescence resonance energytransfer using fluorescence microscopes. BiophysicalJournal,2001,81:2395-2402
    [234] Bargmann C.I. Chemosensation in C. elegans. WormBook,2006:1-29
    [235] Hobert O. Behavioral plasticity in C. elegans: paradigms, circuits, genes. JNeurobiol,2003,54:203-223
    [236] Hukema R.K., Rademakers S., Jansen G. Gustatory plasticity in C. elegans involvesintegration of negative cues and NaCl taste mediated by serotonin, dopamine, andglutamate. Learning and Memory,2008,15:829-836
    [237] Hukema R.K., Rademakers S., Dekkers M.P., et al. Antagonistic sensory cuesgenerate gustatory plasticity in Caenorhabditis elegans. EMBO Journal,2006,25:312-322
    [238] Wang Y., Tang L., Feng X., et al. Ethanol interferes with gustatory plasticity inCaenorhabditis elegans. Neuroscience Research,2011,71:341-347
    [239] Sakashita T., Hamada N., Ikeda D.D., et al. Modulatory effect of ionizing radiationon food-NaCl associative learning: the role of gamma subunit of G protein inCaenorhabditis elegans. FASEB Journal,2008,22:713-720
    [240] Tomioka M., Adachi T., Suzuki H., et al. The insulin/PI3-kinase pathway regulatessalt chemotaxis learning in Caenorhabditis elegans. Neuron,2006,51:613-625
    [241] Kano T., Brockie P.J., Sassa T., et al. Memory in Caenorhabditis elegans ismediated by NMDA-type ionotropic glutamate receptors. Current Biology,2008,18:1010-1015
    [242] Suzuki H., Thiele T.R., Faumont S., et al. Functional asymmetry in Caenorhabditiselegans taste neurons and its computational role in chemotaxis. Nature,2008,454:114-117
    [243] Thiele T.R., Faumont S., Lockery S.R. The neural network for chemotaxis totastants in Caenorhabditis elegans is specialized for temporal differentiation.Journal of Neuroscience,2009,29:11904-11911
    [244] Saeki S., Yamamoto M., Iino Y. Plasticity of chemotaxis revealed by pairedpresentation of a chemoattractant and starvation in the nematode Caenorhabditiselegans. Journal of Experimental Biology,2001,204:1757-1764
    [245] Dunn N.A., Lockery S.R., Pierce-Shimomura J.T., et al. A neural network model ofchemotaxis predicts functions of synaptic connections in the nematodeCaenorhabditis elegans. Journal of Computational Neuroscience,2004,17:137-147
    [246] Wicks S.R., de Vries C.J., van Luenen H.G., et al. CHE-3, a cytosolic dynein heavychain, is required for sensory cilia structure and function in Caenorhabditis elegans.Developmental Biology,2000,221:295-307
    [247] Xing X., Du M., Zhang Y., et al. Adverse effects of metal exposure on chemotaxistowards water-soluble attractants regulated mainly by ASE sensory neuron innematode Caenorhabditis elegans. Journal of Environmental Sciences (China),2009,21:1684-1694
    [248] Albrecht D.R., Bargmann C.I. High-content behavioral analysis of Caenorhabditiselegans in precise spatiotemporal chemical environments. Nature Methods,2011,8:599-605
    [249] Shi W., Qin J., Ye N., et al. Droplet-based microfluidic system for individualCaenorhabditis elegans assay. Lab on a Chip,2008,8:1432-1435
    [250] Wang J., Feng X., Du W., et al. Microfluidic worm-chip for in vivo analysis ofneuronal activity upon dynamic chemical stimulations. Analytica Chimica Acta,2011,701:23-28
    [251] Samara C., Rohde C.B., Gilleland C.L., et al. Large-scale in vivo femtosecond laserneurosurgery screen reveals small-molecule enhancer of regeneration. Proceedingsof the National Academy of Sciences of the United States of America,2010,107:18342-7
    [252] Crane M.M., Chung K., Lu H. Computer-enhanced high-throughput genetic screensof C. elegans in a microfluidic system. Lab on a Chip,2009,9:38-40
    [253] Carr J.A., Parashar A., Gibson R., et al. A microfluidic platform for high-sensitivity,real-time drug screening on C. elegans and parasitic nematodes. Lab on a Chip,2011,11:2385-2396
    [254] McCormick K.E., Gaertner B.E., Sottile M., et al. Microfluidic devices for analysisof spatial orientation behaviors in semi-restrained Caenorhabditis elegans. PLoSOne,2011,6: e25710
    [255] Yang J., Chen Z., Yang F., et al. A microfluidic device for rapid screening ofchemotaxis-defective Caenorhabditis elegans mutants. Biomedical Microdevices,2012:211-220
    [256] Brenner S. The genetics of Caenorhabditis elegans. Genetics,1974,77:71-94

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700