用户名: 密码: 验证码:
藏红花素对顺铂致小鼠急性肝、肾损伤的保护作用及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的探讨藏红花素对顺铂致小鼠急性肝、肾损伤的保护作用及其机制。
     方法
     30只雄性昆明小鼠随机分为5组(每组6只),即空白对照组(生理盐水0.2ml/d).顺铂模型组(10mg/kg).低浓度藏红花素组(6.25mg/kg.d).高浓度藏红花素组(12.5mg/kg.d)及阳性对照组(水飞蓟素100mg/kg.d).除空白对照组外,其余各组均于实验第1天给予顺铂(10mg/kg腹腔注射,单剂1次),藏红花素给药组小鼠分别于实验每日腹腔注射不同剂量藏红花素(6.25mg/kg,12.5mg/kg)1次。阳性对照组小鼠分别于实验每日口服水飞蓟素(100mg/kg)1次。实验第7天断头处死所有动物。肝脏、肾脏组织切片HE染色观察肝脏病理组织学改变;常规分离血清后全自动生化仪检测小鼠血清肝功能指标(ALT.AST)及肾功能指标(BUN.Cr):肝脏、肾脏组织匀浆检测氧化应激指标丙二醛(MDA)及还原型谷胱甘肽(GSH)的含量,以及抗氧化酶指标超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-px)以及过氧化氢酶(CAT)的活性;免疫组化方法及Western blot分析定性及定量检测肝、肾匀浆中p-p38MAPK,p53, and caspase-3的表达差异。
     结果
     1.藏红花素对顺铂损伤小鼠肝、肾功能的影响
     空白对照组、顺铂模型组、低浓度藏红花素组、高浓度藏红花素组及阳性对照组小鼠血清ALT分别为(37.33±4.89),(138.83±11.25),(76.83±6.49),(71.33±8.66),(72.83±5.23)U/L。AST分别为(64.50±6.38),(242.00±14.94),(132.50±9.54),(126.67±11.69),(124.02±8.49)U/L。BUN分别为(20.94±1.92),(62.60±5.64),(32.41±2.97),(30.95±2.90),(32.83±3.11)mg/dl。Cr别为(0.49±0.10),(2.12±0.22),(0.98±0.16),(0.94±0.22),(0.95±0.18)mg/dl。顺铂模型组小鼠的血清ALT、AST、BUN及Cr明显高于空白对照组(p均<0.05)。然而,与顺铂模型组比较,低、高浓度藏红花素组小鼠血清ALT、AST、BUN及Cr水平均显著降低(p均<0.05);低、高浓度藏红花素组与阳性对照组间无显著性差异(p均>0.05)。
     2.藏红花素对顺铂损伤小鼠肝、肾组织形态学的影响
     腹腔注射顺铂可导致肝脏形态组织学改变,包括小叶中心坏死,肝小叶结构改变,以及肝细胞气球样变性。然而,藏红花素给药后上述肝组织损伤及坏死程度均可见明显减轻。腹腔注射顺铂后,小鼠肾脏皮质肾小管可见上皮细胞肿胀、空泡变性,管腔可见脱落上皮细胞,细胞排列紊乱,出现蛋白管型。而给予藏红花素后,多数肾脏空泡变性、坏死明显减少,细胞排列较顺铂组规整,肾小球和肾小管结构基本完整,未见细胞坏死及管型。
     3.藏红花素对顺铂所致肝肾损伤小鼠抗氧化系统的影响
     空白对照组、顺铂模型组、低浓度藏红花素组、高浓度藏红花素组及阳性对照组小鼠肝脏MDA含量分别为(2.48±0.37),(5.82±0.72),(3.47±0.39),(3.14±0.38),(3.39±0.38)nmol/mg protein;GSH分别为(5.28±0.34),(2.35±0.27),(3.45±0.29),(3.69±0.36),(3.39±0.27)mg/g protein.1-5组小鼠肾脏MDA含量分别为(2.92±0.23),(6.87±0.37),(4.97±0.33),(4.64±0.32),(4.80±0.41)nmol/mg protein;GSH分别为(5.77±0.40),(2.31±0.28),(3.66±0.30),(3.83±0.33),(3.76±0.38)mg/g protein.顺铂模型组小鼠的肝肾组织中MDA含量显著高于空白对照组(p均<0.05),而GSH含量显著低于对照组(p均<0.05),但与顺铂模型组比较,低、高浓度藏红花素组小鼠肝肾MDA含量均显著降低(p均<0.05);低、高浓度藏红花素组小鼠肝肾6SH含量均显著升高(p均<0.05)。低、高浓度藏红花素组与阳性对照组间MDA及GSH含量均无显著性差异(p均>0.05)。
     4.藏红花素对顺铂所致肝肾损伤小鼠抗氧化酶的影响
     空白对照组、顺铂模型组、低浓度藏红花素组、高浓度藏红花素组及阳性对照组小鼠肝脏SOD活性分别为(234.28±19.7),(118.66±13.93),(171.48±16.25),(177.50±15.21),(174.97±11.85)U/mg protein;GSH-px活性分别为(317.83±21.68),(171.33±21.95),(234.00±26.48),(241.33±25.22),(237.00±24.86)U/mg protein;CAT活性分别为(35.53±3.65),(16.16±2.46),(21.53±1.94),(24.81±2.41),(24.69±3.70)U/mg protein.肾脏SOD活性分别为(45.60±3.79),(20.96±2.56),(32.14±2.47),(33.27±2.82),(32.87±4.55)U/mg protein:GSH-px活性分别为(274.79±15.01),(163.06±11.45),(220.27±16.28),(213.89±25.08),(212.05±24.68)U/mg protein;CAT活性分别为(21.57±2.55),(9.97±1.90),(14.17±1.78),(15.08±1.67),(14.73±1.53)U/mg protein。顺铂所致急性肝肾损伤的小鼠,肝肾组织内上述酶活性与空白对照组小鼠相比,均明显降低(p均<0.05)。与顺铂模型组比较,低、高浓度藏红花素组小鼠肝肾内上述酶活性均显著升高(p均<0.05)。而低、高浓度藏红花素组与阳性对照组间上述各种酶活性无显著性差异(p均>0.05)。
     5.藏红花素对顺铂肝肾损伤小鼠p-p38MAPK、p53以及caspase3的影响
     免疫组化检测结果显示p_p38MAPK、p53定位于胞核,caspase3定位于胞浆,顺铂中毒小鼠肝肾p_p38MAPK、p53以及caspase3表达均增加,而低、高浓度藏红花素可减少中毒小鼠肝肾p-p38MAPK、p53以及caspase3的表达。Western Blot检测显示空白对照组、顺铂模型组、低浓度藏红花素组、高浓度藏红花素组及阳性对照组小鼠肝脏中p-p38MAPK蛋白表达:(0.05±0.03),(0.41±0.06),(0.21±0.04),(0.21±0.04),(0.22±0.04);p53蛋白表达:(0.06±0.02),(0.73±0.06),(0.49±0.06),(0.50±0.07),(0.47±0.06); caspase3蛋白表达:(0.08±0.04),(0.83±0.05),(0.50±0.05),(0.50±0.04),(0.48±0.05)。小鼠肾脏中p-p38MAPK蛋白表达:(0.04±0.02),(0.45±0.04),(0.22±0.05),(0.21±0.04),(0.22±0.04);p53蛋白表达:(0.05±0.02),(0.68±0.08),(0.49±0.06),(0.51±0.08),(0.46±0.05); caspase3蛋白表达:(0.09±0.04),(0.54±0.06),(0.36±0.04),(0.33±0.04),(0.31±0.03)。顺铂所致肝肾脏损伤的小鼠,肝肾组织中p-p38MAPK、p53及caspase3的表达明显高于空白对照组小鼠(p均<0.05)。而与顺铂模型组相比,低、高浓度藏红花素组小鼠肝肾组织中p-p38MAPK、p53及caspase3的表达表达均显著降低(p均<0.05)。而低、高浓度藏红花素组与阳性对照组间无显著性差异(p均>0.05)。
     结论
     1.藏红花素(6.25mg/kg. d、12.5mg/kg. d)可明显降低顺铂致急性肝、肾损伤小鼠的血清谷丙转氨酶、谷草转氨酶活性以及尿素氮、肌酐的水平,对顺铂引起的小鼠急性肝肾毒性具有良好的保护作用。
     2.藏红花素(6.25mg/kg. d、12.5mg/kg. d)可明显改善顺铂所致肝肾组织结构的改变,提示藏红花素对顺铂所致小鼠的肝肾组织损伤具有一定的保护作用。
     3.藏红花素(6.25mg/kg. d、12.5mg/kg. d)可通过减少MDA生成和GSH的消耗,并提高SOD, GSH-px及CAT抗氧化酶的活性而发挥其抗氧化作用,减轻了顺铂对小鼠肝肾的氧化损伤
     4.顺铂对p38MAPK的激活是其导致肝肾毒性的主要信号转导通路,藏红花素(6.25mg/kg. d、12.5mg/kg. d)具有下调p-p38MAPK, p53,及caspase-3蛋白表达的作用,故藏红花素对顺铂所致肝肾组织细胞凋亡具有一定的抑制作用。
Objective
     To investigate the protective effect of crocin on cisplatin(CDDP)-induced liver and kidney injury and its mechanisms
     Methods
     30male nude mice of5weeks were randomly divided into5groups, including the control (saline) group, CDDP group, the low and high concentration crocin group (6.25mg/kg·d,25mg/kg·d),and positive control group(silymarin100mg/kg·d). Crocin and silymarin was administered to the mice once daily for7consecutive days. On day1, a single intraperitoneal injection of CDDP was given at the dose of10mg/kg body weight. After7days, all the mice were executed. Blood was collected immediately on the day of sacrifice for alanine aminotransferase(ALT), aspartate aminotransferase(AST), creatinine(Cr), and blood urea nitrogen(BUN) assay. The paraffin sections of liver and kidney were stained with HE staining and then observed by light microscope. The level of malondialdehyde(MDA) and glutathione(GSH) were detected. Also, the activity of superoxide dismutase (SOD), glutathione peroxidase(GSH-px), and catalase(CAT) were detected. The p-p38MAPK, p53, and caspase-3expressions of the liver and kidney were detected by immunohistochemical technique and Western blot essay.
     Result
     1. The effects of crocin on the serum biochemistry index of the mice damaged by CDDP
     Compared with the control group, the level of ALT, AST, BUN and Cr in the CDDP group were significantly increased (p<0.05,totally). Compared with the CDDP group, the level of ALT, AST, BUN and Cr in the crocin and silymarin group were significantly decreased(p<0.05,totally). There was no significant difference between the crocin group and positive control silymarin group (p>0.05,totally)
     2. The effects of crocin on the histomorphology of the liver and kidney in the mice damaged by CDDP
     Liver and kidney histopathology indicated that crocin could alleviated CDDP-induced focal tissue damage.
     3. The effects of crocin on the antioxidant system of the mice damaged by CDDP
     Compared with the control group, the level of MDA of the liver and kidney in CDDP group were significantly increased (p<0.05,totally). Compared with the CDDP group, the level of MDA in the crocin and silymarin group were significantly decreased (p<0.05,totally). There was no significant difference between the crocin group and positive control silymarin group (p>0.05,totally)
     A significant reduction in GSH of the liver and kidney was found in CDDP group, compared to the control group (p<0.05, totally). Compared with the CDDP group, the level of GSH in the crocin and silymarin group were significantly decreased(p<0.05,totally). There was no significant difference between the crocin group and positive control silymarin group (p>0.05,totally)
     4. The effects of crocin on the antioxidant enzyme activity of the mice damaged by CDDP
     Compared with the control group, the anctivity of SOD, GSH-px, and CAT of the liver and kidney in CDDP group were significantly decreased (p<0.05,totally). Compared with the CDDP group, the anctivity of SOD, GSH-px, and CAT in the crocin and silymarin group were significantly increased (p<0.05,totally). There was no significant difference between the crocin group and positive control silymarin group (p>0.05,totally)
     5. The effects of crocin on the expression of p-p38MAPK, p53and caspase3
     The p-p38MAPK, p53, and caspase-3expressions of the liver and kidney were significantly increased (p<0.05,totally) in CDDP group, compared to the control group. Compared with the CDDP group, the expressions of p-p38MAPK, p53, and caspase-3in the crocin and silymarin group were significantly decreased (p<0.05,totally). There was no significant difference between the crocin group and positive control silymarin group (p>0.05,totally)
     Conclusion
     1. Crocin (6.25mg/kg·d、12.5mg/kg.d) treatment significantly improved CDDP-induced hepatic damage as indicated by serum ALT and AST. Crocin treatment also significantly improved CDDP-induced kidney damage as indicated by serum BUN and Cr.
     2. Liver and kidney histopathology indicated that crocin (6.25mg/kg·d、12.5mg/kg.d) alleviated CDDP-induced focal damage.
     3. Crocin relieved CDDP-induced oxidative stress by reducing MDA level and recovering the levels of GSH and antioxidant enzymes such as SOD, GHS-px, and CAT.
     4. Immunohistochemical staining and Western blot analysis showed that crocin (6.25mg/kg·d、12.5mg/kg.d) significantly decreased the levels of phospho-p38mitogen-activated protein kinase (MAPK), tumor protein53(p53), and caspase-3.
引文
[1]Santos N A G, Catao C S, Martins N M, et al. Cisplatin-induced nephrotoxicity is associated with oxidative stress, redox state unbalance, impairment of energetic metabolism and apoptosis in rat kidney mitochondria[J]. Archives of toxicology,2007, 81(7):495-504.
    [2]Hanigan M H, Devarajan P. Cisplatin nephrotoxicity:molecular mechanisms[J]. Cancer Therapy,2003,1:47.
    [3]dos Santos N A G, Rodrigues M A C, Martins N M, et al. Cisplatin-induced nephrotoxicity and targets of nephroprotection:an update[J]. Archives of toxicology,2012,86(8): 1233-1250.
    [4]Pollera C F, Ameglio F, Nardi M, et al. Cisplatin-induced hepatic toxicity[J]. Journal of Clinical Oncology,1987,5(2):318-319.
    [5]Pratibha R, Sameer R, Rataboli P V, et al. Enzymatic studies of cisplatin induced oxidative stress in hepatic tissue of rats[J]. European journal of pharmacology,2006, 532(3):290-293.
    [6]Chirino Y I, Pedraza-Chaverri J. Role of oxidative and nitrosative stress in cisplatin-induced nephrotoxicity[J]. Experimental and Toxicologic Pathology,2009, 61 (3):223-242.
    [7]Abe K, Saito H. Effects of saffron extract and its constituent crocin on learning behaviour and long-term potentiation[J]. Phytotherapy Research,2000,14(3): 149-152.
    [8]Lee IAH, Lee JH, Baek NI, et al. Antihyperlipidemic effect of crocin isolated from the fractus of Gardenia jasminoides and its metabolite crocetin[J]. Biol Pharm Bull, 2005,28:2106-2110.
    [9]He S Y, Qian Z Y, Tang F T, et al. Effect of crocin on experimental atherosclerosis in quails and its mechanisms[J]. Life sciences,2005,77(8):907-921.
    [10]Yan Sun, Hui-Juan Xu, Yan-Xia Zhao, et al. Crocin Exhibits Antitumor Effects on Human Leukemia HL-60 Cells In Vitro and In Vivo[J]. Evidence-Based Complementary and Alternative Medicine,2013.2013:690164. doi:10.1155/2013/690164.
    [11]Lin J K, Wang C J. Protection of crocin dyes on the acute hepatic damage induced by aflatoxin B1 and dimethylnitrosamine in rats[J]. Carcinogenesis,1986,7(4): 595-599.
    [12]Hosseinzadeh H, Sadeghnia H R, Ziaee T, et al. Protective effect of aqueous saffron extract (Crocus sativus L.) and crocin, its active constituent, on renal ischemia-reperfusion-induced oxidative damage in rats[J]. J Pharm Pharm Sci,2005, 8(3):387-393.
    [13]Ajami M, Eghtesadi S, Pazoki-Toroudi H, et al. Effect of crocus sativus on gentamicin induced nephrotoxicity[J]. Biological research,2010,43(1):83-90.
    [14]Koc A, Duru M, Ciralik H, et al. Protective agent, erdosteine, against cisplatin-induced hepatic oxidant injury in rats[J]. Molecular and cellular biochemistry,2005,278(1-2):79-84.
    [15]Ali B H, Al-Salam S, Al Husseini I S, et al. Abrogation of cisplatin-induced nephrotoxicity by emodin in rats[J]. Fundamental & clinical pharmacology,2011. doi: 10.1111/j.1472-8206.
    [16]Bhattacharyya S, Mehta P. The hepatoprotective potential of Spirulina and vitamin C supplemention in cisplatin toxicity[J]. Food & function,2012,3(2):164-169.
    [17]Santos N A G, Catao C S, Martins N M, et al. Cisplatin-induced nephrotoxicity is associated with oxidative stress, redox state unbalance, impairment of energetic metabolism and apoptosis in rat kidney mitochondria[J]. Archives of toxicology,2007, 81(7):495-504.
    [18]El Daly E S. Protective effect of cysteine and vitamin E, Crocus sativus and Nigel la sativa extracts on cisplatin-induced toxicity in rats[J]. Journal de pharmacie de Belgique,1997,53(2):87-93; discussion 93-5.
    [19]Ajami M, Eghtesadi S, Pazoki-Toroudi H, et al. Effect of crocus sativus on gentamicin induced nephrotoxicity[J]. Biological research,2010,43(1):83-90.
    [20]Hosseinzadeh H, Nassiri-Asl M. Avicenna's (Ibn Sina) the Canon of Medicine and saffron (Crocus sativus):a review[J]. Phytotherapy Research,2013,27(4):475-483.
    [21]Shati A A, Alamri S A. Role of saffron (Crocus sativus L.) and honey syrup on aluminum-induced hepatotoxicity[J]. Saudi medical journal,2010,31(10):1106-1113.
    [22]Ozer J, Ratner M, Shaw M, et al. The current state of serum biomarkers of hepatotoxicity[J]. Toxicology,2008,245(3):194-205.
    [23]Jeong M, Kim Y W, Min J R, et al. C Change in kidney damage biomarkers after 13 weeks of exposing rats to the complex of Paecilomyces sinclairii and its host Bombyx mori larvae. [J]. Food and Chemical Toxicology,2013,59:177-186.
    [24]Mohan I K, Khan M, Shobha J C, et al. Protection against cisplatin-induced nephrotoxicity by Spirulina in rats[J]. Cancer chemotherapy and pharmacology,2006, 58(6):802-808.
    [25]Sueishi K, Mishima K, Makino K, et al. Protection by a radical scavenger edaravone against cisplatin-induced nephrotoxicity in rats[J]. European journal of pharmacology,2002,451(2):203-208.
    [26]Mansour H H, Hafez H F, Fahmy N M. Silymarin modulates cisplatin-induced oxidative stress and hepatotoxicity in rats[J]. Journal of biochemistry and molecular biology, 2006,39 (6):656.
    [27]Ninsontia C, Pongjit K, Chaotham C, et al. Silymarin selectively protects human renal cells from cisplatin-induced cell death[J]. Pharmaceutical Biology,2011,49(10): 1082-1090.
    [1]Rybak L P, Ravi R, Somani S M. Mechanism of protection by diethyldithiocarbamate against cisplatin ototoxicity:antioxidant system[J]. Fundamental and Applied Toxicology, 1995,26(2):293-300.
    [2]Walczak-Jedrzejowska R, Wolski J K, Slowikowska-Hilczer J. The role of oxidative stress and antioxidants in male fertility[J]. Central European Journal of Urology, 2012,66(1).
    [3]Kang D H, Kang S W. Targeting cellular antioxidant enzymes for treating atherosclerotic vascular disease[J]. Biomolecules & therapeutics,2013,21(2):89.
    [4]Baliga R, Zhang Z, Baliga M, et al. In vitro and in vivo evidence suggesting a role for iron in cisplatin-induced nephrotoxicity [J]. Kidney international,1998,53(2): 394-401.
    [5]Naqshbandi A, Khan W, Rizwan S, et al. Studies on the protective effect of flaxseed oil on cisplatin-induced hepatotoxicity[J]. Human & experimental toxicology,2012, 31(4):364-375.
    [6]Jordan P, Carmo-Fonseca M. Molecular mechanisms involved in cisplatin cytotoxicity[J]. Cellular and Molecular Life Sciences CMLS,2000,57(8-9):1229-1235.
    [7]Hanigan M H, Devarajan P. Cisplatin nephrotoxicity:molecular mechanisms[J]. Cancer Therapy,2003,1:47.
    [8]Antunes L M G, Araujo M C P, Darin J D, et al. Effects of the antioxidants curcumin and vitamin C on cisplatin-induced clastogenesis in Wistar rat bone marrow cells [J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis,2000,465(1):131-137.
    [9]Davis C A, Nick H S, Agarwal A. Manganese superoxide dismutase attenuates cisplatin-induced renal injury:importance of superoxide [J]. Journal of the American Society of Nephrology, 2001,12(12):2683-2690.
    [10]Appenroth D, Frob S, Kersten L, et al. Protective effects of vitamin E and C on cisplatin nephrotoxicity in developing rats[J]. Archives of toxicology,1997,71(11):677-683.
    [11]Antunes L M G, Francescato H D C, Darin J, et al. Effects of selenium pretreatment on cisplatin-induced chromosome aberrations in Wistar rats[J]. Teratogenesis, carcinogenesis, and mutagenesis,2000,20(6):341-348.
    [12]Orditura M, De Vita F, Roscigno A, et al. Amifostine:A selective cytoprotective agent of normal tissues from chemo-radiotherapy induced toxicity (Review) [J]. Oncology reports, 1999,6(6):1357-1419.
    [13]Dkhil M A, Al-Quraishy S, Aref A M, et al. The Potential Role of Azadirachta indica Treatment on Cisplatin-Induced Hepatotoxicity and Oxidative Stress in Female Rats[J]. Oxidative medicine and cellular longevity,2013,2013.
    [14]Ghadrdoost B, Vafaei A A, Rashidy-Pour A, et al. Protective effects of saffron extract and its active constituent crocin against oxidative stress and spatial learning and memory deficits induced by chronic stress in rats[J]. European journal of pharmacology,2011, 667(1):222-229.
    [15]Hosseinzadeh H, Sadeghnia H R, Ziaee T, et al. Protective effect of aqueous saffron extract (Crocus sativus L.) and crocin, its active constituent, on renal ischemia-reperfusion-induced oxidative damage in rats[J]. J Pharm Pharm Sci,2005,8(3): 387-93.
    [16]Gonzalez R, Romay C, Borrego A, et al. Lipid peroxides and antioxidant enzymes in ci splat in-induced chronic nephrotoxicity in rats [J]. Mediators of inflammation,2005, 2005 (3):139-143.
    [17]Mansour H H, Hafez H F, Fahmy N M. Silymarin modulates cisplatin-induced oxidative stress and hepatotoxicity in rats[J]. Journal of biochemistry and molecular biology, 2006,39(6):656.
    [18]Ajith T A, Usha S, Nivitha V. Ascorbic acid and α-tocopherol protect anticancer drug cisplatin induced nephrotoxicity in mice:a comparative study [J]. Clinica Chimica Acta, 2007,375(1):82-86.
    [19]Camhi S L, Lee P, Choi A M. The oxidative stress response [J]. New horizons (Baltimore, Md.),1995,3(2):170-182.
    [20]Tothova Z, Kollipara R, Huntly B J, et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress[J]. Cell,2007, 128(2):325-339.
    [21]Finkel T. Oxidant signals and oxidative stress[J]. Current opinion in cell biology, 2003,15(2):247-254.
    [22]Karadeniz A, Simsek N, Karakus E, et al. Royal jelly modulates oxidative stress and apoptosis in liver and kidneys of rats treated with cisplatin[J]. Oxidative medicine and cellular longevity,2011,2011.
    [23]Kurien B T, Scof ield R H. Free radical mediated peroxidative damage in systemic lupus erythematosus[J]. Life sciences,2003,73(13):1655-1666.
    [24]Mytilineou C, Kramer B C, Yabut J A. Glutathione depletion and oxidative stress [J]. Parkinsonism & related disorders,2002,8(6):385-387.
    [25]Silici S, Ekmekcioglu O, Kanbur M, et al. The protective effect of royal jelly against cisplatin-induced renal oxidative stress in rats[J]. World journal of urology,2011,29(1): 127-132.
    [26]Silva C I R, Greggi Antunes L M, Bianchi M L P. Antioxidant action of bixin against cisplatin-induced chromosome aberrations and lipid peroxidation in rats[J]. Pharmacological Research,2001,43(6):561-566.
    [27]Naziroglu M, Karaoglu A, Aksoy A O. Selenium and high dose vitamin E administration protects cisplatin-induced oxidative damage to renal, liver and lens tissues in rats[J]. Toxicology,2004,195(2-3):221-230.
    [28]Chirino Y I, Pedraza-Chaverri J. Role of oxidative and nitrosative stress in cisplatin-induced nephrotoxicity[J]. Experimental and Toxicologic Pathology,2009,61(3): 223-242.
    [29]Ajith T A, Jose N, Janardhanan K K. Amelioration of cisplatin induced nephrotoxicity in mice by ethyl acetate extract of a polypore fungus, Phellinus rimosus[J]. Journal of experimental & clinical cancer research:CR,2002,21(2):213-217.
    [30]Badary O A, Abdel-Maksoud S, Ahmed W A, et al. Naringenin attenuates cisplatin nephrotoxicity in rats[J]. Life sciences,2005,76(18):2125-2135.
    [31]Mansour H H, Hafez H F, Fahmy N M. Silymarin modulates cisplatin-induced oxidative stress and hepatotoxicity in rats[J]. Journal of biochemistry and molecular biology, 2006,39(6):656.
    [32]Ninsontia C, Pongjit K, Chaotham C, et al. Silymarin selectively protects human renal cells from cisplatin-induced cell death[J]. Pharmaceutical Biology,2011,49(10): 1082-1090.
    [1]Santos N A G, Catao C S, Martins N M, et al. Cisplatin-induced nephrotoxicity is associated with oxidative stress, redox state unbalance, impairment of energetic metabolism and apoptosis in rat kidney mitochondria[J]. Archives of toxicology,2007, 81(7):495-504.
    [2]Hanigan M H, Devarajan P. Cisplatin nephrotoxicity:molecular mechanisms [J]. Cancer Therapy,2003,1:47.
    [3]Cvitkovic E. Cumulative toxicities from cisplatin therapy and current cytoprotective measures[J]. Cancer treatment reviews,1998,24(4):265-281.
    [4]Nishida M, Tanabe S, Maruyama Y, et al. G a 12/13-and reactive oxygen species-dependent activation of c-Jun NH2-terminal kinase and p38 mitogen-activated protein kinase by angiotensin receptor stimulation in rat neonatal cardiomyocytes[J]. Journal of Biological Chemistry,2005,280(18):18434-18441.
    [5]Reinhardt H C, Aslanian A S, Lees J A, et al. p53-deficient cells rely on ATM-and ATR-mediated checkpoint signaling through the p38MAPK/MK2 pathway for survival after DNA damage[J]. Cancer cell,2007,11(2):175-189.
    [6]Riley T, Sontag E, Chen P, et al. Transcriptional control of human p53-regulated genes[J]. Nature reviews Molecular cell biology,2008,9(5):402-412.
    [7]She Q B, Bode A M, Ma W Y, et al. Resveratrol-induced activation of p53 and apoptosis is mediated by extracellular-signal-regulated protein kinases and p38 kinase[J]. Cancer research,2001,61(4):1604-1610.
    [8]She Q B, Chen N, Dong Z. ERKs and p38 kinase phosphorylate p53 protein at serine 15 in response to UV radiation[J]. Journal of Biological Chemistry,2000,275(27): 20444-20449.
    [9]Cummings B S, Schnellmann R G. Cisplatin-induced renal cell apoptosis:caspase 3-dependent and-independent pathways[J]. Journal of Pharmacology and Experimental Therapeutics,2002,302(1):8-17.
    [10]Martins N M, Santos N A G, Curti C, et al. Cisplatin induces mitochondrial oxidative stress with resultant energetic metabolism impairment, membrane rigidification and apoptosis in rat liver[J]. Journal of Applied Toxicology,2008,28(3):337-344.
    [11]Zicca A, Cafaggi S, Mariggio M A, et al. Reduction of cisplatin hepatotoxicity by procainamide hydrochloride in rats[J]. European journal of pharmacology,2002, 442(3):265-272.
    [12]Liu M, Chien C C, Burne-Taney M, et al. A pathophysiologic role for T lymphocytes in murine acute cisplatin nephrotoxicity[J]. Journal of the American Society of Nephrology,2006,17(3):765-774.
    [13]Kawai Y, Nakao T, Kunimura N, et al. Relationship of intracellular calcium and oxygen radicals to Cisplatin-related renal cell injury[J]. Journal of pharmacological sciences,2006,100(1):65-72.
    [14]Brentnall M, Rodriguez-Menacol L, De Guevara R L, et al. Caspase-9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis[J]. BMC cell biology,2013, 14(1):32. [15] Sivakolundu S G, Mabrouk P A. Structure-function relationship of reduced cytochrome c probed by complete solution structure determination in 30% acetonitrile/water solution[J]. JBIC Journal of Biological Inorganic Chemistry, 2003,8(5):527-539.
    [16]Li X, Luo R, Jiang R, et al. The role of the Hsp90/Akt pathway in myocardial calpain-induced caspase-3 activation and apoptosis during sepsis[J]. BMC cardiovascular disorders,2013,13(1):8.
    [17]Jiang M, Wei Q, Pabla N, et al. Effects of hydroxyl radical scavenging on cisplatin-induced p53 activation, tubular cell apoptosis and nephrotoxicity[J]. Biochemical pharmacology,2007,73(9):1499-1510.
    [18]Pabla N, Huang S, Mi Q S, et al. ATR-Chk2 signaling in p53 activation and DNA damage response during cisplatin-induced apoptosis[J]. Journal of biological chemistry, 2008,283(10):6572-6583.
    [19]Basnakian A G, Apostolov E 0, Yin X, et al. Cisplatin nephrotoxicity is mediated by deoxyribonuclease I[J]. Journal of the American Society of Nephrology,2005,16(3): 697-702.
    [20]Yin X, Apostolov E 0, Shah S V, et al. Induction of renal endonuclease G by cisplatin is reduced in DNase I-deficient mice[J]. Journal of the American Society of Nephrology,2007,18(9):2544-2553.
    [21]Ramesh G, Reeves W B. p38 MAP kinase inhibition ameliorates cisplatin nephrotoxicity in mice[J]. American Journal of Physiology-Renal Physiology,2005,289(1): F166-F174.
    [22]Wei Q, Dong G, Yang T, et al. Activation and involvement of p53 in cisplatin-induced nephrotoxicity[J]. American journal of physiology. Renal physiology,2007,293(4): F1282.
    [23]Cummings B S, Schnellmann R G. Cisplatin-induced renal cell apoptosis:caspase 3-dependent and-independent pathways[J]. Journal of Pharmacology and Experimental Therapeutics,2002,302(1):8-17.
    [24]Ramesh G, Reeves W B. Salicylate reduces cisplatin nephrotoxicity by inhibition of tumor necrosis factor-α[J]. Kidney international,2004,65(2):490-499.
    [25]Francescato H D C, Costa R S, Junior F B, et al. Effect of JNK inhibition on cisplatin-induced renal damage [J]. Nephrology Dialysis Transplantation,2007,22(8): 2138-2148.
    [26]Khan R, Khan A Q, Qamar W, et al. Chrysin protects against cisplatin-induced colon. toxicity via amelioration of oxidative stress and apoptosis:probable role of p38MAPK and p53[J]. Toxicology and applied pharmacology,2012,258(3):315-329.
    [1]Shultes RE. The kingdom of plants. In:Thomson WAR, editor. Medicines from the earth[M]. New York, NY:McGraw-Hill Book Co.;1978. p.208
    [2]邓颖,郭志刚,曾兆麟.藏红花的药理研究进展[J].中国中药杂志,2002,27(8):565-567.
    [3]Winterhalter P, Straubinger M. Saffron-renewed interest in an ancient spice. Food Rev Int 2000,16:39-59.
    [4]Akrem A, Iqbal S, Buck F, et al. Isolation, purification, crystallization and preliminary crystallographic studies of a chitinase from Crocus vernus[J]. Acta Crystallogr Sect F Struct Biol Cryst Commun.2011,67(Pt 3):340-343.
    [5]Maurizio D A, Giacomo M, Gian L R. Volatile organic compounds from Saffron[J]. Flav Fragr,2004,19(1):17-23.
    [6]Nair S C, Kurumboor S K, Hasegawa J H. Saffron Chemoprevention in Biology and Medicine-a Review[J]. Cancer Biotherapy,1995,10(4):257-64.
    [7]Loskutov A V, Beninger C W, Hosf ield G L, et al. Development of an improved procedure for extraction and quantitation of safranal in stigmas of Crocus sativus L using high performance liquid chromatography[J]. Food Chem,2000,69(1):87-95
    [8]Ochiai T, Ohno S, Soeda S, et al. Crocin prevents the death of rat pheochromyctoma (PC-12) cells by its antioxidant effects stronger than those ofatocopherol[J]. Neurosci. Lett.2004,362:61-64.
    [9]Tarantilis PA, Polissiou M. Isolation and identification of the aroma constituents of saffron (Crocus sativa) [J]. J Agric Food Chem,1997,45:459-462.
    [10]中国医学科学院药用植物研究所.中药志[M].北京:人民卫生出版社,1994,317.
    [11]Umigai N, Murakami K, Ulit MV, et al. The pharmacokinetic profile of crocetin in healthy adult human volunteers after a single oral administration [J]. hytomedicine, 2011,18(7):575-578.
    [12]Asai A, Nakano T, Takahashi M, et al. Orally administered crocetin and crocins are absorbed into blood plasma as crocetin and its glucuronide conjugates in mice[J]. J Agric Food Chem,2005,53(18):7302-7306.
    [13]Amir Houshang Mohamadpour, Zahara Ayati, Mohammad-Reza Parizadeh, et al. Safety Evaluation of Crocin (a constituent of saffron) Tablets in [J]. Iranian Journal of Basic Medical Sciences,2013,16(1):39-46.
    [14]Xi L, Qian Z, Du P, et al. Pharmacokinetic properties of crocin (crocetin digentiobiose ester) following oral administration in rats [J]. Phytomedicine,2007, 14(9):633-6.
    [15]杜鹏,钱之玉.西红花苷大鼠吸收及排泄的研究[J].中国新药杂志,2004,13(9):801-804.
    [16]杜鹏,钱之玉,余卫平.RP-HPLC法研究西红花酸在大鼠体内的药代动力学和组织分布特性[J].药物分析杂志,2004,24(2):149-153.
    [17]Magesh V, Singh JP, Selvendiran K, et al. Antitumour activity of crocetin in accordance to tumor incidence, antioxidant status, drug metabolizing enzymes and histopathological studies. [J].Mol Cell Biochem,2006,287(1-2):127-135.
    [18]He K, Si P, Wang H, et al. Crocetin induces apoptosis of BGC-823 human gastric cancer cells[J].Mol Med Rep,2014,9(2):521-526.
    [19]Bathaie SZ, Hoshyar R, Miri H, et al. Anticancer effects of crocetin in both human adenocarcinoma gastric cancer cells and rat model of gastric cancer[J]. Biochem Cell Biol,2013,91(6):397-403.
    [20]Li CY, Huang WF, Wang QL, et al. Crocetin induces cytotoxicity in colon cancer cells via p53-independent mechanisms[J]. Asian Pac J Cancer Prev,2012,13(8):3757-3761.
    [21]Dhar A, Mehta S, Dhar G, et al. Crocetin inhibits pancreatic cancer cell proliferation and tumor progression in a xenograft mouse model[J]. Mol Cancer Ther,2009, 8(2):315-323.
    [22]Yan J, Qian Z, Sheng L, et al. Effect of crocetin on blood pressure restoration and synthesis of inflammatory mediators in heart after hemorrhagic shock in anesthetized rats[J]. shock,2010,33(1):83-87.
    [23]Yu WP, Qian ZY, Xu GL, et al. Effect of crocetin on the myocardial cell damages due to oxidative stress[J]. J Chin Pham Univ,2003,34 (5):452-455.
    [24]Cai J, Yi FF, Bian ZY, et al. Crocetin protects against cardiac hypertrophy by blocking MEK-ERK1/2 signalling pathway[J].J Cell Mol Med,2009,13(5):909-925.
    [25]Shen XC, Qian ZY. Effects of crocetin on antioxidant enzymatic activities in cardiac hypertrophy induced by norepinephrine in rats[J]. Pharmazie,2006,61(4):348-352.
    [26]Shen XC, Y-Lu, Qian ZY. Effects of crocetin on the matrix metalloproteinases in cardiac hypertrophy induced by norepinephrine in rats [J]. J Asian Nat Prod Res,2006, 8(3):201-208.
    [27]Tsantarliotou MP, Poutahidis T, Markala D. Crocetin administration ameliorates endotoxin-induced disseminated intravascular coagulation in rabbits[J]. Blood Coagul Fibrinolysis,2013,24(3):305-310.
    [28]Ishizuka F, Shimazawa M, Umigai N, et al. Crocetin, a carotenoid derivative, inhibits retinal ischemic damage in mice[J]. Eur J Pharmacol,2013,703(1-3):1-10.
    [29]Khan MB, Hoda MN, Ishrat T, et al. Neuroprotective efficacy of Nardostachys jatamansi and crocetin in conjunction with selenium in cognitive impairment[J]. Neurol Sci, 2013,33(5):1011-1020.
    [30]Kuratsune H, Umigai N, Takeno R, et al. Effect of crocetin from Gardenia jasminoides Ellis on sleep:a pilot study[J]. Phytomedicine,2010,17(11):840-843.
    [31]Tashakori-Sabzevar F, Hosseinzadeh H, Motamedshariaty VS, et al. Crocetin attenuates spatial learning dysfunction and hippocampal injury in a model of vascular dementia[J].Curr Neurovasc Res,2013,10(4):325-334.
    [32]Yan Sun, Hui-Juan Xu, Yan-Xia Zhao, et al. Crocin Exhibits Antitumor Effects on Human Leukemia HL-60 Cells In Vitro and In Vivo[J]. Evidence-Based Complementary and Alternative Medicine,2013.2013:690164. doi:10.1155/2013/690164.
    [33]Abe K, Saito H. Effects of saffron extract and its constituent crocin on learning behaviour and long-term potentiation[J]. Phytotherapy Research,2000,14(3): 149-152.
    [34]Lee IAH, Lee JH, Baek NI, et al. Antihyperlipidemic effect of crocin isolated from the fractus of Gardenia jasminoides and its metabolite crocetin [J]. Biol Pharm Bull, 2005,28:2106-2110.
    [35]He S Y, Qian Z Y, Tang F T, et al. Effect of crocin on experimental atherosclerosis in quails and its mechanisms[J]. Life sciences,2005,77(8):907-921.
    [36]Molnar, Szabo D, Pusztai R, et al. Membrane Associated Amtitumor Effects of Crocine, Ginsenpside and Cannabinoid Derivates[J].Anticancer, Res,2000,20(2A):86.
    [37]Bakshi HA, Sam S, Feroz A, et al. Crocin from Kashmiri saffron (Crocus sativus) induces in vitro and in vivo xenograft growth inhibition of Dal ton's lymphoma (DLA) in mice[J]. Asian Pac J Cancer Prev,2009,10(5):887-890.
    [38]Aung HH, Wang CZ, Ni M, et al. Crocin from Crocus sativus possesses significant anti-proliferation effects on human colorectal cancer cells [J]. Exp Oncol, 2007,29(3):175-180.
    [39]Rastgoo M, Hosseinzadeh H, Alavizadeh H, et al. Antitumor activity of PEGylated nanoliposomes containing Crocin in mice bearing C26 colon carcinoma[J]. Plantamedica, 2013,79(06):447-451.
    [40]Hoshyar R, Bathaie S Z, Sadeghizadeh M. Crocin triggers the apoptosis through increasing the Bax/Bcl-2 ratio and caspase activation in human gastric adenocarcinoma, AGS, cells[J]. DNA and cell biology,2013,32(2):50-57.
    [41]D'Alessandro A M, Mancini A, Lizzi A R, et al. Crocus Sativus Stigma Extract and Its Major Constituent Crocin Possess Significant Antiproliferative Properties Against Human Prostate Cancer[J]. Nutrition and cancer,2013,65(6):930-942.
    [42]Abe K, Saito H. Effects of saffron extract and its constituent crocin on learning behaviour and long-term potentiation[J]. Phytotherapy Research,2000,14(3): 149-152.
    [43]Tamaddonfard E, Farshid A A, Asri-Rezaee S, et al. Crocin Improved Learning and Memory Impairments in Streptozotocin-Induced Diabetic Rats[J]. Iranian journal of basic medical sciences,2013,16(1):91.
    [44]Ghadrdoost B, Vafaei A A, Rashidy-Pour A, et al. Protective effects of saffron extract and its active constituent crocin against oxidative stress and spatial learning and memory deficits induced by chronic stress in rats[J]. European journal of pharmacology,2011,667(1):222-229.
    [45]Xu G L, Qian Z Y, Yu S Q, et al. Evidence of crocin against endothelial injury induced byhydrogen peroxide in vitro[J]. Journal of Asian natural products research,2006, 8(1-2):79-85.
    [46]Xu G, Gong Z, Yu W, et al. Increased Expression Ratio of Bcl-2/Bax Is Associated with Crocin-Mediated Apoptosis in Bovine Aortic Endothelial Cells[J]. Basic & clinical pharmacology & toxicology,2007,100(1):31-35.
    [47]Bors W, Saran M, Michel C. Radical intermediates involved in the bleaching of the carotenoid crocin. Hydroxyl radicals, superoxide anions and hydrated electrons. Int J Radiat Biol Relat Stud Phys Chem Med.1982,41:493-501.
    [48]Asdaq S M B, Inamdar M N. Potential of Crocus sativus (saffron) and its constituent, crocin, as hypolipidemic and antioxidant in rats[J]. Applied biochemistry and biotechnology,2010,162(2):358-372.
    [49]Rios J L, Recio M C, Giner R M, et al. An update review of saffron and its active constituents[J]. Phytotherapy Research,1996,10(3):189-193.
    [50]Abdullaev F I. Biological effects of saffron [J]. BioFactors (Oxford, England),1993, 4(2):83-86.
    [51]Nair S C, Kurumboor S K, Hasegawa J H. Saffron chemoprevention in biology and medicine: a review[J]. Cancer Biotherapy & Radiopharmaceuticals,1995,10(4):257-264.
    [52]Abdollahi M, Ranjbar A, Shadnia S, et al. Pesticides and oxidative stress:a review[J]. Medical science monitor:international medical journal of experimental and clinical research,2004,10(6):141-147.
    [53]Parihar M S, Hemnani T. Phenolic antioxidants attenuate hippocampal neuronal cell damage against kainic acid induced excitotoxicity[J]. Journal of biosciences,2003, 28(1):121-128.
    [54]Hosseinzadeh H, Sadeghnia H R, Ziaee T, et al. Protective effect of aqueous saffron extract (Crocus sativus L.) and crocin, its active constituent, on renal ischemia-reperfusion-induced oxidative damage in rats[J]. J Pharm Pharm Sci,2005, 8(3):387-93.
    [55]Hosseinzadeh H, Sadeghnia H R. Safranal, a constituent of Crocus sativus (saffron), attenuated cerebral ischemia induced oxidative damage in rat hippocampus [J]. J Pharm Pharm Sci,2005,8(3):394-399.
    [56]Hosseinzadeh H, Modaghegh M H, Saffari Z. Crocus sativus L. (Saffron) extract and its active constituents (crocin and safranal) on ischemia-reperfusion in rat skeletal muscle[J]. Evidence-Based Complementary and Alternative Medicine,2009,6(3): 343-350.
    [57]Ma An-lin, Wu Tie-yong, Xu Ya-ping, et al. Effect of Saffron on Ethanol or Ethanol plus CC14 Induced Liver inury and Lipid Peroxidation in Rats[J]. Chinese Journal of Intergrated Ttraditional Chinese medicine,2001,21(6):86-88.
    [58]Ma An-lin, Wu Tieyong, Dong En-yu, et al. Prevention and Treatment of Saffron on Experimental Alcoholic and CC14 Liver Injury in Wistar Rats [J]. Chinese Journal of Integrated Traditional and Western Medicine on Liver Diseases.2000,10(6):34-35.
    [59]El-Beshbishy H A, Hassan M H, Aly H A A, et al. Crocin "saffron" protects against beryllium chloride toxicity in rats through diminution of oxidative stress and enhancing gene expression of antioxidant enzymes [J]. Ecotoxicology and environmental safety,2012,83:47-54.
    [60]Shati A A, Alamri S A. Role of saffron (Crocus sativus L.) and honey syrup on aluminum-induced hepatotoxicity[J]. Saudi medical journal,2010,31(10):1106-1113.
    [61]Poma A, Fontecchio G, Carlucci G, et al. Anti-inflammatory properties of drugs from saffron crocus[J]. Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Inflammatory and Anti-Allergy Agents), 2012,11(1):37-51.
    [62]Xu G L, Li G, Ma H P, et al. Preventive effect of crocin in inflamed animals and in LPS-challenged RAW 264.7 cells[J]. Journal of agricultural and food chemistry, 2009,57(18):8325-8330.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700