用户名: 密码: 验证码:
槲皮素对酒精性肝铁过载的保护效应及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分槲皮素对酒精性肝铁过载的保护效应
     目的:以长期暴露酒精和/或铁的C57BL/6J小鼠为研究对象,探讨槲皮素对酒精性肝铁过载时氧化损伤的保护效应。
     方法:
     1.分组:120只体重为18-20g的雄性C57BL/6J小鼠随机分为八组:正常对照组(喂饲正常Lieber De Carli饲料)、酒精组(喂饲含酒精(30%能量)的Lieber De Carli饲料)、槲皮素对照组(100mg/kg.bw. ig.)、槲皮素+酒精组、铁组(羰基铁w/v:0.2%)、酒精+铁联合组、槲皮素+铁组、槲皮素+酒精+铁组。
     2.测定指标:小鼠等能量配对喂养15w至模型成功后,隔夜禁食,眼球取血,分离血清,根据酶动力学法测定血清谷草转氨酶(aspartate aminotransferase,AST)和谷丙转氨酶(alanine aminotransferase,ALT)水平,ELISA方法测定血清铁蛋白(ferritin, Ft)含量。肝脏固定后用于HE染色和铁普鲁士蓝染色;肝脏组织冰冻切片孵育DHE荧光探针检测肝脏ROS水平;酶学比色法测定肝脏总胆固醇(Total Cholesterol, TC)和总甘油三酯(Total triglyceride, TG)水平;硫代巴比妥酸比色法、改良二硫代二硝基苯甲酸比色法和黄嘌呤氧化酶比色法分别测定肝脏丙二醛(Malonaldehyde, MDA)、谷胱甘肽(Glutathione, GSH)和超氧化物歧化酶(Superoxide dismutase, SOD)的水平;实时定量聚合酶链反应(real-timePCR, qRT-PCR)和Western Blot方法分别测定肝脏中转铁蛋白受体(transferrinreceptor, TfR)mRNA和蛋白表达水平。
     结果:
     1.能量配对喂养期间,各组小鼠日均进食能量无差异,但所有含酒精组小鼠体重轻于不含酒精组小鼠,槲皮素或铁对小鼠体重无影响。与正常对照组比较,酒精或铁喂养小鼠的肝脏体重比增加,酒精和铁的联合组进一步增加,槲皮素可以明显降低酒精和铁单独或者联合作用增加的肝脏体重比系数。
     2.与正常对照组相比,酒精或铁均明显引起肝脏脂肪变性,导致肝脏TC、TG含量及血清AST、ALT水平升高;两者联合染毒后脂肪泡进一步增大,肝脏TC、TG与血清AST、ALT水平进一步升高;槲皮素干预有效改善酒精和/或铁单独或联合染毒时引起的肝脏脂肪变性和转氨酶释放。
     3.长期酒精暴露尤其是铁染毒后小鼠肝脏总铁含量、血清Ft和转铁蛋白饱和度(transferrin, TS)水平升高,肝脏铁沉积明显,GSH水平与SOD活性下降而ROS、MDA明显升高;两者联合染毒后铁过载与氧化应激程度进一步升高;槲皮素干预有效改善酒精和/或铁单独或联合染毒时引起的肝脏铁过载与氧化应激。
     4.与正常对照组相比,长期酒精或铁单独暴露后小鼠肝脏TfR1mRNA水平下降,但其蛋白表达水平升高,联合染毒时TfR1的mRNA水平进一步下降而蛋白水平进一步升高;酒精和铁单独或者联合喂养小鼠经槲皮素干预后,TfR1表达基本恢复正常水平。与正常对照组相比,酒精对TfR2表达无明显影响,但铁单独或联合酒精染毒时均明显增加TfR2的表达(单独与联合染毒时TfR2的表达水平无差异);槲皮素干预对酒精和/或铁单独或联合染毒小鼠肝脏TfR2表达无明显影响。
     5.槲皮素对正常小鼠肝脏损伤、肝脏铁含量和血清Ft和TS水平、氧化损伤和TfR1或TfR2表达均无明显影响。
     结论:槲皮素对酒精性肝铁过载以及氧化损伤具有良好的拮抗作用,其机制可能与下调TfR1的蛋白表达有关。
     第二部分槲皮素对酒精性肝过载时“游离”铁水平的影响及相关机制
     目的:本部分旨在分析慢性酒精暴露诱导小鼠铁过载时“游离”铁水平及其摄取与释放分子的变化,以及槲皮素的拮抗效应及相关机制。
     方法:
     1.动物分组同前;
     2.肝脏LIP测定:含EDTA匀浆介质螯合肝脏中不稳定铁池(labile iron pool,LIP),经超滤管离心后采用火焰原子吸收测定仪测定;
     3.血清NTBI测定:采用带有荧光标记比色法的原理测定血清非转铁蛋白结合铁(non-transferrin binding iron, NTBI);
     4. qRT-PCR和Western blot方法分别测定二价金属离子转运蛋白1(Twodivalent metal transporter1, DMT1)、锌转运成员的14(Zinc transporter member14,ZIP14)、瞬时受体潜在粘脂蛋白(transient receptor potential mucolipin1, TRPML1)及Ft的mRNA和蛋白表达水平。
     结果:
     1.与正常对照组比较,酒精和铁单独或者联合组均升高血清NTBI水平,同时肝脏DMT1和ZIP14的表达均增加,槲皮素干预不同程度的降低酒精和铁增加的血清NTBI水平以及肝脏DMT1和ZIP14表达;
     2.与正常对照相比,酒精与铁染毒后肝脏LIP-Fe水平分别增加1.2倍和4.1倍,两者联合染毒后LIP-Fe水平更是增加6.5倍,肝脏TRPML1mRNA与蛋白表达水平也相应增加,槲皮素干预降低酒精、铁以及联合组的LIP-Fe水平及TRPML1的表达,而槲皮素对正常小鼠以上指标无明显影响;
     3.与正常对照组相比,长期酒精摄入尤其是铁暴露明显增加肝脏铁蛋白轻链(ferritin light chain, FL)的表达,但对重链(ferritin heavy chain, FH)无明显影响;联合染毒后FL与FH却相较于正常对照组均有明显升高;槲皮素对酒精或铁染毒所致的FL升高及两者联合作用下FL与FH的升高均有明显的拮抗作用;
     4.与正常对照组相比,槲皮素组血清NTBI与肝脏LIP-Fe水平及FH、FL表达均没有明显变化,肝脏DMT1、ZIP14、TRPML1和Ft表达也没有明显变化。
     结论:槲皮素可拮抗酒精继发性肝铁过载时“游离”铁的紊乱,可能与其调节肝细胞负责摄取血清NTBI和胞浆释放LIP-Fe的关键分子有关,并提示内涵体和溶酶体均是酒精性肝铁过载LIP-Fe的来源。
     第三部分槲皮素对hepcidin依赖的酒精性肝铁过载的拮抗效应:BMP6/Smad4的作用
     目的:以长期喂饲含酒精和/或铁的液体饲料的C57BL/6J小鼠和酒精孵育的小鼠原代肝细胞为研究对象,探讨hepcidin在槲皮素改善小鼠酒精性肝铁过载中的作用以及骨形态蛋白6(Bone morphogenetic protein6, BMP6)/Smad家族成员4(Smad family member4, Smad4)信号通路潜在效应。
     方法:
     1.动物分组同前;
     2.二步胶原酶法分离培养小鼠原代肝细胞,无水乙醇(100mmol/L)单独或联合槲皮素(Et+Qu,100μmol/L)、人重组BMP6蛋白(Et+BMP6,100ng/ml)、抗BMP6抗体(Et+anti-BMP6,25μg/ml)孵育小鼠原代肝细胞24h;
     3.免疫组化方法测定肝脏Hepcidin的表达,qRT-PCR测定肝脏Hepcidin、BMP2、BMP4、BMP6、BMP9和Smad4以及小鼠原代细胞Hepcidin、BMP6和Smad4的mRNA表达水平,Western Blot测定肝脏BMP6和Smad4以及小鼠原代肝细胞胞浆和胞核Smad4的表达;
     4.染色质免疫共沉淀方法测定酒精、槲皮素和BMP6抑制剂或激活剂孵育的小鼠原代肝细胞Smad4与HAMP启动区DNA结合活性。
     结果:
     1.与正常对照组相比,铁明显增加肝脏hepcidin表达,而酒精明显减少hepcidin的表达,且降低铁对hepcidin的诱导(但仍高于正常对照组);酒精和铁单独或者联合喂养小鼠,经槲皮素干预后肝脏hepcidin表达接近正常对照组水平;
     2.酒精对BMP2、BMP4和BMP9的mRNA表达无明显影响,但明显降低BMP6及其下游蛋白Smad4的mRNA和蛋白水平,同时抑制铁对BMP6及SMAD4的诱导,酒精和铁单独或者联合作用引起的BMP6和Smad4的变化,经槲皮素干预后均趋于正常对照组水平;槲皮素对正常小鼠肝脏BMP6及Smad4的表达无明显影响;
     3.酒精孵育小鼠原代肝细胞降低Smad4与HAMP的DNA结合力,anti-BMP6进一步降低酒精对Smad4与HAMP的DNA结合力及hepcidin mRNA表达;人重组BMP6蛋白及槲皮素处理酒精孵育的肝细胞,均降低酒精对Smad4与HAMP的DNA结合力的抑制,增加hepcidin的mRNA表达。
     结论:槲皮素通过BMP6/Smad4信号通路调节hepcidin的表达,保护酒精性肝铁过载损伤。
Part1Protection of quercetin against ethanol hepatocixity mediatedby iron overload
     Objective: To investigate the protection of quercetin against iron overload inC57BL/6J mice fed by ethanol-containned Lieber De Carli diets.
     Methods:
     1. One hundred and twelve male C57BL/6J mice were divided randomly intoeight groups of fifteen animals each as follows:(1) Normal control group (Ct)received regular-containing Lieber De Carli liquids diets;(2) Ethanol group (Et) wasfed ethanol-containing Lieber De Carli liquids diets (30%of total calories as ethanol);(3) Quercetin control group (Qu) received quercetin (100mg/kg.bw, i.g);(4)Quercetin plus ethanol group (Qu+Et) received quercetin and ethanol;(5) Iron group(Fe) was administrated by carbonyl iron powder (w/v:0.2%);(6) Ethanol plus irongroup (Et+Fe);(7) Quercetin plus iron group (Qu+Fe);(8) Quercetin, ethanol plusiron group (Qu+Et+Fe).
     2. Mice were pair-fed for15weeks until sacrificed after an overnight fasting.Serum was collected from blood by centrifuge at3500×g for10min. Serum aspartateaminotransferase (AST), alanine aminotransferase (ALT) and ferritin (Ft) weremeasured with appropriate kits based on enzymatic kinetic method and ELISA,respectively. Liver tissue samples were fixed and tissue sections were stained withhematoxylin and eosin staining (H&E) and Perls’ Prussian blue stain, respectively.Frozen hepatic sections were immediately incubated with DHE to detect the level of ROS. The supernatants of liver homogenates with isopropanol were measured for thelevels of hepatic total cholesterol (TC), triglycerides (TG) based on enzymaticcolorimetric methods. Measurement of malonaldehyde (MDA), glutathione (GSH) andSuperoxide dismutase (SOD) by enzymatic colorimetric methods were based onthiobarbituric acid, improved dithiodimorpholine nitrobenzoic acid andxanthine/xanthine oxidase, respectively. Real time-PCR and Western Blot were usedto detect the expression of transferrin receptor (TfR) at mRNA and protein levels.
     Results:
     1. During the pair-feeding, there is no difference of the food intake in all groups.However, weights of the mice challenged by ethanol were lower than those of micefed by non ethanol-containned diets. What’s more, querectin or iron had no effect onweight gain. Compared to normal control group, ethanol or iron caused significantincrease in the liver weight ratio which was further enhanced by combined treatment.Importantly,quercetin evidently decreased the liver weight ratio induced by ethanoland/or iron.
     2. Compared to normal control mice, ethanol or iron incresed fatty infiltration inthe liver, accompanying with increased hepatic TC and TG content and serum ALTand AST level, and the extent of fatty infiltration manifested as macrovesicularsteatosis was much higher in mice ingesting ethanol in combination with iron withhighest content of hepatic TC and TG and highest level of serum ALT and AST.Quercetin supplementation daily to ethanol and/or iron-fed mice evidently alleviatedthe hepatic lipid accumulation, the levels of hepatic lipids indexes and serumaminotransferases. Quercetin per se has no any effect on pathological changes in theliver, hepatic lipids parameters and serum aminotransferases in normal mice.
     3. In comparison with normal control, ethanol increased stainable ferric iron inliver, accompanying hepatic total iron content and serum ferritin and transferrinsaturation (TS) level resulted in evident oxidative damage, and the extent was muchhigher in mice challenged by iron. In addition, ethanol further significantly aggravatedthe indexes of iron-load mice. Importantly, quercetin intervention to ethanol and/oriron-challenged mice significantly lessened the hepatic ferric iron, hepatic total iron content, serum ferritin and TS and hepatic oxidative stress.
     4. Expression of TfR1at mRNA level in mice challenged by ethanol or iron werereduced compared to normal control, the decreased extent was exaggavated bycombinationed treatment. However, compared to normal control, TfR1proteinexpression in mice challenged by ethanol or iron were increased, and the increasedextent was exaggavated by combinationed treatment. Levels of TfR1were partiallynormalized by quercetin intervention. In addition, ethanol had no contribution to TfR2expression which was significantly enhanced by iron. Furthermore, ethanol had noevident effect on the increase of TfR2expression induced by iron. Quercetin exhibitedinsignificant changes of TfR2level induced by iron.
     Conclusion: Quercetin exhibited protective role on alcoholic ironoverload-induced liver damage, and regulation of TfR1expression may be thepotential mechanism.
     Part2Quercetin against “free” iron in chronic ethanol induced liveriron overload
     Objective: The purpose of this part was to explore the mechanisms by whichquercetin arrests alcoholic liver “free” iron disorder and the role of critical moleculesresponsible for “free” iron uptake and release.
     Methods:
     1. The groups of animals were the same to part1.
     2. Detection of hepatic labile iron pool-Fe (LIP-Fe) was based on ultrafiltratedon Micron-30with supernatants homogenated by1mM EDTA to dissociate LIP-Fe.Then, the concentration of hepatic LIP-Fe was measuremed by atomic absorptionspectrophotometric assay.
     3. Plasma non-transferrin bingding iron (NTBI) was measured usingfluorescein-labeled apotransferrin which quenched fluorescence upon binding iron.
     4. Real time-PCR and Western Blot were used to detect the expression ofdivalent metal transporter1(DMT1), zinc transporter member14(ZIP14), transientreceptor potential mucolipin1(TRPML1) and Ft at both mRNA and protein levels.
     Results:
     1. In contrast with normal control, serum NTBI concentration as well asexpression of DMT1and ZIP14was significantly elevated by chronic ethanoltreatment. Iron-fed or co-treated mice also showed the similar change of serum NTBIcontent and hepatic DMT1and ZIP14levels to ethanol-challenged mice. Importantly,quercetin evidently inhibited the elevation of serum NTBI concentration and hepaticexpression of DMT1and ZIP14.
     2. Compared with normal control, ethanol or iron elevated the increase of hepaticLIP-Fe levels and expression of TRPML1, the increase was also observed in co-dosedmice by ethanol and iron. In comparison with ethanol and/or iron-exposed mice,hepatic LIP-Fe and expression of TRPML1was decreased as a result of quercetinsupplementation. Quercetin itself had no overt influence on basal LIP-Fe andTRPML1level of mice fed by normal diet.
     3. Based on normal control, alcohol-fed mice showed an evident increase of FLexpression. Compared to ethanol-challeged mice, the levels were further increased byiron ingesting. What’s more co-fed with ethanol and iron notably enhanced theexpression of FL in contrast with normal control and any single-treated groups.Quercetin intervention effectively reduced the levels of FL in mice ingested withalcohol and iron alone or combination. In contrast, alcohol had no significant effect onthe expression of FH.
     Conclusion: Quercetin prevents ethanol-induced iron disequilibrium, which maybe partially attributed to the suppression of ethanol-stimulated overexpression ofcrucial molecules in response of “free” iron uptake and release. These findings alsosuggest endosome and lysosome are the potential source of LIP-Fe.
     Part3Quercetin prevents ethanol-induced iron overload byregulating hepcidin through BMP6/Smad4signaling pathway
     Objective: The aim of this section was to explore the effect ofnaturally-occurring hepatoprotective quercetin on ethanol-induced hepatic ironoverload and damage, focusing on the signaling pathway of iron regulatory hormonehepcidin and the porential mechanism of BMP6/Smad4.
     Methods:
     1. The groups of animals were the same to part1
     2. Primary hepatocytes were isolated from C57BL/6J mice using a two-stepcollagenase perfusion procedure. Hepatocytes were incubated with100mmol/Lethanol, with or without quercetin (100μmol/L), human recombination BMP6protein(100ng/ml) and anti-BMP antibody (25μg/ml) for24hours.
     3. Fixed liver sample incubated with antibody and immunostaining wasvisualized with3,3’-diaminobenzidine to detect the protein expression of hepcidin.Real time-PCR and Western Blot were used to detect the expression of hepcidin,BMPs and Smad4at both mRNA and protein levels.
     4. Chromatin Immunoprecipitation (CHIP) was used to detect the bindingactivity of Smad4to the promoter of HAMP DNA with chromatin isolated frommouse hepatocytes treated with various pharmacological reagents after shearing bysonication and immunoprecipitation by anti-Smad4antibody.
     Results:
     1. Mice fed with ethanol-containing diet displayed evident decreased hepcidinexpression compared to normal control. Moreover, iron-increased hepcidin expressionwas decreased by ethanol, remained a higher level compared to normal control. Theexpression of hepcidin were partially normalized when quercetin supplementation tomice challenged by ethanol, iron, or ethanol in combination with iron. Quercetin hadno effect on normal mice.
     2. Compared with normal control, ethanol resulted in insignificant changes onBMPs expression except BMP6, accompanying a significant down-regulated value of Smad4. Iron remarkably induced BMP6and Smad4expression which wassignificantly abolished by ethanol and iron combined treatment. Importantly,quercetin partially normalized BMP6and Smad4level disturbed by ethanol, iron, orethanol in combination with iron. Quercetin had no effect on BMP6/Smad4expression compared to normal mice.
     3. In contrast with normal control, ethanol decreased mRNA level of Smad4andhepcidin and DNA binding activity of Smad4to HAMP promoter. Furthermore,values were further exacerbated by anti-BMP6but reversed by human recombinationBMP6protein or quercetin pre-treatment. Compared to normal control, quercetin hadno effect on hepcidin and Smad4mRNA expression and DNA binding activity ofSmad4to HAMP promoter.
     Conclusion: Quercetin effectively prevents ethanol hepatocixity, which may beattributed by the regulation of hepcidin expression via BMP6/Smad4signalingpathway.
引文
[1] WHO. Global Status Report on Alcohol and Health2011.2011;(http://www.int/substance-abuse/publications/global-alcohol-report/en/index.html.).
    [2] Zhuang H. Epidemiology of alcoholic liver diseases. Zhonghua Gan Zang BingZa Zhi,2003;11(11):689.
    [3] Rehm J, Mathers C, Popova S, et al. Global burden of disease and injury andeconomic cost attributable to alcohol use and alcohol-use disorders. Lancet,2009;373(9682):2223~2233.
    [4] Yoon Y, H. Y. Liver cirrhosis mortality in the United States,1970-2007surveillance report88.NIAAA homepage. http://pubs.niaaa. nih. gov/publications/surveillance88/Cirr07.htm,2010.
    [5] Gao B, Bataller R. Alcoholic liver disease: pathogenesis and new therapeutictargets. Gastroenterology,2011;141(5):1572~1585.
    [6] Niemela O, Parkkila S, Britton RS, et al. Hepatic lipid peroxidation in hereditaryhemochromatosis and alcoholic liver injury. J Lab Clin Med,1999;133(5):451~460.
    [7] MacKenzie EL, Iwasaki K, Tsuji Y. Intracellular iron transport and storage: frommolecular mechanisms to health implications. Antioxid Redox Signal,2008;10(6):997~1030.
    [8] Kohgo Y, Ohtake T, Ikuta K, et al. Dysregulation of systemic iron metabolism inalcoholic liver diseases. J Gastroenterol Hepatol,2008;23Suppl1: S78~S81.
    [9] Whitfield JB, Zhu G, Heath AC, et al. Effects of alcohol consumption on indicesof iron stores and of iron stores on alcohol intake markers. Alcohol Clin Exp Res,2001;25(7):1037~1045.
    [10] Valerio LJ, Parks T, Petersen DR. Alcohol mediates increases in hepatic andserum nonheme iron stores in a rat model for alcohol-induced liver injury.Alcohol Clin Exp Res,1996;20(8):1352~1361.
    [11] Tsukamoto H, Horne W, Kamimura S, et al. Experimental liver cirrhosis inducedby alcohol and iron. J Clin Invest,1995;96(1):620~630.
    [12] Leopoldini M, Russo N, Chiodo S, et al. Iron chelation by the powerfulantioxidant flavonoid quercetin. J Agric Food Chem,2006;54(17):6343~6351.
    [13] Mladenka P, Macakova K, Filipsky T, et al. In vitro analysis of iron chelatingactivity of flavonoids. J Inorg Biochem,2011;105(5):693~701.
    [14] Baccan MM, Chiarelli-Neto O, Pereira RM, et al. Quercetin as a shuttle for labileiron. J Inorg Biochem,2012;107(1):34~39.
    [15] Lorrain B, Dangles O, Loonis M, et al. Dietary iron-initiated lipid oxidation andits inhibition by polyphenols in gastric conditions. J Agric Food Chem,2012;60(36):9074~9081.
    [16] Eybl V, Kotyzova D, Cerna P, et al. Effect of melatonin, curcumin, quercetin,and resveratrol on acute ferric nitrilotriacetate (Fe-NTA)-induced renal oxidativedamage in rats. Hum Exp Toxicol,2008;27(4):347~353.
    [17] Zhang Y, Gao Z, Liu J, et al. Protective effects of baicalin and quercetin on aniron-overloaded mouse: comparison of liver, kidney and heart tissues. Nat ProdRes,2011;25(12):1150~1160.
    [18] Zhang Y, Li H, Zhao Y, et al. Dietary supplementation of baicalin and quercetinattenuates iron overload induced mouse liver injury. Eur J Pharmacol,2006;535(1-3):263~269.
    [19] Jandl J, Katz J. The plasma-to-cell cycle of transferrin. J Clin Invest,1963;42:314~326.
    [20] Ning B, Liu G, Liu Y, et al.5-aza-2'-deoxycytidine activates iron uptake andheme biosynthesis by increasing c-Myc nuclear localization and binding to theE-boxes of transferrin receptor1(TfR1) and ferrochelatase (Fech) genes. J BiolChem,2011;286(43):37196~37206.
    [21] Kohgo Y, Ohtake T, Ikuta K, et al. Dysregulation of systemic iron metabolism inalcoholic liver diseases. J Gastroenterol Hepatol,2008;23(S1):S78~81.
    [22] Wallace DF, Summerville L, Subramaniam VN. Targeted disruption of thehepatic transferrin receptor2gene in mice leads to iron overload.Gastroenterology,2007;132(1):301~310.
    [23] Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues bythiobarbituric acid reaction. Anal Biochem,1979;95(2):351~358.
    [24] Eady JJ, Orta T, Dennis MF, et al. Glutathione determination by the Tietzeenzymatic recycling assay and its relationship to cellular radiation response. Br JCancer,1995;72(5):1089~1095.
    [25] Fridovich I. Superoxide radical and superoxide dismutases. Annu Rev Biochem,1995;64:97~112.
    [26] Allain CC, Poon LS, Chan CS, et al. Enzymatic determination of total serumcholesterol. Clin Chem,1974;20(4):470~475.
    [27] Sardesai VM, JA. M. The determination of triglycerides in plasma and tissues.Clin Chem,1968;(14):156~161.
    [28] Lowry OH, Rosebrough NJ, Farr AL, et al. Protein measurement with the Folinphenol reagent. J Biol Chem,1951;193(1):265~275.
    [29] Zhou Z, Wang L, Song Z, et al. Zinc supplementation prevents alcoholic liverinjury in mice through attenuation of oxidative stress. Am J Pathol,2005;166(6):1681~1690.
    [30] Harrison-Findik DD, Schafer D, Klein E, et al. Alcohol metabolism-mediatedoxidative stress down-regulates hepcidin transcription and leads to increasedduodenal iron transporter expression. J Bioll Chem,2006;281(32):22974~22982.
    [31] Tang Y, Gao C, Xing M, et al. Quercetin prevents ethanol-induced dyslipidemiaand mitochondrial oxidative damage. Food Chem Toxicol,2012;50(5):1194~1200.
    [32] Oliva J, Bardag-Gorce F, Tillman B, et al. Protective effect of quercetin, EGCG,catechin and betaine against oxidative stress induced by ethanol in vitro. ExpMol Pathol,2011;90(3):295~299.
    [33] Zhu H, Jia Z, Misra H, et al. Oxidative stress and redox signaling mechanisms ofalcoholic liver disease: updated experimental and clinical evidence. J Dig Dis,2012;13(3):133-142.
    [34] Niemela O, Parkkila S, Britton RS, et al. Hepatic lipid peroxidation in hereditaryhemochromatosis and alcoholic liver injury. J Lab Clin Med,1999;133(5):451~460.
    [35] Harrison-Findik DD, Klein E, Crist C, et al. Iron-mediated regulation of liverhepcidin expression in rats and mice is abolished by alcohol. Hepatology,2007;46(6):1979~1985.
    [36] Suzuki Y, Saito H, Suzuki M, et al. Up-regulation of transferrin receptorexpression in hepatocytes by habitual alcohol drinking is implicated in hepaticiron overload in alcoholic liver disease. Alcohol Clin Exp Res,2002;26(8Suppl):26S~31S.
    [37] Suzuki M, Fujimoto Y, Suzuki Y, et al. Induction of Transferrin Receptor byEthanol in Rat Primary Hepatocyte Culture. Alcohol Clin Exp Res,200428(8Suppl):98S~105S.
    [38] Hentze MW, Kuhn LC. Molecular control of vertebrate iron metabolism:mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidativestress. Proc Natl Acad Sci,1996;93:8175~8182.
    [39] Bartnikas TB, Wildt SJ, Wineinger AE, et al. A novel rat model of hereditaryhemochromatosis due to a mutation in transferrin receptor2. Comp Med,2013;63(2):143~155.
    [40] Gao J, Chen J, De Domenico I, et al. Hepatocyte-targeted HFE and TFR2controlhepcidin expression in mice. Blood,2010;115(16):3374-3381.
    [41] West AJ, Bennett MJ, Sellers VM, et al. Comparison of the interactions oftransferrin receptor and transferrin receptor2with transferrin and the hereditaryhemochromatosis protein HFE. J Biol Chem,2000;275(49):38135~38138.
    [42] Zhang Y, Li H, Zhao Y, et al. Dietary supplementation of baicalin and quercetinattenuates iron overload induced mouse liver injury. Eur J Pharmacol,2006;535(1-3):263~269.
    [43] Sestili P, Guidarelli A, Dacha M, et al. Quercetin prevents DNA single strandbreakage and cytotoxicity caused by tert-butylhydroperoxide: free radicalscavenging versus iron chelating mechanism. Free Radic Biol Med,1998;25(2):196~200.
    [44] Fernandez MT, Silva MM, Mira L, et al. Iron and copper complexation byangiotensin-converting enzyme inhibitors. A study by ultraviolet spectroscopyand electrospray mass spectrometry. J Inorg Biochem,1998;71(1-2):93~98.
    [45] Bianchi L, Tacchini L, Cairo G. HIF-1-mediated activation of transferrinreceptor gene transcription by iron chelation. Nucleic Acids Res,1999;27(21):4223~4227.
    [46] Tacchini L, Gammella E, De Ponti C, et al. Role of HIF-1and NF-kappaBtranscription factors in the modulation of transferrin receptor by inflammatoryand anti-inflammatory signals. J Biol Chem,2008;283(30):20674~20686.
    [47] Greenberg GR. A labile iron pool. J Cell Biochem,1946;(165):397.
    [48] Hershko C, Graham G, Bates GW, et al. Non-specific serum iron in thalassaemia:an abnormal serum iron fraction of potential toxicity. Br J Haematol,1978;40(2):255~263.
    [49] Brissot P, Ropert M, Le Lan C, et al. Non-transferrin bound iron: a key role iniron overload and iron toxicity. Biochim Biophys Acta,2012;1820(3):403~410.
    [50] Shindo M, Torimoto Y, Saito H, et al. Functional role of DMT1intransferrin-independent iron uptake by human hepatocyte and hepatocellularcarcinoma cell, HLF. Hepatol Res,2006;35(3):152~162.
    [51] Dong XP, Cheng X, Mills E, et al. The type IV mucolipidosis-associated proteinTRPML1is an endolysosomal iron release channel. Nature,2008;455(7215):992~996.
    [52] De Feo TM, Fargion S, Duca L, et al. Non-transferrin-bound iron in alcoholabusers. Alcohol Clin Exp Res,2001;25(10):1494~1499.
    [53] Sergent O, Tomasi A, Ceccarelli D, et al. Combination of iron overload plusethanol and ischemia alone give rise to the same endogenous free iron pool.Biometals,2005;18(6):567~575.
    [54] Boots AW, Haenen GR, Bast A. Health effects of quercetin: from antioxidant tonutraceutical. Eur J Pharmacol,2008;585(2-3):325~337.
    [55] Manach C, Williamson G, Morand C, et al. Bioavailability and bioefficacy ofpolyphenols in humans. I. Review of97bioavailability studies. American J ClinNutr,2005;81(1Suppl):230S~242S.
    [56] Haleagrahara N, Siew CJ, Mitra NK, et al. Neuroprotective effect ofbioflavonoid quercetin in6-hydroxydopamine-induced oxidative stressbiomarkers in the rat striatum. Neurosci Lett,2011;500(2):139~143.
    [57] Reif DW, Beales IL, Thomas CE, et al. Effect of diquat on the distribution ofiron in rat liver. Toxicol Appl Pharmacol,1988;93(3):506~510.
    [58] Breuer W, Cabantchik ZI. A fluorescence-based one-step assay for serumnon-transferrin-bound iron. Anal Biochem,2001;299(2):194~202.
    [59] Dey A, Cederbaum AI. Alcohol and oxidative liver injury. Hepatology,2006;43(2Suppl1):63~74.
    [60] Park SS, Bae I, Lee YJ. Flavonoids-induced accumulation of hypoxia-induciblefactor (HIF)-1alpha/2alpha is mediated through chelation of iron. J Cell Biochem,2008;103(6):1989~1998.
    [61] Vlachodimitropoulou E, Sharp PA, Naftalin RJ. Quercetin-iron chelates aretransported via glucose transporters. Free Radic Biol Med,2011;50(8):934~944.
    [62] Qian ZM, Wu XM, Fan M, et al. Divalent metal transporter1is ahypoxia-inducible gene. J Cell Physiol,2011;226(6):1596~1603.
    [63] Wang D, Wang LH, Zhao Y, et al. Hypoxia regulates the ferrous iron uptake andreactive oxygen species level via divalent metal transporter1(DMT1) Exon1Bby hypoxia-inducible factor-1. Iubmb Life,2010;62(8):629~636.
    [64] Arteel GE. Alcohol-induced oxidative stress in the liver: in vivo measurements.Methods Mol Biol,2008;447:185~197.
    [65] Yoon JS, Chae MK, Lee SY, et al. Anti-inflammatory effect of quercetin in awhole orbital tissue culture of Graves' orbitopathy. Br J ophthalmol,2012;96(8):1117~1121.
    [66] Liu CM, Sun YZ, Sun JM, et al. Protective role of quercetin against lead-inducedinflammatory response in rat kidney through the ROS-mediated MAPKs andNF-kappaB pathway. Biochim Biophys Acta,2012;1820(10):1693~1703.
    [67] Graham RM, Reutens GM, Herbison CE, et al. Transferrin receptor2mediatesuptake of transferrin-bound and non-transferrin-bound iron. J Hepatol,2008;48(2):327~334.
    [68] Pietrangelo A, Rocchi E, Ferrari A, et al. Regulation of hepatic transferrin,transferrin receptor and ferritin genes in human siderosis. Hepatology,1991;14(6):1083~1089.
    [69] Leggett BA, Fletcher LM, Ramm GA, et al. Differential regulation of ferritin Hand L subunit mRNA during inflammation and long-term iron overload. JGastroenterol Hepatol,1993;8(1):21~27.
    [70] Arosio P, Ingrassia R, Cavadini P. Ferritins: a family of molecules for ironstorage, antioxidation and more. Biochim Biophys Acta,2009;1790(7):589~599.
    [71] Harrison PM, Arosio P. The ferritins: molecular properties, iron storage functionand cellular regulation. Biochim Biophys Acta,1996;1275(3):161~203.
    [72] Li PG, Sun L, Han X, et al. Quercetin induces rapid eNOS phosphorylation andvasodilation by an Akt-independent and PKA-dependent mechanism.Pharmacology,2012;89(3-4):220~228.
    [73] Punithavathi VR, Prince PS. Pretreatment with a combination of quercetin andalpha-tocopherol ameliorates adenosine triphosphatases and lysosomal enzymesin myocardial infarcted rats. Life Sci,2010;86(5-6):178~184.
    [74] Decharneux T, Dubois F, Beauloye C, et al. Effect of various flavonoids onlysosomes subjected to an oxidative or an osmotic stress. Biochem Pharmacol,1992;44(7):1243~1248.
    [75] Basu-Modak S, Ali D, Gordon M, et al. Suppression of UVA-mediated release oflabile iron by epicatechin--a link to lysosomal protection. Free Radic Biol Med,2006;41(8):1197~1204.
    [76] Danesh J, Appleby P. Coronary heart disease and iron status: meta-analyses ofprospective studies. Circulation,1999;99(7):852~854.
    [77] Bao W, Rong Y, Rong S, et al. Dietary iron intake, body iron stores, and the riskof type2diabetes: a systematic review and meta-analysis. BMC Med,2012;10:119~131.
    [78] Boelmans K, Holst B, Hackius M, et al. Brain iron deposition fingerprints inParkinson's disease and progressive supranuclear palsy. Mov Disord,2012;27(3):421~427.
    [79] Krause A, Neitz S, Magert HJ, et al. LEAP-1, a novel highly disulfide-bondedhuman peptide, exhibits antimicrobial activity. Febs Lett,2000;480(2-3):147~150.
    [80] Park CH, Valore EV, Waring AJ, et al. Hepcidin, a urinary antimicrobial peptidesynthesized in the liver. J Biol Chem,2001;276(11):7806~7810.
    [81] Harrison-Findik DD, Klein E, Crist C, et al. Iron-mediated regulation of liverhepcidin expression in rats and mice is abolished by alcohol. Hepatology,2007;46(6):1979~1985.
    [82] Harrison-Findik DD. Role of alcohol in the regulation of iron metabolism. WorldJ Gastroenterol,2007;13(37):4925~4930.
    [83] Harrison-Findik DD, Schafer D, Klein E, et al. Alcohol metabolism-mediatedoxidative stress down-regulates hepcidin transcription and leads to increasedduodenal iron transporter expression. J Biol Chem,2006;281(32):22974~22982.
    [84] Gao J, Chen J, De Domenico I, et al. Hepatocyte-targeted HFE and TFR2controlhepcidin expression in mice. Blood,2010;115(16):3374~3381.
    [85] Wallace DF, Summerville L, Crampton EM, et al. Combined deletion of Hfe andtransferrin receptor2in mice leads to marked dysregulation of hepcidin and ironoverload. Hepatology,2009;50(6):1992~2000.
    [86] Fleming RE. Hepcidin activation during inflammation: make it STAT.Gastroenterology,2007;132(1):447-449.
    [87] Tanno T, Porayette P, Sripichai O, et al. Identification of TWSG1as a secondnovel erythroid regulator of hepcidin expression in murine and human cells.Blood,2009;114(1):181~186.
    [88] Tanno T, Bhanu NV, Oneal PA, et al. High levels of GDF15in thalassemiasuppress expression of the iron regulatory protein hepcidin. Nat Med,2007;13(9):1096~1101.
    [89] Andriopoulos BJ, Corradini E, Xia Y, et al. BMP6is a key endogenous regulatorof hepcidin expression and iron metabolism. Nat Genet,2009;41(4):482~487.
    [90] Meynard D, Kautz L, Darnaud V, et al. Lack of the bone morphogenetic proteinBMP6induces massive iron overload. Nat Genet,2009;41(4):478~481.
    [91] Arndt S, Maegdefrau U, Dorn C, et al. Iron-induced expression of bonemorphogenic protein6in intestinal cells is the main regulator of hepatic hepcidinexpression in vivo. Gastroenterology,2010;138(1):372~382.
    [92] Kautz L, Meynard D, Monnier A, et al. Iron regulates phosphorylation ofSmad1/5/8and gene expression of Bmp6, Smad7, Id1, and Atoh8in the mouseliver. Blood,2008;112(4):1503~1509.
    [93] Wang RH, Li C, Xu X, et al. A role of SMAD4in iron metabolism through thepositive regulation of hepcidin expression. Cell Metab,2005;2(6):399~409.
    [94] Gerjevic LN, Liu N, Lu S, et al. Alcohol Activates TGF-Beta but Inhibits BMPReceptor-Mediated Smad Signaling and Smad4Binding to Hepcidin Promoter inthe Liver. Int J Hepatol,2012;2012:459278.
    [95] Vanhees K, Godschalk RW, Sanders A, et al. Maternal quercetin intake duringpregnancy results in an adapted iron homeostasis at adulthood. Toxicology,2011;290(2-3):350~358.
    [96] Chandrakasan G, Torchia DA, Piez KA. Preparation of intact monomericcollagen from rat tail tendon and skin and the structure of the nonhelical ends insolution. J Biol Chem,1976;251(19):6062~6067.
    [97] Ehrmann R, Gey G. The growth of cells on a transparent gel of reconstitutedrat-tail collagen. J Natl Cancer Inst,1956;16(6):1375~1403.
    [98] Habermehl J, Skopinska J, Boccafoschi F, et al. Preparation of ready-to-use,stockable and reconstituted collagen. Macromol Biosci,2005;5(9):821~828.
    [99] Liu HY, Wen GB, Han J, et al. Inhibition of gluconeogenesis in primaryhepatocytes by stromal cell-derived factor-1(SDF-1) through ac-Src/Akt-dependent signaling pathway. J Biol Chem,2008;283(45):30642~30649.
    [100] Bridle K, Cheung TK, Murphy T, et al. Hepcidin is down-regulated in alcoholicliver injury: implications for the pathogenesis of alcoholic liver disease. AlcoholClin Exp Res,2006;30(1):106~112.
    [101] Ohtake T, Saito H, Hosoki Y, et al. Hepcidin is down-regulated in alcoholloading. Alcohol Clin Exp Res,2007;31(1Suppl): S2-S8.
    [102] Piek E, Heldin CH, Ten DP. Specificity, diversity, and regulation in TGF-betasuperfamily signaling. Faseb J,1999;13(15):2105~2124.
    [103] Heldin CH, Miyazono K, Ten DP. TGF-beta signalling from cell membrane tonucleus through SMAD proteins. Nature,1997;390(6659):465-471.
    [104] Babitt JL, Huang FW, Wrighting DM, et al. Bone morphogenetic proteinsignaling by hemojuvelin regulates hepcidin expression. Nat Genet2006;38(5):531~539.
    [105] Papanikolaou G, Samuels ME, Ludwig EH, et al. Mutations in HFE2cause ironoverload in chromosome1q-linked juvenile hemochromatosis. Nat Genet,2004;36(1):77~82.
    [106]Nath B, Levin I, Csak T, et al. Hepatocyte-specific hypoxia-induciblefactor-1alpha is a determinant of lipid accumulation and liver injury inalcohol-induced steatosis in mice. Hepatology,2011;53(5):1526~1537.
    [107] Chaston TB, Matak P, Pourvali K, et al. Hypoxia inhibits hepcidin expression inHuH7hepatoma cells via decreased SMAD4signaling. Am J Physiol CellPhysiol,2011;300(4): C888~C895.
    [108] Yan JD, Yang S, Zhang J, et al. BMP6reverses TGF-beta1-induced changes inHK-2cells: implications for the treatment of renal fibrosis. Acta Pharmacol Sin,2009;30(7):994~1000.
    [109] Du J, Zhu Y, Chen X, et al. Protective effect of bone morphogenetic protein-6on neurons from H2O2injury. Brain Res,2007;1163:10~20.
    [110] Yang L, Inokuchi S, Roh YS, et al. Transforming Growth Factor-beta Signalingin Hepatocytes Promotes Hepatic Fibrosis and Carcinogenesis in Mice WithHepatocyte-Specific Deletion of TAK1. Gastroenterology,2013;144(5):1042~1054.
    [111] Yao P, Hao L, Nussler N, et al. The protective role of HO-1and its generatedproducts (CO, bilirubin, and Fe) in ethanol-induced human hepatocyte damage.Am J Physiol Gastrointest Liver Physiol,2009;296(6):1318~1323.
    [112] Yao P, Nussler A, Liu L, et al. Quercetin protects human hepatocytes fromethanol-derived oxidative stress by inducing heme oxygenase-1via theMAPK/Nrf2pathways. J Hepatol,2007;47(2):253~261.
    [113] Hasebe Y, Egawa K, Yamazaki Y, et al. Specific inhibition ofhypoxia-inducible factor (HIF)-1alpha activation and of vascular endothelialgrowth factor (VEGF) production by flavonoids. Biol Pharm Bull,2003;26(10):1379~1383.
    [114] Triantafyllou A, Mylonis I, Simos G, et al. Flavonoids induce HIF-1alpha butimpair its nuclear accumulation and activity. Free Radic Biol Med,2008;44(4):657~670.
    [115] Sarkar A, Angeline MS, Anand K, et al. Naringenin and quercetin reverse theeffect of hypobaric hypoxia and elicit neuroprotective response in the murinemodel. Brain Res,2012;1481:59~70.
    [1] WHO. Worldwide prevalence of anaemia:1993–2005.2008; http://www.who.int/vmnis/publications/anaemia_prevalence/en/.
    [2] WHO. Iron defciency anaemia: assessment, prevention, and control.2004;http://www.who.int/nut/documents/ida_assessment_prevention_control.pdf.
    [3] Zimmermann MB, Hurrell RF. Nutritional iron deficiency. Lancet,2007;370(9586):511~520.
    [4] Clark SF. Iron deficiency anemia: diagnosis and management. Curr OpinGastroenterol,2009;25(2):122~128.
    [5] Carlson ES, Fretham SJ, Unger E, et al. Hippocampus specific iron deficiencyalters competition and cooperation between developing memory systems. JNeurodev Disord,2010;2(3):133~143.
    [6] Georgieff MK. Long-term brain and behavioral consequences of early irondeficiency. Nutr Rev,2011;69Suppl1: S43~S48.
    [7] Todorich B, Pasquini JM, Garcia CI, et al. Oligodendrocytes and myelination:the role of iron. Glia,2009;57(5):467~478.
    [8] Ward KL, Tkac I, Jing Y, et al. Gestational and lactational iron deficiency altersthe developing striatal metabolome and associated behaviors in young rats. JNutr,2007;137(4):1043~1049.
    [9] Munoz P, Humeres A, Elgueta C, et al. Iron mediates N-methyl-D-aspartatereceptor-dependent stimulation of calcium-induced pathways and hippocampalsynaptic plasticity. J Biol Chem,2011;286(15):13382~13392.
    [10] Schmidt AT, Waldow KJ, Grove WM, et al. Dissociating the long-term effectsof fetal/neonatal iron deficiency on three types of learning in the rat. BehavNeurosci,2007;121(3):475~482.
    [11] Rao R, Georgieff MK. Iron in fetal and neonatal nutrition. Semin Fetal NeonatalMed,2007;12(1):54~63.
    [12] Algarin C, Peirano P, Garrido M, et al. Iron deficiency anemia in infancy:long-lasting effects on auditory and visual system functioning. Pediatr Res,2003;53(2):217~223.
    [13] Roncagliolo M, Garrido M, Walter T, et al. Evidence of altered central nervoussystem development in infants with iron deficiency anemia at6mo: delayedmaturation of auditory brainstem responses. Am J Clin Nutr,1998;68(3):683~690.
    [14] Pena-Rosas JP, Viteri FE. Effects and safety of preventive oral iron oriron+folic acid supplementation for women during pregnancy. CochraneDatabase Syst Rev,2009;(4): D4736.
    [15] Chang S, Zeng L, Brouwer ID, et al. Effect of iron deficiency anemia inpregnancy on child mental development in rural China. Pediatrics,2013;131(3):e755~e763.
    [16] De-Regil LM, Suchdev PS, Vist GE, et al. Home fortification of foods withmultiple micronutrient powders for health and nutrition in children under twoyears of age. Cochrane Database Syst Rev,2011;(9): D8959.
    [17] Aguilar R, Moraleda C, Quinto L, et al. Challenges in the diagnosis of irondeficiency in children exposed to high prevalence of infections. PLoS One,2012;7(11): e50584.
    [18] Huddle JM, Gibson RS, Cullinan TR. The impact of malarial infection and dieton the anaemia status of rural pregnant Malawian women. Eur J Clin Nutr,1999;53(10):792~801.
    [19] Ouedraogo S, Koura GK, Accrombessi MM, et al. Maternal anemia at firstantenatal visit: prevalence and risk factors in a malaria-endemic area in Benin.Am J Trop Med Hyg,2012;87(3):418~424.
    [20] Calis JC, van Hensbroek MB, de Haan RJ, et al. HIV-associated anemia inchildren: a systematic review from a global perspective. Aids,2008;22(10):1099~1112.
    [21] Semba RD, Martin BK, Kempen JH, et al. The impact of anemia on energy andphysical functioning in individuals with AIDS. Arch Intern Med,2005;165(19):2229~2236.
    [22] Esan MO, Jonker FA, Hensbroek MB, et al. Iron deficiency in children withHIV-associated anaemia: a systematic review and meta~analysis. Trans R SocTrop Med Hyg,2012;106(10):579-587.
    [23] Noto JM, Gaddy JA, Lee JY, et al. Iron deficiency accelerates Helicobacterpylori-induced carcinogenesis in rodents and humans. J Clin Invest,2013;123(1):479~492.
    [24] Queiroz DM, Rocha AM, Melo FF, et al. Increased gastric IL-1betaconcentration and iron deficiency parameters in H. pylori infected children.PLoS One,2013;8(2): e57420.
    [25] Harris PR, Serrano CA, Villagran A, et al. Helicobacter pylori-associatedhypochlorhydria in children, and development of iron deficiency. J Clin Pathol,2013;66(4):343~347.
    [26] Miernyk K, Bruden D, Zanis C, et al. The Effect of Helicobacter pyloriInfection on Iron Stores and Iron Deficiency in Urban Alaska Native Adults.Helicobacter,2013;18(3):222~228.
    [27] Qu XH, Huang XL, Xiong P, et al. Does Helicobacter pylori infection play arole in iron deficiency anemia? A meta-analysis. World J Gastroenterol,2010;16(7):886~896.
    [28] Nyakeriga AM, Troye-Blomberg M, Dorfman JR, et al. Iron deficiency andmalaria among children living on the coast of Kenya. J Infect Dis,2004;190(3):439~447.
    [29] Sazawal S, Black RE, Ramsan M, et al. Effects of routine prophylacticsupplementation with iron and folic acid on admission to hospital and mortalityin preschool children in a high malaria transmission setting: community-based,randomised, placebo-controlled trial. Lancet,2006;367(9505):133~143.
    [30] Campuzano V, Montermini L, Molto MD, et al. Friedreich's ataxia: autosomalrecessive disease caused by an intronic GAA triplet repeat expansion. Science,1996;271(5254):1423~1427.
    [31] Ditch S, Sammarco MC, Banerjee A, et al. Progressive GAA.TTC repeatexpansion in human cell lines. PLoS Genet,2009;5(10): e1000704.
    [32] Becker E, Richardson DR. Frataxin: its role in iron metabolism and thepathogenesis of Friedreich's ataxia. Int J Biochem Cell Biol,2001;33(1):1~10.
    [33] Babcock M, de Silva D, Oaks R, et al. Regulation of mitochondrial ironaccumulation by Yfh1p, a putative homolog of frataxin. Science,1997;276(5319):1709~1712.
    [34] Cavadini P, Gellera C, Patel PI, et al. Human frataxin maintains mitochondrialiron homeostasis in Saccharomyces cerevisiae. Hum Mol Genet,2000;9(17):2523~2530.
    [35] Taketani S. Aquisition, mobilization and utilization of cellular iron and heme:endless findings and growing evidence of tight regulation. Tohoku J Exp Med,2005;205(4):297~318.
    [36] Adamec J, Rusnak F, Owen WG, et al. Iron-dependent self-assembly ofrecombinant yeast frataxin: implications for Friedreich ataxia. Am J Hum Genet,2000;67(3):549~562.
    [37] Adinolfi S, Trifuoggi M, Politou AS, et al. A structural approach tounderstanding the iron-binding properties of phylogenetically different frataxins.Hum Mol Genet,2002;11(16):1865~1877.
    [38] O'Neill HA, Gakh O, Park S, et al. Assembly of human frataxin is a mechanismfor detoxifying redox-active iron. Biochemistry,2005;44(2):537~545.
    [39] Gakh O, Park S, Liu G, et al. Mitochondrial iron detoxification is a primaryfunction of frataxin that limits oxidative damage and preserves cell longevity.Hum Mol Genet,2006;15(3):467~479.
    [40] Palmer AM, Burns MA. Selective increase in lipid peroxidation in the inferiortemporal cortex in Alzheimer's disease. Brain Res,1994;645(1-2):338~342.
    [41] Ling HW, Ding B, Wang T, et al. Could Iron Accumulation Be an Etiology ofthe White Matter Change in Alzheimer's Disease: Using Phase Imaging toDetect White Matter Iron Deposition Based on Diffusion Tensor Imaging.Dement Geriatr Cogn,2011;31(4):300~308.
    [42] Ham D, Schipper HM. Heme oxygenase-1induction and mitochondrial ironsequestration in astroglia exposed to amyloid peptides. Cell Mol Biol(Noisy-le-grand),2000;46(3):587~596.
    [43] Egana JT, Zambrano C, Nunez MT, et al. Iron-induced oxidative stress modifytau phosphorylation patterns in hippocampal cell cultures. Biometals,2003;16(1):215~223.
    [44] Gomes KB, Carvalho MG, Coelho FF, et al. Lack of association of C282Y andH63D mutations in the hemochromatosis (HFE) gene with diabetes mellitustype2in a case-control study of women in Brazil. Genet Mol Res,2009;8(4):1285~1291.
    [45] Connor JR, Lee SY. HFE mutations and Alzheimer's disease. J Alzheimers Dis,2006;10(2-3):267~276.
    [46] Patel BN, Dunn RJ, Jeong SY, et al. Ceruloplasmin regulates iron levels in theCNS and prevents free radical injury. J Neurosci,2002;22(15):6578~6586.
    [47] Ke Y, Ho K, Du J, et al. Role of soluble ceruloplasmin in iron uptake bymidbrain and hippocampus neurons. J Cell Biochem,2006;98(4):912~919.
    [48] Pinero DJ, Hu J, Connor JR. Alterations in the interaction between ironregulatory proteins and their iron responsive element in normal and Alzheimer'sdiseased brains. Cell Mol Biol (Noisy-le-grand),2000;46(4):761~776.
    [49] Zheng W, Xin N, Chi ZH, et al. Divalent metal transporter1is involved inamyloid precursor protein processing and Abeta generation. Faseb J,2009;23(12):4207~4217.
    [50] Lopes KO, Sparks DL, Streit WJ. Microglial dystrophy in the aged andAlzheimer's disease brain is associated with ferritin immunoreactivity. Glia,2008;56(10):1048~1060.
    [51] Moos T, Rosengren NT. Ferroportin in the postnatal rat brain: implications foraxonal transport and neuronal export of iron. Semin Pediatr Neurol,2006;13(3):149~157.
    [52] Ke Y, Chang YZ, Duan XL, et al. Age-dependent and iron-independentexpression of two mRNA isoforms of divalent metal transporter1in rat brain.Neurobiol Aging,2005;26(5):739~748.
    [53] Ishimaru H, Ishikawa K, Ohe Y, et al. Activation of iron handling system withinthe gerbil hippocampus after cerebral ischemia. Brain Resh,1996;726(1-2):23~30.
    [54] Chi SI, Wang CK, Chen JJ, et al. Differential regulation of H-and L-ferritinmessenger RNA subunits, ferritin protein and iron following focal cerebralischemia-reperfusion. Neuroscience,2000;100(3):475~484.
    [55] van der A DL, Grobbee DE, Roest M, et al. Serum ferritin is a risk factor forstroke in postmenopausal women. Stroke,2005;36(8):1637~1641.
    [56] Farina M, Avila DS, Da RJ, et al. Metals, oxidative stress andneurodegeneration: A focus on iron, manganese and mercury. Neurochem Int,2013;62(5):575~594.
    [57] Yang S, Hua Y, Nakamura T, et al. Up-regulation of brain ceruloplasmin inthrombin preconditioning. Acta Neurochir Suppl,2006;96:203~206.
    [58] Davalos A, Castillo J, Marrugat J, et al. Body iron stores and early neurologicdeterioration in acute cerebral infarction. Neurology,2000;54(8):1568~1574.
    [59] Sullivan JL. Iron and the sex difference in heart disease risk. Lancet,1981;1(8233):1293~1294.
    [60] Salonen JT, Nyyssonen K, Korpela H, et al. High stored iron levels areassociated with excess risk of myocardial infarction in eastern Finnish men.Circulation,1992;86(3):803~811.
    [61] Dabbagh AJ, Shwaery GT, Keaney JJ, et al. Effect of iron overload and irondeficiency on atherosclerosis in the hypercholesterolemic rabbit. ArteriosclerThromb Vasc Biol,1997;17(11):2638~2645.
    [62] Lee HT, Chiu LL, Lee TS, et al. Dietary iron restriction increases plaquestability in apolipoprotein-e-deficient mice. J Biom Sci,2003;10(5):510~517.
    [63] Matthews AJ, Vercellotti GM, Menchaca HJ, et al. Iron and atherosclerosis:inhibition by the iron chelator deferiprone (L1). J Surg Res,1997;73(1):35~40.
    [64] van der A DL, Marx JJ, Grobbee DE, et al. Non-transferrin-bound iron and riskof coronary heart disease in postmenopausal women. Circulation,2006;113(16):1942~1949.
    [65] Cooper JM, Bradley JL. Friedreich's ataxia. International Review ofNeurobiology,2002;53:147~173.
    [66] Fischer LM, Schlienger RG, Matter C, et al. Effect of rheumatoid arthritis orsystemic lupus erythematosus on the risk of first-time acute myocardialinfarction. Am J Cardiol,2004;93(2):198~200.
    [67] Kwok JC, Richardson DR. Anthracyclines induce accumulation of iron inferritin in myocardial and neoplastic cells: inhibition of the ferritin ironmobilization pathway. Mol Pharmacol,2003;63(4):849~861.
    [68] Kwok JC, Richardson DR. Examination of the mechanism(s) involved indoxorubicin-mediated iron accumulation in ferritin: studies using metabolicinhibitors, protein synthesis inhibitors, and lysosomotropic agents. MolPharmacol,2004;65(1):181~195.
    [69] Corna G, Santambrogio P, Minotti G, et al. Doxorubicin paradoxically protectscardiomyocytes against iron-mediated toxicity: role of reactive oxygen speciesand ferritin. J Biol Chem,2004;279(14):13738~13745.
    [70] Papanikolaou G, Samuels ME, Ludwig EH, et al. Mutations in HFE2cause ironoverload in chromosome1q-linked juvenile hemochromatosis. Nat Genet,2004;36(1):77~82.
    [71] Mattman A, Huntsman D, Lockitch G, et al. Transferrin receptor2(TfR2) andHFE mutational analysis in non-C282Y iron overload: identification of a novelTfR2mutation. Blood,2002;100(3):1075~1077.
    [72] Fleming RE, Ahmann JR, Migas MC, et al. Targeted mutagenesis of the murinetransferrin receptor-2gene produces hemochromatosis. Proc Natl Acad Sci U SA,2002;99(16):10653~10658.
    [73] Jin F, Qu LS, Shen XZ. Association between C282Y and H63D mutations ofthe HFE gene with hepatocellular carcinoma in European populations: ameta-analysis. J Exp Clin Cancer Res,2010;29:18.
    [74] Ropero GP, Villegas MA, Fernandez AM, et al. C282Y and H63D mutations ofHFE gene in patients with advanced alcoholic liver disease. Rev Esp EnfermDig,2001;93(3):156~163.
    [75] Grove J, Daly AK, Burt AD, et al. Heterozygotes for HFE mutations have noincreased risk of advanced alcoholic liver disease. Gut,1998;43(2):262~266.
    [76] Rong Y, Bao W, Rong S, et al. Hemochromatosis gene (HFE) polymorphismsand risk of type2diabetes mellitus: a meta-analysis. Am J Epidemiol,2012;176(6):461~472.
    [77] Liu Y, Lee SY, Neely E, et al. Mutant HFE H63D protein is associated withprolonged endoplasmic reticulum stress and increased neuronal vulnerability. JBiol Chem,2011;286(15):13161~13170.
    [78] Ji C. Mechanisms of alcohol-induced endoplasmic reticulum stress and organinjuries. Biochem Res Int,2012;2012:216450.
    [79] Osborne NJ, Gurrin LC, Allen KJ, et al. HFE C282Y homozygotes are atincreased risk of breast and colorectal cancer. Hepatology,2010;51(4):1311~1318.
    [80] Zacharski LR, Chow BK, Howes PS, et al. Decreased cancer risk after ironreduction in patients with peripheral arterial disease: results from a randomizedtrial. J Natl Cancer Inst,2008;100(14):996~1002.
    [81] Stevens RG, Beasley RP, Blumberg BS. Iron-binding proteins and risk ofcancer in Taiwan. J Natl Cancer Inst,1986;76(4):605~610.
    [82] WHO. Global Status Report on Alcohol and Health.http://www.int/substance-abuse/publications/global-alcohol-report/en/index.html.,2011.
    [83] Li YM. The epidemiology and natural history of alcoholic liver disease.Zhonghua Gan Zang Bing Za Zhi,2010;18(3):171~172.
    [84] Kohgo Y, Ohtake T, Ikuta K, et al. Dysregulation of systemic iron metabolismin alcoholic liver diseases. J Gastroenterol Hepatol,2008;23Suppl1: S78~S81.
    [85] Guo X, Li W, Xin Q, et al. Vitamin C protective role for alcoholic liver diseasein mice through regulating iron metabolism. Toxicol Ind Health,2011;27(4):341~348.
    [86] Makkar RP, Sachdev GK, Malhotra V. Alcohol consumption, hepatic iron loadand the risk of amoebic liver abscess: a case-control study. Intern Med,2003;42(8):644~649.
    [87] Krause A, Neitz S, Magert HJ, et al. LEAP-1, a novel highly disulfide-bondedhuman peptide, exhibits antimicrobial activity. Febs Lett,2000;480(2-3):147~150.
    [88] Park CH, Valore EV, Waring AJ, et al. Hepcidin, a urinary antimicrobialpeptide synthesized in the liver. J Biol Chem,2001;276(11):7806~7810.
    [89] Figliomeni ML, Abdel-Rahman MS. Ethanol does not increase thehepatotoxicity of cocaine in primary rat hepatocyte culture. Toxicology,1998;129(2-3):125~135.
    [90] Harrison-Findik DD, Klein E, Crist C, et al. Iron-mediated regulation of liverhepcidin expression in rats and mice is abolished by alcohol. Hepatology,2007;46(6):1979~1985.
    [91] Harrison-Findik DD, Schafer D, Klein E, et al. Alcohol metabolism-mediatedoxidative stress down-regulates hepcidin transcription and leads to increasedduodenal iron transporter expression. J Biol Chem,2006;281(32):22974~22982.
    [92] Gerjevic LN, Liu N, Lu S, et al. Alcohol Activates TGF-Beta but Inhibits BMPReceptor-Mediated Smad Signaling and Smad4Binding to Hepcidin Promoterin the Liver. Int J Hepatol,2012;2012:459278.
    [93] Fleming RE. Hepcidin activation during inflammation: make it STAT.Gastroenterology,2007;132(1):447~449.
    [94] Wang RH, Li C, Xu X, et al. A role of SMAD4in iron metabolism through thepositive regulation of hepcidin expression. Cell Metab,2005;2(6):399~409.
    [95] Prus E, Fibach E. The labile iron pool in human erythroid cells. Br J Haematol,2008;142(2):301~307.
    [96] De Feo TM, Fargion S, Duca L, et al. Non-transferrin-bound iron in alcoholabusers. Alcohol Clin Exp Res,2001;25(10):1494~1499.
    [97] Gaboriau F, Leray AM, Ropert M, et al. Effects of deferasirox and deferiproneon cellular iron load in the human hepatoma cell line HepaRG. Biometals,2010;23(2):231~245.
    [98] Witte DL, Crosby WH, Edwards CQ, et al. Practice guideline development taskforce of the College of American Pathologists. Hereditary hemochromatosis.Clin Chim Acta,1996;245(2):139~200.
    [99] Conte D, Manachino D, Colli A, et al. Prevalence of genetic hemochromatosisin a cohort of Italian patients with diabetes mellitus. Ann Intern Med,1998;128(5):370~373.
    [100] Kwan T, Leber B, Ahuja S, et al. Patients with type2diabetes have a highfrequency of the C282Y mutation of the hemochromatosis gene. Clin InvestMed,1998;21(6):251~257.
    [101] Salonen JT, Tuomainen TP, Kontula K. Role of C282Y mutation inhaemochromatosis gene in development of type2diabetes in healthy men:prospective cohort study. BMJ,2000;320(7251):1706~1707.
    [102] Tuomainen TP, Nyyssonen K, Salonen R, et al. Body iron stores are associatedwith serum insulin and blood glucose concentrations. Population study in1,013eastern Finnish men. Diabetes Care,1997;20(3):426~428.
    [103] Salonen JT, Tuomainen TP, Nyyssonen K, et al. Relation between iron storesand non-insulin dependent diabetes in men: case-control study. BMJ,1998;317(7160):727.
    [104] Ford ES, Cogswell ME. Diabetes and serum ferritin concentration among U.S.adults. Diabetes Care,1999;22(12):1978~1983.
    [105] Hughes K, Choo M, Kuperan P, et al. Cardiovascular risk factors innon-insulin-dependent diabetics compared to non-diabetic controls: apopulation-based survey among Asians in Singapore. Atherosclerosis,1998;136(1):25~31.
    [106] Lao TT, Chan PL, Tam KF. Gestational diabetes mellitus in the last trimester afeature of maternal iron excess? Diabet Med,2001;18(3):218~223.
    [107] Jiang R, Ma J, Ascherio A, et al. Dietary iron intake and blood donations inrelation to risk of type2diabetes in men: a prospective cohort study. Am J ClinNutr,2004;79(1):70~75.
    [108] Forouhi NG, Harding AH, Allison M, et al. Elevated serum ferritin levelspredict new-onset type2diabetes: results from the EPIC-Norfolk prospectivestudy. Diabetologia,2007;50(5):949~956.
    [109] Le TD, Bae S, Ed HC, et al. Effects of Cardiorespiratory Fitness on SerumFerritin Concentration and Incidence of Type2Diabetes: Evidence from theAerobics Center Longitudinal Study (ACLS). Rev Diabet Stud,2008;5(4):245~252.
    [110] Jehn ML, Guallar E, Clark JM, et al. A prospective study of plasma ferritinlevel and incident diabetes: the Atherosclerosis Risk in Communities (ARIC)Study. Am J Epidemiol,2007;165(9):1047~1054.
    [111] Rajpathak SN, Wylie-Rosett J, Gunter MJ, et al. Biomarkers of body iron storesand risk of developing type2diabetes. Diabetes Obes Metab,2009;11(5):472~479.
    [112] Bao W, Rong Y, Rong S, et al. Dietary iron intake, body iron stores, and therisk of type2diabetes: a systematic review and meta-analysis. BMC Med,2012;10:119.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700