用户名: 密码: 验证码:
AMPA受体外化在铝致大鼠海马LTP损害中的作用及其信号转导机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:急性、亚慢性铝暴露对大鼠海马LTP损害作用及对AMPA受体外化的影响
     从本课题组的前期研究结果发现,在亚慢性染铝致大鼠学习记忆损害的动物模型中,海马细胞内AMPA受体亚单位的表达量降低,说明AMPA受体与铝损害学习记忆的机制有关。同时AMPA受体作为LTP的主要表达机制,我们有理由认为AMPA受体可能是铝损害LTP机制之一。所以,本项目拟通过急性和亚慢性铝暴露,观察不同剂量铝对大鼠海马LTP的影响,以及在损害LTP的情况下,AMPA受体外化(AMPA受体亚基GluR1、GluR2分别在胞膜和总蛋白中蛋白表达量)的改变,为阐明铝损害LTP的机制研究提供有力的实验依据。
     第一章急性铝暴露对大鼠海马LTP的影响
     目的:探讨急性铝暴露对大鼠海马LTP的影响。方法:对照组、低、中、高染铝组大鼠通过侧脑室给药的方式分别一次性接受生理盐水、2.43μg Al(mal)3、12.15μg Al(mal)3和60.75μug Al(mal)3,给药容积为5μl,5min内缓慢匀速注入。采用在体海马CA1区LTP及PPF记录技术,记录fEPSP。结果:各个剂量组在给药前和给药后5min、15min、30min的fEPSP幅度变化不大,无统计学差异(P>0.05);侧脑室内注射生理盐水及不同剂量Al(mal)3后不影响PPF,与注射前相比没有显著性差异(P>0.05), Al(mal)3未对突触前释放产生影响;对照组在高频刺激后fEPSP即刻增大至(221±10)%,1h后仍保持在(190±27)%,但注射了Al(mal)3的中高剂量组在在高频刺激后fEPSP即刻增大的幅度仅为(165±21)%和(149±8)%,在1h之后,中剂量组fEPSP幅度仅保持在(140±13)%,高剂量组fEPSP幅度几乎回到了高频刺激前的基础水平(110±7)%,与对照组组比显著降低(P<0.05),低剂量组虽然在高频刺激后fEPSP即刻增大的幅度达到了(194±19)%,与对照组无差别(P>0.05),但在30min及1h后,幅度降低到了(164±13)%和(157±8)%,比对照组明显降低,由此可见,Al(mal)3对LTP的诱导与维持的抑制成明显的剂量依赖性。结论: Al(mal)3对LTP的诱导与维持的有明显的抑制作用,并呈现出显著的剂量依赖性,这可能与铝损害突触后机制(如,NMDAR、AMPAR等谷氨酸受体)有关。
     第二章急性铝暴露对大鼠海马AMPA受体外化的影响
     目的:探讨急性铝暴露对海马AMPA受体外化的影响。方法:对照组、低、中、高染铝组大鼠通过侧脑室给药的方式分别一次性接受生理盐水、2.43μg Al(mal)3、12.15μgAl(mal)3和60.75ug Al(mal)3,给药容积为5μl,5min内缓慢匀速注入。在电生理实验结束后断头取海马,分别提取总蛋白和膜蛋白,采用Western-blot的方法检测AMPA受体亚单位GluR-1、GluR-2的蛋白表达水平。结果:总蛋白中,低、中、高染铝组上述两种亚单位的蛋白表达量无变化,且与对照组相比,无统计学差异(P>0.05);膜蛋白中,低、中、高染铝组上述两种亚单位的蛋白表达量呈逐下降的趋势,且与对照组相比,有统计学差异(P<0.05)。结论:急性铝暴露未影响AMPA受体的蛋白合成,但抑制了AMPA受体从胞浆向胞膜的转运(外化)。
     第三章亚慢性铝暴露对大鼠海马LTP的影响
     目的:探讨亚慢性铝暴露对大鼠海马LTP的影响。方法:健康成年雄性SD大鼠24只,按体重随机分为4组:生理盐水、低剂量组Al(mal)3(0.41mg/kg)、中剂量组Al(mal)3(0.82mg/kg)与高剂量组Al(mal)3(1.23mg/kg),腹腔注射染毒8周后,采用在体海马CA1区LTP记录技术,记录fEPSP。结果:对照组在高频刺激后fEPSP即刻增大至(191±9)%,30min时保持在(154±15)%,60min后降低到(139±12)%;低剂量组fEPSP幅度在高频刺激后1min、30min、60min时的幅度分别为(195±17)%、(153±21)%和(131±18)%,与对照组比较,无统计学差异(P>0.05);中剂量组fEPSP幅度在高频刺激后1min、30min、60min时的幅度分别为(176±21)%、(132±20)%和(117±7)%,与对照组比较,30min、60min时的幅度有统计学差异(P <0.05),与低剂量组比较30min时的幅度有统计学差异(P<0.05);高剂量组fEPSP幅度在高频刺激后1min、30min、60min时的幅度分别为(175±40)%、(106±5)%和(85±10)%,与对照组比较,30min、60min时的幅度有统计学差异(P<0.05),与低剂量组比较30min、60min时的幅度有统计学差异(P<0.05),与中剂量组比较30min、60min时的幅度有统计学差异(P<0.05)。结论:亚慢性铝暴露对大鼠海马CA1区LTP呈显著的抑制作用,并成一定的剂量依赖性。
     第四章亚慢性铝暴露对大鼠海马AMPA受体蛋白外化的影响
     目的:探讨亚慢性铝暴露对海马AMPA受体外化的影响。方法:健康成年雄性SD大鼠24只,按体重随机分为4组:生理盐水、低剂量组Al(mal)3(0.41mg/kg)、中剂量组Al(mal)3(0.82mg/kg)与高剂量组Al(mal)3(1.23mg/kg),腹腔注射染毒8周,在电生理实验结束后断头取海马,分别提取总蛋白和膜蛋白,采用Western-blot的方法检测AMPA受体亚单位GluR-1、GluR-2的蛋白表达水平。结果:总蛋白中,高剂量组GluR-1蛋白表达量且与对照组相比,显著降低(P <0.05),中、高剂量组的GluR-2蛋白表达量与对照组比较明显降低(P<0.05),且高剂量组的GluR-2蛋白表达量与低剂量组相比降低明显(P <0.05);膜蛋白中,两种亚单位的蛋白表达量随着染毒剂量的增加呈逐渐下降的趋势,中、高剂量组GluR-1、 GluR-2蛋白表达量且与其对照组相比,显著降低(P<0.05),且高剂量组的GluR-1蛋白表达量与低剂量组相比降低明显(P<0.05)。结论:亚慢性铝暴露不但抑制了AMPA受体从胞浆向胞膜的转运(外化),而且也抑制了AMPA受体的合成。
     第二部分铝损害AMPA受体外化的信号转导机制研究
     从本文第一部分的研究结果来看,AMPA受体参与铝损害大鼠海马LTP的发生机制,而其信号转导机制还不清楚。本部分研究拟采用在体电生理技术、western-blot和ELISA方法观察在急性铝暴露的情况下,伴随LTP损害情况下,RAS、MAPK、PI3K通路各个信号分子的表达情况,以及使用RAS活化剂的情况下,LTP及各个信号分子的变化。通过此次研究初步阐明AMPA受体外化在铝损害大鼠海马LTP中的作用及其信号转导机制,为铝致学习记忆损伤的机制研究及未来的干预研究提供有力的依据。
     第一章RAS在铝致大鼠LTP损害过程中的作用研究
     第一节急性铝暴露对大鼠海马RAS活性的影响
     目的:探讨急性铝暴露对大鼠海马RAS蛋白活性的影响。方法:对照组、低、中、高染铝组大鼠通过侧脑室给药的方式分别一次性接受生理盐水、2.43μg Al(mal)3、12.15μgAl(mal)3和60.75μg Al(mal)3,给药容积为5μl,5min内缓慢匀速注入。在电生理实验LTP测定结束后,断头取海马提蛋白,采用ELISA法测定RAS蛋白活性。结果:随着染铝剂量的增加,RAS活性呈逐渐下降的趋势,经统计学分析,与对照组比较,中、高剂量组的RAS活性显著下降(P<0.05)。结论:急性铝暴露会抑制RAS蛋白的活性,RAS活性的降低可能与铝损害LTP有密切关系。
     第二节RAS活化剂EGF在铝致大鼠LTP损害中的拮抗作用研究
     目的:探讨RAS活化剂EGF在铝致大鼠LTP损害的拮抗作用。方法:健康成年雄性SD大鼠24只,按体重随机分为4组:对照组(生理盐水)、EGF组.、Al+EGF组与Al组。采用侧脑室注射的方式一次性给予对照组大鼠5μl生理盐水,给予EGF组大鼠60ngEGF,给予Al+EGF组大鼠12.15μgAl和60ngEGF,给予Al组大鼠12.15μgAl。采用在体海马CA1区LTP记录技术,记录fEPSP。在电生理实验LTP测定结束后,断头取海马提蛋白,采用ELISA法测定RAS蛋白活性。结果:高频刺激后,对照组fEPSP幅度立即升高到(191±25)%,30min时保持在(179±22)%,60min后仍能保持在(156±27)%,而单纯染铝组fEPSP幅度在1min时为(160±4)%,在30min时持续下降到(132±15)%,而到60min时已完全恢复致基线水平(115±12)%,说明12.15ugAl显著的抑制了LTP的诱导和维持,这与我们第一部分第一章的结果相一致。EGF作为RAS的活化剂,我们在观察它是否会拮抗Al对LTP的抑制作用之前,我们首先观察了单独使用EGF是否会引起LTP的变化。结果显示,60ngEGF组高频刺激后fEPSP幅度在1min、20min时分别是(224±28)%和(189±14)%,与对照组比较幅度升高很明显(P<0.05),但到了30min、40min、60min时,fEPSP幅度与对照组一致,无明显差别(P>0.05)。此结果显示,EGF可以增强早期的LTP诱导,但到了后期作用减弱。最后我们联合使用了12.15ugAl和60ng EGF,结果我们惊喜的发现,EGF可以拮抗Al导致的LTP损害,在高频刺激后的1min、20min时,12.15ug Al+60ng EGF组fEPSP幅度分别为(183±5)%和(158±15)%,与单独使用12.15ugAl组比较,有了明显的上升(P <0.05),但到了30min、40min、60min时,fEPSP幅度与12.15ugAl组一致,无明显差别(P>0.05)。此结果说明EGF可以拮抗Al对LTP诱导的早期损害,但到了后期,这种拮抗作用减弱。结论:RAS活化剂的EGF可以拮抗急性铝暴露致LTP早期损害作用,急性铝暴露致大鼠海马LTP损害与RAS蛋白活性降低有关。
     第二章PI3K/PKB通路在铝致大鼠LTP损害过程中的作用研究
     目的:探讨PI3K/PKB通路在铝致大鼠LTP损害过程中的作用。方法:健康成年雄性SD大鼠24只,按体重随机分为4组:对照组(生理盐水)、EGF组.、Al+EGF组与Al组。采用侧脑室注射的方式一次性给予对照组大鼠5μl生理盐水,给予EGF组大鼠60ngEGF,给予Al+EGF组大鼠12.15μgAl和60ngEGF,给予Al组大鼠12.15ugAl。在电生理实验LTP测定结束后,断头取海马提蛋白,采用ELISA法测定PKB蛋白活性,采用western-blot法测定GluR1S831和S845位点磷酸化水平。结果:与对照组比较,单独给予12.15μg Al后,PKB活性明显下降(P <0.05),单独给予60ng EGF后,PKB活性明显升高(P <0.05),当联合给予12.15μgAl和60ng EGF后,与单独染铝组相比,PKB活性又有明显的回升(P<0.05);与对照组比较,单独给予12.15μg Al后,GluR1S831和S845位点磷酸化水平明显下降(P <0.05),单独给予60ng EGF后,其磷酸化水平明显升高(P <0.05),当联合给予12.15μgAl和60ng EGF后,与单独染铝组相比,其磷酸化水平又有明显的回升(P <0.05)。结论:铝可能通过RAS-PI3K信号转导通路致AMPA受体磷酸化障碍,进而影响AMPA受体外化,最终表现出LTP的诱导受到抑制。
     第三章MAPK/ERK通路在铝致大鼠LTP损害过程中的作用研究
     目的:探讨MAPK/ERK通路在铝致大鼠LTP损害过程中的作用。方法:健康成年雄性SD大鼠24只,按体重随机分为4组:对照组(生理盐水)、EGF组.、Al+EGF组与Al组。采用侧脑室注射的方式一次性给予对照组大鼠5ul生理盐水,给予EGF组大鼠60ngEGF,给予Al+EGF组大鼠12.15μgAl和60ngEGF,给予Al组大鼠12.15μgAl。在电生理实验LTP测定结束后,断头取海马提蛋白,采用ELISA法测定ERK蛋白活性。结果:与对照组比较,单独给予12.15μgAl后,ERK活性明显下降(P <0.05),单独给予60ng EGF后,ERK活性明显升高(P <0.05),当联合给予12.15μgAl和60ng EGF后,与单独染铝组相比,ERK活性又有明显的回升(P <0.05)。结论:铝可抑制RAS-MAPK信号转导通路。但由于未检测GluR2L S841的磷酸化水平,所以还不能确定RAS-MAPK信号转导通路是否可致AMPA受体磷酸化障碍,从而导致LTP受到抑制。
     结论:
     急性及亚慢性铝暴露均会损害大鼠海马LTP的诱导和维持,这种损害的程度与铝的剂量有关,即呈现一定的剂量反应关系。
     铝通过抑制AMPA受体亚单位的外化及合成从而损害大鼠海马LTP的诱导和维持。
     “RAS→PI3K/PKB→GluR1S831和S845位点磷酸化→GluR1插入突触”通路与铝损害大鼠海马LTP有关。
     RAS→MAPK/ERK信号转导通路与铝损害大鼠海马LTP有关,但是否是通过引起AMPA受体磷酸化异常进而影响AMPA受体外化最终导致LTP损害的还有待于进一步研究。
PartⅠ The damage of acute and subchronic aluminum exposure onhippocampal LTP and AMPA receptor trafficking in rats
     Alpha-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid (AMPA)-type glutamatereceptors (AMPAR) are multimeric proteins composed of GluR1, GluR2, GluR3, and GluR4subunits that mediate the majority of fast excitatory transmission in the central nervous system.The trafficking of GluR1and GluR2from intracellular pools to synaptic sites alters synapticstrength and has been recognized as a central mechanism of LTP. Since Al has been reportedaffecting LTP, may it be related to AMPAR? However, few studies on the effects of Al onAMPAR have been performed. Surprisingly, in a previous study, we observed decreasedexpression of glutamate receptors, including AMPARs, in the hippocampus after subchronic Alexposure in rats.
     On the basis of the previous study on the effects of Al on AMPAR and the possibleinvolvement of AMPAR in LTP, the present study was aimed to investigate the effects of acuteand subchronic treatment with different doses of aluminum-maltolate complex (Al (mal)3) onLTP and the total and membrane levels of the GluR1and GluR2AMPAR subunits in the rathippocampus. Here, a possible link between LTP dysfunction and AMPAR expression followingAl exposure was also explored.
     Chapter Ⅰ Effects of acute Al exposure on LTP in rats
     Objective To explore the effects of acute Al exposure on LTP in rats. Methods Theexperiments were performed on24adult male rats (weight220-250g) that were kept underconstant temperature and humidity conditions with free access to food and water. The rats wererandomly divided into four groups (6rats/group): control group, low-dose group, medium-dosegroup and high-dose group. The rats received one dose of5μL of saline (control group) or a single dose of Al(mal)3(2.43,12.15or60.75μg Al) over5min via intracerebroventricular (i.c.v.)injection. fEPSP in CA1region were recorded by field potentiation technique in vivo. Results The basalfEPSP of60.75ug grops in preinjection and in postinjection were (109±4)%and(111±7)%respectively, no significant difference(P>0.05). The fEPSP amplitudes of the control group were221%±10%,195%±30%and190%±27%at1,30and60min after HFS, respectively. Theaverage fEPSP amplitudes of the2.43μg Al group were164%±13%at30min and157±8%at60min after HFS, which represented a slight but statistically significant decrease compared to thecontrol group (P<0.05); these values dropped to165%±21%,155%±11%and140%±13%in the12.15μg Al group (P<0.05) and further decreased to149%±8%,139%±12%and110%±7%inthe60.75μg Al group (P<0.05). Notably, the suppression of LTP by Al was apparent between theAl and control groups (P<0.05), and further suppression was apparent with increasing Alconcentrations. At same time, Al(mal)3did not affect paired pulse facilitation(PPF)ratio(P>0.05). Conclusion Acute Al treatment obviously suppressd the LTP in rat hippocampal CA1region in a dose-dependent manner in vivo, probably through postsynaptic mechanism but notpresynaptic transmitter release.
     Chapter Ⅱ Effects of acute Al exposure on AMPA receptors trafficking in rats
     Objective To explore the effects of acute Al exposure on AMPA receptors trafficking inrats. Methods Animals and treatments were same with chapterⅠ. The expression of AMPARsubunit proteins (GluR1and GluR2) in both total and membrane-enriched extracts from the CA1area of rat hippocampus were detected by Western blot assay. Results None of the threedosages (2.43,12.15and60.75μg of Al) of Al(mal)3induced significant changes in GluR1(P>0.05) or GluR2(P>0.05) in the total extracts. However, significant decreases in GluR1(P<0.05) and GluR2(P<0.05) were found in the membrane-enriched extracts. With increasing Alconcentrations, the expressions of GluR1and GluR2proteins gradually decreased. Comparedwith the control group, the GluR1and GluR2levels of12.15μg Al group and the60.75μg Algroup were significantly decreased (P<0.05). Conclusion Acute Al treatment produceddose-dependent decreases of GluR1and GluR2in membrane extracts but not in total extracts,suggesting that the trafficking of AMPA receptor subunits from intracellular pools to synapticsites during HFS-induced LTP was suppressed.
     Chapter Ⅲ Effects of subchronic Al exposure on LTP in rats
     Objective To explore the effects of subchronic Al exposure on LTP in rats. Methods Theexperiments were performed on24adult male rats that were kept under constant temperature and humidity conditions with free access to food and water. The rats were randomly divided into fourgroups (6rats/group): control group, low-dose group, medium-dose group and high-dose group.The rats received saline (control group) or Al(mal)3(0.41,0.82, or1.23mg/kg) viaintraperitoneal (i.p.) injection for8weeks. Hippocampal LTP in CA1region were recorded byfield potentiation technique in vivo. Results The fEPSP amplitudes of the control group were154%±15%and139%±12%at30and60min after HFS, respectively. The average fEPSPamplitudes of the0.41mg/kg Al group were153±21%and131±18%at the same time, whichrepresented no significant decrease compared with the control group (P>0.05); these valuesdropped to132%±20%and117%±7%in the0.82mg/kg Al group (P<0.05) and furtherdecreased to106%±40%and85%±10%in the1.23mg/kg Al group (P<0.05). Notably, thesuppression of LTP by Al was apparent between the Al and control groups (P<0.05), and furthersuppression was apparent with increasing Al concentrations. Conclusion Subchronic Altreatment obviously suppressd the LTP in rat hippocampal CA1region in a dose-dependentmanner in vivo.
     Chapter Ⅳ Effects of subchronic Al exposure on AMPA receptors trafficking in rats
     Objective To explore the effects of subchronic Al exposure on AMPA receptors trafficking inrats. Methods Animals and treatments were same with chapterⅢ. The expression of AMPARsubunit proteins (GluR1and GluR2) in both total and membrane-enriched extracts from the CA1area of rat hippocampus were detected by Western blot assay. Results In contrast to the acuteexperiment, subchronic Al treatment caused dose-dependent decreases in GluR1and GluR2thatwere not restricted to the membrane extracts(P<0.05), but were present in the total extracts (P<0.05). Compared with the control group, the GluR-1level of the1.23mg/kg Al group and theGluR-2levels of the0.82mg/kg Al and1.23mg/kg Al groups decreased gradually in the totalextracts (P<0.05). Similarly, in the membrane-enriched extracts, the GluR-1and GluR-2levelsof the0.82mg/kg Al and1.23mg/kg Al groups also decreased gradually (P<0.05). ConclusionSubchronic Al treatment produced dose-dependent decreases of GluR1and GluR2both inmembrane extracts and in total extracts, suggesting that the trafficking of AMPA receptor and theexpression of AMPA receptor subunit proteins was suppressed.
     PartⅡ Study on involvement of signal transduction pathway of AMPAreceptor trafficking in aluminum-induced impairment of hippocampal LTP inrats
     On the basis of the previous study of the possible involvement of AMPAR in the damage on hippocampal LTP by aluminum, the present study was aimed to investigate the signaltransduction pathway of AMPA receptor trafficking.
     ChapterⅠThe role of RAS in the damage on hippocampal LTP by aluminum in rats
     Section1Effects of acute aluminum exposure on RAS activity in rats hippocampus
     Objective To explore the effects of acute Al exposure on RAS activity in rats hippocampus.Methods The experiments were performed on24adult male rats that were kept under constanttemperature and humidity conditions with free access to food and water. The rats were randomlydivided into four groups (6rats/group): control group, low-dose group, medium-dose group andhigh-dose group. The rats received one dose of5μL of saline (control group) or a single dose ofAl(mal)3(2.43,12.15or60.75μg Al) over5min via intracerebroventricular (i.c.v.) injection.Following electrophysiological recordings, the test of RAS activity were conducted by ELISA.Results With the increase of Al exposed dose, RAS activity decreased gradually. Compared withthe control group, the RAS activity of the medium-dose and high-dose group decreasedsignificantly (P<0.05). Conclusion Acute Al treatment obviously suppressd the RAS activity ofrat hippocampus during HFS-induced LTP was suppressed.
     Section2The antagonism of RAS activator EGF on suppression of hippocampal LTP byaluminum
     Objective To explore the antagonism of RAS activator EGF on hippocampal LTP suppressedby aluminum. Methods The experiments were performed on24adult male rats that wererandomly divided into four groups (6rats/group): control group, EGF group, EGF+Al groupand Al group. The rats received one dose of5μL of saline (control group),60ng EGF (EGFgroup),12.15μg Al+60ng EGF (EGF+Al group),12.15μg Al (Al group) over5min viaintracerebroventricular (i.c.v.) injection. Hippocampal LTP in CA1region was recorded by fieldpotentiation technique in vivo. Results The fEPSP amplitudes of the control group were194%±25%,179%±22%and156%±27%at1,30and60min after HFS, respectively; Theaverage fEPSP amplitudes of the Al group were160%±4%,132%±15%and115%±12%at thesame time, which represented a statistical decrease compared with the control group (P<0.05);The average fEPSP amplitudes of the EGF group were224%±28%and189%±14%at1,20min after HFS, which represented a statistical increase compared with the control group (P<0.05), but on difference was found at30,40,60min after HFS(P>0.05);The average fEPSPamplitudes of the EGF+Al group were183%±5%and158%±15%at1,20min after HFS, which represented a statistical return compared with the Al group (P<0.05), but on difference wasfound at30,40,60min after HFS(P>0.05). Conclusion The RAS activator EGF couldantagonize the early suppression of hippocampal LTP by aluminum.
     Chapter Ⅱ The role of PI3K/PKB signal transduction pathway of AMPA receptortrafficking in the damage on hippocampal LTP by aluminum in rats
     Objective To explore the role PI3K/PKB signal transduction pathway of AMPA receptortrafficking in the damage on hippocampal LTP by aluminum in rats. Methods Animals andtreatments were same with chapterⅠsection2. Following electrophysiological recordings, thephosphorylation of GluR1S831和S845and the PKB activity of rat hippocampus were detectedby Western blot assay and ELISA. Results Compared with the control group, thephosphorylation of GluR1S831和S845and the PKB activity of Al group significantlydecreased (P<0.05), but these values of EGF group statistically increased(P<0.05); Comparedwith the Al group, these values of EGF+Al group obviously return (P<0.05). Conclusion Thedepression of AMPA receptors phosphorylation mediated by PI3K/PKB signal transductionpathway may relate to the damage on hippocampal LTP by aluminum in rats.
     Chapter Ⅲ The role of MAPK/ERK signal transduction pathway of AMPA receptortrafficking in the damage on hippocampal LTP by aluminum in rats
     Objective To explore the role MAPK/ERK signal transduction pathway of AMPA receptortrafficking in the damage on hippocampal LTP by aluminum in rats. Methods Animals andtreatments were same with chapterⅠsection2. Following electrophysiological recordings, ERKactivity of rat hippocampus was detected by ELISA. Results Compared with the control group,the ERK activity of Al group significantly decreased (P<0.05), but the value of EGF groupstatistically increased(P<0.05).; Compared with the Al group, the value of EGF+Al groupobviously return (P<0.05). Conclusion The MAPK/ERK signal transduction pathway may relateto the damage on hippocampal LTP by aluminum in rats, but the involvement of AMPA receptorsphosphorylation is not clear.
     Conclusions:
     Acute and subchronic aluminum exposure obviously and dose-dependentlysuppressed LTP in the rat hippocampal CA1region in vivo.
     The suppression on LTP induced by aluminum may be related to both trafficking and decreases in the expression of AMPA receptor subunit proteins.
     RAS→PI3K/PKB→GluR1S831和S845signal transduction pathway may relate tothe damage on hippocampal LTP by aluminum in rats.
     RAS→MAPK/ERK signal transduction pathway may relate to the damage onhippocampal LTP by aluminum in rats, but the involvement of AMPA receptorsphosphorylation is not clear.
引文
[1] Yokel RA, McNamara PJ. Aluminium toxicokinetics: an updated minireview. PharmacolToxicol,2001,88(4):159-167.
    [2] Kawahara M. Effects of aluminum on the nervous system and its possible link withneurodegenerative diseases. J Alzheirners Dis,2005,8(2):171-82,209-215.
    [3] Bondy SC. The neurotoxicity of environmental aluminum is still an issue. Neurotoxicology,2010,31(5):575-581.
    [4] Akila R, Stollery BT, and Riihimaki V. Decrements in cognitive performance in metal inertgas welders exposed to aluminium. Occup Environ Med,1999,56(9):632-639.
    [5] He S, Zhang A, Niu Q, et al. Alteration of neurobehavioral and autonomic nervous functionin aluminum electrolytic workers. Wei Sheng Yan Jiu,2003,32(3):177-179.
    [6] Platt B, Carpenter DO, Büsselberg D. Aluminum impairs hippocampal long-term potentiationin rats in vitro and in vivo. Exp Neurol,1995,134:73-86.
    [7]吴新荣,朱小南,陈汝筑.三氯化铝对小鼠学习记忆和大鼠海马脑片长时程增强的影响.中国药理学与毒理学杂志,2000;14(6):458-460.
    [8] Wang m,Chen J. The influnce of developental period of aluminum expose on synapticplasticity in the adult rat dentate gyrus in viro. Neuroscience,2002,113(2):411-419.
    [9]杨焱,张勤丽,郭卫力,等.氯化铝致原代培养小鼠神经细胞毒性作用及对mGluR3表达的影响.环境与职业医学,2010,27(1):14-16.
    [10]教霞,张勤丽,吉秀亮,等.铝对APP/PS1双转基因小鼠认知能力及mGluR1表达的影响.环境与职业医学,2010,27(4):212-215.
    [11]吉秀亮,张勤丽,牛侨,等.铝电解工人神经行为功能及mGluR1表达的改变.环境与职业医学,2010,26(2):152-154.
    [12] Rumpel S, LeDoux J, Zador A, et al. Postsynaptic receptor trafficking underlying a form ofassociative learning. Science,2005,308:83–88.
    [13] Morris RG. Elements of a neurobiological theory of hippocampal function: the role ofsynaptic plasticity, synaptic tagging and schemas. Eur J Neurosci,23:2829–2846.
    [14] Pastalkova E, Serrano P, Pinkhasova D, et al. Storage of spatial information by themaintenance mechanism of LTP. Science,2006,313:1141–1144.
    [15] Whitlock JR, Heynen AJ, Shuler MG, et al. Learning induces long-term potentiation in thehippocampus. Science,2006,313:1093–1097.
    [16]宋静,刘莹,王林平,等.亚慢性铝暴露对大鼠学习记忆及2-氨基羟甲基恶丙酸受体蛋白表达水平的影响.环境与职业医学,2013,30(1):5-9.
    [17] Sweatt, JD. The neuronal MAP kinase cascade: A biochemical signal integration systemsubserving synaptic plasticity and memory. J.Neurochem,2001,76:1–10.
    [18] Lisman J, Schulman H, Cline H. The molecular basis of CaMKII function in synaptic andbehavioural memory. Nat. Rev. Neurosci,2002,3:175–190.
    [19] Zhu JJ, Qin Y, Zhao M, et al. Ras and Rap control AMPA receptor trafficking duringsynaptic plasticity. Cell,2002,110:443–455.
    [20] Man HY, Wang Q, Lu WY, et al. Activation of PI3-kinase is required for AMPA receptorinsertion during LTP of mEPSCs in cultured hippocampal neurons. Neuron,2003,38:611-624.
    [21] Qin Y, Zhu Y, Baumgart JP, et al. State-dependent Ras signaling and AMPA receptortrafficking. Genes,2005,19:2000–2015.
    [1] Krewski D, Yokel RA, Nieboer E, et al. Human health risk assessment for aluminium,aluminium oxide, and aluminium hydroxide. Toxicol Environ Health B Crit Rev,2007,10Suppl1:1-269.
    [2] Bondy SC. The neurotoxicity of environmental aluminum is still an issue. Neurotoxicology,2010,31(5):575-581.
    [3] Fulton JF. Ramon y Cajal, Sherrington and the neurone doctrine. Arch Kreislaufforsch,1960,33:154-158.
    [4] Bliss TV, Gardner-Medwin AR. Long-lasting potentiation of synaptic transmission in thedentate area of the unanaestetized rabbit following stimulation of the perforant path. JPhysiol,1973,232(2):357-374.
    [5] Abraham W, Williams J. Properties and mechanisms of LTP maintenance. Neuroscientist,2003,9(6):463-474.
    [6] Malinow R,Malenka R.C. AMPA receptor trafficking and synaptic plasticity.Annu Rev Neurosci,2002,25(4):103-126.
    [7] Konradi C, Heckers S. Molecular aspects of glutamate dysregulation: Implications forschizophrenia and its treatment. Pharmacol,2003,97:153-179.
    [8] Walsh DM, Klyubin I, Fadeeva JV, et al. Naturally secreted oligomers of amyloid betaprotein potently inhibit hippocampal long-term potentiation in vivo. Nature,2002,416:535-539.
    [9] Raol YH, Lynch DR, Brooks-Kayal AR. Role of excitatory amino acids in developmentalepilepsies. Ment. Retard. Dev. Disabil. Res. Rev,2001,7:254-260.
    [10] Esteban JA, Shi SH, Wilson C, et al. PKA phosphorylation of AMPA receptor subunitscontrols synaptic trafficking underlying plasticity. Nat. Neurosci,2003,6:136-143.
    [11] Passafaro M, Piech V, Sheng M. Subunit-specific temporal and spatial patterns of AMPAreceptor exocytosis in hippocampal neurons.Nat. Neurosci,2001,4:917-926.
    [12] Shi S, Hayashi Y, Esteban, JA, et al. Subunit-specific rules governing AMPA receptortrafficking to synapses in hippocampal pyramidal neurons. Cell,2001,105:331-343.
    [13] Wang M, Chen JT, Ruan DY, et al. The influence of developmental period of aluminumexposure on synaptic plasticity in the adult rat dentate gyrus in vivo. Neuroscience,2002,113(2):411-419.
    [14]宋静,刘莹,王林平,等.亚慢性铝暴露对大鼠学习记忆及2-氨基羟甲基恶丙酸受体蛋白表达水平的影响.环境与职业医学,2013,30(1),5-9.
    [15] Liang RF, Li WQ, Wang XH, et al. Aluminium-maltolate-induced impairment of learning,memory and hippocampal long-term potentiation in rats. Ind Health,50(5),428-36.
    [16] Schulz P E, Cook E P, Johnston D. Changes in paired-pulse facilitation suggest presynapticinvolvement in long-term potentiation. Neurosci,1994,14(9):5325-5337.
    [17] Platt B, Carpenter D O, Büsselberg D. Aluminum impairs hippocampal long-termpotentiation in rats in vitro and in vivo. Exp Neurol,1995,134:73-86.
    [18]吴新荣,朱小南,陈汝筑.三氯化铝对小鼠学习记忆和大鼠海马脑片长时程增强的影响.中国药理学与毒理学杂志,2000;14(6):458-460.
    [19] Wang m,Chen J. The influnce of developental period of aluminum expose on synapticplasticity in the adult rat dentate gyrus in viro. Neuroscience,2002,113(2);411-419.
    [20] Johnson VJ,Kim SH, Sharma RP. Aluminum-maltolate induces apoptosis and necrosisin neuro-2a cells: potential role for p53signaling. Toxicol Sci,2005,83(2):329-339.
    [21] Kaneko N,Takada J,Yasui H,et al. Memory deficit in mice administeredaluminum-maltolate complex.Biometals,2006,19(1):83-89.
    [22] Fattoretti P, Bertoni-Freddari C, et al. Chronic aluminum administration to old rats resultsin increased levels of brain metal ions and enlarged hippocampal mossy fibers. Ann N YAcad Sci,2004,1019:44-47.
    [23] He SC, Niu Q, Niu P, et al. Protective effects of gastrodia elata on aluminium-chloride-induced learning impairments and alterations of amino acid neurotransmitter releasein adult rats. Restor Neurol Neurosci,2008,26(6):467-473.
    [24] Lévesque L, Mizzen CA, McLachlan DR, et al. Ligand specific effects on aluminumincorporation and toxicity in neurons and astrocytes. Brain Res,2000,877(2):191-202.
    [25] Bharathi, Shamasundar NM, Sathyanarayana Rao TS, et al. A new insight onAl-maltolate-treated aged rabbit as Alzheimer's animal model. Brain Res Rev,2006,52(2):275-292.
    [26] Zou B, Zhang Z, Xiao H, et al. Effect of aluminum on long-term potentiation and its relationto L-arg-NO-pathway in hippocampal CA3area of rats. Tongji Med Univ,1998,18(4):193-196.
    [27]刘鹏,伟忠民,南娟,等.出生前后慢性铝暴露对大鼠海马长时程增强及细胞内Ca2+浓度的影响.中国医科大学学报,2009,38(7):484-486.
    [28] Bredt DS, Nicoll RA. AMPA receptor trafficking at excitatory synapses. Neuron2003,40(2):361-379.
    [29] Shepherd JD, Huganir RL. The cell biology of synaptic plasticity: AMPA receptortrafficking. Annu Rev Cell Dev Biol,2007,23:613-643.
    [30] Collingridge GL, Isaac JT, Wang YT. Receptor trafficking and synaptic plasticity. Nat.Rev. Neurosci,2004,5(12):952-962.
    [31] Malinow R, Malenka RC. AMPA receptor trafficking and synaptic plasticity.Annu. RevNeurosci,2002,25:103-126.
    [32] Sheng M, Kim MJ. Postsynaptic signaling and plasticity mechanisms. Science,2002,298(5594):776-780.
    [33] Bredt DS,Nieoll RA. AMPA recptor traffieking at exeitatory synapses. Neuron,2003,40(2):361-379.
    [34] Colligridge GL,Isaac YT. Receptor traffieking and synaptic plasticity. Nature,2004,5(12):952-962.
    [35] Bliss TV,Collingridge GL. A synaptic model of memory: long-term potentiation in thehippocampus. Nature,1993,361(6407):31-39.
    [36] Carroll RC,Beattie EC,von Zastrow M,et al. Role of AMPA receptor endoeytosis insynaptic Plasticity. Nature Rev Neurosci,2001,2(5):315-324.
    [37] Lee SH,Simonetta A,Sheng M. Subunit Rules Governing the Sorting of InternalizedAMPA receptors in hippocampal neurons. Neuron,2004,43(2):221-236.
    [38] Rumpel S, LeDoux J, Zador A, et al. Postsynaptic receptor trafficking underlying a form ofassociative learning. Science,2005,308:83-88.
    [39] Morris RG. Elements of a neurobiological theory of hippocampal function: the role ofsynaptic plasticity, synaptic tagging and schemas. Eur J Neurosci,23:2829-2846.
    [40] Pastalkova E, Serrano P, Pinkhasova D, et al. Storage of spatial information by themaintenance mechanism of LTP. Science,2006,313:1141-1144.
    [41]Whitlock JR, Heynen AJ, Shuler MG, et al. Learning induces long-term potentiation in thehippocampus. Science,2006,313:1093-1097.
    [42] Sweatt, J.D. The neuronal MAP kinase cascade: A biochemical signal integration systemsubserving synaptic plasticity and memory. Neurochem,2001,76:1-10.
    [43] Lisman J, Schulman H, Cline H. The molecular basis of CaMKII function in synaptic andbehavioural memory. Nat Rev Neurosc,2002,3:175-190.
    [44] Zhu JJ, Qin Y, Zhao M, et al. Ras and Rap control AMPA receptor trafficking duringsynaptic plasticity. Cell,2002,110:443-455.
    [45] Man HY, Wang Q, Lu WY, et al. Activation of PI3-kinase is required for AMPA receptorinsertion during LTP of mEPSCs in cultured hippocampal neurons. Neuron,2003,38,611-624.
    [46] Qin Y, Zhu Y, Baumgart JP, et al. State-dependent Ras signaling and AMPA receptortrafficking. Genes,2005,19:2000-2015.
    [47] Deleers M. Cationic atmosphere and cation competition binding at negatively chargedmembranes: pathological implications of aluminum. Res Commun Chem Pathol Pharmacol,1985,49(2):277-294.
    [48] Sarin S, Gupta V, Gill K D. Alterations in lipid composition and neuronal injury in primatesfollowing chronic aluminum exposure. Biol Trace Elem Res,1997,59(13):133-143.
    [49] Julka D, Gill KD. Altered calciumhomeostasis: possible mechanisms of luminum-inducedneurotoxicity. BiochimBlophys Acta,1993,1351(1):47-54.
    [50]曹云鹏,滕赞,李智,等.长期摄铝对大鼠脑细胞内游离钙浓度的影响.毒理学杂志,2005,19:211-212.
    [51]任锐,李百祥,张旸,等.铝对新生大鼠海马细胞内游离钙浓度的影响.环境与健康杂志,2007,24(7):527-528.
    [52]任锐,李百祥.染铝对大鼠大脑皮层中CaM和CaMKⅡ蛋自表达影响.毒理学杂志,2005,9:238一239.
    [53]郝凤进,谢鑫,朴贤玉.铝暴露对哺乳期大鼠海马中钙调素依赖性蛋白激酶Ⅱ含量及活力的影响.环境与健康杂志,2007,24(11):899-901.
    [54]邢伟,王彪,许金华,李晓枫,聂海祺,张玉霞,时利德等.慢性染铝大鼠海马PKC、MAPK活力与LTP的相关性.毒理学杂志,2007,21(2):102-104.
    [55] Malumbres M, Barbacid M. RAS oncogenes: the first30years. Nature Reviews Cancer,2003,3(6),459-465.
    [56] Julian Downward. Targeting Ras Signaling Pathways in Caner Therapy. Nature ReviewsCancer,200,33:11-22.
    [57] Martin RB. The chemistry of aluminum as related to biology and medicine. Clin Chem,1986,32(10):1797-1806.
    [58] Macdonald TL, Humphreys WG, Martin RB. Promotion of tubulin assembly by aluminumion in vitro. Science,1987,236:183-186.
    [59] Ganrot PO. Metabolism and possible health effects of aluminum. Environ HealthPerspect,1986,65:363-441.
    [60]Cowan JA Ed. The Biological Chemistry of Magnesium, New York,VCH Publishers,1995,1-254.
    [61] Cowan JA. Structural and catalytic chemistry of magnesium-dependent enzymes.BioMetals,2002,15:225-235.
    [62] Seamon KB. Calcium-and magnesium-dependent conformational states of calmodulin asdetermined by nuclear magnetic resonance. Biochemistry,1980,19:207-215.
    [63] Rega AF, Garrahan PJ. Effects of calmodulin on the phosphoenzyme of the Ca2+-ATPase ofhuman red cell membranes. Biochim Biophys Acta,1980,596:487-489.
    [64] Zhu MM, Rempel DL, Zhao J, et al. Probing Ca2+-induced conformational changes inporcine calmodulin by H/D exchange and ESI-MS: Effect of cations and ionic strength.Biochemistry,2003,42:15388-15397.
    [65] Permyakov EA, Kretsinger RH. Cell signaling, beyond cytosolic calcium in eukaryotes. JInorg Biochem,2009,103:77-86.
    [66] Trapp GA. Interactions of aluminium with cofactors, enzymes and other proteins. KidneyInt,1986,29:12-16.
    [67] Miller JL, Hubbard CM, Litman BJ, et al. Inhibition of transducin activation and guanosinetriphosphatase activity by aluminum ion. J Biol Chem,1989,264:243-250.
    [68] Exley C, Birchall JD. The cellular toxicity of aluminum. J Theor Biol,1992,159:83-98.
    [69] McDonald LJ, Mamrack MD. Phosphoinositide hydrolysis by phospholipase C modulatedby multivalent cations La3+, Al3+, neomycin, polyamines, and melittin. J Lipid Med CellSignal,1995,11:81-91.
    [70] Kumar S. Aluminium-induced biphasic effect. Med Hypothesis,1999,52:557-559.
    [71] Chen L, Liu CJ, Tang M, et al. Action of aluminum on high voltage-dependent calciumcurrent and its modulation by ginkgolide B. Acta Pharmacol Sinica,2005,26:539-545.
    [72] Gilman AG. G proteins: Transducers of receptorgenerated signals. Rev Biochem,1987,56:615-649.
    [73] Shi B, Chou K, HaugA. Aluminium impacts elements of the phosphoinositide signallingpathway in neuroblastoma cells. Mol Cell Biochem,1993,121:109-118.
    [74] Cui X, Wang B, Zong Z, et al. The effects of chronic aluminum exposure on learning andmemory of rats by observing the changes of Ras/Raf/ERK signal transduction pathway.Food Chem Toxicol,2012,50(2):315-9.
    [75] Boonstra J, Rijken P, Humbel B, et al. The epidermal growth factor. Cell Biol Int,1995,19(5):413-430.
    [76] Maruta H, Burgess AW. Regulation of the Ras signalling network. Bioessays,1994,16(7):489-496.
    [77] Ives HE. GTP binding proteins and growth factor signal transduction. Cell Signal,1991,3(6):491-499.
    [78] Bar-Sagi D. Mechanisms of signal transduction by Ras. Semin Cell Biol,1992,3(2):93-98.
    [79] Kishi K, Tanaka K, Takai Y. Ras p21and signal transduction. Gan To Kagaku Ryoho,1993,20(8):1107-1121.
    [80]何太平,严卫红. Ras信号转导通路.国外医学临床生物化学与检验学分册,2004,25(1):74-76.
    [81]袁向飞. Ras/MAPK与PI3K/Akt信号转导通路及其相互作用.国际检验医学杂志,2006,27(3):261-263.
    [82] Silvestris N,Tommasi S,et al. The dark side of the moon: the PI3K/PTEN/AKT pathway incolorectal carcinoma. Oneology,2009,77(l):69-74.
    [83] Boualis,Chretien AS,et al. PTEN expression controls cellular response to cetuximab bymediating PI3K/AKT and RAS/RAF/MAPK downstream signaling in KRAS wild-type,hormone refractory prostate cancer cells. Oncol Rep,200921(3):731-735.
    [84] Duffy A,Kummar S. Targeting mitogen-activated Protein kinase kinase(MEK) insolidtumors.TargetOneol,2009,4(4):267-273.
    [85] Corn BW,Kovner F. ERK signaling in colorectal cancer: a preliminary report on theexpression of phosphorylated ERK. Am J Clin oncol,2008,31(3):255-258.
    [86]邢伟,王彪,许金华,等.慢性染铝大鼠海马PKC、MAPK活力与LTP的相关性.毒理学杂志,2007,21(2):102-104.
    [87]王彪,邢伟,许金华,等.铝对大鼠海马ERK蛋白及mRNA表达影响.中国公共卫生,2006,22(12):1464-1466.
    [88] J Chen, M Wang, D Ruan. Early chronic aluminium exposure impairs long-termpotentiation and depression to the rat dentate gyrus in vivo. Neuroscience,2002,112(4):879-887.
    [89]张立丰.出生前后子代大鼠持续铝暴露对LTP诱导的影响及其相关机制的实验研究:
    [硕士学位论文]。沈阳:中国医科大学,2008
    [90] Victor Anggono, Richard L Huganir. Regulation of AMPA Receptor Trafficking andSynaptic Plasticity.Curr Opin Neurobiol,2012,22(3):461–469.
    [1] Konradi C, Heckers S. Molecular aspects of glutamate dysregulation: Implications forschizophrenia and its treatment. Pharmacol Ther,2003,97:153-179.
    [2] Walsh DM, Klyubin I, Fadeeva JV,et al.Naturally secreted oligomers of amyloid betaprotein potently inhibit hippocampal long-term potentiation in vivo. Nature,2002,416:535-539.
    [3] Raol YH, Lynch DR, Brooks-Kayal AR. Role of excitatory amino acids in developmentalepilepsies.Ment. Retard Dev Disabil Res Rev,2001,7:254-260.
    [4] Lu W, Shi Y, Jackson AC, et al. Subunit composition of synaptic AMPA receptors revealedby a single-cell genetic approach. Neuron,2009,62(2):254-268.
    [5] Kew JN, Kemp JA. Ionotropic and metabotropic glutamate receptor structure andpharmacology. Psychopharmacology,2005,179(1):4-29.
    [6] Shepherd JD, Huganir RL. The cell biology of synaptic plasticity: AMPA receptor trafficking.AnnuRev Cell Dev Biol,2007,23:613-643.
    [7] Henley JM, Barker EA, Glebov OO. Routes, destinations and delays: recent advances inAMPA receptor trafficking. Trends Neurosci,2011,34:258-268.
    [8] Esteban JA, Shi SH, Wilson C, et al. PKA phosphorylation of AMPA receptor subunitscontrols synaptic trafficking underlying plasticity. Nat Neurosci,2003,6:136-143.
    [9] Passafaro M, Piech V, Sheng M. Subunit-specific temporal and spatial patterns of AMPAreceptor exocytosis in hippocampal neurons.Nat Neurosci,2001,4:917-926.
    [10] Shi S, Hayashi Y, Esteban JA, et al. Subunit-specific rules governing AMPA receptortrafficking to synapses in hippocampal pyramidal neurons. Cell,2001,105:331-343.
    [11] Kessels HW, Malinow R. Synaptic AMPA receptor plasticity and behavior. Neuron,2009,61:340-350.
    [12] Correia SS, Bassani S, Brown TC,et al.Motor protein-dependent transport of AMPAreceptors into spines during long-term potentiation.Nat Neurosci,2008,11:457-466.
    [13] Suh YH, Terashima A, Petralia RS, et al. A neuronal role for SNAP-23in postsynapticglutamate receptor trafficking. Nat Neurosci,2010,13:338-343.
    [14] Adesnik H, Nicoll RA, England PM. Photoinactivation of native AMPA receptors revealstheir realtime trafficking. Neuron,2005,48:977-985.
    [15] Lin DT, Makino Y, Sharma K,et al. Regulation of AMPA receptor extrasynaptic insertion by4.1N, phosphorylation and palmitoylation. Nat Neurosci,2009,12:879-887.
    [16]Yudowski GA, Puthenveedu MA, Leonoudakis D,et al. Real-time imaging of discreteexocytic events mediating surface delivery of AMPA receptors. J Neurosci,2007,27:11112-11121.
    [17] Lu J, Helton TD, Blanpied TA, et al. Postsynaptic positioning of endocytic zones and AMPAreceptor cycling by physical coupling of dynamin-3to Homer. Neuron,2007,55:874-889.
    [18] Tao-Cheng JH, Crocker VT, Winters CA, et al. Trafficking of AMPA receptors at plasmamembranes of hippocampal neurons. J Neurosci,2011,31:4834-4843.
    [19] Ehlers MD. Reinsertion or degradation of AMPA receptors determined byactivity-dependent endocytic sorting. Neuron.2000,28:511-525.
    [20] Lee SH, Simonetta A, Sheng M. Subunit rules governing the sorting of internalized AMPAreceptors in hippocampal neurons. Neuron,2004,43:221-236.
    [21] Colledge M, Dean RA, Scott GK, et al. Targeting of PKA to glutamate receptors through aMAGUK-AKAP complex. Neuron,2000,27:107–119.
    [22] Sans N, Racca C, Petralia RS, et al. Synapse-associated protein97selectively associateswith a subset of AMPA receptors early in their biosynthetic pathway. J Neurosci,2001,21:7506-7516.
    [23] Rumbaugh G, Sia GM, Garner CC, et al. Synapse-associated protein-97isoform-specificregulation of surface AMPA receptors and synaptic function in cultured neurons. J Neurosci,2003,23:4567-4576.
    [24] Nakagawa T, Futai K, Lashuel HA, et al. Quaternary structure, protein dynamics, andsynaptic function of SAP97controlled by L27domain interactions. Neuron,2004,44:453-467.
    [25] Schluter OM, Xu W, Malenka RC. Alternative N-terminal domains of PSD-95and SAP97govern activity-dependent regulation of synaptic AMPA receptor function. Neuron,2006,51:99-111.
    [26] Schnell E, Sizemore M, Karimzadegan S, et al. Direct interactions between PSD-95andstargazin control synaptic AMPA receptor number. Proc Natl Acad Sci U S A,2002,99:13902-13907.
    [27] Kim CH, Takamiya K, Petralia RS, et al. Persistent hippocampal CA1LTP in mice lackingthe C-terminal PDZ ligand of GluR1. Nat Neurosci,2005,8:985-987.
    [28] Mauceri D, Cattabeni F, Di Luca M, et al. Calcium/calmodulin-dependent protein kinase IIphosphorylation drives synapse-associated protein97into spines. J Biol Chem,2004,279:23813-23821.
    [29] Lin DT, Makino Y, Sharma K, et al. Regulation of AMPA receptor extrasynaptic insertion by4.1N, phosphorylation and palmitoylation. Nat Neurosci.2009,12:879-887.
    [30] Hayashi T, Rumbaugh G, Huganir RL. Differential regulation of AMPA receptor subunittrafficking by palmitoylation of two distinct sites. Neuron,2005,47:709-723.
    [31] Hayashi T, Huganir RL. Tyrosine phosphorylation and regulation of the AMPA receptor bySRC family tyrosine kinases. J Neurosci,2004,24:6152-6160.
    [32] Chung HJ, Xia J, Scannevin RH, et al. Phosphorylation of the AMPA receptor subunitGluR2differentially regulates its interaction with PDZ domain-containing proteins. JNeurosci,2000,20:7258-7267.
    [33] Kim CH, Chung HJ, Lee HK, et al. Interaction of the AMPA receptor subunit GluR2/3withPDZ domains regulates hippocampal long-term depression. Proc Natl Acad Sci U S A,2001,98:11725-11730.
    [34] Steiner P, Alberi S, Kulangara K, et al. Interactions between NEEP21, GRIP1and GluR2regulate sorting and recycling of the glutamate receptor subunit GluR2. EMBO J,2005,24:2873-2884.
    [35] Kulangara K, Kropf M, Glauser L, Magnin S, Alberi S, Yersin A, Hirling H.Phosphorylation of glutamate receptor interacting protein1regulates surface expression ofglutamate receptors. J BiolChem,2007,282:2395-2404.
    [36] Hoogenraad CC, Popa I, Futai K, et al. Neuron specific Rab4effector GRASP-1coordinatesmembrane specialization and maturation of recycling endosomes. PLoS Biol,2010,8(1):e1000283.
    [37] Zhang J, Wang Y, Chi Z, et al. The AAA+ATPase Thorase regulates AMPAreceptor-dependent synaptic plasticity and behavior. Cell,2011,145:284-299.
    [38] Hanley JG, Henley JM. PICK1is a calcium-sensor for NMDA-induced AMPA receptortrafficking. EMBO J,2005,24:3266-3278.
    [39] Hanley JG. NSF binds calcium to regulate its interaction with AMPA receptor subunitGluR2. J Neurochem,2007,101:1644-1650.
    [40] Hanley JG, Khatri L, Hanson PI, et al. NSF ATPase and alpha-/beta-SNAPs disassemble theAMPA receptor-PICK1complex. Neuron,2002,34:53-67.
    [41] Rocca DL, Martin S, Jenkins EL, et al. Inhibition of Arp2/3-mediated actin polymerizationby PICK1regulates neuronal morphology and AMPA receptor endocytosis. Nat Cell Biol,2008,10:259-271.
    [42] Anggono V, Clem RL, Huganir RL. PICK1loss of function occludes homeostatic synapticscaling.J Neurosci,2011,31:2188-2196.
    [43] Makuch L, Volk L, Anggono V, et al. Regulation of AMPA Receptor Function by the HumanMemory-Associated Gene KIBRA. Neuron,2011,71:1022-1029.
    [44] Anggono V, Clem RL, Huganir RL. PICK1loss of function occludes homeostatic synapticscaling.J Neurosci,2011,31:2188-2196.
    [45] Greger IH, Khatri L, Ziff EB. RNA editing at arg607controls AMPA receptor exit from theendoplasmic reticulum. Neuron,2002,34:759-772.
    [46] Song I, Kamboj S, Xia J, et al. Interaction of the N-ethylmaleimidesensitive factor withAMPA receptors. Neuron,1998,21:393-400.
    [47] Evers DM, Matta JA, Hoe HS, et al. Plk2attachment to NSF induces homeostatic removalof GluA2during chronic overexcitation. Nat Neurosci,2010,13:1199-1207.
    [48] Joels G, Lamprecht R. Interaction between N-ethylmaleimide-sensitive factor and GluR2isessential for fear memory formation in lateral amygdala. J Neurosci,2010,30:15981-15986.
    [49]郭晓强. Stargazin研究进展.生命科学,2006,18(1):55-57.
    [50] Nicoll RA,Tomita S,Bredt DS. Auxiliary subunits assist AMPA-type glutamate receptors.Science,2006,311(5765):1253-1256.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700