用户名: 密码: 验证码:
冀北山地油松根系固土机制的影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物根系具有锚定植株、固持土壤、吸收和运输土壤中的水分及养分、合成和贮藏营养物质等重要功能。根系固土能力主要受植物种类、植物根系形态、植物根系的拉力学特性和植物根系与土壤界面的相互作用制约。本研究基于弹塑性力学、土力学、水土保持学、森林生态学、数学等原理和方法,采用野外调查与室内实验相结合的方式,以油松为例,从根系形态和分形特征、单根的拉力学特性和根系与土壤相互作用三个方面,研究了植物根系固土机制的影响因素。
     主要研究成果如下:
     (1)通过对油松根系的调查和分析得出,油松根系有主根和水平侧根构成,整体上呈圆锥体结构,油松侧根在各方向上呈均匀分布,侧根的长度和生物量主要分布在根系的中上部,并随油松胸径和树高的增加而增长;不同胸径油松根系的分形维数差别不大,二级侧根的空间占据能力优于一级侧根。
     (2)通过对油松根系的拉伸试验和土壤特性的研究得出,油松根系的抗拉力、抗拉强度和应力-应变关系都受土层深度的影响,油松根系的抗拉力和抗拉强度与大多数的土壤物理、化学和生物学特性显著相关。标距和拉伸速率对油松根系抗拉特性产生显著影响,不同坡向和不同生长方向的油松根系抗拉特性差异显著。直径是影响油松根系抗拉力的最主要因素,试验控制因素中标距对抗拉力和抗拉强度的影响大于拉伸速率;环境因素中坡向对抗拉力的影响大于土层深度和生长方向,坡向对抗拉强度的影响最大,其次为根系生长方向和土层深度。
     (3)三轴试验表明,根土复合体极限主应力差随根径、围压的增加而增大,随土壤含水率的提高而减小,复合埋根方式的根土复合体极限主应力差大于相同条件下的垂直埋根方式和水平埋根方式的根土复合体主应力差,根系直径和围压越大,根系布设方式越复杂则根土复合体的抵抗荷载的能力越强。
     (4)含根土体的抗剪强度明显大于素土抗剪强度,在土壤条件一定的条件下,影响根土复合体抗剪强度的变化的因素同极限主应力差的影响因素相同,根径、围压和埋根方式是影响根土复合体抗剪强度的主要因素。
     (5)植物根系与土壤界面摩擦力随植物根径的增长呈线性规律增大。根系的埋深、土壤含水率以及加载速率对油松根系与土壤界面摩擦力有显著影响,摩擦力随埋深的增加而呈线性增大,在一定范围内,平均摩擦力的大小随土壤含水率的增加呈现出先增大后减小的变化规律,平均摩擦力随加载速率的增加而呈线性减小。
     (6)植物根系与土壤界面的摩擦系数随直径的增加呈现出先增大后减小的规律,根系的埋深、土壤含水率以及加载速率对油松根系与土壤界面摩擦力有显著影响,其变化规律与摩擦力的变化规律相似。
Root is an important organ of vegetation to adapt long-term land conditions, which have the function of both anchor plant and absorption, synthesis, transport, metabolism. The root solid earth ability mainly affected by plant species, plant root morphology, the mechanical properties of plant roots and the interaction between plant roots and soil interface. Based on theories and methods in elasto-plasticity mechanics, soil mechanics, soil and water conservation, forest ecology and etc., the study has made both field and lab experiments, taking an example of Pinus tabulaeformis, based on root morphology and fractal characteristics, mechanical properties of a single root, and the interaction between plant roots and soil interface to study the influence factors of plant roots soil reinforcement mechanism.
     The main research results are as follows:
     (1) The investigation and analysis of Pinus tabulaeformis roots showed that, roots level have taproots and lateral structure, the overall structure of cones, lateral roots evenly distributed in all directions. Lateral root length and biomass are mainly distributed in the upper part of the main root, and increases with the increase of DBH and tree height. There is little difference of fractal dimension of root system, and the second level of lateral space occupied ability better than the first lateral roots level
     (2) The study of tensile tests of root system and soil characteristics showed that, Pinus tabulaeformis root tensile resistance, tensile strength and stress-strain relations are affected by the depth of the soil layer. Tensile resistance and tensile strength of root system have significantly correlated with most of the soil physical, chemical and biological properties. Gauge length and stretching rate have a significant effect on the tensile properties of root system. Pinus tabulaeformis roots tensile properties are significantly different in different slope and different growth directions. Diameter is the main factor affecting the tensile strength of root system. The impact of tensile resistance and tensile strength by gauge length is greater than the tensile rate in test control factors. The impact of tensile resistance by slope direction is greater than soil depth and direction of growth in environmental factors. The maximum influence factor of the tensile strength is slope direction, followed by the direction of root growth and soil depth.
     (3) Triaxial tests showed that the root soil composite ultimate principal stress difference increases with the increases root diameter and the confining pressure, and decreases with improved soil moisture. The test shows the result of the complex>vertical>horizontal roots in limit of principal stress difference. Large diameter and confining pressure, complex root distribution, making the greater shear strength.
     (4) With the root soil shear strength was significantly greater than the prime soil shear strength. Under certain soil conditions, the influencing factors of complex root soil shear strength is the same with the ultimate principal stress difference. Root diameter, confining pressure and roots buried approach is the main factors of soil shear strength of the soil-root composite.
     (5) Plant roots-soil interface friction increases with the root diameter increased in a linearly law. Depth, soil moisture and loading rate has a significant impact on the root-soil interface friction. Friction increases with depth increases linearly. Within a certain range, the average friction showing the first increase and then decrease with increasing soil moisture variation. The average friction linearly decreases with the increase of loading rate.
     (6) Plant root soil interface friction coefficient showing the first increase and then decrease with increasing diameter. Depth, soil moisture and loading rate has a significant impact on the root-soil interface friction coefficient, the changing law is similar to the law of friction.
引文
1.陈丽华,余新晓,张东升.整株林木垂向抗拉试验研究[J].资源科学,2004,26(7):39-43.
    2.陈丽华,及金楠,冀晓东等.林木根系基本力学性质[M].北京:科学出版社,2012:1-20
    3.陈丽华,余新晓,刘秀萍,等.林木根系本构关系[J].山地学报.2007,25(2):224-228.
    4.陈丽华,余新晓,宋维峰等.林木根系固土力学机制[M].北京:科学出版社,2008:2-17
    5.陈忠安,王静.材料力学[M].北京:北京大学出版社,2009:1-15
    6.成文浩,陈林.贺兰山油松林根系空间分布特征研究[J].水土保持研究,2013,20(1):89-93.
    7.程洪,张新全.草本植物根系网固土原理的力学试验探究[J].水土保持通报,2002,22(5):20-23.
    8.邓旭阳,周淑秋,郭新宇,等.玉米根系几何造型研究[J].工程图学学报,2004,4:62-66.
    9.顿颖.柑橘水培体系优化及N、Fe胁迫下根系形态研究[D].武汉,华中农业大学,2011:1-5
    10.房娟,陈光才,楼崇,等.Pb胁迫对柳树根系形态和生理特性的影响[J].安徽农业科学,2011,39(15):8951-8953.
    11.冯卫星,常绍东,胡万毅.北京细沙土邓肯-张模型参数试验研究[J].岩石力学与工程学报,1999,18(3):327-330.
    12.盖小刚.林木根系固土力学特性研究[D].北京林业大学,2013:1-10
    13.高鹏.植物固土护坡机理及其在河道护坡工程中的应用[D].扬州大学,2007:1-13
    14.高照全,张显川,王小伟.不同水分条件下桃树根系的分形特征[J].天津农业科学,2006,12(3):20-22.
    15.关秀光,刘文白.土工格栅与土的摩擦特性试验[J].上海地质,2004,(2):13-17.
    16.郭维俊,黄高宝,王芬娥,吴建民.植物根系若干力学问题研究[J].中国农机化,2006,(2):84-88
    17.郭维俊,黄高宝,王芬娥.作物生长力学的研究进展[J]甘肃农业大学学报,2005,40(4):555-559.
    18.郝彤琦,谢小妍,洪添胜.滩涂土壤与植物根系复合体抗剪强度的试验研究[J].华南农业大学学报,2000,21(4):78-80.
    19.何功秀.桤木人工林根系形态,生物量和养分分布特性[D].长沙:中南林业科技大学,2008:1-5
    20.何跃军,钟章成.水分胁迫和接种丛枝菌根对香樟幼苗根系形态特征的影响[J].西南大学学报(自然科学版)2012,34(4):33-39.
    21.黄晓乐,许文年,夏振尧.植被混凝土基材2种草本植物根-土复合体直剪试验研究[J].水土保持研究,2010,17(4):158-161.
    22.季永华,韦晓云.河堤防护林带树木根系形态特征的研究[J].南京林业大学学报:自然科学版,1998,22(3):31-34.
    23.冀晓东,陈丽华,张超波.林木根系对土壤的增强作用与机理分析[J].中国水土保持,2009(10):19-21.
    24.贾彩虹.土力学[M].北京:北京大学出版社,2008:1-12
    25.姜志强,孙树林.堤防工程生态固坡浅析[J].岩石力学与工程学报,2004,23(12):2133-2136.
    26.蒋坤云,陈丽华,盖小刚,等.华北护坡阔叶树种根系抗拉性能与其微观结构的关系[J].农业工程学报,2013,29(3):115-123.
    27.解明曙.林木根系固坡土力学机制研究[J].水土保持学报,1990,4(3):7-14.
    28.李成烈,万中生,孟兆福,等.几种杨树根系形态在农防林设计中的应用[J].防护林科技,1983(0):002.
    29.李国荣,胡夏嵩,毛小青,等.寒旱环境黄土区灌木根系护坡力学效应研究[J].水文地质工程地质,2008(1):94-97.
    30.李贺鹏,岳春雷,陈友吾,等.浙南山区6种优势乔木植物根系的力学特性研究[J].浙江林业科技,2010,30(3):6-11.
    31.李金凤,霍恒志,万春燕,等.不同砂梨品种根系形态的研究[J].江西农业学报,2010,10:012.
    32.李绍才,孙海龙,杨志荣,等.护坡植物根系与岩体相互作用的力学特性[J].岩石力学与工程学报,2006,25(10):2051-2057.
    33.李铁军,李晓华.植被固坡机制的研究[J].水土保持科技情报,2004(2):1-3.
    34.李文娆,张岁岐,丁圣彦,等.干旱胁迫下紫花苜蓿根系形态变化及与水分利用的关系[J].生态学报,2010,30(19):5140-5150.
    35.李晓凤,陈丽华,王萍花.华北落叶松根系抗拉力学特性[J].中国水土保持科学,2012,10(1):82-87.
    36.李臻,余芹芹,杨占风,等.西宁盆地两种灌木植物原位拉拔试验及其护坡效应[J].水土保持研究,2011,18(3):206-209.
    37.刘垂远.土工合成材料加筋土体的应力-应变特性研究[D].四川:四川大学,2004:24-33.
    38.刘国彬,蒋定生,朱显谟.黄土区草地根系生物力学特性研究[J].土壤侵蚀与水土保持学报,1996,2(3):21-28.
    39.刘金梁.东北5个树种根系结构研究[D].哈尔滨:东北林业大学,2008.
    40.刘丽娜,徐程扬,段永宏,等.北京市3种针叶绿化树种根系结构分析[J].北京林业大学学报,2008,30(1):34-39.
    41.刘霖,李桂英,李驰.土工格栅与风积砂界面作用特性的试验研究[J].内蒙古公路与运输,2003,(1):4-6.
    42.刘世奇,陈静曦,王吉利.植物护坡技术浅析[J].土工基础,2003,17(3):49-51.
    43.刘小光.林木根系与土壤摩擦锚固性能研究[D].北京林业大学,2013.
    44.刘小燕,桂勇,罗嗣海,等.植物根系固土护坡抗剪强度试验研究[J].江西理工大学学报,2013,34(3):32-37.
    45.刘秀萍,陈丽华,宋维峰,等.油松根系形态分布的分形分析研究[J].水土保持通报,2007,27(1):47-54.
    46.刘秀萍.林木根系固土有限元数值模拟.[D].北京林业大学,2008.
    47.刘莹,盖钧镒,吕彗能.作物根系形态与非生物胁迫耐性关系的研究进展[J].植物遗传资源学报,2003,4(3):265-269.
    48.卢敦华,王星华.植被根系系统加固破碎岩坡的作用机理分析[J].科技导报,2007,25(23):55-58.
    49.鲁少波,刘秀萍,鲁绍伟,等.林木根系形态分布及其影响因素[J].林业调查规划, 2006,31(3):105-108.
    50.吕春娟,陈丽华,赵红华,等.油松根系的轴向疲劳性能研究[J].摩擦学学报,2013,33(6):578-585.
    51.吕春娟,陈丽华.华北典型植被根系抗拉力学特性及其与主要化学成分关系[J].农业工程学报,2013(23):69-78.
    52.马克明,祖元刚.兴安落叶松种群格局的分形特征信息维数.生态学报,2000,20(2):187-192.
    53.马时冬.土工格栅与土的界面摩擦特性试验研究[J].长江科学院院报,2004,21(1):11-14.
    54.马晓东,朱成刚,李卫红.多枝柽柳幼苗根系形态及生物量对不同灌溉处理的响应[J].植物生态学报,2012,36(10):1024-1032.
    55.潘义国,丁贵杰,彭云,等.关于植物根系在土壤抗侵蚀和抗剪切中的作用研究进展[J].贵州林业科技,2007,35(2):10-13.
    56.乔娜,余芹芹,卢海静,等.寒旱环境植物护坡力学效应与根系化学成分响应[J].水土保持研究,2012,19(3):108-113.
    57.施有志.土工格栅与土界面特性的试验研究[J].岩土力学,2003,24(2):296-299.
    58.石明强.高速公路边坡生态防护与植物固坡的力学分析[D].武汉:武汉理工大学,2007.
    59.史敏华,王棣,李任敏.太行山石灰岩区主要水保灌木根系分布特征与根抗拉力研究[J].北京林业大学学报,1996,(S3):34-37.
    60.宋朝枢,方奇,邓明全.美杨根系特性与形态的初步研究[J].林业科学,1964,3:256-263.
    61.宋恒川,陈丽华,吕春娟,等.华北土石山区四种常见乔木根系的形态研究[J].干旱区资源与环境,2012,26(11):194-199.
    62.宋恒川.北川县四个树种根系的分布及力学性能研究[D].北京林业大学,2013.
    63.宋会兴,钟章成.两种土壤类型草本植物根系丛枝菌根真菌多样性[J].应用生态学报,2009,20(8):1857-1862.
    64.宋维峰,陈丽华,刘秀萍.根系与土体接触面相互作用特性试验[J].中国水土保持科学,2006,4(2):62-65.
    65.宋维峰.林木根系与均质土间相互物理作用机理研究[D].北京:北京林业大学,2006.
    66.孙向丽,张启翔.不同水、肥供应对丽格海棠根系形态和生理指标的影响[J].西北林学院学报,2011,26(5):46-52.
    67.唐娴.公路边坡植物防护的水土保持机理[J].水土保持研究,2007.13(5):64-65.
    68.王海生,丛庆龙.围场县水土流失及防治措施探讨[J].海河水利,2009(2):23-24.
    69.王萍花,陈丽华,冀晓东,宋恒川,盖小刚,蒋坤云,吕春娟.华北地区4种常见乔木根系抗拉强度的力学综合模型[J].北京林业大学学报,2012,34(1):37-45.
    70.王水良,王平,王趁义.铝胁迫对马尾松幼苗根系形态及活力的影响[J].生态学杂志,2010,11:003.
    71.王晓冬,曹立萍,刘延迪.干旱胁迫对真桦根系形态及生物量分配的影响[J].防护林科技,2011,5:009.
    72.王秀荣,廖红,严小龙.不同供磷水平对拟南芥根形态的影响[J].西南农业学报,2004,增刊(17):193-195
    73.王政权,郭大立.根系生态学[J].植物生态学报,2008,32(6)1213-1216.
    74.吴景海,王德群,陈环.土工合成材料加筋砂土三轴试验研究[J].岩土工程学报,2000,22(2):199-204.
    75.向师庆,赵相华.北京主要造林树种的根系研究[J].北京林业学院学报,1981(2):19-32.
    76.肖本林,罗寿龙,陈军,等.根系生态护坡的有限元分析[J].岩土力学,2011,32(6):1881-1885.
    77.肖东升,张涛.边坡土体强度与植被根系作用的研究[J].路基工程,2008,1:135-137.
    78.谢文华,张道明.马尾松杜仲混交林根系特性研究[J].安徽农业大学学报,1995,22(3):256-261.
    79.谢钰容,周志春,金国庆,等.低P胁迫对马尾松不同种源根系形态和干物质分配的影响[J].林业科学研究,2004,17(3):272-278.
    80.邢会文,刘静,王林和,等.柠条、沙柳根与土及土与土界面摩擦特性[J].摩擦学学报,2010,30(1):87-91.
    81.熊燕梅,夏汉平,李志安,等.植物根系固坡抗蚀的效应与机理研究进展[J].应用生态学报,2007,18(4):895-904.
    82.徐林荣,吕大伟,顾绍付,等.筋土界面参数的拉拨试验过程划分研究[J].岩土力学,2004,25(5):709-714.
    83.徐林荣,凌建明,刘宝琛.土工格栅与膨胀土界面摩擦阻力系数试验研究[J].同济大学学报,2004,32(2):172-176.
    84.许超,夏北成,冯涓,等.玉米根系形态对土壤Cd和芘复合污染的响应[J].生态环境,2007,16(3):771-774.
    85.薛建辉,王智,吕祥生.林木根系与土壤环境相互作用研究综述[J].南京林业大学学报,2006,26(3):79-84
    86.严小龙.根系生物学:原理与应用[M].北京:科学出版社,2007.
    87.杨洪强,范伟国.苹果根系构型及其调控研究进展[J].园艺学报,2012,39(9):1673-1678.
    88.杨培岭,罗远培.冬小麦根系形态的分形特征[J].科学通报,1994,39(20):1911-1913.
    89.杨璞,向志海,胡夏嵩,等.根对土壤加强作用的研究[J].清华大学学报:自然科学版,2009(2):305-308.
    90.杨维西,黄治江.黄土高原九个水土保持树种根的抗拉力[J].中国水土保持,1988,9:47-49.
    91.杨维西,赵廷宁,李生智,等.人工刺槐林采伐后根系固土作用的衰退状况[J].水土保持学报,1990,4(1):6-10.
    92.杨喜田,杨小兵,曾玲玲,等.林木根系的生态功能及其影响根系分布的因素[J].河南农业大学学报,2009,43(6):681-690.
    93.杨亚川,莫永京,王芝芳,等.土壤-草本植被根系复合体抗水蚀强度与抗剪强度的试验研究[J].中国农业大学学报,1996(2):31-38.
    94.杨永红,王成华,刘淑珍,等.不同植被类型根系提高浅层滑坡土体抗剪强度的试验研究[J].水土保持研究,2007,14(2):233-235.
    95.杨永红.东川砾石土地区植被固土机理研究[D].成都:西南交通大学,2006.
    96.苑淑娟.4种植物单根抗拉力学特性的研究[D].内蒙古农业大学,2010.
    97.翟明普.北京西山地区油松元宝枫混交林根系的研究[J].北京林业学院学报,1982(1):1-12.
    98.张飞,陈静曦,陈向波.边坡生态防护中表层含根系土抗剪试验研究[J].土工基’础,2005,19(3):25-27.
    99.张云伟,刘跃明,周跃.云南松侧根摩擦型根土粘合键的破坏机制及模型[J].山地学报,2002,20(5):628-631
    100.赵丽兵,张宝贵,苏志珠.草本植物根系增强土壤抗剪强度的量化研究[J].中国生态农业学报,2008(16)3:718-722.
    101.赵丽兵,张宝贵.紫花苜蓿和马唐根的生物力学性能及相关因素的试验研究[J]农业工程学报,2007,23(9):7-12.
    102.赵忠,李鹏,王乃江.渭北黄土高原主要造林树种根系分布特征的研究[J].应用生态学报,2000,11(1):37-39.
    103.赵忠,李鹏,薛文鹏,等.渭北主要造林树种细根生长及分布与土壤密度关系[J].林业科学,2004,40(5):50-55.
    104.郑文宁.植物防护对边坡稳定性的影响[J].中外公路,2005,25(4):218-220.
    105.钟章成,李坦光.桤柏混交林根系的研究[J].1995.
    106.周朔.林木根系拉伸力学特性研究[D].北京:北京林业大学,2011.
    107.周跃,徐强,骆华松,等.乔木侧根对土体的斜向牵引效应Ⅱ野外直测[J].山地学报,1999,17(1):10-15.
    108.周跃,张军,林锦屏,等.西南地区松属侧根的强度特征对其防护林固土护坡作用的影响[J].生态学杂志,2002,21(6):1-4.
    109.朱海丽,胡夏嵩,毛小青,等.青藏高原黄土区护坡灌木植物根系力学特性研究[J].岩石力学与工程学报,2008,27(增2):3445-3452.
    110.朱清科,陈丽华.贡嘎山森林生态系统根系固土力学机制研究[J].北京林业大学学报,2002,24(4):64-67.
    111.庄晚芳.茶树根系的研究[J].浙江大学学报(农业与生命科学版),1957,2(2):297-307.
    112.Aguin O, Mansilla J P, Vilarino A, et al. Effects of mycorrhizal inoculation on root morphology and nursery production of three grapevine rootstocks[J]. American Journal of Enology and Viticulture,2004,55(1):108-111.
    113.A1-Omari R R, Nazhat Y N, Dobaissi H H. Effect of stiffness and amount of reinforcement on strength of sand[J]. Quarterly Journal of Engineering Geology and Hydrogeology,1995,28(4):363-367.
    114.Arroo R R J, Develi A, Meijers H, et al. Effect of exogenous auxin on root morphology and secondary metabolism in Tagetes patula hairy root cultures [J]. Physiologia Plantarum,1995,93(2):233-240.
    115.Athanasopoulos G A. Effect of particle size on the mechanical behaviour of sand-geotextile composites [J]. Geotextiles and Geomembranes,1993,12(3):255-273.
    116.Bengough A G, Croser C, Pritchard J. A biophysical analysis of root growth under mechanical stress[M]//Plant Roots-From Cells to Systems. Springer Netherlands,1997: 107-116.
    117.Bereau M, Garbaye J. First observations on the root morphology and symbioses of 21 major tree species in the primary tropical rain forest of French Guyana[C]//Annales des sciences forestieres. EDP Sciences,1994,51(4):407-416.
    118.Bischetti G B, Chiaradia E A, Epis T, et al. Root cohesion of forest species in the Italian Alps [J]. Plant and soil,2009,324(1-2):71-89.
    119.Bischetti G B, Chiaradia E A, Simonato T, et al. Root strength and root area ratio of forest species in Lombardy (Northern Italy)[J]. Plant and soil,2005,278(1-2):11-22.
    120.Bowen G D, Rovira A D. Relationship between root morphology and nutrient uptake[J]. Recent advances in plant nutrition,1971,1:293-305.
    121.Chiatante D, Scippa S G, Di Iorio A, et al. The influence of steep slopes on root system development[J]. Journal of Plant Growth Regulation,2002,21(4):247-260.
    122.Cocking D, Rohrer M, Thomas R, et al. Effects of root morphology and Hg concentration in the soil on uptake by terrestrial vascular plants[J]. Water, Air, and Soil Pollution,1995,80(1-4):1113-1116.
    123.Cofie P, Koolen A J. Test speed and other factors affecting the measurements of tree root properties used in soil reinforcement models[J]. Soil and Tillage Research,2001, 63(1):51-56.
    124.Coppin N, Richards I G. Use of vegetation in civil engineering[M].1990.
    125.Courts M P,1983a. Root architecture and tree stability. Plant Soil 71,171-188.
    126.Cucchi V, Meredieu C, Stokes A, et al. Root anchorage of inner and edge trees in stands of Maritime pine (Pinus pinaster Ait.) growing in different podzolic soil conditions[J]. Trees,2004,18(4):460-466.
    127.De Baets S, Poesen J, Reubens B, et al. Root tensile strength and root distribution of typical Mediterranean plant species and their contribution to soil shear strength[J]. PLANT AND SOIL,2008,305(1-2):207-226.
    128.Dexter A R. Mechanics of root growth[J]. Plant and Soil,1987,98(3):303-312
    129.Di Iorio A, Lasserre B, Scippa G S, et al. Root system architecture of Quercus pubescens trees growing on different sloping conditions[J]. Annals of Botany,2005, 95(2):351-361.
    130.Dunn G M, Huth J R, Lewty M J. Coating nursery containers with copper carbonate improves root morphology of five native Australian tree species used in agroforestry systems[J]. Agroforestry systems,1997,37(2):143-155.
    131.Eis S. Root system morphology of western hemlock, western red cedar, and Douglas-fir [J]. Canadian Journal of Forest Research,1974,4(1):28-38.
    132.Fan C C, Su C F. Role of roots in the shear strength of root-reinforced soils with high moisture content[J]. Ecological engineering,2008,33(2):157-166.
    133.Futaki M, Suzuki H, Yamato S. Super large triaxial tests on reinforced sand with high strength geogrid[C]//Proceedings of the 4th International Conference on Geotextiles, Geomembranes and Related Products.1990,2:759-764.
    134.Genet M, Stokes A, Salin F, et al. The influence of cellulose content on tensile strength in tree roots[J]. Plant and soil,2005,278(1-2):1-9.
    135.Goodman A M, Ennos A R. The effects of soil bulk density on the morphology and anchorage mechanics of the root systems of sunflower and maize[J]. Annals of Botany, 1999,83(3):293-302.
    136.Goodman A M, Ennos A R. The effects of soil bulk density on the morphology and anchorage mechanics of the root systems of sunflower and maize[J]. Annals of Botany, 1999,83(3):293-302.
    137.Gray D H, Al-Refeai T. Behavior of fabric-versus fiber-reinforced sand[J]. Journal of Geotechnical Engineering,1986,112(8):804-820.
    138.Gray D H. Biotechnical and soil bioengineering slope stabilization:a practical guide for erosion control[M]. John Wiley & Sons,1996.
    139.Greenwood J R, Norris J E, Wint J. Assessing the contribution of vegetation to slope stability[J]. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering,2004,157(4):199-207.
    140.Haeri S M, Noorzad R, Oskoorouchi A M. Effect of geotextile reinforcement on the mechanical behavior of sand[J]. Geotextiles and Geomembranes,2000,18(6): 385-402.
    141.Hallmark W B, Barber S A. Root growth and morphology, nutrient uptake, and nutrient status of early growth of soybeans as affected by soil P and K[J]. Agronomy Journal,1984,76(2):209-212.
    142.Hallmark W B, Barber S A. Root growth and morphology, nutrient uptake, and nutrient status of soybeans as affected by soil K and bulk density [J]. Agronomy Journal,1981,73(5):779-782.
    143.Halter M R, Chanway C P. Growth and root morphology of planted and naturally-regenerated Douglas fir and Lodgepole pine[C]//Annales des sciences forestieres. EDP Sciences,1993,50(1):71-77.
    144.Hecht-Buchholz C H, Foy C D. Effect of aluminium toxicity on root morphology of barley [M]//Structure and function of plant roots. Springer Netherlands,1981:343-345.
    145.Hendrick R L, Pregitzer K S. Spatial variation in tree root distribution and growth associated with minirhizotrons[J]. Plant and Soil,1992,143(2):283-288.
    146.Hirano Y, Hijii N. Effects of low pH and aluminum on root morphology of Japanese red cedar saplings [J]. Environmental pollution,1998,101(3):339-347.
    147.Kormanik P P, Muse H D. Lateral roots a potential indicator of nursery seedling quality[C]//TAPPI Research and Development Conference Proceedings; Raleigh, NC. 1986:187-190.
    148.Krishnaswamy N R, Thomas Isaac N. Liquefaction analysis of saturated reinforced granular soils[J]. Journal of geotechnical engineering,1995,121(9):645-651.
    149.Lambers H, Shane M W, Cramer M D, et al. Root structure and functioning for efficient acquisition of phosphorus:matching morphological and physiological traits[J]. Annals of Botany,2006,98(4):693-713.
    150.Lateh, H., Bakar, M. A., Khan, Y. A., and Abustan, I Influence of tensile force of agave and tea plants roots on experimental prototype slopes [J]. International Journal of the Physical Sciences,2011,6(18),4435-4440.
    151.Lemke K. Untersuchungen uber das Wurzelsystem der Roteiche auf diluvialen Standortsformen[J]. Arch. Forstw,1956,5:8-45.
    152.Maizlish N A, Fritton D D, Kendall W A. Root morphology and early development of maize at varying levels of nitrogen [J]. Agronomy Journal,1980,72(1):25-31.
    153.Meinen C, Hertel D, Leuschner C. Biomass and morphology of fine roots in temperate broad-leaved forests differing in tree species diversity:is there evidence of below-ground overyielding?[J]. Oecologia,2009,161(1):99-111.
    154.Molenda M. Triaxial Compression Test[J]. Encyclopedia of Agrophysics,2011: 924-925.
    155.Norris J. E. Root reinforcement by hawthorn and oak roots on a highway cut-slope in Southern England[J]. Plant and soil,2005,278(1-2):43-53.
    156.Operstein V, Frydman S. The influence of vegetation on soil strength[J]. Proceedings of the ICE-Ground Improvement,2000,4(2):81-89.
    157.Pollen Natasha. Temporal and spatial variability in root reinforcement of streambanks: Accounting for soil shear strength and moisture[J]. CATENA,2007,69(3):197-205.
    158.Powell C L. Effect of P fertilizer on root morphology and P uptake ofCarex coriacea[J]. Plant and Soil,1974,41(3):661-667.
    159.Ruehle J L, Kormanik P P. Lateral root morphology:a potential indicator of seedling quality in northern red oak[M]. US Department of Agriculture, Forest Service, Southeastern Forest Experiment Station,1986.
    160.Ruehle J L. The effect of cupric carbonate on root morphology of containerized mycorrhizal pine seedlings[J]. Canadian Journal of Forest Research,1985,15(3): 586-592.
    161.Ruel J C, Larouche C, Achim A. Changes in root morphology after precommercial thinning in balsam fir stands[J]. Canadian Journal of Forest Research,2003,33(12): 2452-2459.
    162.Schlosser F, Long N T,1974. Recent results in French research on reinforced earth, J Construct Div ASCE 100(03),223-237.
    163.Sheldon A R, Menzies N W. The effect of copper toxicity on the growth and root morphology of Rhodes grass (Chloris gayana Knuth.) in resin buffered solution culture[J]. Plant and soil,2005,278(1-2):341-349.
    164.Soethe N, Lehmann J, Engels C. Root morphology and anchorage of six native tree species from a tropical montane forest and an elfin forest in Ecuador[J]. Plant and Soil, 2006,279(1-2):173-185.
    165.Stokes A. Strain distribution during anchorage failure of Pinus pinaster Ait. at different ages and tree growth response to wind-induced root movement[J]. Plant and Soil,1999, 217(1-2):17-27.
    166.Sudmeyer R. Tree root morphology in alley systems[J]. RIRDC/L&W Australia/ FWPRDC Joint Venture Agroforestry Program, Canberra,2002,22.
    167.Theodorou C, Bowen G D. Root morphology, growth and uptake of phosphorus and nitrogen of Pinus radiata families in different soils[J]. Forest ecology and management, 1993,56(1):43-56.
    168.Thornes J B. Vegetation and erosion. Processes and environments[M]. John Wiley and Sons Ltd.,1990.
    169.Tosi M. Root tensile strength relationships and their slope stability implications of three shrub species in the Northern Apennines (Italy)[J]. GEOMORPHOLOGY, 2007,87(4):268-283.
    170.Waldron L J, Dakessian S. Soil reinforcement by roots:calculation of increased soil shear resistance from root properties [J]. Soil science,1981,132(6):427-435.
    171.Wilcox H E, Ganmore-Neumann R. Effects of Temperature on Root Morphology and Ectendomycorrhizal Development in Pinus resinosa Ait[J]. Canadian Journal of Forest Research,1975,5(2):171-175.
    172.Wu T H, Beal P E, Lan C. In situ shear test of soil root systems [J]. Journal Geotechnical Engineering,1988,114 (12):1376-1394.
    173.Wu T H, MC Omber R M, Erb R T, et al. Study of soil-root interaction[J]. Journal of Geotechnical Engineering,1988,114(12):1351-1375.
    174.Wu T H, Watson A J, El-Khouly M A, et al. Soil-root interaction and slope stability [C]//First Asia-Pacific Conference on Ground and Water Bioengineering for Erosion Control and Slope Stabilization, Manila, Philippines, April 1999. Science Publishers, Inc.,2004:183-192.
    175.Zhang C B, Chen L H, Liu Y P, et al. Triaxial compression test of soil-root composites to evaluate influence of roots on soil shear strength[J]. Ecological Engineering,2010, 36(1):19-26.
    176.Zhang C, Chen L, Jiang J, et al. Effects of gauge length and strain rate on the tensile strength of tree roots[J]. Trees,2012,26(5):1577-1584.
    177.Zhang C, Chen L, Liu Y, Ji X, Liu X,2010. Triaxial compression test of soil-root composites to evaluate influence of roots on soil shear strength. Ecol Eng 36,19-26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700