用户名: 密码: 验证码:
晋西黄土区苹果农作物间作系统种间关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农林复合经营作为解决水土流失、恢复生态平衡、提高土地利用率和增加经济效益的最有效的措施和途径之一,在黄土区被广泛的应用。但农林复合系统内部存在着一定程度的种间竞争,对农林复合系统种间关系的研究有助于更深层次地理解生态系统结构和功能的稳定性,探索资源合理和高效的利用方式,为经营种间关系协调的高产、高效和稳定的农林复合系统提供理论依据。为了提出黄土高原区适宜的间作模式和经营管理措施,本文以黄土高原地区典型苹果×农作物间作系统为研究对象,从果树和农作物对光照、土壤水分、土壤养分和等生态因素共同作用的角度,定量分析了系统界面光照、土壤水分、土壤养分的动态变化,量化了果农间作系统光、土壤水分、土壤养分各效应的程度,并对苹果×农作物间作系统的水肥耦合效应和管理措施进行研究,旨在使树木和农作物之间的资源竞争最小化,资源利用最大化,提高果农间作系统的土地利用率和经济效益,为该地区农林复合系统调控和管理技术的研究提供重要的基础理论依据和决策依据。研究结果表明:
     (1)果农间作系统光分布特征及作物光合响应:间作模式的净光合作用效应变化趋势和光效应变化趋势基本一致,均表现为负值,并随着距离树行距离的增加得到逐步的缓解。间作花生比间作大豆能够获得更好的光照条件,但是净光合速率受到果树遮荫的影响反而大于间作大豆,花生相对于大豆更易受到果树光胁迫的影响。
     (2)果农间作系统土壤水分分布特征:时间上,果农间作系统土壤水分在不同物候期变化极为显著。在垂直方向上,两种间作模式和对应单作的土壤含水量均随着土壤深度的增加而递增,呈现出明显的梯度特征;在水平方向上,土壤含水量变化与离果树行的距离有关,随着与树行距离的增加,土壤含水量增加。在当前树龄下,果树和农作物对于土壤水分的主要竞争区域为距离树行1.5m的范围内。就土壤水分的角度,综合比较而言苹果×大豆间作模式要优于苹果×花生间作模式。
     (3)果农间作系统土壤养分分布特征:各间作模式土壤养分的垂直分布特征相似,均随着土层深度的增加而降低,且各土层之间存在着显著差异;水平方向上,两个间作模式的土壤养分含量随着离苹果树行的距离表现为高低高的分布特征,最低值出现在距离果树行1.5m处;两个间作模式各种土壤养分均表现为负效应,种间关系主要表现为竞争,但两个模式对于不同养分元素的竞争程度存在差异。就土壤养分的角度,综合比较而言苹果×花生间作模式要优于苹果×大豆间作模式。
     (4)苹果×花生和苹果×大豆果农间作系统的水肥耦合正交试验表明水分仍是影响黄土区间作系统果树生长和作物产量的最重要因素,肥力次之。
     (5)不同管理措施对间作系统各组分生长的影响差异显著。其中地膜覆盖和根障措施可以有效提高农作物的产量增加农民收入,但是由于根障会在一定程度上对果树产生不利影响,因此从整体上考虑地膜覆盖措施应是苹果树与作物间作田间管理措施的首要选择。
     在果农间作系统的研究中,还需要通过长期定位试验观测,从而更好地实现果农间作系统功能,最大程度地提高生态、经济及社会效益,充分的发挥果农间作系统优势。
Agroforestry management is widely applied in Loess Plateau as one of the effective measures to reduce soil and water loss, restore ecological balance, raise land utilization rate and increase economic benefits. However, interspecific competition exists in agroforestry system to some extent, the study on the relationship among different species in agroforestry system could contribute to intensively understanding the stability of ecosystem structure and function, explore reasonable and efficient utilization ways of resource, provide theoretical basis for managing agroforestry system with high-yield, high-efficiency and stabilization. In order to find suitable intercropping models and managements in Loess Plateau, two typical apple-crop intercropping models were selected as research objects. Combined with effects of fruit trees and crops on light, soil moisture, soil nutrients and other ecological factors, the dynamic changes of light, soil moisture and soil nutrients in the system interface were quantitative analyzed. Coupling effect of water and fertilizer and the different management techniques of apple-crops intercropping systems also been studied. The objectives of the paper are:1) to minimize the competition between trees and crops and maximize resource utilization,2) to provide a theoretical basis for the agroforestry control and management in this region. The results showed that:
     (1) Light distribution characteristics and crop photosynthetic responses in economic tree and crop intercropping system showed that:the change trend of net photosynthesis effect and light effect in the intercropping system were almost the same, both were negative. With the increase distance from tree line, the negative trend gradually eased. Intercropped peanuts can obtain better light conditions than intercropped soybeans, but owing to the influence of tree shading, the net photosynthetic rate of intercropped peanuts had a greater reduction than intercropped soybeans. Compared with soybeans, peanuts were more vulnerable to the effects of fruit light stress.
     (2) Soil moisture distribution in economic tree and crop intercropping system showed that:In temporal, the soil moisture was significant different in different phenological phases. In spatial direction, the soil moisture in both of the intercropping systems and the corresponding monoculture systems was increasing with soil depth, showing a significant gradient characteristics. In horizontal direction, soil moisture content was related to distance from tree line. The closer to tree line, the lower soil moisture was. Within the range1.5m of apple tree line was the main competition area between apple trees and crops for soil moisture in the current tree age. On the perspective of soil moisture, apple-soybean intercropping system was superior to apple-peanut intercropping system.
     (3) Soil nutrient distribution in economic tree and crop intercropping system showed that:In vertical direction, similar patterns were found in both intercropping systems that soil nutrient decreased with increasing soil depth and showed significant differences. In horizontal direction, the soil nutrient content showed the same distribution characteristics of high-low-high with the distance increasing from the tree line. The minimum value was the area1.5m from the apple line. In both intercropping systems, soil nutrient showed negative effect. The relationship between intercropping species mainly performanced as competition. However, for different soil nutrient elements, there were difference between the two intercropping systems. On the perspective of soil nutrient, the results showed that apple-peanut intercropping system was superior to apple-soybean intercropping system.
     (4) The water and fertilizer coupling orthogonal test of apple-peanut and apple-soybean intercropping systems showed that:water was still the most important factor influencing the tree growth and crop yield in the intercropping system in loess region.
     (5) Different management measures had significant differences on the growth of different species. The plastic film mulching and root barrier measures could effectively raise the yield of crops and increase the income of farmers. But, the root barrier would cause adverse effects on apple trees. Therefore, from the overall consideration of the intercropping systems, the plastic film mulching measures should be taken as the primary choice of field management measures in economic tree and crop intercropping systems.
     In the research of economic tree and crop intercropping, long-term experiment observation should be carried to achieve the functions of economic tree and crop intercropping system, thus better realize the function of economic tree and crop intercropping system, improve ecology, economy and social benefits in the maximal degree, and make better use of the advantages of economic tree and crop intercropping system.
引文
1.鲍彪.晋西黄土区苹果—大豆间作系统遮阴模拟对大豆生长的影响[D1.北京:北京林业大学,2013.
    2. 毕华兴,云雷,朱清科.晋西黄土区农林复合系统种间关系研究[M].北京:科学出版社,2011.
    3.晁海.杏棉间作系统小气候效应的研究[D].乌鲁木齐:新疆农业大学,2007.
    4.陈礼清,张维,易建文.坡地果园不同植物篱模式的土壤肥力特征[J].西南农业学报,2012,25(6):2180-2183.
    5.代巍,郭小平,毕华兴,等.晋西地区果树—农作物复合模式的光合特点[J].吉林农业大学学报,2009,31(6):688-693.
    6.戴晓琴.幼龄杨树和小麦-玉米复合系统土壤水分和养分时空变化及作物表现[D].北京:中国农业大学,2006.
    7.丁瑞兴,黄晓澜,周亚军.茶园间植乌桕的气候生态效应[J].应用生态学报,1992,3(2):131-137.
    8.樊巍,李芳东,孟平.河南平原复合农林业研究[M].郑州:黄河水利出版社,2000.
    9.樊小林,李生秀.植物根系的提水作用[J].西北农业大学学报,1997,25(5):75-81.
    10.费世民.农林业系统分类研究综述[J].四川林业科技,1993,14(2):27-32.
    11.冯宗炜.农林业系统结构与功能:黄淮海平原豫北地区研究[M].北京:中国科学技术出版社,1992.
    12.高国治,王明珠,张斌.低丘红壤南酸枣-花生复合系统物种间水肥光竞争的研究——Ⅱ.南酸枣与花生利用光能分析[J].中国生态农业学报,2004,12(2):97-99.
    13.高峻,吴斌,孟平.杏树蒸腾与降水和冠层微气象因子的关系[J].北京林业大学学报,2010,32(3):14-20.
    14.高路博,毕华兴,许华森,等.晋西黄土区幼龄苹果+花生间作地土壤水分的时空分布特征[J].中国水土保持科学,2013,11(4):93-98.
    15.高路博,毕华兴,许华森,等.晋西幼龄苹果×大豆间作的土壤中水分、养分空间分布特征及对大豆的影响[J].中国农学通报,2013,29(24):36-42.
    16.高路博,毕华兴,云雷,等.黄土半干旱区林草复合优化配置与结构调控研究进展[J].水土保持研究,2011,18(3):260-266.
    17.胡宏祥,朱小红,严平,等.农林复合措施保土保肥试验分析[J].水土保持通报,2010,30(3):83-86.
    18.黄宝龙,黄文丁.林农复合经营生态体系的研究[J].生态学杂志,1991,10(3):27-32.
    19.黄闰泉,刘贵开,袁传武,等.三峡库区坡面农林复合结构对土壤养分分布的影响[J].北华大学学报(自然科学版),2000,14(4):342-346.
    20.黄枢,沈国舫.中国造林技术[M].北京:中国林业出版社,1993.
    21.惠淑荣,王娇,张倩,等.辽西北沙地不同土地利用方式对土壤水分的影响[J].浙江林学院学 报,2010,27(4):579-584.
    22.蒋建平.农林业系统工程与农桐间作的结构模式[J].世界林业研究,1990,3(1):32-38.
    23.李洪建,王孟本,柴宝峰.晋西北人工林土壤水分特点与降水关系研究[J].土壤侵蚀与水土保持学报,1998,4(4):61-66.
    24.李杰,彭方仁,黄宝龙.农林复合系统种群互作研究进展[J].世界林业研究,1999,12(5):10-14.
    25.李俊祥,宛志沪.淮北平原杨-麦间作系统的小气候效应与土壤水分变化研究[J].应用生态学报,2002,4(4):390-394.
    26.李唯,倪郁,胡自治,等.植物根系提水作用研究述评[J].西北植物学报,2003,23(6):1056-1062.
    27.李文华,赖世登.中国农林复合经营[M].北京:科学出版社,1994.
    28.李增嘉,张明亮,李凤超,等.粮果间作复合群体地上部生态因子变化动态的研究[J].作物杂志,1994,(2):13-15.
    29.李肇齐.农林系统经济评价方法的探讨[J].世界林业研究,1991,(2):75-80.
    30.廖文超,毕华兴,高路博,等.苹果-大豆间作系统光照分布及其对作物的影响[J].西北林学院学报,2014,29(1):25-29.
    31.廖晓勇,罗承德,陈治谏,等.三峡库区植物篱技术对坡耕地土壤肥力的影响[J].水土保持通报,2006,26(6):1-3.
    32.刘贵波,杨宗利.梨麦间作条件下的小麦光合“午睡”现象观察[J].植物生理学通讯,1991,(5):369.
    33.刘建栋,傅抱璞,祝尔康.林农复合生态系统中油菜光能利用状况的研究[J].中国农业气象,1999,20(2):41-43.
    34.刘兴宇,曾德慧.农林复合系统种间关系研究进展[J].生态学杂志,2007,26(O):1464-1470.
    35.刘秀清.栗茶间作模式对土壤酶活性和土壤养分含量的影响[D].合肥:安徽农业大学,2008.
    36.卢琦,阳含熙,慈龙骏,等.农桐间作系统辐射传输对农作物产量和品质的影响[J].生态学报,1997,17(1):38-46.
    37.卢琦.农用林业系统仿真的理论与方法[M].北京:中国环境科学出版社,1999.
    38.马利强.农林复合系统可持续经营研究[M].北京:北京理工大学出版社,2012.
    39.毛瑢,曾德慧.农林复合系统植物竞争研究进展[J].中国生态农业学报,2009,17(2):379-386.
    40.孟平,张劲松,樊巍等.农林复合生态系统研究[M].北京:科学出版社,2004.
    41.孟平,张劲松,樊巍.中国复合农林业研究[M].北京:中国林业出版社,2003.
    42.孟庆岩,王兆骞,姜曙千.我国热带地区胶—茶—鸡农林复合系统物质循环研究[J].自然资源学报,2000,15(1):61-65.
    43.纳磊.晋西黄土区嵌套流域场降雨径流过程及其模拟研究[D].北京:北京林业大学,2008.
    44.彭奎,欧阳华,朱波.农林复合生态系统氮素平衡及其评价——以中国科学院盐亭农业生态试验站为例[J].长江流域资源与环境,2004,13(3):252-257.
    45.彭晓邦,蔡靖,姜在民,等.渭北黄土区农林复合系统光能竞争与生产力[J].应用生态学报,2008,19(11):2414-2419.
    46.彭晓邦,张硕新.商洛低山丘陵区农林复合生态系统光能竞争与生产力[J].生态学报,2012,32(9):2692-2698.
    47.彭晓邦,仲崇高,沈平,等.玉米大豆对农林复合系统小气候的光合响应[J].生态学报,2010,30(3):710-716.
    48.彭晓邦.渭北黄土区农林复合系统生理生态特性及生产力研究[D].杨凌:西北农林科技大学,2009.
    49.平晓燕,王铁梅,卢欣石.农林复合系统固碳潜力研究进展[J].植物生态学报,2013,37(1):80-92.
    50.秦娟,上官周平.植物之间互作效应及其生理机制[J].干旱地区农业研究,2005,23(3):225-230.
    51.裘福庚,方嘉兴.农林复合经营系统及其实践[J].林业科学研究,1996,9(03):318-322.
    52.史晓丽,郭小平,毕华兴,等.晋西果农间作光竞争及产量研究[J].北京林业大学学报,2009,31(S2):115-118.
    53.宋兆民,孟平.中国农林业的结构与模式[J].世界林业研究,1993,(5):77-82.
    54.宋兆民.黄淮海平原综合防护林体系生态经济效益的研究[M].北京:北京农业大学出版社,1990.
    55.孙迪,关德新,袁凤辉,等.辽西农林复合系统中杨树水分耗散规律[J].北京林业大学学报,2010,32(4):114-120.
    56.孙辉,唐亚,何永华,等.等高固氮植物篱模式对坡耕地土壤养分的影响[J].中国生态农业学报,2002,10(2):83-86.
    57.孙尚伟,夏新莉,刘晓东,等.修枝对复合农林系统内作物光合特性及生长的影响[J].生态学报,2008,28(7):3185-3 192.
    58.孙述涛.林农复合系统分类及命名[J].南京林业大学学报,1995,19(4):75-79.
    59.孙增富,孔令刚,韩新英.农林复合杨树土壤养分的根际效应[J].中国水土保持科学,2013,11(3):91-95.
    60.唐秀梅,钟瑞春,揭红科,等.间作遮荫对花生光合作用及叶绿素荧光特性的影响[J].西南农业学报,2011,24(5):1703-1707.
    61.田阳,云雷,毕华兴,等.晋西黄土区果农间作光竞争研究[J].水土保持研究,2013,20(4):288-292.
    62.王德利.关于生态场的几点评述[J].应用生态学报,2000,11(3):472-476.
    63.王海明,李贤伟,陈治谏,等.三峡库区坡耕地粮经果复合垄作对土壤侵蚀与养分流失的影响[J].水土保持学报,2010,24(3):1-4.
    64.王继永,王文全,刘勇.林药间作系统中药用植物光合生理适应性规律研究[J].林业科学研究,2003,16(2):129-134.
    65.王亮,郭小平,毕华兴,等.晋西地区不同树龄富士苹果树群体冠层结构特征研究[J].西北农林科技大学学报(自然科学版),2010,38(11):115-120.
    66.王尚明,吴学仕,陈孝,等.农林复合经营研究—-菠萝与桉树轮作对林木生长和土壤的影响[J].热带亚热带土壤科学,1997,6(1):1-8.
    67.王忠林.混农林体系对作物光合效率的影响研究[J].西北林学院学报,1995,10(S1):84-90.
    68.吴刚,冯宗炜,秦宜哲.果粮间作生态系统功能特征研究[J].植物生态学报,1994,18(03):243-252.
    69.吴钦孝,杨文治.黄土高原植被建设与持续发展[M].北京:科学出版社,1998.
    70.肖斌.淳化泥河沟流域农林复合生态经济系统特性评价[J].西北林学院学报,1998,13(2):43-47.
    71.熊文愈.生态系统工程与现代混农林业生产体系[J].生态学杂志,1991,10(1):21-26.
    72.徐佳佳,张建军,王清玉,等.油松和侧柏的光合蒸腾特性及其与环境因子的关系[J].东北林业大学学报,2011,39(7):15-18.
    73.许大全,沈允钢.植物光合作用效率的日变化(英)[J].植物生理学报,1997,23(4):410-416.
    74.许大全.光合作用的“午睡”现象[J].植物生理学通讯,1997,(6):466-467.
    75.许大全.光合作用效率[M].上海:上海科学技术出版社,2002.
    76.许大全.叶绿素含量的测定及其应用中的几个问题[J].植物生理学通讯,2009,45(9):896-898.
    77.许峰,蔡强国,吴淑安.坡地农林复合系统土壤养分过程研究进展[J].水土保持学报,2000,14(1):82-87.
    78.许华森,云雷,毕华兴,等.刺槐+苜蓿复合系统土壤养分分布特征及边界影响域——以晋西黄土区为例[J].中国水土保持科学,2011,9(5):48-53.
    79.阎树文.农田防护林学[M]:北京:中国林业出版社,1992.
    80.杨文斌,郑兵.干旱、半干旱区林农(草)复合原理及模式[M].北京:中国林业出版社,2011.
    81.叶子飘.光合作用对光和CO2响应模型的研究进展[J].植物生态学报,2010,34(6):727-740.
    82.易扬,信忠保,覃云斌,等.生态植被建设对黄土高原农林复合流域景观格局的影响[J].生态学报,2013,33(19):6277-6286.
    83.云雷,毕华兴,马雯静,等.晋西黄土区果农间作土壤养分空间分布[J].农业工程学报,2010,26(S1):292-299.
    84.云雷,毕华兴,任怡,等.晋西黄土区核桃花生复合土壤水分效应研究[J].水土保持通报,2009,29(5):61-64.
    85.云雷,毕华兴,任怡,等.晋西黄土区核桃玉米间作界面土壤水分变化规律及其对玉米产量的影响[J].西北林学院学报,2010,25(1):47-51.
    86.云雷,毕华兴,田晓玲,等.晋西黄土区果农间作的种间主要竞争关系及土地生产力[J].应用生态学报,2011,22(5):1225-1232.
    87.云雷.晋西黄土区果农间作系统种间关系研究[D].北京:北京林业大学,2011.
    88.曾觉民.西南山区的农用林业类型及其评价[J].生态经济,1993,(6):30-38.
    89.张斌,张桃林.低丘红壤区农林间作系统的水分生态特征及生产力[J].生态学杂志,1997,16(04):1-5.
    90.张桂国,董树亭,杨在宾.苜蓿+玉米间作系统产量表现及其种间竞争力的评定[J].草业学报,2011,20(1):22-30.
    91.张劲松,孟平,宋兆民,等.我国平原农区复合农林业小气候效应研究概述[J].中国农业气象,2004,25(3):52-55.
    92.张劲松,孟平,辛学兵,等.太行山低山丘陵区苹果生姜间作系统综合效应研究[J].林业科学,2001,37(2):74-78.
    93.张劲松,孟平,尹昌君,等.农林复合系统的水分生态特征研究述评[J].世界林业研究,2003,16(1):10-14.
    94.张立宇.核(桃)农间作系统小气候效应的研究[[)].乌鲁木齐:新疆农业大学,2009.
    95.张仁和,薛吉全,浦军,等.干旱胁迫对玉米苗期植株生长和光合特性的影响[J].作物学报,2011,37(3):521-528.
    96.赵英,张斌,王明珠.农林复合系统中物种间水肥光竞争机理分析与评价[J].生态学报,2006,26(6):1792-1801.
    97.赵英,张斌.低丘红壤区农林间作系统水分利用竞争性评价[J].土壤,2012,44(4):671-679.
    98.赵忠宝.徐淮平原农林复合系统小气候效益研究[D].南京:南京林业大学,2006.
    99.周生贤.再造秀美山川的壮举:六大林业重点工程纪实 .北京:中国林业出版社,2002.
    100.朱清科,沈应柏,朱金兆.黄土区农林复合系统分类体系研究[J].北京林业大学学报,1999,21(3):39-43.
    101.朱清科,肖斌.淳化泥河沟流域农林复合生态经济系统优势分析[J].西北林学院学报,1994,9(1):52-57.
    102.朱清科,朱金兆.黄土塬面农林复合系统的生态位特征[J].中国水土保持科学,2003,1(1):49-52.
    103.竺肇华.一门新兴学科——农用林业[J].世界林业研究,1988,(01):77-83.
    104. Armas C, Padilla F M, Pugnaire F I, et al. Hydraulic lift and tolerance to salinity of semiarid species:consequences for species interactions[J]. Oecologia,2010,162(1):11-21.
    105.Aronson J, Ovalle C, Avendafio J, et al. Agroforestry tree selection in central Chile:biological nitrogen fixation and early plant growth in six dryland species[J]. Agroforestry Systems,2002, 56(2):155-166.
    106.Bainard L D, Koch A M, Gordon A M, et al. Influence of trees on the spatial structure of arbuscular mycorrhizal communities in a temperate tree-based intercropping system[J]. Agriculture, Ecosystems & Environment,2011,144(1):13-20.
    107.Bayala J, Heng L K, van Noordwijk M, et al. Hydraulic redistribution study in two native tree species of agroforestry parklands of West African dry savanna[J]. acta oecologica,2008, 34(3):370-378.
    108.Bazzaz F A. Plants in changing environments:linking physiological, population, and community ecology[M]. Cambridge University Press,1996.
    109.Bedoussac L, Journet E, Hauggaard-Nielsen H, et al. Intercropping, an application of ecological principles to improve nitrogen use efficiency in organic farming systems[J]. Organic Farming, prototype for sustainable agricultures?,2011.
    110.Bene J G, Beall H W, Cote A. Trees, food, and people:land management in the tropics[M]. IDRC, 1977.
    111.Betencourt E, Duputel M, Colomb B, et al. Intercropping promotes the ability of durum wheat and chickpea to increase rhizosphere phosphorus availability in a low P soil[J]. Soil Biology and Biochemistry,2012,46:181-190.
    112.Biel C, Molina A, Aranda X, et al. The effects of rainfall partitioning and evapotranspiration on the temporal and spatial variation of soil water content in a Mediterranean agroforestry system[C], 2012.
    113.Brandle J R, Hodges L, Zhou X H. Windbreaks in North American agricultural systems[J]. Agroforestry Systems,2004,61-62(1-3):65-78.
    114. Burgess S S, Adams M A, Turner N C, et al. Tree roots:conduits for deep recharge of soil water[J]. Oecologia,2001,126(2):158-165.
    115.Caldwell M M, Dawson T E, Richards J H. Hydraulic lift:consequences of water efflux from the roots of plants[J]. Oecologia,1998,113(2):151-161.
    116.Cannell M, Van Noordwijk M, Ong C K. The central agroforestry hypothesis:the trees must acquire resources that the crop would not otherwise acquire[J]. Agroforestry systems,1996, 34(1):27-31.
    117.Danso S, Bowen G D, Sanginga N. Biological nitrogen fixation in trees in agro-ecosystems[J]. Plant and Soil,1992,141(1-2):177-196.
    118. Dawson T E. Hydraulic lift and water use by plants:implications for water balance, performance and plant-plant interactions[J]. Oecologia,1993,95(4):565-574.
    119.de Aguiar M I, Maia S M F, Da Silva Xavier F A, et al. Sediment, nutrient and water losses by water erosion under agroforestry systems in the semi-arid region in northeastern Brazil[J]. Agroforestry systems,2010,79(3):277-289.
    120. Deans J D, Lindley D K, Munro R C. Deep beneath the trees in Senegal.In:Annual Report of the Institute of Terrestrial Ecology 1993-1994, NERC, Swindon, UK,1994,12-14.
    121.Domec J C, King J S, Noormets A, et al. Hydraulic redistribution of soil water by roots affects whole-stand evapotranspiration and net ecosystem carbon exchange[J]. New Phytologist,2010, 187(1):171-183.
    122.Droppelmann K J, Ephrath J E, Berliner P R. Tree/crop complementarity in an arid zone runoff agroforestry system in northern Kenya[J]. Agroforestry Systems,2000,50(1):1-16.
    123.Emerman S H, Dawson T E. Hydraulic lift and its influence on the water content of the rhizosphere: an example from sugar maple, Acer saccharum[J]. Oecologia,1996a,108(2):273-278.
    124. Fernandez M E, Gyenge J, Licata J, et al. Belowground interactions for water between trees and grasses in a temperate semiarid agroforestry system[J]. Agroforestry systems,2008,74(2):185-197.
    125.Filella I, Penuelas J. Indications of hydraulic lift by Pinus halepensis and its effects on the water relations of neighbour shrubs[J]. Biologia Plantarum,2003,47(2):209-214.
    126. Friday J B, Fownes J H. Competition for light between hedgerows and maize in an alley cropping system in Hawaii, USA[J]. Agroforestry Systems,2002,55(2):125-137.
    127. Gao L, Xu H, Bi H, et al. Intercropping Competition between Apple Trees and Crops in Agroforestry Systems on the Loess Plateau of China[J]. PLOS ONE,2013,8(7):e70739.
    128.Gillespie A R, Jose S, Mengel D B, et al. Defining competition vectors in a temperate alley cropping system in the midwestern USA:1. Production physiology[J]. Agroforestry systems,2000, 48(1):25-40.
    129.Hirota I, Sakuratani T, Sato T, et al. A split-root apparatus for examining the effects of hydraulic lift by trees on the water status of neighbouring crops[J]. Agroforestry Systems,2004,60(2):181-187.
    130.Horton J L, Hart S C. Hydraulic lift:a potentially important ecosystem process[J]. Trends in Ecology & Evolution,1998,13(6):232-235.
    131.Imo M, Timmer V R. Vector competition analysis of a Leucaena-maize alley cropping system in western Kenya[J]. Forest ecology and management,2000,126(2):255-268.
    132. Jose S, Gillespie A R, Pallardy S G. Interspecific interactions in temperate agroforestry [J]. Agroforestry Systems,2004,61:237-255.
    133. Jose S, Gillespie A R, Seifert J R, et al. Defining competition vectors in a temperate alley cropping system in the midwestern USA:2. Competition for water[J]. Agroforestry Systems,2000, 48(1):41-59.
    134. Jose S, Williams R, Zamora D. Belowground ecological interactions in mixed-species forest plantations[J]. Forest ecology and management,2006,233(2):231-239.
    135.Kass D C, Sylvester-Bradley R, Nygren P. The role of nitrogen fixation and nutriesnt supply in some agroforestry systems of the Americas[J]. Soil Biology and Biochemistry,1997,29(5):775-785.
    136.Kowalchuk T E, Jong E D. Shelterbelts and their effect on crop yield[J]. Canadian journal of soil science,1995,75(4):543-550.
    137.Leihner D E, Ernst-Schaeben R, Akonde T P, et al. Alley cropping on an Ultisol in subhumid Benin. Part 2:Changes in crop physiology and tree crop competition[J]. Agroforestry Systems,1996, 34(1):13-25.
    138.Liu T, Cheng Z, Meng H, et al. Growth, yield and quality of spring tomato and physicochemical properties of medium in a tomato/garlic intercropping system under plastic tunnel organic medium cultivation[J]. Scientia Horticulturae,2014,170:159-168.
    139.Lundgren B O. ICRAF into 1990s[J]. Agroforestry Today,1990,2(4):14-16.
    140.Matlack G R. Microenvironment variation within and among forest edge sites in the eastern United States[J]. Biological conservation,1993,66(3):185-194.
    141.Mayus M, Van Keulen H, Stroosnijder L. A model of tree-crop competition for windbreak systems in the Sahel:description and evaluation[J]. Agroforestry systems,1998,43(1-3):183-201.
    142.Mcadam J H. An evaluation of tree protection methods against Scottish Blackface sheep in an upland agroforestry system[J]. Forest Ecology and Management,1991,45(1):119-125.
    143.Mcintyre B D, Riha S J, Ong C K. Competition for water in a hedge-intercrop system[J]. Field Crops Research,1997,52(1):151-160.
    144. Miller A W, Pallardy S G Resource competition across the crop-tree interface in a maize-silver maple temperate alley cropping stand in Missouri[J]. Agroforestry systems,2001,53(3):247-259.
    145.Munroe J, Isaac M. N2-fixing trees and the transfer of fixed-N for sustainable agroforestry:a review[J]. Agronomy for Sustainable Development,2014,34(2):417-427.
    146.Nair P K R. State-of-the-art of agroforestry systems[J]. Forest Ecology and Management,1991, 45(1):5-29.
    147.Nair P K R. Classification of agroforestry systems[J]. Agroforestry systems,1985,3(2):97-128.
    148.Nair P K R. Agroforestry systems in the tropics[M]. Dordrecht:Kluwer Academic Publishers, 1989.
    149.Nair P K R. Climate Change Mitigation:A Low-Hanging Fruit of Agroforestry[J]. Agroforestry-The Future of Global Land Use,2012:31-67.
    150. Newman S M, Bennett K, Wu Y. Performance of maize, beans and ginger as intercrops in Paulownia plantations in China[J]. Agroforestry Systems,1997,39(1):23-30.
    151.Nissen T M, Midmore D J, Cabrera M L. Aboveground and belowground competition between intercropped cabbage and young Eucalyptus torelliana[J]. Agroforestry Systems,1999, 46(1):83-93.
    152. Odhiambo H O, Ong C K, Deans J D, et al. Roots, soil water and crop yield:tree crop interactions in a semi-arid agroforestry system in Kenya[J]. Plant and Soil,2001,235(2):221-233.
    153. Ong C K, Black C R, Wallace J S, et al. Productivity, microclimate and water use in Grevillea robusta-based agroforestry systems on hillslopes in semi-arid Kenya[J]. Agriculture, ecosystems & environment,2000,80(1):121-141.
    154.Prieto I, Martinez-Tilleria K, Martinez-Manchego L, et al. Hydraulic lift through transpiration suppression in shrubs from two arid ecosystems:patterns and control mechanisms[JJ. Oecologia, 2010,163(4):855-865.
    155.Prieto I, Padilla F M, Armas C, et al. The role of hydraulic lift on seedling establishment under a nurse plant species in a semi-arid environment[J]. Perspectives in Plant Ecology, Evolution and Systematics,2011,13(3):181-187.
    156.Prinsley R T. The role of trees in sustainable agriculture—an overview[J]. Agroforestry Systems, 1992,20(1-2):87-115.
    157. Rao M R, Nair P, Ong C K. Biophysical interactions in tropical agroforestry systems:Springer, 1998:3-50.
    158. Reid R, Wilson G Agroforestry in Australia and New Zealand[M]. Goddard and Dobson,1985.
    159. Richards J H, Caldwell M M. Hydraulic lift:substantial nocturnal water transport between soil layers by Artemisia tridentata roots[J]. Oecologia,1987,73(4):486-489.
    160.Rowe E C, Hairiah K, Giller K E, et al. Testing the safety-net role of hedgerow tree roots by 15N placement at different soil depths[M]//Agroforestry for Sustainable Land-Use Fundamental Research and Modelling with Emphasis on Temperate and Mediterranean Applications. Springer Netherlands,1999.
    161.Sankar C R, Swamy S M. Influence of light and temperature on leaf area index,chlorophyll content,and yield of ginger[J]. Journal of Mahrash University,1988,13(2):216-217.
    162.Schroth G A review of belowground interactions in agroforestry, focusing on mechanisms and management options[J]. Agroforestey Systems,1999,43:5-34.
    163.Shukla A, Kumar A, Jha A, et al. Cumulative effects of tree-based intercropping on arbuscular mycorrhizal fungi[J]. Biology and Fertility of Soils,2012,48(8):899-909.
    164. Singh R P, Saharan N, Ong C K. Above and below ground interactions in alley-cropping in semi-arid India[J]. Agroforestry systems,1989,9(3):259-274.
    165. Smith D M, Jarvis P G Physiological and environmental control of transpiration by trees in windbreaks[J]. Forest Ecology and Management,1998,105(1):159-173.
    166.Soto-Pinto L, Perfecto I, Castillo-Hernandez J, et al. Shade effect on coffee production at the northern Tzeltal zone of the state of Chiapas, Mexico[J]. Agriculture, Ecosystems & Environment, 2000,80(1):61-69.
    167.Ssekabembe C K, Henderlong P R, Larson M. Soil moisture relations at the tree/crop interface in black locust alleys[J]. Agroforestry systems,1994,25(2):135-140.
    168. Sudmeyer R A, Speijers J. Influence of windbreak orientation, shade and rainfall interception on wheat and lupin growth in the absence of below-ground competition[J]. Agroforestry systems,2007, 71(3):201-214.
    169. Sun S J, Meng P, Zhang J S, et al. Hydraulic lift by Juglans regia relates to nutrient status in the intercropped shallow-root crop plant[J]. Plant and Soil,2014,374(1-2):629-641.
    170. Thevathasan N V, Gordon A M, Bradley R, et al. Agroforestry research and development in Canada: the way forward[M]//Agroforestry-The Future of Global Land Use. Springer Netherlands,2012: 247-283.
    171. Thevathasan N V, Gordon A M, Simpson J A, et al. Biophysical and ecological interactions in a temperate tree-based intercropping system[J]. Journal of crop improvement,2004, 12(1-2):339-363.
    172. Thomas J, Kumar B M, Wahid P A, et al. Root competition for phosphorus between ginger and Ailanthus triphysa in Kerala, India[J]. Agroforestry systems,1998,41(3):293-305.
    173. Verchot L V, Van Noordwijk M, Kandji S, et al. Climate change:linking adaptation and mitigation through agroforestry[J]. Mitigation and Adaptation Strategies for Global Change,2007, 12(5):901-918.
    174.Vergara N T. Integral agro-forestry:a potential strategy for stabilizing shifting cultivation and sustaining productivity of the natural environment[M]. East-West Center,1981.
    175. Wanvestraut R H, Jose S, Nair P R, et al. Competition for water in a pecan (Carya illinoensis K. Koch)-cotton (Gossypium hirsutum L.) alley cropping system in the southern United States[J]. Agroforestry systems,2004,60(2):167-179.
    176. Young A. Agroforestry for soil management[M]. CAB international,1997.
    177.Yun L, Bi H, Gao L, et al. Soil Moisture and Soil Nutrient Content in Walnut-Crop Intercropping Systems in the Loess Plateau of China[J]. Arid land research and management,2012, 26(4):285-296.
    178.Zamora D S, Jose S, Nair P, et al. Interspecific competition in a pecan-cotton alleycropping system in the southern United States:production physiology [J]. Botany,2006,84(11):1686-1694.
    179.Zamora D S,Jose S,Nair P K R,et al. Interspecific competition in a pecan-cotton alley-cropping system in the soutern United States:Is light the limiting factor?[M]//Jose S, Gordon A.Towards Agroforestry Design:an Ecological Aproach. New York:Springer-Verlag,2008,4:81-95.
    180.Zinkhan F C, Mercer D E. An assessment of agroforestry systems in the southern USA[J]. Agroforestry Systems,1997,35(3):303-321.
    181.Ziyomo C, Albrecht K A, Baker J M, et al. Corn performance under managed drought stress and in a kura clover living mulch intercropping system[J]. Agronomy Journal,2013,105(3):579-586.
    182.Zulberti E. Agroforestry training and education at ICRAF:Accomplishments and challenges[J]. Agroforestry systems,1987,5(3):353-374.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700