用户名: 密码: 验证码:
高精度永磁直线伺服电机法向力波动分析与抑制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直线电机直接驱动技术极大地提高了伺服系统的快速反应能力、运动精度和高速进给能力,已成为现代高档数控机床最具代表性的先进技术之一。单边平板型有铁心伺服用永磁直线同步电机(PMLSM)由于具有推力大,功率密度高的特点,是目前应用最为广泛的一种直线电机,但由于齿槽效应、端部效应及磁场谐波的影响,电机在运行过程中初、次级之间存在较大的法向力波动,法向力的波动引起的摩擦力摄动和机床振动极大地影响了机床的加工精度。本文针对平板型有铁心PMLSM法向力波动的产生机理及削弱方法进行了系统的研究,主要内容如下:
     研究PMLSM法向力波动与磁场各次谐波之间的关系以及法向力与推力之间相关性。在分析永磁体磁动势谐波、电枢反应磁动势谐波以及气隙磁导谐波的基础上,根据Maxwell Stress Tensor法和积分法推导初级端齿无限长PMLSM法向力波动的解析表达式,揭示法向力波动的规律。接着从气隙磁场储能的角度,通过解析法分析法向力与切向电磁推力的相关性,综合考虑削弱齿槽效应、端部效应以及负载扰动引起的法向力波动的方法对切向电磁推力的影响。
     研究电机参数对法向力波动的影响规律。齿顶宽度、极弧系数对法向力波动有直接的关系,首先解析分析齿顶宽度、极弧系数对齿槽效应引起的法向力波动(简称为齿槽法向力波动)幅值和次数的影响规律;然后采用有限元法验证不同齿顶宽度和不同极弧系数下的齿槽法向力波动情况以及对推力性能的影响程度,为高性能直线电机优化设计提供理论指导。
     研究永磁磁极三段错位削弱齿槽法向力波动的方法。首先分析电机初级齿顶开辅助槽和不等极弧系数组合削弱推力波动的方法对削弱法向力波动的规律,进而分析这两种方法的局限性;在此基础上,根据相位反相抵消的原理,提出永磁磁极三段错位法削弱甚至抵消主要次谐波齿槽法向力波动,同时避免电机产生横向俯仰运动,并采用有限元分析法验证该方法的有效性。
     研究分相电流补偿控制策略削弱端部效应引起法向力波动(简称为端部法向力波动)的方法。端部法向力波动是法向力波动的主要分量,根据分数槽绕组永磁直线伺服电机三相绕组的特殊分布规律,提出了抑制端部法向力波动的分相电流补偿控制策略,在分相电流补偿控制时,遵循推力性能最优、法向力波动最小的原则;接着研究了端部法向力波动的补偿模型建模方法;最后采用Ansoft系列软件Simplorer和Maxwell联合仿真验证该补偿控制策略的有效性。
     设计永磁直线伺服电动机样机以及法向力测试系统验证理论和方法的正确性。针对初级端齿无限长12槽8极整体磁极及三段错位磁极PMLSM的法向力进行稳态测量,验证磁极三段错位法削弱齿槽法向力波动的有效性;针对分相电流补偿控制的12槽11极PMLSM进行法向力测试,验证分相电流补偿控制策略削弱端部法向力波动的可行性和有效性。
Linear motor direct drive technology greatly improves the rapid response capability,motion precision and high-speed feed capability of the servo system, which has become one ofthe most representative advanced technology of modern top-grade CNC machine tools. Thesingle-side flat-plate core servo-used permanent magnet linear synchronous motor (PMLSM)with the characteristics of big thrust, high power density, has been the most widely used linearmotor at present. However, due to the impact of slot effect, end effect and magnetic fieldharmonics, there is the large normal force ripple between the mover and stator when the motoris operating, and the friction force perturbation and machine tool vibration caused by thenormal force ripple will influence the accuracy of machine tool greatly. The producingmechanism and weakening methods of the normal force ripple in flat-plate core PMLSM aresystematically studied in this dissertation. Major works are listed as follows:
     The relation of the PMLSM normal force ripple and magnetic field harmonics and therelativity of the normal force and thrust force are studied. Based on the analysis of thepermanent magnet MMF harmonics, armature MMF harmonics and air gap permeanceharmonics, the normal force ripple analytical expression of the primary end tooth infinitelylong PMLSM can be derived using Maxwell Stress Tensor method and integration method toreveal the law of the normal force ripple. From the perspective of air gap magnetic fieldenergy, the relativity of the normal force and tangential electromagnetic thrust is analyzedusing analytical method, and the influence of the weakening methods of the normal forceripple caused by slot effect, end effect and load disturbance on the tangential electromagneticthrust is comprehensively considered.
     The effect law of motor parameters on the normal force ripple is study. The normal forceripple is directly related with the tooth tip width and pole arc coefficient. Firstly, the effect lawof the tooth tip width and pole arc coefficient on the amplitude and time of normal force ripplecaused by slot effect (cogging normal force ripple for short) is analytically analyzed. Then thefinite element method (FEM) is adopted to verify the cogging normal force ripple conditionand its influence degree on the thrust performance under different tooth tip widths and pole arccoefficients, which provides theoretical direction for the optimal design of high-performance linear motor.
     The method of three-section permanent magnets staggered weakening normal force rippleis studied. The law that the method of motor primary tooth tip auxiliary slotting combined withunequal pole arc coefficient to weaken the thrust ripple weakens the normal force ripple isanalyzed, and then the limitation of the two methods is analyzed. On this basis, three-sectionpermanent magnets staggered method is proposed to weaken and even cancel the mainsubharmonic cogging normal force ripple, and to simultaneously avoid the motor producingtransverse pitch motion according to the reversed phase cancellation principle. The FEM isadopted to verify the validity of this method.
     The method of the phase separation current compensation control strategy weakening thenormal force ripple caused by end effect (end normal force ripple for short) is studied. The endnormal force ripple is the main component of the normal force ripple. Based on the specialthree-phase winding distribution law of fractional slot winding permanent magnet linear servomotor, the phase separation current compensation control strategy is proposed to restrain theend normal force ripple. The principle of thrust performance optimization and normal forceripple minimum is followed when the phase separation current compensation control isadopted. Then the compensation model established method of the end normal force ripple isstudied. Finally, Ansoft series software Simplorer and Maxwell are both adopted to simulateand to verify the validity of this compensation control strategy.
     The permanent magnet linear servo motor prototype and normal force test system aredesigned to verify the correctness of theory and method. The normal force static measurementof the primary end tooth infinitely long12-slot8-pole whole magnets or three-sectionstaggered magnets PMLSM is carried out to verify the validity of three-section magnetsstaggered method weakening the cogging normal force ripple. The normal force measurementof12-slot11-pole PMLSM adopting the phase separation current compensation control iscarried out to verify the feasibility and validity of the phase separation current compensationcontrol strategy weakening the end normal force ripple.
引文
[1]蒋良华.直线电机关键技术问题及其解决办法探讨[J].装备制造技术,2008,(4):37-39.
    [2] Chow J h, Zhong Z W, Lin W. A study of thermal deformation in the carriage of a permanent magnetdirect drive linear motor stage[J].Applied Thermal Engineering,2012,48(15):89-96.
    [3] Zahedi A, Movahhedy M.R. Thermo-machanocal modeling of high speed spindles[J]. Scientia Iranica B,2012,19(2):282-293.
    [4] Chena D, Fan J, Zhang F. Dynamic and static characteristics of a hydrostatic spindle for machinetools[J]. Journal of Manufacturing Systems,2012,31(1):26-33.
    [5] Rubio W M, Paulino G H, E. Silva C N. Tailoring vibration mode shapes using topology optimizationand functionally graded material concepts[J]. Smart Materials and Structures,2011,20(2):1-9.
    [6]余晓芬,程伶俐,胡佳文.大行程纳米二维工作台的动态优化设计[J].电子测量与仪器学报,2010,24(3):289-293.
    [7] Lei J, Luo X, Chen X. Modeling and analysis of a3-DOF Lorentz-force-driven planar motion stage fornanopositioning[J]. Mechatronics,2010,20(5):553-565.
    [8] Le H L, Gong M D, Lin Z M. Motion profile design to reduce residual vibration of high-speedpositioning stages[J]. Mechatronics,2009,14(2):264-269.
    [9]徐昌语,刘勇,张建明.直线电机在超精密加工技术中的应用和发展[J].航空精密制造技术,2009,45(4):13-16.
    [10] Torregrossa D, Peyraut B, Fahimi B. Multiphysics finite-element modeling for vibration and acousticanalysis of permanent magnet synchronous machine[J]. IEEE Transactions on Energy Conversion,2011,26(2):490-500.
    [11] Kim M S, Chung S C. A systematic approach to design high performance feed drive systems[J].International Journal of Machine Tools&Manufacture,2005,45(12/13):1421-1435.
    [12]徐月同.高速精密永磁直线同步电机进给系统及控制技术研究[D].杭州:浙江大学,2004.
    [13]赵国平,吴红星,张立华等.永磁同步直线电机直接驱动控制技术[J].微电机,2013,46(8):72-78.
    [14]刘强,李冬茹.国产数控机床及其关键技术发展现状及展望[J].航空制造技术,2010,(10):26-30.
    [15]李小平,李志科,陈学东等.纳米精度运动台电机伺服参数校准方法研究[J].中国电机工程学报,2009,29(21):87-92.
    [16] Li H, Zhou Y, Shi Y. Motion control for wafer stage of0.1μm lithography[C]. ICIT, Shenzhen, China,2007:338-342.
    [17]夏加宽,王成元,李皞东等.高精度数控机床用直线电机端部效应分析及神经网络补偿技术研究[J].中国电机工程学报,2003,23(8):100-104.
    [18]戴魏,余海涛,胡敏强.基于虚功法的直线同步电机磁场力计算[J].中国电机工程学报,2006,26(22):110-114.
    [19]胡业发,周祖德,王晓光.磁力轴承转子系统的力耦合和力矩耦合分析[J].机械工程学报,2002,38(12):25-28.
    [20]王成元,夏加宽,杨俊友等.电机现代控制技术[M].北京:机械工业出版社,2006.
    [21]陆华才,江明,郭兴众等.永磁直线同步电机推力波动约束[J].电工技术学报,2012,27(3),128-132.
    [22]林利红,陈小安,周伟.永磁交流伺服精密驱动系统机电耦合振动特性分析[J].冲击与振动,2010,29(4):48-53.
    [23] Sass L, Mcphee J. A comparison of different methods for modelling electromechanical multibodysystems[J]. Multibody System Dynamics,2004,12(3):209-250.
    [24] Shintaro Y, Shinji N, Kazuhiro I. Structual optimization of mechanical structures targeting vibrationcharacteristics based on the level set method[J]. Journal of Environment and Engineering,2010,5(1):60-71.
    [25]郑光远,肖曙红,陈署泉.永磁同步直线电机分数槽绕组谐波分析和齿槽力研究[J].机械与电子,2009,(8):65-67.
    [26]章达众,廖有用,李国平等.永磁同步直线电动机磁阻力最小化研究[J].微电机,2013,41(10):20-22.
    [27]吴红伟,杨家军,程远雄.新型永磁同步直线电机的有限元分析和实验研究[J].机电工程,2013,30(5):541-544.
    [28]杨玉波,王秀和,陈谢杰.基于不等槽口宽配合的永磁电动机齿槽转矩削弱方法[J].电工技术学报,2005,20(3):40-44.
    [29]彭兵,夏加宽,董婷等.不等齿宽提高多槽少极隔齿隔相绕组永磁电机转矩的方法[J].中国电机工程学报,2012,32(S1):33-37.
    [30]刘伟,陈丽香,唐任远.定子齿顶开辅助槽削弱永磁电机齿槽转矩的方法[J].电气技术,2009,(8):51-53.
    [31]潘开林,傅建中,陈子辰.永磁直线同步电机的磁阻力分析及其优化[J].浙江大学学报,2005,39(10):1627-1632.
    [32] Nyambayar B, Hee S Y, Minh T P. Shape optimal design of a9-pole10-slot PMLSM for detent forcereduction using adaptive response surface method[J]. IEEE Transactions on Magnetics,2009,45(10):4562-4565.
    [33] Zhu Y W, Lee S G, Chung K S. Investigation of auxiliary poles design criteria on reduction of endeffect of detent force for PMLSM[J]. IEEE Transactions on Magnetics,2009,45(6):2863-2866.
    [34] Aarsh H I, Sadegh V Z. Design optimization of a linear permanent magnet synchronous motor for extralow force pulsations[J]. Energy Conversion and Management,2007,48(2):443-449.
    [35]陈幼平,张颖,艾武等.永磁直线同步电动机磁场和推力波动分析及实验研究[J].微电机,2007,40(8):4-8.
    [36]杨玉波,王秀和,丁婷婷.极弧系数组合优化的永磁电机齿槽转矩削弱方法[J].中国电机工程学报,2007,27(6):7-11.
    [37]杨玉波,王秀和,张鑫.磁极偏移削弱永磁电机齿槽转矩方法[J].电工技术学报,2006,21(10):22-26.
    [38]毛军红,罗俊航,姜强等.一种永磁直线电机永磁体阵列设计[J].西安交通大学学报,2007,41(3):353-357.
    [39] Masyia I, Kenji S. An approach to a suitable stator length for minimizing the detent force of permanentmagnet linear synchronous motors[J]. IEEE Transactions on Magnetic,2000,36(4):1890-1893.
    [40] Lee M G, Gweon D G. Optimal design of a double-sided linear motor with a multi-segmentedtrapezoidal magnet array for a high precision positioning system[J]. Journal of Magnetism andMagnetic Materials,2004,281(2-3):336-346.
    [41] Ahn H J, Lee S H, Lee D Y. A study on the characteristics of PMLSM according to permanent magnetarrangement[C]. Industry Applications Society Annual Meeting, Edmonton,2008:1-6.
    [42] Lee D Y, Kim G T. Design of thrust ripple minimization by equivalent magnetizing current consideringslot effect[J]. IEEE Transactions on Magnetics,2006,42(4):1367-1370.
    [43]尹宜勇,祝莉平,贾志新等.永磁直线同步电动机法向力对机床结构变形的影响[J].农业机械学报,2011,42(6):219-223.
    [44] Maeda Y, Nishiwaki S, Izui K, et al. Structural topology optimization of vibrating structures withspecified eigenfrequencies and eigenmode shapes[J]. International Journal for Numerical Methods inEngineering,2006,67(5):597-628.
    [45] Xiong G, Nasar S A, Analysis of fields and forces in a permanent magnet linear synchronous machinebased on the concept of magnetic charge[J]. IEEE Transactions on Magnetics,1989,25(3):2713-2719.
    [46]司纪凯,王旭东,陈昊.永磁直线同步电机出入端磁阻力齿槽分量分析[J].电机与控制学报,2008,12(5):154-158.
    [47]刘恒坤,张晓,弥柱.空心和Halbach永磁直线同步电机的牵引力和法向力分析[J].国防科技大学学报,2012,34(3):94-97.
    [48] Profinno F, Tenconi A, Gianolio G. PM linear synchronous motors normal force calculation[C]. Conf.Rec. IEEE-IAS,1999:116-118.
    [49] Virtic P, Stumberger B.Analytical analysis of magnetic field and force calculation in a slotless-typepermanent magnet linear synchronous machine verification with numerical analysis[C]. IEMDC,Antalya, Turkey,2007:963-968.
    [50] Jang K B, Kim J H, AN H J. Optimal design of auxiliary-teeth to solve circulation current reduction ofpermanent magnet linear synchronous motor[C]. Cent. South Univ. Technol,2011(18):690-696.
    [51] Miralem H, Viktor G, Tine M. Magnetic field analysis in slotless PM linear motor model: comparisonof calculated and measured results[J]. Electrical Review,2011,87(3):65-69.
    [52]吕刚,范瑜,马云双等.直线感应电机推力和法向力的解析计算与分析[J].电机与控制学报,2010,14(3):78-82.
    [53] Da S M A, Filho A F F, Homrich R P. Evaluation of the normal force of a planar actuator[J]. IEEETransactions on Magnetics,2005,41(10):4006-4008.
    [54] Huang R, Zhou J, Kim G T. Minimization design of normal force in synchronous permanent magnetplanar motor with Halbach array[J]. IEEE Transactions on Magnetics,2008,44(6):1526-1529.
    [55] Filho A F F, Da S M A, Homrich R P. An analytical solution for the normal force in linear actuators[C].IEEE International Conference on Electric Machines and Drives, San Antonio, TX, America,2005:1249-1254.
    [56]夏加宽,赵鹏,黄伟.直线伺服电机法向力分析[J].电气开关,2010,(4):15-17.
    [57]郭瑶瑶,刘成颖,王先逵.机床进给系统用永磁直线电机法向吸力的研究[J].中国机械工程,2007,18(10):1174-1177.
    [58] Chen Y, Jin J, Zheng L. Normal force and the parameters of permanent magnet linear synchronousmotors[C].ASEMD, Sydney, NSW,Australia,2011:239-242.
    [59] Jin J, Zheng L, Xu W, et al.Experimental study on thrust and normal force of a permanent magnetlinear synchronous motor[C]. ICEMS, Beijing, China,2011:1-6.
    [60] Yoo J. Reduction of vibration caused by magnetic force in a switched reluctance motor by topologyoptimization[J]. Transactions of the ASME JAppl Mech,2002,69(3):380-387.
    [61]李威扬.削弱永磁直线伺服电机法向力波动优化设计[D].沈阳:沈阳工业大学,2011.
    [62]宁建荣,沈丽,曹景全等.减小法向力波动永磁同步直线电动机优化设计[J].微电机,2012,45(9):43-47.
    [63]赵鹏.直线伺服电机设计及其法向力分析[D].沈阳:沈阳工业大学,2010.
    [64] Xia J k, Li W Y, Shen L. Skew and end-teeth optimization in reduce permanent magnet linearsynchronous motor normal force fluctuation[C]. ICEEAC, Zibo, P.R.China,2010:4853-4859.
    [65]刘金凌,王先逵,吴丹等.直线电机伺服系统的模糊推理自校正PID控制[J].清华大学学报,1998,38(2):44-46.
    [66]邓中亮.高频响精密位移直线电机及其控制的研究[J].中国电机工程学报,1999,19(2):41-46.
    [67] Chintae C, Tsao T C, Atsushi M. Control of linear machine tool feed drivers for end milling: robustMIMO approach[C]. Proceedings of the American Control Conference, SanDiego, California,1999:3723-3727.
    [68]郭庆鼎,周悦,郭威.高精度永磁直线同步电动机伺服系统鲁棒位置控制器的设计[J].电机与控制学报,1998,2(4):208-212.
    [69] Tan K K, Lee T H. Force ripple suppression in iron-core permanent-magnet linear motors using anadaptive dither[J]. Journal of the Franklin Institute,2004,341(4):375-390.
    [70] Hu A P. Nonlinear non-minimum phase output tracking via output redefinition and learning control[C].Proceedings of the2001American Control Conference,Arlington, VA, USA,2001:4270-4276.
    [71] Tan K K, Lee T H, Dou H F, et al. Precision motion control with disturbance observer forpulse-width-modulated-driven permanent-magnet linear motors[J]. IEEE Transactions on Magnetics,2003,39(3):1813-1818.
    [72] Yousefi H, Hirvonen M J, Handroos H. Application of neural network in suppressing mechanicalvibration of a permanent magnet linear motor[J]. Control Engineering Practice,2008,16(7):787-797.
    [73] Mu H H, Zhou Y F, Wen X. Calibration and compensation of cogging effect in a permanent magnetlinear motor[J]. Mechatronics,2009,19(4):577-585.
    [74] Tayebi A. Adaptive iterative learning control for robot manipulators[J]. Automatica,2004,40(7):1195-1203.
    [75] Shim H, Kochem M, Tomizuka M. Use of accelerometer for precision motion control of linear motordriven positioning system[J]. Industrial Electronics Society,1998,(4):2409-2414.
    [76]郭庆鼎,迟林春,王成元.基于神经网络给定补偿的永磁同步直线交流伺服系统H∞控制[J].控制与决策,2000,15(1):75-78.
    [77]张宏伟,康润生,王新环等.基于神经网络的永磁直线同步电动机推力波动补偿的仿真研究[J].电机与控制学报,2004,8(4):299-302.
    [78] Hirvonen M J, Handroos H. Suppressing mechanical vibrations in a PMLSM using feedforwardcompensation and state estimates[C]. Mechatronics for Safety, Security and Dependability in a NewEra,2007:347-352.
    [79] Hirvonen M, Pyrhonen O, Handroos H. Adaptive nonlinear velocity controller for a flexiblemechanism of a linear motor[J], Mechatronics,2006,16(5):279-290.
    [80] Zhu Y W, Kim D S, Moon J W. Analysis of permanent magnet linear synchronous motor for advancedcontrol[J]. International Journal ofApplied Electromagnetics and Mechanics,2008,28(1-2):283-289.
    [81] Tan K K, Chin S J, Dou H F. Feedforward suppression of force ripple based on a simplex-optimizeddither signal[J]. ISATransactions,2003,42(1):19-27.
    [82] Zhao S, Tan K K. Adaptive feedforward compensation of force ripples in linear motors[J]. ControlEngineering Practice,2005,13(9):1081-1092.
    [83]孙宜标,闫峰,刘春芳.基于μ理论的永磁直线同步电机鲁棒重复控制[J].中国电机工程学报,2009,29(30):52-57.
    [84]吕枭,唐敦兵,周建华等.永磁直线同步电机的磁阻力分析及补偿[J].机械与电子,2012,(4):58-61.
    [85]王淑红,熊光煜.永磁直线同步电动机气隙磁场及磁阻力分析[J].煤炭学报,2006,31(6):824-828.
    [86] Profumo F, Tenconi A, Gianolio G. Parameters and forces of a PM linear synchronous motor withmagnetic guides for industrial applications: computed and experimental results[C]. Conf. Rec.IEEE-IAS,2000:210-216.
    [87]赵镜红,张俊洪,方芳等.径向充磁圆筒永磁直线同步电机磁场和推力解析计算[J].电工技术学报,2011,2(7):154-160.
    [88]安跃军,温宏亮,安辉等.正弦极宽调制式永磁电机的磁场分析与实验[J].电机与控制学报,2011,15(11):61-66.
    [89]全磊,范承志,叶云岳.基于极弧系数组合的永磁直线电机齿槽力削弱方法[J].机电工程,2011,28(10):1209-1212.
    [90] Chang J, Kang D, Lee J, et al. Development of transverse flux linear motor with permanent-magnetexcitation for direct drive applications[J]. IEEE Transactions on Magnetics,2005,41(5):1936-1939.
    [91] Martinez G, Atencia J, Martinez M. et al. Reduetion of detent force in flat Permanent magnet linearsynchronous machines by means of three different methods[J]. Electric Machines and DrivesConference,2003,(2):1105-1110.
    [92] Lim K C, Woo J K, Kang G H, et al. Detent force minimization techniques in Permanent magnet linearsynchronous motors[J]. IEEE Transactions on, Magnetic,2002,38(2):1157-1160.
    [93] Jang S M, Lee S H, Yoon I K. Design criteria for detent force reduction of permanent magnet linearsynchronous motors with Halbach array[J]. IEEE Transactions Magnetic,2002,38(5):3261-3263.
    [94] Polinder H, Slootweg J G, Hoeijmakers M J, et al. Modeling of a linear PM machine includingmagnetic saturation and end effects: maximum force-to-current ratio[J]. IEEE Transactions on Industry,Applications,2003,39(6):1681-1688.
    [95] Zhu Y W, Jin S M, Chung K S, et al. Control-based reduction of detent force for permanent magnetlinear synchronous motor[J]. IEEE Transactions on Magnetics,2009,45(6):2827-2830.
    [96]李庆雷,王先连,吴丹等.永磁同步直线电机推力及垂直力的有限元计算[J].清华大学学报,2000,40(5):20-23.
    [97]李庆雷,王先速,吴丹等.永磁同步直线电机推力波动分析及改善措施[J].清华大学学报,2000,40(5):33-36.
    [98]潘开林,傅建中,陈子辰.永磁直线同步电动机的磁阻力分析及其最小化研究[J].中国电机工程学报,2004,24(4):112-115.
    [99]王昊,张之敬,刘成颖.永磁直线同步电机纵向端部效应补偿方法[J].中国电机工程学报,2010,30(36):46-52.
    [100]王成元,刘莉莉,夏加宽.基于学习前馈控制的高精度直线伺服系统跟踪控制研究[J].电工技术学报,2004,1(10):27-31.
    [101] Liu T H, Lee Y C, Crang Y H. Adaptive controller design for a linear motor control system[J]. IEEETransactions on Aerospace and Electronic Systems,2004,40(2):601-616.
    [102]蓝益鹏,赵辉,李成军等.进给平台永磁直线磁悬浮电动机的电磁力特性研究[J].组合机床与自动化加工技术,2010,(8):27-29.
    [103]夏加宽,董婷,王贵子.抑制永磁直线电机推力波动的电流补偿控制策略[J].沈阳工业大学学报,2006,28(4):379-383.
    [104]夏加宽.高精度永磁直线电机端部效应推力波动及补偿策略研究[D].沈阳:沈阳工业大学,2006.
    [105]肖丽,孙鹤旭,张培培等.基于Maxwell和Simplorer8/6极开关磁阻电机绕组短路故障分析与研究[J].微电机,2013,46(8):46-49.
    [106]夏桂书,罗文田.基于Simplorer的对称半桥变换器仿真及试验验证[J].科学技术与工程,2013,(17):4931-4935.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700