用户名: 密码: 验证码:
大容量火电机组调峰运行的轴系振动特性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济的快速发展,用电负荷的峰谷差逐渐增大。近些年来,针对越来越高的节能环保要求,我国火力发电设备经过了上大压小的产业结构调整,投运了大量600MW及以上的大容量火电机组。我国新能源发电的快速发展,也对电网的负荷变化产生新影响。在这种背景下,参与调峰运行的火电机组容量不断增加,许多大容量火电机组也投入到调峰运行的行列,根据电网的负荷需求在较大范围内进行负荷调节。火电机组参与宽负荷范围调峰运行的关键问题是对电网负荷快速变化的适应性和低负荷下运行的稳定性。我国大容量火电机组通常以承担中问负荷为主进行设计,这类机组参与调峰运行,由于运行工况条件发生变化,出现较多极端运行工况,可能带来轴系结构热应力、变形、轴系振动和稳定性等方面的新问题,导致设备存在重大安全隐患。提高大容量火电机组在宽范围负荷快速变动条件下的运行安全性是发电行业急需解决的关键技术问题。
     大容量火电机组参与调峰所带来的运行安全稳定性问题在我国更加突出,原因是我国在机网两侧的条件与西方国家存在差异,而这方面尚缺少深入的研究。本文针对大容量火电机组的特殊性,以600MW汽轮发电机组为对象,在国家和企业科技项目的支持下,深入开展大范围变负荷运行条件下的机组轴系动态特性与稳定性、故障状态下的振动特性及故障特征提取方法等方面的研究,对于提高机组参与调峰运行的安全可靠性具有重要的科学和工程实际意义。
     论文的主要研究内容及成果如下:
     (1)600MW机组结构及运行特点分析。结合两个细则,分析了AGC运行方‘式对汽轮机寿命、材料及轴系振动特性的影响,对大容量火电机组振动监测保护系统(TSI系统和TDM系统)的技术现状进行综述;针对某600MW亚临界火电机组,利用实际运行数据分析了自动发电控制(AGC)运行方式下,机组负荷、主汽压力、主汽流量变化对于汽轮机轴系振动的扰动。从运行数据反映的长期趋势看,机组快速变化负荷对高中压缸两端轴承振动产生一定影响。从瞬态振动数据分析来看,负荷变化对振动信号波形、频谱构成影响不明显,没有改变高中压转子的振动状态。
     (2)轴系振动特性的计算分析。以国产典型600MW火电机组为对象,分别用传递矩阵法和有限元法对轴系弯振和扭振固有特性、快速变负荷状态下的轴系扭振响应特性、发电机两相短路故障下的轴系扭振响应特性进行了仿真计算和比较研究。分析结果表明,600MW机组的轴系扭振危险轴段均位于各转子之间的连接部位:在快速升降负荷时,轴系扭矩响应呈现衰减振荡特性,表明机组在快速升负荷时轴系处于稳定状态;两相短路故障的扭矩响应中,一、二阶扭振固有频率处的峰值最突出,工频及其二次谐波也比较明显,存在共振风险。因此两相短路故障对轴系安全性影响较大。
     (3)汽轮机瞬态过程的轴系异常振动分析。通过实际案例,对大容量火电机组出现的异常振动现象进行分析,探讨异常振动的响应特性,研究提取故障特征的信号分析方法,为进行轴系故障诊断提供依据。研究了某600MW机组高中压转子发生的缓慢热变形现象的振动特征,确定了导致转子热变形的原因,。提出了一种基于Gabor变换时频域滤波的提取振动信号中特殊频率成分,进行轴系稳定性分析和故障判断的方法。通过对升降速过程的振动信号、气流激振导致的不稳定振动信号的分析,证明了该方法的效果。
     (4)汽轮机碰磨故障监测诊断方法研究。汽轮发电机组发生轻微动静部件碰磨故障时,相对轴振响应信号中的故障信息非常微弱。针对这一特点,提出采用结构振动检测和信号分析处理相结合的碰磨故障监测诊断新方法,该方法利用碰磨引起的较高频率的冲击振动能量信息,适用于碰磨这类具有瞬时冲击特征的异常振动。由于相对轴振监测对碰磨引起的冲击振动响应不敏感,提出一种采用小波奇异值检测碰磨冲击故障的方法,用小波多分辨率分析获取在特定尺度上的碰磨瞬时冲击信号,提取该瞬时冲击信号的幅值包络,然后采用小波奇异值检测方法对碰磨引起的突变信息进行检测,可以明显改善微弱碰磨故障特征的提取效果。
     (5)汽轮机振动源的盲分离方法研究。采用频域ICA分析方法对多台大容量汽轮机组进行了多通道轴振信号振源分离,结果表明频域ICA能够更清楚地给出源信号的描述,分离结果更符合汽轮机转子系统振动源的实际情况。频域ICA可以分离出轴振测量信号中包含的可能很微弱的故障信息,分离结果的物理意义比较清晰明确。研究了利用单通道振动实测信号的ICA特征提取方法,结果表明,仅仅依靠单通道ICA分离出的基函数不足以反映机组运行状态的变化,需要进一步对各个基函数进行处理,验证其作为特征信息的有效性。
With the rapid development of economy in our country, peak-valley difference of the electricity load increases gradually. In recent years, power equipment has gone through the industrial structure adjustment of developing large units and suppressing small ones aiming at the requirement for energy conservation and environmental protection. A large number of600MW or more thermal power units have been put into operation and it brings new affects for the changes of the load of grid, In this context, the capacity of power units is increasing and a lot of units with large capacity are put into operation for adjusting peak according to the demand of grid load. The key question for thermal power units participating in the peaking with wide range of load is the adaptation for rapid change of grid load and the stability for operating under low load. The power units of our country are mostly designed for carrying the middle load. This kind of units exist major security risks because there are many extreme operating conditions in peaking process and it brings new questions such as shafting structure thermal stress, deformation, shafting vibration, stability and so on. It is the key technical issue to improve the operating safety of units with large capacity under the condition of rapid changing of wide range load.
     The operating safety and stability for the units of large capacity that participate in the peaking is highlight in our country as the difference between our country and western countries but this aspect is lack of further study. Aiming at the particularity of thermal power units of large capacity, the6Q0MW steam power units are studied. Shafting dynamics and stability, vibration performance in fault condition and fault feature extraction methods are studied with the support of science and technology project of national and enterprise for providing reference basis for operation and fault diagnosis of units. Research results have practical implications in technology and engineering for improving the safety and reliability of units in peaking operation.
     The main research contents and achievement are as follows:
     (1) Structure and operating characteristics of600MW power units. Combined the two detailed rules, the effects of AGC operating mode for the life, materials, and shafting vibration characteristics of steam turbine are analyzed. The technical status of vibration monitoring and protection system of large capacity units (TSI system and TDM system) is summarized. Aiming at a600MW subcritical thermal power unit, the effects of the load, main steam pressure and changes of main stream flow rate for shafting vibration under AGC operating mode is analyzed with practical data. From the trend reflected of the operating data, the rapid change of load for unit has an effect on bearing vibration of high-intermediate pressure. From the transient vibration data, the changes of load have small effect on vibration signal waveform and frequency spectrum and vibration operation of the shaft of high-intermediate pressure does not change.
     (2) Calculation and analysis of shafting vibration characteristics. Aiming at a600MW subcritical thermal power unit, the shafting bending vibration and torsional vibration properties, shafting torsional vibration properties under rapid changes of load and two phase short circuit fault of generator are simulated and compared by using the transfer matrix method and finite element method. The results show that dangerous shaft section of600MW shafting is located at joint part between each rotor. When the load increases rapidly, shafting torsional response possesses damped oscillation property, which indicates that the shaft is in a stable state when the load increases rapidly. In the response of two phase short circuit fault, the peak value is highlighted at the first and second order natural frequency. Power frequency and second harmonics is obvious. So the fault of two phase short circuit has big effect on the shafting safety.
     (3) Shafting vibration analysis of steam turbine transient process. Through practical cases, the abnormal vibration phenomenon that appears on large capacity thermal power units is analyzed. Abnormal vibration response characteristics are investigated and signal feature extraction methods are studied for shafting fault diagnosis. Vibration characteristics of slow hot deformation phenomenon of a600MW unit rotor in high-intermediate pressure are researched and the cause of the rotor thermal deformation is confirmed. A method by extracting the special frequency component based on Gabor transform time-frequency filtering for shafting stability analysis and fault judgment is proposed. Through the analysis of the vibration signal in the process of speed up or speed down and the unstable signal caused by gas exciting, the effectiveness of the method is proved.
     (4) The research of methods of monitoring and diagnosis for steam turbine rubbing fault. When the slight rubbing fault occurs, fault information is very weak in the relative shaft vibration response signal. Aiming at this characteristic, a new fault monitoring and diagnosis method is proposed that combined structure vibration monitoring and signal processing. The information of high-frequency impact vibration energy is used in this method and is suitable for abnormal vibration of the rubbing fault that contains transient impact. As relative shaft vibration monitoring is insensitive for impact vibration response caused by rubbing, a rubbing fault detection method by using wavelet singular value is proposed. The rubbing transient impact signal at specific scales is obtained by the multi-resolution analysis of wavelet. The amplitude envelope of transient impact signal is extracted. Then wavelet singular value detection method is used for detecting the saltation information caused by rubbing fault. It improves the effect of extracting features for weak rubbing fault obviously.
     (5) The analysis of blind source separation for steam turbine vibration source. The signal of large subcritical pressure steam turbine power units has the characteristics of non-stationary, nonlinear. Its background noise jamming is serious. The approach of propagation process and attenuation characteristic is complex. And the signal is the superposition of many fault-source signals in an intricate way. According to the characteristics above, independent component analysis is used for noise reduction and separation of fault-source signals. A fault feature extraction method for f non-stationary and nonlinear is proposed. The separation for fault source and extraction for fault information under complex operating conditions is researched and verified by using practical steam turbine rotor system vibration signal. And the accurate fault feature information is obtained from monitored signal.
引文
[1]中国电气工程大典编委会,中国电气工程大典(第四卷)-火力发电工程(上)[M],北京:中国电力出版社,2009
    [2]黄文虎,夏松波,刘瑞岩等.设备故障诊断原理、技术及应用[M].北京:科学出版社,1996
    [3]钟秉林,黄仁.机械故障诊断学[M].北京:机械工业出版社(第三版),2006
    [4]Cheng Jun-pei, et al. China electrical engineering canon(4)[M], Beijing:China Electrical Power Publishing House,2009
    [5]J S Rao. History of Rotating Machinery Dynamics [M].2011 Springer Netherlands
    [6]Goodwin, M. J., Dynamics of Rotor-Bearing System[M], London:Unwin-Hyman, 1989
    [7]Rao,J.S., Rotor Dynamics[M], New Delhi:Wiley Easten,1983
    [8]Vance, J.M., Rotor Dynamics of Turbomachinery[M], New York:Wiley,1988
    [9]闻邦椿,顾家柳,夏松波等.高等转子动力学——理论、技术及应用[M].北京:机械工业出版社,1999
    [10]钟一鄂,何衍宗等.转子动力学[M].北京:清华大学出版社,1987
    [11]訾艳阳,何正嘉,李庆祥.转子径向碰摩故障的非线性特征研究[J].汽轮机技术,2002,44(5):276-278
    [12]吴敬东.转子系统碰摩的若干非线性动力学问题研究[D].东北大学博士学位论文,2006
    [13]刘峻华.大型汽轮发电机组轴系扭振研究[D].华中科技大学博士学位论文,2006
    [14]何成兵等.汽轮发电机组轴系扭振模型和算法综述[J].华北电力大学学报,2003.05(2):56-60
    [15]何成兵.汽轮发电机组轴系弯扭耦合振动研究[B].华北电力大学博士论文,2003
    [16]叶海文.机网协调下汽轮发电机组扭振建模与分析[D].华北电力大学硕士学位论文,2010
    [17]Alexander K.T. Some remarks to transfer matrix method [J]. Acta Technic ASAV,1991,36(6):717-73
    [18]Ratan S, Rodriguez J. Transient dynamic analysis of rotor using SMAC techniques [J]. Journal of Vibration and Acoustics ASME,1992,14(3):477-488
    [19]Hall M C, Daniels R L, Ramey D G. A new technique for subsynchronous resonance analysis and application to the kaiparowits system [J]. IEEE PES, No. 76CH1066-OPWRS,1976:46-50
    [20]Found A A. Khu K T. Damping of torsional oscillations in Power systems with series compensated lines [J]. IEEE. Trans on PAS,1978,97(3)
    [21]Canay I M. A new approach to the torsional oseillations interaction and electric damping of the synchronous machine [J]. IEEE Trans on PAS.1981,101(10): 3620-3647
    [22]闻邦椿,武新华等.故障旋转机械非线性动力学的理论与试验[M].北京:科学出版社,2004
    [23]强彦,谢永慧等.汽轮发电机组转子及轴系弯扭耦合振动发展现状与展望[J].汽轮机技术,2006,10:321-325
    [24]钟一谔,何衍宗等.转子动力学[M].北京:清华大学出版社,1987
    [25]John Sohre. Operating Problems with High Speed Turbomachinery[J]. ASME Petroleum Mechanical Engineering Conference.1968
    [26]Bently, D.E., Vibration Analysis Techniques for Detecting and Diagnosing Shaft Cracks[J]. Orbit,1986,1 (7):18-21
    [27]严可国,魏克严,李植.大型旋转机械监测保护故障诊断系统[M].美国本特利·内华达公司,1994
    [28]白木万博.振动讲演文集.郑州:郑州机械研究所,1984
    [29]黄典贵.平行不对中和不平衡故障转子扭振特征的研究.机械工程学报,1998,34(5)
    [30]徐可君,秦海勤.偏心量对轴向碰摩系统弯扭耦合非线性振动特性影响的分析[J].应用力学学报,2006,(4).
    [31]Rao J S, A Note on Quality Factor of Rotor with Hydrodynamic Bearings[J]. Journal of engineering for Gas Turbines and Power, Trans. ASME, vol.H5,p261
    [32]荆建平,孟光,赵玫,赵三星,刘言.超超临界汽轮机汽流激振研究现状与展望[J].汽轮机技术,2004,46(6)
    [33]姚红良,李鹤,李小彭,闻邦椿.裂纹碰摩耦合故障转子系统诊断分析[J].振动工程学报,2006,(3).
    [34]Dimarogonas A D, Papadopouls C A. Crack Detection in Turbine Rotors[J]. Proc.2nd Intl. Symp., Transport Phenomena, Dynam. Des. Rotating Mach., Honolulu, pp 227-240 April 3-6,1988 (1990).
    [35]Thomson A S. On-Line Condition Monitoring Methods for Shaft Crack Detection,[J] Proc. Intl. Conf., Noise, Vib.,'89, Singappore, Paper H4, pp H29-H45, Aug 16-18.1989 (1989)
    [36]万书亭,唐贵基,李永刚.发电机运行状态对定转子径向振动特性的影响分析[J].机械工程学报,2006,(9).
    [37]高金吉.高速涡轮机械振动故障机理及诊断方法研究[D].清华大学博士学位论文,1993
    [38]夏松波,张礼勇.旋转机械故障诊断技术的现状与展望[J].振动与冲击,1997,16(2),1-5
    [39]刘峻华,黄树红,陆继东.汽轮机故障诊断技术的发展与展望[J].汽轮机技术,2000,40(1)
    [40]施圣康.汽轮发电机组振动故障诊断技术的发展现状[J].动力工程,2001,21(4)
    [41]张娜娜.600MW超临界火电机组轴系动特性数值分析[D].华北电力大学硕士学位论文,2012
    [42]胡建涛.600MW汽轮发电机组转子轴系振动特性研究[D].华北电力大学硕士学位论文,2013
    [43]钟才茂大型汽轮发电机组轴系扭振动特性分析[D].华北电力大学硕士学位论文,2014
    [44]申秀兰.国产首台600MW超临界汽轮发电机组轴系振动特性的研究[J].动力工程,2009,29(7):640-644
    [45]庞乐.大型汽轮发电机组轴系扭振安全性分析[D].华北电力大学硕士学位论文,2011
    [46]中国电气工程大典编委会.中国电气工程大典(第四卷)-火力发电工程(上)[M].北京:中国电力出版社,2009
    [47]Cheng Jun-pei, et al. China electrical engineering canon(4)[M], Beijing:China Electrical Power Publishing House,2009
    [48]田国成,陈会平,柳洪涛.超临界汽轮机高中压转子弯曲及异常振动的分析与处理[J].动力工程,2009,29(10):909-913
    [49]申秀兰.国产首台600 MW超临界汽轮发电机组轴系振动特性的研究[J].动力工程,2009,29(7):640-644
    [50]张学延,张卫军,葛祥,何国安.西门子技术1000MW超超临界机组轴系振动问题.中国电力,2012,45(5):75-80
    [51]王延博,何国安,王欣洁.超临界600 MW机组振动特性分析综述[J].热力发电,2010,Vol.39(3):85-89
    [52]陈建县.1000MW超超临界机组轴瓦振动分析及处理[J].华东电力,2010,38(3):421-424
    [53]严可国,柳亦兵,徐鸿,等.基于双谱分析的大型汽轮机振动故障特征提取[J].中国电机工程学报,2010,30(2):98-103.
    [54]刘峻华,黄树红,陆继东.汽轮机故障诊断技术的发展与展望[J].动力工程,2001,21(2):1105-1110.
    [55]郭瑜,秦树人,汤宝平,等.基于瞬时频率估计的旋转机械阶比跟踪[J].机械 工程学报,2003,39(3):32-38.
    [56]孔庆鹏,宋开臣,陈鹰.发动机变速阶段振动信号时频分析阶比跟踪研究[J].振动工程学报,2005,18(4):448-452.
    [57]赵晓平,侯荣涛.基于Viterbi算法的Gabor阶比跟踪技术[J].机械工程学报,2009,45(11):247-252.
    [58]金阳,郝志勇,郑旭,等.基于Gabor重构的发动机振声信号阶次分量瞬时幅值的提取[J].振动与冲击,2011,30(9):15-20.
    [59]申永军,张光明,杨绍普,等.基于Gabor变换的盲信号分离方法[J].振动与冲击,2010,29(10):166-169.
    [60]Bastiaans M J, Geilen M C. On the discrete Gabor transform and the discrete Zak transform [J]. Signal Processing,1996,49(3):151-166.
    [61]Sondergaard P L. Efficient algorithms for the discrete Gabor transform with a long FIR window [J]. Journal of Fourier Analysis and Application,2012,18:456-470.
    [62]张贤达.现代信号处理(第二版)[M].北京:清华大学出版社,2002.
    [63]Thomas D L. Vibration Monitoring Strategy for Large Turbo-Generators[J]. Proc. IMechE Intl. Conf., Vib Rotating Mach., York, Paper C290/84,91-100, Sept 11-13,1984
    [64]Shatoff J. Using Vibration Analysis to Determine the Dynamic Health of Turbine Generators. Power,1976,120 (5):23-28
    [65]任浩仁,李蔚.火电机组变工况下运行指标应达值的分析[J].中国电机工程学报,1999,19(9):50-52.
    [66]李明,黄丕维,焦庆丰,徐曙,邱应军,蒋北华.大型汽轮机组运行方式优化试验研究及经济性分析[J].湖南电力,2008,(1)
    [67]卢斌.300MW机组调峰运行的经济性与稳定性分析[J].湖州师范学院学报,2011,1
    [68]张秋生,梁华.协调控制系统稳定性的影响因素及考核方法[J].电力标准化与技术经济,2009(5)
    [69]伍宇忠.台山电厂600 MW机组低负荷经济运行协调控制系统优化研究[J].广东电力,2009,(12)
    [70]王卜.负荷增减速度对汽轮机的影响[J].四川电力技术,1983,(4)
    [71]Taylor H D. Rubbing Shafts above and below Resonant Speed. GE Technical Information Series, No.16709,1924
    [72]Newkirk B L. Shaft Rubbing[J]. Mechanical Engineering 48,830,1926
    [73]Kellenberger W. Spiral Vibrations due to the Seal Rings in Turbogenerators, Thermally Induced Interaction between Rotor and Stator[J]. ASME-Paper 79-DET-61, Design Eng. Tech. Conf.,1979
    [74]Dimarogonas A D. A Study of the Newkirk Effect in Turbomachinery[J]. WEAR, 28,369-382,1974
    [75]Goldman P, Muszynska A. Rotor-to-Stator Rub-Related Thermal/Mechanical Effects in Rotating Machinery[J]. Chaos, Solitons, and Fractals Vol.5, No.9, 1995
    [76]Goldman P, Muszyska A, Bently D E. Thermal Bending of the Rotor due to Rotor-To-Stator Rub[C]. ISROMAC-7,7th int. Symposium on Transport Phenomena and Dynamics of Rotating Machinery,1998
    [77]陆颂元,童小忠.汽轮机组现场动静碰磨故障的振动特征及分析诊断方法[J].动力工程,2002,22(6):2020-2024.
    [78]张善鹏,周广顺.汽轮发电机组转子碰摩振动的理论分析及实例[J].动力工程,2003,23(6):2850-2854.
    [79]蒋东翔,刁锦辉,赵钢,等.基于时频等高图的汽轮发电机组振动故障诊断方法研究[J].中国电机工程学报,2005,25(6):146-151.
    [80]胡爱军,安连锁,唐贵基.转子碰摩故障振动时频特征的实验研究[J].动力工程,2007,27(4):482-486.
    [81]彭志科,何永勇,卢青,等.用小波时频分析方法研究发电机碰摩故障特征[J].中国电机工程学报,2003,23(5):75-79.
    [82]姜洪开,王仲生,何正嘉.基于改进第2代小波算法的发电机组碰摩故障特征提取[J].中国电机工程学报,2008,28(8):127-131.
    [83]李曙光,张梅军.小波去噪与奇异性检测相结合诊断动静件短暂碰磨故障发生区间[J].机械设计,2010,27(10):79-81.
    [84]PENG Z K, CHU F L, PETER W, et al. Singularity analysis of the vibration signals by means of wavelet modulus maximal method[J]. Mechanical Systems and Signal Processing,2007,21(2):780-794.
    [85]Stegemann D, Reimche W, Beermann H, Suedmersen U. Nachweis kurzzeitiger Anstreifvorgaenge in Dampfturbinen[J]. VGB Kraftwerkstechnik,73, Heft 10, 1993
    [86]MALLAT S, HWANG W L. Singularity detection and processing with wavelets[J]. IEEE Transactions on Information Theory.1992,38(2):617-643.
    [87]刘献栋,杨绍普,申永军,等.基于奇异值分解的突变信息检测新方法及其应用[J].机械工程学报,2002,38(6):102-105.
    [88]ZHENG H, LI Z, CHEN X. Gear fault diagnosis based on continuous wavelet transform[J]. Mechanical Systems and Signal Processing,2002,16(2/3):447-457.
    [89]LOUTRIDIS S, TROCHIDIS A. Classification of gear faults using Hoelder exponents[J]. Mechanical Systems and Signal Processing,2004,18 (5):1009-1030.
    [90]葛军威,杨帮敏.600MW超临界机组协调控制对AGC的响应情况分析[J].能源 工程,2009,(4)
    [91]王淼婺.火电机组协调控制对AGC的适应性分析[J].中国电力,1999,(6)
    [92]段南,李国胜.影响火电机组AGC投运指标的若干问题及对策[J].华北电力技术,2002,(5)
    [93]姚峻,高磊,陈维和,李慧棣,杨鉴.900MW超临界机组协调控制及AGC策略的研究与应用[J].中国电力,2005,(8).
    [94]年中华.基于火电机组冷端系统的负荷快速响应研究[D].华北电力大学,2013.
    [95]郑跃.大型火力发电机组负荷快速响应基础研究[D].华北电力大学学位论文,2013
    [96]B D Forrester. Use of the Wigner-Ville Distribution in Helicopter Fault Detection[CJ. Proc. ASSPA 89,1989
    [97]P D McFadden, W J Wang. Time-frequency domain analysis of vibration signatures for machinery diagnostics (II) the weighted Wigner-Ville distribution. 1991 Department of Engineering Science, Oxford University, Report OUEL 1891/91.
    [98]Norden E. Huang, Zheng Shen, Steven R. Long, etal. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond.; The Royal Society TEX Paper,1998.
    [99]杨世锡,胡劲松,吴昭同,严拱标.旋转机械振动信号基于EMD的希尔伯特变换和小波变换时频分析比较[J].中国电机工程学报,2003,23(6):102-107
    [100]S.K.Xee. Two-stage adaptive line enhancer and sliced wigner trispectrum for the characterization of faults from gear box vibration data[J]. Trans ASME,J.Vib Acoust,1999,121(10):488-494.
    [101]A D Dimarogonas, J C Gomez-Mancilia. Flow-excited turbine rotor instability [J]. International journal of rotating machinery,1994,1(1):37-51.
    [102]H J Thomas. Unstable oscillations of turbine rotors due to steam leakage in the clearance of the sealing glands and the buckets [J]. Bulletin scientifique.A J.M. 1958,71:1039-1063.
    [103]J S Alford. Protecting turbomachinery from self-excited rotor whirl [J]. ASME transactions journal of engineering for power,1965,87(4):333-343.
    [104]H F Black. Effects of hydraulic forces in annular pressure seals on the vibration of centrifugal pump rotors [J]. Journal of mechanical engineering science,1969, 11(2):206-213.
    [105]D W Childs. Dynamic analysis of turbulent annular seals based on hirs lubrication equation [J]. Journal of lubrication technology,1983,105(3):429-436.
    [106]A Muszynska. Whirl and whip rotor-bearing stability problems [J]. Journal of sound and vibration,1986,110(3):443-462.
    [107]A Muszynska. Rotordynamics [M]. New York:Marcel Dekker Inc,2005.
    [108]U Yucel, J Y Kazakia. Analytical prediction techniques for axisymmetric flow in gas labyrinth seals [J]. ASME journal of engineering for gas turbines and power, 2001,126(1):255-527.
    [109]D Yilmaz, E Dursun. Flow calculations in straight-through labyrinth seals by using moody are friction-factor model [J]. Mathematical and computational applications,2004,9(3):435-442.
    [110]D W Childs, J Wade. Rotordynamic-coefficient and leakage characteristics for hole-pattern-stator annular gas seals-measurements versus predictions [J]. ASME journal of tribology,2004,126(2):326-333.
    [111]A J Smalley, M Camatti, D W Childs and et al. Dynamic characteristics of the diverging taper honeycomb-stator seal [J]. ASME journal of turbomachinery 2006, 129(4):717-724
    [112]柴山,张耀明,马浩.汽轮机调节级的气流激振力分析[J].应用数学与力学,2001,22(7):706-711
    [113]郭瑞,杨建刚.部分进汽对密封间隙流体激振力影响研究[J].汽轮机技术,2010,52(3):188-190
    [114]张万福,杨建刚,曹浩等.偏心密封内切向气流力及其对稳定性影响的理论与试验研究[J].机械工程学报,2011,47(17):92-98
    [115]李建兰,郭绪宏,余辰等.汽轮机调节级汽流激振突变模型研究[J].中国电机工程学报,2013,33(11):39-45
    [116]屈焕成,张狄,谢永慧等.汽轮机调节级非定常流动的数值模拟及汽流激振力研究[J].西安交通大学学报,45(11):39-44
    [117]丁学俊,王刚等.Aford力中效率系数的一种计算方法[J].华中科技大学学报,2003,31(4):66-68
    [118]魏统胜,郝点等.迷宫密封气流激振效应对转子振动响应影响的实验研究[J].石油大学学报,2000,24(3):70-75
    [119]沈庆根,郑水英等.透平压缩机械一种消振型迷宫密封的研究[J].流体机械,1997,25(3):2-7
    [120]何立东,朱振友等.密封间隙气流震荡流场的动态压力测试[J].热能动力工程,1999,14(1):40-43
    [121]C Juten, A Herault. An adaptive algorithm based on neuromimetic architecture[J]. Signal processing,1991,24:1-10
    [122]J F Cardoso, A Souloumiac. Blind beamforming for non-Gaussian signals[C]. IEE Proceedings-F,1993,140(6):256-259
    [123]P Comon. Independent component analysis, A new concept?[J]. Signal Processing, 1994,36:287-289
    [124]A Bell, T Sejnowsli. An information-maximization approach to blind separation and blind deconvolution[J]. Neural Computation,1995,7:129-132
    [125]J.L.Lacoume, M.Gaeta, W.Kofman. Source separation using higher order statistics[J]. Journal of Atmospheric and Terrestrial Physics,1992:1217-1226
    [126]J F Cardoso, B H Laheld. Equivariant adaptive source separation[J]. IEEE Trans. On Signal Processing,1996,44(12):3017-3030
    [127]Amari S I, Cichocki A and Yang H. A New Learning Algorithm for Blind Source Separation[J]. Advances in Neural Information Processing System,1996,(8): 757-763
    [128]Aapo Hyvarinen. Fast and robust fixed-point algorithms for independent component analysi[J]s. IEEE Transactions of Neural Networks,1999,10(3): 626-634
    [129]Alexander Ypma, Amir Leshem. Blinds separation of rotating machine source[J]. Neurocoputing-Special Issue on ICA/BSS,2002:45-47
    [130]G Gelle, M Colas, G Delaunay. Blind sources separation applied to rotating machines monitoring by acoustical and vibrations analysis[J]. Mechanical Systems and Signal Processing,2000,14(3):427-442
    [131]Sung-Hwan Han, Hyeon-Ho Kim, Hyeon-Deok Bae. Extraction of Rotating Machine Sources for Fault Diagnostics using Independent Component Analysis[C]. Instrumentation and Measurement Technology Conference,2005: 1507-1512
    [132]Lee J H and Jung H Y. Speech Feature Extraction Using Independent Component Analysis[C]. June,2000, Vol.3,1631-1634.
    [133]胥永刚,李强,王正英,王太勇.基于独立分量分析的机械故障信息提取[J].天津大学学报,2006,39(9)
    [134]严可国.大型汽轮发电机组故障诊断方法及监测保护系统研究[D].[博士学位论文].北京:华北电力大学,2009
    [135]吴昭同杨世锡.旋转机械故障特征提取与模式分类新方法[M].北京:科学出版社,2012,121-168
    [136]Aapo Hyvaerinen, Juha Karhunen, Erkki Oja.独立成分分析(周宗潭,董国华等译),北京:电子工业出版社,2007
    [137]余英林,谢胜利,蔡汉添等.信号处理新方法导论[M].北京:清华大学出版社,2004
    [138]史习智.盲信号处理-理论与实践[M]:上海:上海交通大学出版社,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700