用户名: 密码: 验证码:
硫化物复合材料的合成及其储锂(钠)性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
“能源危机”和“环境污染”是人类在21世纪必须面对的两个严峻问题,电动汽车和大规模绿色储能电网的发展是解决此问题的主要途径。锂(钠)离子电池、超级电容器等电化学储能器件凭借高能量密度、大功率特性、长使用寿命、价格廉价和绿色环保的优势,已逐渐成为电动汽车(减少对化石燃料的依赖和二氧化碳排放)最有竞争力的动力电源和绿色电网储能(加快发展可再生清洁能源)最有潜力的储能电池,特别是锂离子电池和钠离子电池对发展电动汽车和大规模绿色储能电网有重要意义。目前,锂离子电池和钠离子电池负极材料主要是石墨和其他碳材料,而碳负极的储锂和储钠容量有限,极大地限制了目前的锂离子电池和钠离子电池的能量密度进一步的提高,单纯通过改进制备工艺来提高性能已难以取得突破性进展。因此,开发具有高比容量、高倍率、长寿命的锂离子电池和钠离子电池电极材料急剧迫切性。最近的研究进展证明硫化物具有比较好的储锂和储钠性能,主要是由于其具有独特的物理和化学性能。本论文中,我们合成了SnS2-RGO复合材料,三元Cu2SnS3和CuFeS2等硫化物复合材料,并对材料的储锂和储钠性能进行系统研究,主要内容和创新点如下:
     (1)在第2章中,我们设计了一种二维(2D)层状SnS2-RGO复合材料具有非常高的可逆储锂性能,极好储锂性能主要表现在,第一:具有非常高的储锂比容量和极好的循环性能(电流密度为0.2A g-1时100次循环之后比容量高达1063mAh g-1,并且在电流密度为1A g-1时500次循环之后比容量仍然有918mAh g-1);第二,2D层状SnS2-RGO复合材料具有极好的可逆嵌锂和脱锂,首次的库伦效率高达89.7%,第三,2D层状SnS2-RGO复合材料也展现出极好的倍率性能,当电流密度为5A g-1时,储锂比容量高达712mAh g-1,显著的电化学储锂性能主要是由于其独特的二维层状结构。
     (2)钠离子电池相比于锂离子电池具有成本上的优势将有可能大规模应用到绿色储能电网领域,最近几年,钠离子电池电极材料的进展引起了广大电池研究者的研究兴趣。在第3章中,我们首次以层状SnS2-RGO复合材料应用到钠离子电池负极材料,复合材料展现出非常高的嵌钠和脱钠比容量(电流密度为0.2A g-1时,首次充电容量为630mAh g-1);极好的倍率性能(电流密度为2A g-1时,储钠容量高达544mAh g-1);和稳定的循环性能(经过恒流充放电400次,钠存储容量稳定在500mAh g-1),是到目前为止报道的最好的钠离子电池负极材料。如此好的储钠性能主要是由于层状SnS2具有比较大的层空间,该结构有利于钠离子的快速嵌入和脱出,并且能缓冲在钠锡合金形成过程中大的体积变化;并且石墨烯和SnS2之间的强相互作用和高导电率的石墨烯使复合材料在充放电过程中有较快的电子传导速率和收集效率。
     (3)在第4章中,我们采用简单的溶剂热法合成了三元Cu2SnS3介孔纳米球和卷心菜状纳米花,我们研究了硫源和表面活性剂对不同形貌的Cu2SnS3硫化物材料的形成机理和过程的影响,并且通过循环伏安测试和充放电过程中的XRD测试研究了Cu2SnS3纳米材料的电化学反应机理。通过储锂(锂离子电池)性能测试比较,发现卷心菜状Cu2SnS3纳米花比介孔纳米球有更好的储锂性能,首次可逆脱锂比容量高达842mAh g-1,并且50次充放电之后仍然有621mAh g-1,而介孔纳米球50次循环之后比容量仅有436mAh g-1。
     (4)在第5章中,我们采用简单的溶剂热法合成了一种新颖的三元CuFeS2微米结构,三元CuFeS2微米电极材料具有较好的储锂性能,具体表现为:在电流密度为0.2A g-1充放电时,其首次放和充电容量分别为767mAh g'1和614mAh g-1,首次库伦效率高达80%;当电流密度为2A g-1时,放电比容量仍有-400mAh g-1;值得一提的是其循环性能,经过400次大电流(0.5A g-1)充放电测试后,比容量始终维持在-600mAh g-1。并且我们也研究了其储钠性能,首次放电比电容量(嵌钠)为628mAh g-1、充电(脱钠)比容量为511mAh g-1,相应的首次不可逆比容量损失率为18.6%。我们所合成的三元CuFeS2微米材料制备方法简单并且原材料价格便宜,特别是表现出优异的储锂性能,并且初步探索了其材料的储钠性能,为研究其他硫族化合物作为锂离子电池和钠离子电池负极材料提供宝贵的经验和广阔的思路。
"Energy crisis" and "environmental pollution" is the two serious problems, which have received considerable attention since2000s. The development of electric vehicles (could be decrease dependence on fossil fuels and reduced carbon emissions) and large-scale green energy storage system (deployment of renewable energy resources) is the main way to solve this problem. Lithium (sodium) ion battery and supercapacitor et al, with the many advantages, such as:high energy density, high power density, long life, cheaper and environmental protection, have become the most promising electrical energy storage. Now, the commercialized graphite and other carbon for lithium (sodium) ion batteries are very difficult to break through performance it only from the battery assembly technological. Especially, the lithium ion battery and sodium ion battery has important significance for the development of electric vehicle and large-scale green energy storage. Therefore, the development high performance lithium ion battery and sodium ion battery electrode material is more and more importance. Recent progress has demonstrated that sulphide composites are very promising candidates of electrode material for lithium (sodium) ion battery based on their unique physical and chemical properties, such as conductivity, mechanical and thermal stability and cyclability. In this paper, we have fabricated SnS2-Graphene composite, ternary Cu2SnS3and CuFeS2, which were researched their lithium (sodium) storage properties. The main results and new findings in this work are summarized as follows:
     (1) In chapter2, we design a novel2D layer SnS2/graphene nanosheet composite with highly reversible lithium ion storage. The high lithium storage performance exhibit in three aspects:first, the specific capacity of this composite is high and good cycle life (it could deliver a charge capacity of1063mAh g-1for at least100cycles at0.2A g-1and918mAh g-1even after500cycles at1A g-1); second, the first cycle columbic is as high as89.7%; third, this composite electrode still could deliver a reversible capacity of712mAh g-1at5A g-1. The outstanding electrochemical performance of this composite is due to the unique2D layer structure of this composite.
     (2) The idea of sodium-ion batteries as a substitute of lithium-ion batteries for grid-scale energy storage was initially driven by cost considerations. Hence there is a strong current interest in research high-performance sodium-ion batteries electrode marterials. In chapter3, we have firstly developed a SnS2-RGO composite with excellent electrochemical performance as the anode of sodium-ion batteries. The SnS2-RGO electrode demonstrated a high charge specific capacity (630mAh g-1at0.2A g-1), good rate performance (544mAh g-1at2A g-1) and long cycle-life (500mAh g-1at1A g-1for400cycles). The performance surpasses any other NIB anode reported in the literature to date. The excellent electrochemical performance could be attributed to the SnS2layered structure where the increased interlayer spacing could better accommodate the volume change in Na-Sn insertion and de-insertions; and fast collection and conduction of electrons through a highly conductive RGO network.
     (3) In chapter4, ternary Cu2SnS3mesoporous nanospheres and cabbage-like nanostructures are synthesized by a simple solvothermal route. A different structures formation mechanism was controled by the reactant and surfactant. Besides, a possible electrochemical reaction mechanism was proposed based on cyclic voltammetry testing results and confirmed by subsequent ex situ XRD studies. By comparison, the Cu2SnS3nanostructures electrodes deliver a better lithium storage and cycle life performance, which is the first reversible capacity as high as842mAh g"1and remain at621mAh g"1after50cycles (only436mAh g-1after50cycles of mesoporous nanospheres).
     (4) In chapter5, we report a novel ternary CuFeS2microstructure by a simple solvothermal route. The CuFeS2microstructures have been shown an admirable lithium storage property. The first discharge and charge specific capacity of767and614mAh g-1at0.2A g-1, respectively. The first coulombic efficiency is80%. A good rate performance up to4A g"1, the discharge specific capacity is-400mAh g-1. The electrode was also very stable to cycling; providing a nearly unvarying capacity of-600mAh g-1at0.5A g-1even after400charge-discharge cycles. We have also studied the sodium storage property of the CuFeS2microstructures. The first discharge specific capacity628mAh g-1is and charge specific capacity of511mAh g-1, which is the the initial irreversible capacity loss of18.6%. The ternary CuFeS2microstructure is showing excellent lithium storage performance, and the synthesis approach is very simple and inexpensive. This is providing valuable experience for studing other sulphide materials as lithium (sodium) ion battery.
引文
[1]杨遇春,二次锂电池进展,电池,1993,23(5):230-233
    [2]Tarascon J M, Armand M, Issues and challenges facing rechargeable lithium batteries, Nature,2001,414(1038):359-367
    [3]Linden D, Reddy T B. Handbook of batteries,3rd ed. New York:McGraw-Hill Inc,2002
    [4]Vineent C A, Serosati B, Modern batteries:an introduction to electrochemical Power sourees.2nd ed. London:Arnold,1997
    [5]Goodenough J B, Kim Y. Challenges for rechargeable Li batteries, Chemistry of Materials,2010,22(3):587-603
    [6]Armand M, Tarascon J M, Building better batteries, Nature,2008,451(7179): 652-657
    [7]Yang Z G, Zhang J L, Kintner-Meyer M C W, Electrochemical Energy Storage for Green Grid, Chemical Reviews,2011,111(5):3577-3613
    [8]Chu S, Majumdar A, Opportunities and challenges for a sustainable energy future, Nature,2012,488(7411):294-303
    [9]Simon P, Gogotsi Y, Dunn B, Where Do Batteries End and Supercapacitors Begin, Science,2014,343(6176):1210-1211
    [10]黄彦瑜.锂电池发展简史.物理学史和物理学家,2007,36(8):643-651
    [11]郭炳焜,徐徽,王先友.锂离子电池.长沙:中南大学出版社,2002,145-156
    [12]Etacheri V, Marom R, Elazari R, et al. Challenges in the development of advanced Li-ion batteries:a review. Energy & Environmental Science,2011,4 (9):3243-3262
    [13]吴宇平,万春荣,姜长印,锂离子二次电池,北京,化学工业出版社,2002.
    [14]Megahed S, Ebner W, Lithium-ion battery for electronic applications, Journal of Power Sources,1995,54(1):155-162
    [15]Etacheri V, Marom R, Elazari R, et al. Challenges in the development of advanced Li-ion batteries:a review. Energy & Environmental Science,2011,4 (9):3243-3262
    [16]陈德钧,电池的近期发展与锂离子电池,电池,1996,26(3):139-143
    [17]Amatucci G, and Tarascon J. M. Optimization of insertion compounds such as LiMn2O4 for Li-ion batteries, Journal of the Electrochemical Society,2002, 149(12):K31-K46
    [18]周恒辉,慈云祥,刘昌炎,锂离子电池电极材料研究进展,化学进展,1998,10(1):85-93
    [19]Zaghib K, Goodenough J B, Mauger A, et al. Unsupported claims of ultrafast charging of LiFePO4 Li-ion batterie, Journal of Power Sources,2009,194(642): 1021-1023
    [20]Fu L, Liu H, Li C, et al. Surface modifications of electrode materials for lithium ion batteries. Solid State Science,2006,8(2):113-128
    [21]Xia Y, Zhang Q, Wang H, et al. Improved cycling performance of oxygen-stoichiometric spinel Li1+xAlyMn2-x-y04+δ at elevated temperature. Electrochimica Acta,2007,52(14):4708-4714
    [22]Padhi A K, Swamy K S., Goodenough J B. Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries, Journal of the Electrochemical Society,1997,144(4):1188-1194
    [23]Ravet N, Goodenongh J B, Besner S. et al. Improved Iron Based Cathode Material, J. Electrochemical Society Meeting, Honolulu, Hawaii,1999
    [24]Yuan L X, Wang Z H, Zhang W X, et al, Development and challenges of LiFePO4 cathode material for lithium-ion batteries, Energy & Environmental Science,2011,4(2):269-284
    [25]Kang O, Ceder G, Battery materials for ultrafast charging and discharging, Nature,2009,458(7235):190-193
    [26]Zaghib K, Goodenough J B, Mauger A, Julien C. Unsupported claims of ultrafast charging of LiFePO4 Li-ion batteries, Journal of Power Sources,2009, 194(2):1021-1023
    [27]黄可龙,王兆翔,刘素琴,锂离子电池原理与关键技术,北京:化学工业出版社,2008
    [28]吴宇平,戴晓兵,马军旗等,锂离子电池-应用与实践,化学工业出版社,2004
    [29]Kanno R, Kawamoto Y, Takeda Y, et al. Carbon fiber as a negative electrode in lithium secondary cells. Journal of the Electrochemical Society,1992,139(12): 3397-3404
    [30]Kim C, Yang K S, Kojima M, et al. Fabrication of Electrospinning-Derived Carbon Nanofiber Webs for the Anode Material of Lithium-Ion Secondary Batteries. Advanced Functional Materials,2006,16(18):2393-2397
    [31]Li C C, Yin X M, Chen L B, et al. Porous Carbon Nanofibers Derived from Conducting Polymer:Synthesis and Application in Lithium-Ion Batteries with High-Rate Capability. Journal of Physics Chemitry C,2009,113(30): 13438-13442
    [32]Nishizawa M, Hashitani R, Itoh T, et al, Measurements of chemical diffusion coefficient of lithium ion in graphitized mesocarbon microbeads using a microelectrode. Electrochemical and Solid State Letters,1998,1 (1):10-12
    [33]Poizot P, Laruelle S, Grugeon S, et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature,2000,407 (6803): 496-499
    [34]Chen J, Xu L, Li W, et al. α-Fe2O3 Nanotubes in Gas Sensor and Lithium-Ion Battery Applications. Advanced Materials,2005,17 (5):582-586
    [35]Oh S W, Bang H J, Bae Y C, Sun Y K. Effect of calcination temperature on morphology, crystallinity and electrochemical properties of nano-crystalline metal oxides (CO3O4, CuO, and NiO) prepared via ultrasonic spray pyrolysis. Journal of Power Sources,2007,173(1):502-509
    [36]Zhi L J, Hu Y S, Hamaoui B E, et al. Precursor-Controlled Formation of Novel Carbon/Metal and Carbon/Metal Oxide Nanocomposites. Advanced Materials, 2008,20 (9):1727-1731
    [37]Zhou G M, Wang D W, Li F, et al. Graphene-Wrapped Fe3O4 Anode Material with Improved Reversible Capacity and Cyclic Stability for Lithium Ion Batteries. Chemistry of Materials,2010,22 (18):5306-5313
    [38]Lee J E, Yu S H, Lee D J, et al. Facile and economical synthesis of hierarchical carbon-coated magnetite nanocomposite particles and their applications in lithium ion battery anodes. Energy & Environmental Science,2012,5(10): 9528-9533
    [39]Wu Z S, Ren W C, Cheng H M, et al. Graphene Anchored with Co3O4 Nanoparticles as Anode of Lithium Ion Batteries with Enhanced Reversible Capacity and Cyclic Performance. ACS Nano,2010,4(6):3187-3194
    [40]Chen W F, Li S R, Chen C H, et al. Self-Assembly and Embedding of Nanoparticles by In Situ Reduced Graphene for Preparation of a 3D Graphene/Nanoparticle Aerogel. Advanced Materials,2011,23 (47):5679-5683
    [41]Qiao H, Xiao L F, Zhang L Z. Phosphatization:A promising approach to enhance the performance of mesoporous TiO2 anode for lithium ion batteries. Electrochemistry Communications,2008,10(4):616-620
    [42]Guo Y G, Hu Y S, Sigle W, et al. Superior electrode performance of nanostructured mesoporous TiO2 (anatase) through efficient hierarchical mixed conducting networks. Advanced Materials,2007,19(16):2087-2091
    [43]Kavan L, Gratzel M, Facile synthesis of nanocrystalline Li4Ti5O12 (spinel) exhibiting fast Li insertion. Electrochemical and Solid State Letters,2002,5 (2): A39-A42
    [44]Li Z, Qu M Z, Huai Y J, et al. Preparation and electrochemical performance of Li4Ti5O12/carbon/carbon nano-tubes for lithium ion battery. Electrochimica Acta,2010,55(8):2978-2982
    [45]Qiao Y, Hu X L, Liu Y, et al, Li4Ti5O12 nanocrystallites for high-rate lithium-ion batteries synthesized by a rapid microwave-assisted solid-state process. Electrochimica Acta,2012,63(1):118-123
    [46]Ryu J H, Kim J W, Sung Y E, et al. Failure modes of silicon powder negative electrode in lithium secondary batteries. Electrochem. Solid-State Lett,2004,7 (10):A306-A309
    [47]Chan C K, Peng H, Liu G, et al. High-performance lithium battery anodes using silicon nanowires. Nature Nanotechnology,2007,3 (1):31-35
    [48]Cui L F, Ruffo R, Chan C K, et al, Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes, Nano Letter, 2009,9,491-495
    [49]Ji L W, Zhang X W. Fabrication of porous carbon/Si composite nanofibers as high-capacity battery electrodes. Electrochemistry Communications,2009, 11(6):1146-1149
    [50]Yang J, Wachtler M, Winters M, et al. Sub-microcrystalline Sn and Sn-SnSb powder as lithium storage materials for lithium-ion bateries. Electrochemistry and Solid-State Letter,1999,2(2):161-163
    [51]何则强.Sn02基锂离子电池负极材料的研究:[中南大学博士学位论文].湖南:中南大学,2004,22-23
    [52]Xu Y H, Liu Q, Zhu Y J, et al, Uniform Nano-Sn/C Composite Anodes for Lithium Ion Batteries. Nano Letter,2013,13(2):470-474
    [53]李泓,李晶泽,师丽红.锂离子电池纳米材料研究.电化学,2000,6(2):131-145
    [54]Lou W X, Chen J S, Chen P, et al. One-Pot Synthesis of Carbon-Coated SnO2 Nanocolloids with Improved Reversible Lithium Storage Properties. Chemistry of Materials,2009,21(13):2868-2874
    [55]Fan J, Wang T, Yu C, et al. Ordered, Nanostructured Tin-Based Oxides/Carbon Composite as the Negative-Electrode Material for Lithium-Ion Batteries. Advanced Materials,2004,16(11):1432-1435
    [56]Li Y, Tu J P, Wu H M, et al, Mechanochemical synthesis and electrochemical properties of nanosized SnS as an anode material for lithium ion batteries. Materials Science and Engineering B,2006,128(1-3):75-79
    [57]Kim H S, Chung Y H, Kang S H, et al, Electrochemical behavior of carbon-coated SnS2 for use as the anode in lithium-ion batteries, Electrochimica Acta,2009,54(13):3606-3610
    [58]Liu S, Yin X M, Chen L B, et al, Synthesis of self-assembled 3D flowerlike SnS2 nanostructures with enhanced lithium ion storage property. Solid State Sciences,2010,12(5):712-718
    [59]吴振军,陈宗璋,汤宏伟,李素芳,钠离子电池研究进展,电池,2002,32(1):45-47
    [60]Kim S W, Seo D H, Ma X H, et al, Electrode Materials for Rechargeable Sodium-Ion Batteries:Potential Alternatives to Current Lithium-Ion Batteries. Advanced Energy Materials,2012,2(7):710-721
    [61]李慧,吴川,吴锋,白莹,钠离子电池:储能电池的一种新选择,化学学报,2014,72(1):21-29
    [62]Slater M D, Kim D H, Lee E, et al, Sodium-Ion Batteries, Advanced Functional Materials,2013,23(8):947-958
    [63]Ponrouch A, Marchante E, Courty M, et al, In search of an optimized electrolyte for Na-ion batteries. Energy & Environmental Science,2012,5(9):8572-8583
    [64]Palomares V, Serras P, Villaluenga I, et al, Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy & Environmental Science,2012,5(3):5884-5901
    [65]钱江锋,先进储钠电极材料及其电化学储能应用:[武汉大学博士学位论文].湖北:武汉大学,2012,10-14
    [66]Hong S Y, Kim Y, Park Y, et al, Charge carriers in rechargeable batteries:Na ions vs. Li ions. Energy & Environmental Science,2013,6(7):2067-2081
    [67]Yabuuchi N, Kajiyama M, Iwatate J, et al, P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries, Nature Materials,2012, 11(6):512-517
    [68]金翼,孙信,余彦等,钠离子储能电池关键材料,化学进展,2014,26(4):582-591
    [69]Delmas C, Braconnier J. J, Fouassier C, et al, Electrochemical intercalation of sodium in NaxCoO2 bronzes. Solid State Ion,1981,3-4(0):165-169
    [70]Caballero A, Hernan L, Morales J, et al, Synthesis and characterization of high-temperature hexagonal P2-Nao.6MnO2 and its electrochemical behaviour as cathode in sodium cells. Journal of Materials Chemistry,2002,12(4): 1142-1147
    [71]Ma X, Chen H, Ceder G. Electrochemical Properties of Monoclinic NaMnO2. Journal of the Electrochemical Society,2011,158(12):A1307-A1312
    [72]Berthelot R, Carlier D, Delmas C. Electrochemical investigation of the P2-NaxCoO2 Phase diagram, Nature Materials,2011,10(1):74-80
    [73]Doeff M M, Richardson T J, Hollingsworth J, et al. Synthesis and characterization of a copper-substituted manganese oxide with the NaO. 44MnO2structure. Journal of Power Sources,2002,112(1):294-297
    [74]Sauvage F, Laffont L, Tarascon J M, et al. Study of the insertion/deinsertion mechanism of sodium into Nao.44MnO2. Inorganic Chemistry,2007,46(8): 3289-3294
    [75]Komaba S, Murata W, Ishikawa T, et al. Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard-Carbon Electrodes and Application to Na-Ion Batteries. Advanced Functional Materials,2011,21(20):3859-3867
    [76]Xu J, Lee D H, Clement R J, et al, Identifying the Critical Role of Li Substitution in P2-Nax[LiyNizMn1-y-z]O2 (0    [77]Zaghib K, Trottier J, Hovington P, et al. Characterization of Na-based phosphate as electrode materials for electrochemical cells. Journal of Power Sources,2011, 196(22):9612-9617
    [78]Lee K T, Ramesh T N, Nan F, et al. Topochemical Synthesis of Sodium Metal Phosphate Olivines for Sodium-Ion Batteries. Chemistry of Materials,2011, 23(16):3593-3600
    [79]Kim H, Shakoor R A, Park C, et al, Na2FeP2O7 as a Promising Iron-Based Pyrophosphate Cathode for Sodium Rechargeable Batteries:A Combined Experimental and Theoretical Study, Advanced Functional Materials,2012, 23(9):1147-1155
    [80]Barpanda P, Ye T, Avdeev M, et al, A new polymorph of Na2MnP2O7 as a 3.6 V cathode material for sodium-ion batteries, Journal of Materials Chemistry A, 2013,1(13):4194-4197
    [81]Yasushi U, Toshiyasu K, Shigeto O, et al. Electrochernial sodium insertion into the 3D-framework of Na3M2(P04)3 (M= Fe,V). The reports of Institute of Advanced Material Study, Kyushu University,2002,16:1-5
    [82]Plashnitsa L S, Kobayashi E, Noguchi Y, et al Performance of NASICON symmetric cell with ionic liquid electrolyte. Journal of the Electrochemical Society,2010,157(4):A536-A543
    [83]Jian Z, Zhao L, Pan H, et al. Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries. Electrochemistry Communications,2012, 14(1):86-89
    [84]Saravanan K, Mason C W, Rudola A, The First Report on Excellent Cycling Stability and Superior Rate Capability of Na3V2(PO4)3 for Sodium Ion Batteries, Advanced Energy Materials,2013,3(4):444-450
    [85]Jian Z, Han W, Lu X, et al, Superior Electrochemical Performance and Storage Mechanism of Na3V2(PO4)3 Cathode for Room-Temperature Sodium-Ion Batteries, Advanced Energy Materials,2013,3(2):156-160
    [86]Serras P, Palomares V, Alonso J, et al, Electrochemical Na Extraction/Insertion of Na3V2O2x(PO4)2F3-2x, Chemistry of Materials,2013,25 (24):4917-4925
    [87]Liu Z, Hu Y Y, Dunstan M T, et al, Local Structure and Dynamics in the Na Ion Battery Positive Electrode Material Na3V2(PO4)2F3, Chemistry of Materials, 2014,26 (8):2513-2521
    [88]Alcantara R, Madrigal F J F, Lavela P, et al. Characterisation of mesocarbon microbeads (MCMB) as active electrode material in lithium and sodium cells. Carbon,2000,38(7):1031-1041
    [89]Thomas P, Billaud D, Effect of mechanical grinding of pitch-based carbon fibers and graphite on their electrochemical sodium insertion properties. Electrochimica Acta,2000,46(1):39-47
    [90]Alcantara R, Jimenez-Mateos J M, Lavela P, et al, Carbon black:a promising electrode material for sodium-ion batteries. Electrochemistry Communications, 2001,3(11):639-642
    [91]Stevens D A, Dahn J R. High Capacity Anode Materials for Rechargeable Sodium-Ion Batteries. Journal of the Electrochemical Society,2000,147(4): 1271-1273
    [92]Komaba S, Murata W, Ishikawa T, et al, Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard-Carbon Electrodes and Application to Na-Ion Batteries, Advanced Functional Materials,2011,21(20):3859-3867
    [93]Luo W, Schardt J, Bommier C, et al, Carbon nanofibers derived from cellulose nanofibers as a long-life anode material for rechargeable sodium-ion batteries, Journal of Materials Chemistry A,2013,1(36):10662-10666
    [94]Cao Y L, Xiao L F, Sushko M L, et al, Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applications, Nano Letter,2012,12(7):3783-3787
    [95]Tang K, Fu L J, White R J, et al, Hollow Carbon Nanospheres with Superior Rate Capability for Sodium-Based Batteries, Advanced Energy Materials,2012, 2(7):873-877
    [96]Wang Z H, Qie L, Yuan L X, et al, Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance, Carbon,2013,55(12):328-334
    [97]Ding J, Wang H L, Li Z, et al, Carbon Nanosheet Frameworks Derived from Peat Moss as High Performance Sodium Ion Battery Anodes, ACS Nano,2013, 7(12):11004-11015
    [98]Fu L J, Tang K, Song K P, et al, Nitrogen doped porous carbon fibres as anode materials for sodium ion batteries with excellent rate performance, Nanoscale, 2014,6(3):1384-1389
    [99]Pola V G, Lee E, Zhou D H, et al, Spherical Carbon as a New High-Rate Anode for Sodium-ion Batteries, Electrochimica Acta,2014,127(99):61-67
    [100]Chevrier V L, Ceder G. Challenges for Na-ion Negative Electrodes. Journal of the Electrochemical Society,2011,158(9):A1011-A1014
    [101]Ellis L D, Hatchard T D, Obrovac M N, Reversible Insertion of Sodium in Tin, Journal of the Electrochemical Society,2012,159(11):A1801-A1805
    [102]何菡娜,王海燕,唐有根,刘又年,钠离子电池负极材料,化学进展,2014,26(4):572-581
    [103]Komaba S, Matsuura Y, Ishikawa T, et al, Redox reaction of Sn-polyacrylate electrodes in aprotic Na cell, Electrochemistry Communications,2012,21(1): 65-68
    [104]Xu Y H, Zhu Y J, Liu Y H, et al, Electrochemical Performance of Porous Carbon/Tin Composite Anodes for Sodium-Ion and Lithium-Ion Batteries, Advanced Energy Materials,2013,3(1):128-133
    [105]Liu Y H, Xu Y H, Zhu Y J, et al, Tin-Coated Viral Nanoforests as Sodium-Ion Battery Anodes, ACS Nano,2013,7 (4):3627-3634
    [106]Lin Y M, Abel P R, Gupta A, et al, Sn-Cu Nanocomposite Anodes for Rechargeable Sodium-Ion, ACS Applied Materials Interfaces,2013,5 (17): 8273-8277
    [107]Wang Y, Su D W, Wang C Y, et al, SnO2@MWCNT nanocomposite as a high capacity anode material for sodium-ion batteries, Electrochemistry Communications,2013,29(1):8-11
    [108]Su D W, Ahn H J, Wang G X, SnO2@graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical, Chemical Communications,2013,49(30):3131-3133
    [109]Su D W, Wang C Y, Ahn H J, Octahedral tin dioxide nanocrystals as high capacity anode materials for Na-ion batteries, Physical Chemistry Chemical Physics,2013,15(30):12543-12550
    [110]Wang Y X, Lim Y G, Park M S, et al, Ultrafine SnO2 nanoparticle loading onto reduced graphene oxide as anodes for sodium-ion batteries with superior rate and cycling performances, Journal of Materials Chemistry A,2014,2(2): 529-534
    [111]Qian J F, Chen Y, Wu L, et al, High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries, Chemical Communications,2012,48(56):7070-7072
    [112]Xiao L F, Cao Y L, Xiao J, et al, High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications, Chemical Communications,2012,48(27):3321-3323
    [113]Darwiche A, Cyril Marino C, Sougrati M T, et al, Better Cycling Performances of Bulk Sb in Na-Ion Batteries Compared to Li-Ion Systems:An Unexpected Electrochemical Mechanism, Journal of the American Chemical Society,2012, 134(51):20805-20811
    [114]Wu L, Hu X H, Jiangfeng Qian J F, et al, Sb-C nanofibers with long cycle life as an anode material for high-performance sodium-ion batteries, Energy & Environmental Science,2014,7(1):323-328
    [115]Zhu Y J, Hang X G, Xu Y H, et al, Electrospun Sb/C Fibers for a Stable and Fast Sodium-Ion Battery Anode, ACS Nano,2013,7 (7):6378-6386
    [116]Wu L, Hu X H, Qian J F, et al, A Sn-SnS-C nanocomposite as anode host materials for Na-ion batteries, Journal of Materials Chemistry A,2013,1(24): 7181-7184
    [117]Kim Y, Park Y, Choi A, et al, An Amorphous Red Phosphorus/Carbon Composite as a Promising Anode Material for Sodium Ion Batteries, Advanced Materials,2013,25(22):3045-3049
    [118]Qian J F, Wu X Y, Cao Y L, et al, High Capacity and Rate Capability of Amorphous Phosphorus for Sodium Ion Batteries, Angewandte Chemie International Edition,2013,52(17):4633-4636
    [119]Senguttuvan P, Rousse G, Seznec V, et al. Na2TisO7:Lowest Voltage Ever Reported Oxide Insertion Electrode for Sodium Ion Batteries. Chemistry of Materials.2011,23(18),4109-4111
    [120]Zhao L, Pan H L, Hu Y-S, et al, Spinel lithium titanate (Li4Ti5O12) as novel anode material for room-temperature sodium-ion battery. Chinese Physics B, 2012,21(2):1-4 [121] Sun Y, Zhao L, Pan H L, et al, Direct atomic-scale confirmation of three-phase
    storage mechanism in LiTisO12 anodes for room-temperature sodium2ion batteries. Nature Communications,2013,4(8):1870-1879 [122] Rudola A, Saravanan K, Devaraj S, et al, NaiTi6O13:a potential anode for
    grid-storage sodium-ion batteries. Chemical Communications,2013,49(67): 7451-7453 [123] Hariharan S, Saravanan K, Balaya P, et al, α-MoO3:A high performance anode
    material for sodium-ion batteries, Electrochemistry Communications,2013, 31(5):5-9 [124] Jian Z L, Zhao B, Liu P, et al, Fe2O3 nanocrystals anchored onto graphene
    nanosheets as the anode material for low-cost sodium-ion batteries, Chemical Communications,2013,50(10):1215-1217 [125] Alca'ntara R, Jaraba M, Lavela P, et al, NiCo2O4 Spinel:First Report on a
    Transition Metal Oxide for the Negative Electrode of Sodium-Ion Batteries, Chemistry of Materials,2002,14 (7):2847-2848 [126] Whittingham M S, Chemistry of intercalation compounds:metal guests in
    chalcogenide hosts. Progress In Solid State Chemistry,1978,12 (1):41-99 SnS2(SnO2)
    [127]宰建陶,多级微纳结构的合成及性能:[上海交通大学博士学位论 文].上海:上海交通大学,2012,12-13
    [128]Hummers W S, Offeman R E, Preparation of Graphitic Oxide, Journal of the American Chemical Society,1958,80(6):1339-1339
    [129]Zeng Z Y, Sun T, Zhu J X, et al, An effective method for the fabrication of few-layer-thick inorganic nanosheets, Angewandte Chemie International Edition,2012,51(36):9052-9056
    [130]Chhowalla M, Shin H S, Eda G, et al, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nature Chemistry,2013,5(4): 263-275
    [131]Huang X, Zeng Z Y, Zhang H, Metal dichalcogenide nanosheets:preparation, properties and applications, Chemical Society Reviews,2013,42(5):1934-1946
    [132]Gao M R, Xu Y F, Jiang J, et al, Nanostructured metal chalcogenides:synthesis, modification, and applications in energy conversion and storage devices, Chemical Society Reviews,2013,42(7):2986-3017
    [133]Aharon E, Breuer S, Jaiser F, et al, Effect of the solvent on the conformation of isolated MEH-PPV chains intercalated into SnS2, Chemphyschem,2008,9 (10): 1430-1436
    [134]Brousses T, Lee S M, Pasquereau L, et al, Composite negative electrodes for lithium ion cells, Solid State Ionics,1998,113-115(23):51-56
    [135]Mukaibo H, Yoshizawa A, Momma T, et al, Particle size and performance of SnS2 anodes for rechargeable lithium batteries, Journal of Power Sources,2003, 119-121(1):60-63
    [136]Seo J W, Jang J T, Park S W, et al, Two-Dimensional SnS2 Nanoplates with Extraordinary High Discharge Capacity for Lithium Ion Batteries, Advanced Materials,2008,20(22):4269-4273
    [137]Luo B, Fang Y, Wang B, et al. Two dimensional graphene-SnS2 hybrids with superior rate capability for lithium ion storage. Energy & Environmental Science,2012,5 (1):5226-5230
    [138]Shen C, Ma L, Zheng M, et al. Synthesis and electrochemical properties of graphene-SnS2 nanocomposites for lithium-ion batteries. Journal of Solid State Electrochemistry,2012,16(5):1999-2004
    [139]Chang K, Wang Z, Huang G, et al. Few-layer SnS2/graphene hybrid with exceptional electrochemical performance as lithium-ion battery anode. Journal of Power Sources,2012,201 (1):259-266
    [140]Jiang Z F, Wang C, Du G H, et al, In situ synthesis of SnS2@graphene nanocomposites for rechargeable lithium batteries, Journal of Materials Chemistry,2012,22(19):9494-9496
    [141]Liu S Y, Lu X, Xie J, et al, Preferential c-Axis Orientation of Ultrathin SnS2 Nanoplates on Graphene as High-Performance Anode for Li-Ion Batteries, ACS Applied Materials Interfaces,2013,5 (5):1588-1595
    [142]Chen P, Su Y, Liu H, et al, Interconnected Tin Disulfide Nanosheets Grown on Graphene for Li-Ion Storage and Photocatalytic Applications, ACS Applied Materials Interfaces,2013,5(22):12073-12082
    [143]Chang K, Chen W X, In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries, Chemical Communications,2011,47(14):4252-4254
    [144]Chang K, Chen W X, L-Cysteine-Assisted Synthesis of Layered MoS2/Graphene Composites with Excellent Electrochemical Performances for Lithium Ion Batteries, ACS Nano,2011,5(6):4720-4728
    [145]Yang L C, Wang S N, Mao J J, et al, Hierarchical MoSa/Polyaniline Nanowires with Excellent Electrochemical Performance for Lithium-Ion Batteries, Advanced Materials,2013,25(8):1180-1184
    [146]Huang G C, Chen T, Chen W X, et al, Graphene-Like MoS2/Graphene Composites:Cationic Surfactant-Assisted Hydrothermal Synthesis and Electrochemical Reversible Storage of Lithium, Small,2013,9(21):3693-3703
    [147]David L, Bhandavat R, Singh G, MoS2/Graphene Composite Paper for Sodium-Ion Battery Electrodes, ACS Nano,2014,8(2):1759-1770
    [148]Zhu C B, Mu X K, Aken P A, et al, Single-Layered Ultrasmall Nanoplates of MoS2 Embedded in Carbon Nanofibers with Excellent Electrochemical Performance for Lithium and Sodium Storage, Angewandte Chemie International Edition,2014,53(8):2152-2156
    [149]Chen D Y, Ji G, Ding B, et al, In situ nitrogenated graphene-few-layer WS2 composites for fast and reversible Li+ storage, Nanoscale,2013,5(17): 7890-7896
    [150]Xu X D, Rout C S, Yang J, et al, Freeze-dried WS2 composites with low content of graphene as high-rate lithium storage materials, Journal of Materials Chemistry A,2013,1(46):14548-14554
    [151]Su D W, Dou S X, Wang G X, WS2@graphene nanocomposites as anode materials for Na-ion batteries with enhanced electrochemical performances, Chemical Communications,2014,50(32):4192-4195
    [152]Rout C S, Kim B H, Xu X D, et al, Synthesis and Characterization of Patronite Form of Vanadium Sulfide on Graphitic Layer, Journal of the American Chemical Society,2013,135(23):8720-8725
    [153]Montoro L A, Rosolen J M, Shin J H, et al, Investigations of natural pyrite in solvent-free polymer electrolyte, lithium metal batteries. Electrochimica Acta, 2004,49(20):3419-3427
    [154]Choi Y J, Kim N W, Kim K W, et al. Electrochemical properties of nickel-precipitated pyrite as cathode active material for lithium/pyrite cell. Journal of Alloys and Compounds,2009,485(1-2):462-466
    [155]张冬,锂离子电池负极材料FeS:的电化学性能改善:[浙江大学博士学位论文].杭州:浙江大学,2012,15-20
    [156]Choi J W, Cheruvally G, Ahn H J, et al. Electrochemical characteristics of room temperature Li/FeS2 batteries with natural pyrite cathode. Journal of Power Sources,2006,163 (1):158-165
    [157]Xu C, Zeng Y, Rui X H, et al, Controlled Soft-Template Synthesis of Ultrathin C@FeS Nanosheets with High-Li-Storage Performance, ACS Nano,2012,6 (6): 4713-4721
    [158]Li, L S, Acevedo M C, Girard S N, et al, High-purity iron pyrite (FeS2) nanowires as high capacity nanostructured cathodes for lithium-ion batteries, Nanoscale,2014,6 (4):2112-2118
    [159]Shadike Z, Zhou Y N, Ding F, et al, The new electrochemical reaction mechanism of Na/FeS2 cell at ambient temperature, Journal of Power Sources, 2014,260 (2003):72-76
    [160]Lai C H, Huang K W, Cheng J H, et al, Direct growth of high-rate capability and high capacity copper sulfide nanowire array cathodes for lithium-ion batteries, Journal of Materials Chemistry,2010,20 (32):6638-6645
    [161]Jache B, Mogwitz B, Klein F, et al, Copper sulfides for rechargeable lithium batteries:Linking cycling stability to electrolyte composition, Journal of Power Sources,2014,247(1):703-711
    [162]Ji L, Xin H L, Kuykendall T R, et al, SnS2 nanoparticle loaded graphene nanocomposites for superior energy storage, Physical Chemistry Chemical Physics,2012,14(19):6981-6986
    [163]Zhuo L H, Wu Y Q, Wang L Y, et al, One-step hydrothermal synthesis of SnS2/graphene composites as anode material for highly efficient rechargeable lithium ion batteries, RSC Advance,2012,2(12):5084-5087
    [164]Yin J F, Cao H Q, Zhou Z F, et al, SnS2@reduced graphene oxide nanocomposites as anode materials with high capacity for rechargeable lithium ion batteries, Journal of Materials Chemistry,2012,22(45):23963-23970
    [165]Jiang X, Yang X L, Zhu Y H, et al, In situ assembly of graphene sheets-supported SnS2 nanoplates into 3D macroporous aerogels for high-performance lithium ion batteries, Journal of Power Sources,2013,278(9): 178-186
    [166]Mei L, Xu C, Yang T, et al, Superior electrochemical performance of ultrasmall SnS2 nanocrystals decorated on flexible RGO in lithium-ion batteries, Journal of Materials Chemistry A,2013,1(30):8658-8664
    [167]Zhou X S, Wan L J, Guo Y G, Binding SnO2 Nanocrystals in Nitrogen-Doped Graphene Sheets as Anode Materials for Lithium-Ion Batteries, Advanced Materials,2013,25(15):2152-2157
    [168]Wang R H, Xu C H, Sun J, et al, Solvothermal-Induced 3D Macroscopic SnO2/Nitrogen-Doped Graphene Aerogels for High Capacity and Long-Life Lithium Storage. ACS Applied Materials Interfaces,2014,6 (5):3427-3436
    [169]Qu B H, M C Z, Ji G, et al, Layered SnS2-Reduced Graphene Oxide Composite-A High-Capacity, High-Rate, and Long-Cycle Life Sodium-Ion Battery Anode Material. Advanced Materials,2014,10.1002/adma.201306314
    [170]Jeong H K, Lee Y P, Lahaye R J W E, et al, Evidence of Graphitic AB Stacking Order of Graphite Oxides, Journal of the American Chemical Society.2008,130 (4):1362-1366
    [171]Wang J W, Liu X H, Mao S X, et al, Microstructural Evolution of Tin Nanoparticles during In Situ Sodium Insertion and Extraction, Nano Letter. 2012,12(11):5897-5902
    [172]Wang C R, Tang K B, Yang Q, et al, Raman scattering, far infrared spectrum and photoluminescence of SnS2 nanocrystallites, Chemical Physics Letters,2002, 357(5)371-375
    [173]Kim H S, Chung Y H, Kang S H, et al, Electrochemical behavior of carbon-coated SnS2 for use as the anode in lithium-ion batteries, Electrochimica Acta,2009,54(3):3606-3610
    [174]Stankovich S, Dikin D A, Piner R D, et al, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon,2007, 45(5):1558-1565
    [175]Zhu H L, Jia Z, Chen Y C, et al, Tin Anode for Sodium-Ion Batteries Using Natural Wood Fiber as a Mechanical Buffer and Electrolyte Reservoir, Nano Letter,2013,13(7):3093-3100
    [176]Zhao L, Zhao J M, Hu Y S, et al, Disodium Terephthalate (Na2C8H4O4) as High Performance Anode Material for Low-Cost Room-Temperature Sodium-Ion Battery, Advanced Energy Materials,2012,2(8):962-965
    [177]Wang Y S, Yu X Q, Xu S Y, et al, A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries, Nature Communications, 2013,4(5):2365-2373
    [178]Yu D Y W, Prikhodchenko P V, Mason C W, et al, High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries, Nature Communications,2013,4(12):2922-2928
    [179]Abouimrane A, Weng W, Eltayeb H, et al, Sodium insertion in carboxylate based materials and their application in 3.6 V full sodium cells, Energy & Environmental Science,2012,5(11):9632-9638
    [180]Komaba S, Murata W, Ishikawa T, et al, Sodium insertion in carboxylate based materials and their application in 3.6 V full sodium cells, Advanced Functional Materials,2011,21(20):3859-3867
    [181]Li Y G, Tan B, Wu Y Y, Mesoporous Co3O4 Nanowire Arrays for Lithium Ion Batteries with High Capacity and Rate Capability, Nano Letter,2008,8 (1): 265-270
    [182]Liu B Q, Li Q F, Zhang B, et al, Synthesis of patterned nanogold and mesoporous CoFe2O4 nanoparticle assemblies and their application in clinical immunoassays, Nanoscale,2011,3(5):2220-2226
    [183]Liu D W, Garcia B B, Zhang Q F, et al, Mesoporous Hydrous Manganese Dioxide Nanowall Arrays with Large Lithium Ion Energy Storage Capacities, Advanced Functional Materials,2009,19(7):1015-1023
    [184]Yu Y, Chen C H, Shi Y, A Tin-Based Amorphous Oxide Composite with a Porous, Spherical, Multideck-Cage Morphology as a Highly Reversible Anode Material for Lithium-Ion Batteries, Advanced Materials,2007,19(7):993-997
    [185]Lou X W, Deng D, Jim Yang Lee J Y, et al, Preparation of SnO2/Carbon Composite Hollow Spheres and Their Lithium Storage Properties, Chemistry of Materials,2008,20 (20):6562-6566
    [186]Liu J, Li W, Manthiram A, Dense core-shell structured SnO2/C composites as high performance anodes for lithium ion batteries, Chemical Communications, 2010,46(9):1437-1439
    [187]Wu P, Du N, Zhang H, et al, Carbon-coated SnO2 nanotubes:template-engaged synthesis and their application in lithium-ion batteries, Nanoscale,2011, 3(2):746-750
    [188]Kim M G, Sim S J, Cho J P, Novel Core-Shell Sn-Cu Anodes for Lithium Rechargeable Batteries Prepared by a Redox-Transmetalation Reaction, Advanced Materials,2010,22(45):5154-5158
    [189]Wu C Z, Hu Z P, Wang C L, et al, A THexagonal Cu2SnS3 with metallic character:Another category of conducting sulfides, Applied Physics Letters, 2007,91(14):14104-14106
    [190]Qu B H, Zhang M, Lei D N, et al, Facile solvothermal synthesis of mesoporous Cu2SnS3 spheres and their application in lithium-ion batteries, Nanoscale,2011, 3(9):3646-3651
    [191]Qu B H, Li H X, Zhang M, et al, Ternary Cu2SnS3 cabbage-like nanostructures: large-scale synthesis and their application in Li-ion batteries with superior reversible capacity, Nanoscale,2011,3(10):4389-4393
    [192]Cao A M, Monnell J D, Matranga C, et al, Hierarchical Nano structured Copper Oxide and Its Application in Arsenic Removal, The Journal of Physical Chemistry C,2007,111(50):18624-18628
    [193]Jiang L Y, Wu X L, Guo Y G, et al, SnO2-Based Hierarchical Nanomicrostructures:Facile Synthesis and Their Applications in Gas Sensors and Lithium-Ion Batteries, The Journal of Physical Chemistry C,2009,113 (32): 14213-14219
    [194]Yin X M, Li C C, Zhang M, et al, One-Step Synthesis of Hierarchical SnO2 Hollow Nanostructures via Self-Assembly for High Power Lithium Ion Batteries, The Journal of Physical Chemistry C,2010,114 (17):8084-8088
    [195]Xia J, Jiao J Q, Dai B L, et al, Facile synthesis of FeS2 nanocrystals and their magnetic and electrochemical properties, RSC Advance,2013,3(17): 6132-6140
    [196]Li L S, Cab'an-Acevedo M, Girard S N, et al, High-purity iron pyrite (FeS2) nanowires as highcapacity nanostructured cathodes for lithium-ion batteries, Nanoscale,2014,6(4):2112-2118
    [197]Zhang D, Mai Y J, Xiang J Y, et al, FeS2/C composite as an anode for lithium ion batteries with enhanced reversible capacity, Journal of Power Sources,2012, 217(4):229-235
    [198]Wu B, Song H H, Zhou J S, et al, Iron sulfide-embedded carbon microsphere anode material with high-rate performance for lithium-ion batteries, Chemical Communications,2011,47(30):8653-8655
    [199]Son S B, Yersak T A, Piper D M, et al, Iron sulfide-embedded carbon microsphere anode material with high-rate performance for lithium-ion batteries, Advanced Energy Materials,2014,4(3):DOI:10.1002/aenm.201300961

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700